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Components of a Data Transfer Framework
Any system for transferring data, whether it is a three-column ASCII file
attached to an email or a CIF file, can be broken into four parts:

1. Data values: the values to be transferred. Values may be anything that
we can plausibly transfer via computer, including numbers, text, vec-
tors, sets, lists and images.

2. An ontology: a shared understanding of the meanings of the data val-
ues. This can be accomplished by attaching values to data names. The
data name is then used to communicate how the one or more associated
values are to be interpreted. The data names are collected into a data
name dictionary, describing the ontology.

3. One or more file formats: structured arrangements of data values.

4. Linkage between a format and an ontology: a description of how the
data names and values from the ontology are encoded in a given for-
mat.

Figure 1: The four data transfer components
in an email message

The absence of any one of the above four components must lead to a fail-
ure in data communication. No data values means no data; no shared ontol-
ogy means that the sender and receiver would understand the data differently;
no format means no electronic encoding of the data; and no linkage means no
way of encoding the data values in the format in a mutually understandable
way.

The ontology and format–ontology linkage are often only informally or
partially specified, relying on a common store of scientific knowledge and
obvious meanings of shorthand data names. This approach is reasonably ef-
fective in some contexts. A more formal approach describes the ontology
using a set of standard attributes in a machine-readable file. Later in this
course we will show how to use CIF tools to write such a formal ontology.

Note that the ontology may be cleanly separated from the particular for-
mat used to encode the data values. This is in a sense obvious when we con-
sider that observations and results should not depend on the form in which
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they are communicated. The first part of this course focuses only on describ-
ing the data names (that is, developing the ontology). The resulting ontology
is applicable to any format.

Data names and their relationships

As described above, each of our data values belongs to a data name, which
is a label for the concept that the value is an instance of. Examples include
‘wavelength’, ‘measurement point’, ‘user name’, ‘sample composition’. Any
data name will have multiple possible values – if a data name could only
ever have one value, then there is no point including it in a data transfer
framework, as the data file would not be providing any new information for
this data name.

Context

Given that any data name could have multiple values, we need some further
information to understand what distinguishes the values from one another.
We could call this the ‘context’ of a data value. The context is described by
assigning specific values to some set of data names {K}. If every value of
the data names in {K} is the same, then our target data name must always
have the same value (or the logically equivalent statement: if the value of our
data name changes, then at least one value of the data names in {K} must be
different). If this is not the case, we add further data names to {K} until it The values taken by the data name are a

mathematical mapping (function) of the val-
ues in {K}.

is true. As a logical consequence, if any one of the values for the data names
in {K} is different, then our target data name may have a different value. We
will call the list of data names {K} the key data names for the data name that
is defined.

Exercise 1. Work out possible key data names for each data name in the
following list.

‘atomic position’

‘atomic element’

‘monochromator setting’

‘observed intensity’

‘calculated intensity’

Observations and Calculations

For convenience we now divide data names into ‘observations’ and ‘calcu-
lations’. Calculated values will always be the same if the same input val-
ues are used, so the set of key data names for calculated values is just an
exhaustive list of parameters for the calculation. Under ‘observations’ we
include not just the particular quantities being measured, but also any de-
scriptive information about the experiment. What are the key data names for
such observational data names? Scanned quantities cannot satisfy our crite-
ria. For example, if we measure at a series of energies and measure intensity
at each energy point, we may think that our observed intensity values are
distinguished from one another by the energy at which they were measured;
however, the same value of energy could possibly lead to a different intensity
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on a subsequent measurement due to statistical variation, so it does not sat-
isfy our criterion that identical values of the key data names must correspond
to identical values of the defined data name. A key data name for observed It is important not to confuse our model

of the world, in which we expect the mea-
sured value to be determined by the values
of some other parameters, with the actual
experiment, in which a series of observa-
tions are made.

quantities is therefore simply ‘a measurement point’, with arbitrary values
that we assign (see below).

Making values of ‘a measurement point’ globally unique is cumbersome.
We can add a further key data name, something like ‘dataset id’, to avoid this.
If measurements are divided into a series of scans, with different settings for
each scan, ‘scan id’ might also be a useful additional key data name.

Identifiers

We have introduced a third class of data names, those that are ‘identifiers’.
In our example above, these are the measurement points. For ‘identifier’ data
names, the actual values are irrelevant, as the values are only used to distin-
guish or label different members. Examples of identifier data names include
measurement points, serial numbers, atom sites, sample numbers and run
numbers.

Warning:

While we often use numbers for identifier data values because it is
easy to pick a unique one if we label sequentially, their numerical proper-
ties should not be used; if an identifier value is more than a simple unique
value, for example, it is used in calculations, then we run the risk that a
situation will arise where the same value should be assigned to distinct
items, and so our values can no longer serve as identifiers. For example,
we may decide to identify image frames in a data collection by numbering
sequentially from zero, with each frame corresponding to a small uniform
change in a sample orientation axis. If we then fall into the trap of using
the image number multiplied by the axis step to get the axis value, we
can no longer cope with a situation where the same orientation was recol-
lected, for whatever experimental reason.

When choosing identifiers, consider the human user and suggest a natural
system of labeling in your definition – labels that are meaningful to humans
are just as good as random strings, but the labels should never be manipulated
in other definitions.

Unlike other data names, identifiers do not always have key data names.
Identifiers can appear both as key and non-key data names in the ontology: Mathematically, identifiers are their own

key data names.for example, in our description of a structure an atom site may have ‘element
name’ giving the element occupying that site. Elsewhere in our ontology we
might have ‘form factor’, ‘valence’, ‘isotope’, which have ‘element name’ as
the key data name. The values of the former ‘element name’ are drawn from
the values of the latter. It is clearly important to distinguish these two uses
of ‘element name’, as their interpretation is different: one is ‘the element
at a given atomic site’, and the other is ‘the element to which this valence/
isotope/form factor relates’ . For this reason the two distinct uses must be as- The full interpretation might be ‘the element

at the atomic site in the structural solution
for this dataset’

signed different data names, for example ‘atom site element’ and ‘element’.

Summary

In order to define a data name we need to identify the key data names, the
values that our data name can take, and how to use the values of the key data
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names to interpret values of the defined data name. A data name describing
an observed fact could be defined as simply as ‘the value of A when the
measurement was taken’, whereas a data name defining a derived quantity
would need to identify all of the parameters of the calculation and the equa-
tions involved. References to published works for calculations may be suffi-
cient as the target of our definition is a human reader (probably a scientist–
programmer).

Practice questions:

Q 1. During a synchrotron experiment, monitor counts are recorded in
a gas filled ion chamber. Which of the following data names are key
data names for the counts measured in the ion chamber?

A: the gas pressure

B: the gas mixture

C: the ion chamber length

D: all of the above

E: none of the above

Q 2. During the same synchrotron experiment, variation of transmit-
ted intensity as a sample is moved across the beam is recorded. The
expected measured intensity is calculated following the experiment.
Which of the following data names are key data names for this cal-
culated intensity?

A: the monitor ion chamber measured intensity

B: the sample thickness

C: the detector voltage

D: all of the above

E: none of the above

Q 3. For efficiency, simultaneous intensity measurements from multi-
pixel detectors are stored in a data file as a sequence of bytes that has
a particular compression algorithm and integer encoding, which we
have assigned data name ‘compressed image’. The particular choice
of encoding and compression routine might vary within a single mea-
surement sequence according to factors such as the range of values,
maximum value, or detector module. What are the key data names for
‘compressed image’?

Answer: the byte sequence is processed data, so all parameters used in
the processing are relevant. In this case the input is the raw data from
every pixel, an encoding and a compression id. If any of these change,
the byte sequence may be different, and given all of these, the byte
sequence is fixed, so they fulfill our requirements for key data names.
For brevity we would attach an identifier to each set of pixel data, and
could call it ‘raw image id’.

Creating the ontology, step by step

Step 1: Brainstorm data names

Write down all of the concepts that might be included in a data file. For
convenience, assign some short, descriptive names to them (these names may
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change later). Some data names may be implied by what is already in your
list.

• Think in terms of objects and their properties, for example, ‘an exper-
imenter’ may have properties ‘name’, ‘address’ ‘role’ ‘photograph’.

• Look at the nouns in your definitions for indications of identifier data
names.

• Locate identifiers and consider whether these could or should be clas-
sified more finely, just as we divided ‘measurement id’ into ‘dataset
id’, ‘scan id’, ‘measurement id’ above. Such divisions are purely for
convenience, and make sense if you expect each identifier to have
many values in a given data file and you can think of relevant prop-
erties that are constant for each value of the identifier. For example,
within a single scan the scan step or some orientation might be con-
stant.

• Look at the data files that are already used in your field and extract data
names from them. To locate data names, remember every scientifically
useful value in a data file belongs to a data name. Examine the context
of these values to find key data names. The context in a hierarchical
structure typically consists of the nodes above the value of interest,
and the values attached to the same node. Further context might be
indicated in the specifications.

Step 2: Sharpen up the definitions

For each of your data names from Step 1, write a definition that conveys
unambiguously to a human reader the following three things:

1. the nature of the data values (e.g. arbitrary identifier, real num-
ber, text, vector, integer, yes/no, image)

2. the key data names

3. how to interpret this data name given the values of the key data
names

Add any further data names that you have overlooked. A classification
into ‘observations’, ‘calculations’ and ‘identifiers’ may help, with identifiers
often associated with indefinite nouns like ‘an image’ ‘a measurement’ ‘an
experimenter’. You could use well-defined terminology from your field and
references to literature to keep your definition short.

Example:

Finding key data names. What are the key data names for ‘an experi-
mental role’, which we have defined as ‘the role performed by an experi-
menter during the experiment’?

‘An experimental role’ is observational, so {‘measurement id’, ‘dataset
id’} are key data names. Our definitional sentence includes nouns ‘role’
and ‘experimenter’, both of which could become identifiers. If we have
a measurement and a person, do we have a single unique role identified?
In other words, could one person perform two roles at once? If not (we
did after all write ‘the role’), then {‘measurement id’, ‘dataset id’ and
‘experimenter id’} are sufficient.
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Exercise 2. Work out how to represent simultaneous roles. Possible roles
might include {‘principal’, ‘attending’, ‘experimenter’, ‘dogsbody’, ‘pro-
grammer’, ‘instrument responsible’} . See the ionisation chamber example
below for ideas.

Step 3: Make your definitions computationally useful

Remember that an important reason for this work is to convey information in
a way that is manipulable by computer.

1. Any data name that ends up having values that are free text strings (e.g.
‘sample description’) is essentially using the data file as a glorified word
processor format, and has a much reduced value in automated settings. So
look over your data names, and where you have quantitative information in
free or formatted text, rework it into observational or calculated data names
that take standard value types.

2. Where you have two or more identifier data names that refer to the
same type of thing, with the same key data names, you should rework your
ontology as follows. Create a new key data name that will be used to identify
combinations of values for these duplicate data names (let’s call it ‘C’). Now
create a second key data name that will take the values that your original
data names were supposed to take. Finally, replace your duplicate data names
by a single identifier data name that draws from the values of C. The same
information is now representable in an extensible way. This technique could
be described as creating an associative table.

Example:
Ion chambers used at synchrotrons have sensitivity to the X-ray beam run-
ning through them tuned by adjusting the gas or mix of gases in them. We
wish to record this information in our data files.

Our starting definition is: gas mix, ‘the mixture of gases in an ion chamber,
in format element-percent-element-percent’, with key data name ‘detector
id’; and other data names that also have ‘detector id’ as a key data name are
‘detector length’ and ‘location’. If we tabulate this, we might have:

detector id gas mix detector length location

BB25 He-50-N-
50

5 monitor

XYZ Ar-100 5 detector

Old-G Ar-100 10 foil
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As described in point (1) above, the gas mix definition embeds data
items into the value, essentially making them unavailable elsewhere in our
ontology. To remedy this, we create data names ‘first gas’ ‘first gas per-
cent’ ‘second gas’ ‘second gas percent’ (leaving out the other two columns
for now)

detector id first gas first gas % second gas second gas
%

BB25 He 50 N 50

XYZ Ar 100 . .

Old-G Ar 100 . .

Now we are in the situation described by point (2). The gases and gas
percentages are of the same type (with the same key data name), and in a
situation where three or more gases are used we would need to define new
data names. Following the prescription in Point (2) we create a new identi-
fier gas mix id and replace the original identifier data names ‘first/second
gas’ by gas. If we have a gas mix id and a gas, we can assign a percentage,
so we make these two data names key data names for a new data name ‘gas
percentage’ and drop ‘first/second gas percent’. Now, given an ionisation
chamber, it is sufficient for us to nominate the gas mix id to completely
identify the gas components – but recall from the earlier ‘element name’
example that the gas mix id that has detector id as its key data name must
have a different data name. We can now tabulate all of our mixes in an
associative table:

Gas name gas mix id gas percentage

Ar C 100

He A 50

N A 50

And so we can now describe our detectors as follows:

detector name detector gas mix id detector length location

BB25 A 5 monitor

XYZ C 5 detector

Old-G C 10 foil

3. Where there are limited choices for the value of a data name, explicitly
define each of these choices and assign a number or string to them. For ex-
ample, instead of a data name ‘location’, with a description of position left
up to the software author, you might define ‘monitor’: before the sample;
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‘detector’: measure signal from sample; ‘foil’: measure signal after sample
and calibration foil.

4. Bundle up commonly-occuring combinations of values. Where a series
of data names are expected to take the same set of values, consider assigning
a separate identifier to each set of values and replacing them with a pointer
to this identifier. This example adapted from the imgCIF dic-

tionary
Example:

Consider the simple image ontology discussed in a previous question
above. Our initial ontology uses ‘raw image id’, ‘encoding type’ and ‘com-
pression type’ as key data names, using ‘compressed data’ to hold the
data. However, we expect only one or two possible alternative encodings.
Therefore, only a few combinations of ‘compression type’ and ‘encoding
type’ will be present in any given data file, and the same combinations are
likely to be repeated many, many times if we expect hundreds of images.
So we create a new key identifier ‘byte array construction id’ and make
this the key data name for ‘encoding type’ and ‘compression type’. We
add ‘construction id’ as a key data name for ‘compressed data’ in place of
‘compression type’ and ‘encoding type’. Now we can list the few combi-
nations of compression and encoding against ‘construction id’, and match
the appropriate value of ‘construction id’ with ‘raw image id’ and ‘com-
pressed data’.

5. Units. Some file formats offer structures that allow the file writer to
specify units. Avoid using these as they create extra work for the file reading
software in anticipating every possible unit that is appropriate. Usually only
one or two units are in common use, so choose and specify a unit in your
definition. If the community has not converged on a particular unit, create a
second definition that differs only in the unit used.

Tip:

Units. if you allow units to be specified in the data file instead of the
definition of some data name A, you could be considered to be creating a
new key data name ‘units for A’. One of these key data names will exist
for every data name that takes units, and the definition for each of these
key data names should list all possible values for the unit in question. This
listing could be done explicitly and somewhat economically by referring
to external standards, which has the downside that, if these standards are
updated, your ontology will also ‘auto update’, whether you like it or not.
This can be difficult for programmers who wish to track your ontology.

An alternative view is that your data file is simply providing a miss-
ing part of the ontological specification, which software can dynamically
implement.

6. Software-specific names. Any data name that essentially refers to the
input or output of some software package calculation has value in proportion
to the number of people with access to the version of the software in question,
or to the extent to which the software setting/output can be linked to specific
calculations through documentation or source code. Given this, the value of
such data names is likely to decline rapidly over time. Therefore, where such
data names occur, attempt to rephrase them in non-software-specific terms.
Instead of ‘multiplicity as calculated by XYZ Version 1.2’, write ‘the number
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of special positions divided by the number of general positions’.
7. Instrument-specific names. Similarly, any data name whose definition

refers to the configuration of an instrument in a way that is insufficient to
enable reproduction in a different lab or independent modelling is unlikely to
be of use outside the lab that produced it. Instead of ‘Position of motor mom’
think ‘monochromator takeoff angle’. Of course, a large facility may choose
to create an ontology for in-house use in which case such definitions might
be sufficient for internal purposes when combined with local knowledge.

Step 4: Data blocks

At the completion of the previous step, your ontology has all the informa-
tion necessary to use it for data transfer. We now draw out some important
features of the ontology for practical use.

When you consider your data names, it is likely that some of them will
have the same value over the entire data set that you wish to transfer (e.g.
user names, beamline, equipment). If we were to actually record these in
our data file for every measurement point, it would be a real waste of space.
‘Data blocks’ group our data values into blocks, and within each block these
constant-valued data names are understood to apply to all data values within
the block for which they are relevant according to the ontology, like global
variables in programming.

Of course, the precise choice of constant data names depends on the ex-
periment. Many current data transfer frameworks suppose a particular set
of constant data names, and this assumption carries across to software. Ex-
plicit labelling of typical sets of constant data names will both aid software
authors, and serve as reminder that all data names could conceivably take
multiple values.

Exercise 3. Define at least two sets of constant-valued data names for your
field.

Step 5: Categories

Group your data names so that data names in the same group have the same
key data names. These groups of data names are called categories in CIF.
If all the separate values of the key data names are listed in side-by-side
columns, the corresponding values of the other data names in the category
can be compactly tabulated together with them. Using this strategy, together
with separately listing values for data names that do not change within a data
block, leads to considerable space reduction when encoding values into files.

Step 6: Naming

It is organisationally useful to name the categories, and then name the data
names within them using the category name as a prefix. In this case (i) data
names that are closely related will often be close when listed alphabetically
(ii) it will be easier for a human reader to recognise which key data names a
given data name is related to.

Whether or not you choose to include the category in your name, you must
eventually decide on permanent names for each of your draft data names.
Short names are good for programmers, but potentially confusing – is ‘temp’
short for temperature or temporary? Whitespace is not an issue for modern
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programming languages, but in some contexts (e.g. operating system shell
scripts) can be annoying.

Summary

You should now have a list of data names, with associated meanings that are
unambiguous and fit for use in data transfer contexts. You have defined one
or more data blocks.

Using the ontology

As discussed in the introduction, the ontology must be mated with one or
more formats in order to transfer data. The format–ontology linkage should
specify the data block type(s), the data names that are used, and how to find
data for these data names in data files of the chosen format.

While format choice is outside the scope of this workshop, a few general
points can be made about format selection:

1. the data values must be representable within the format. This is
generally trivially possible, as any value can be represented as
text, that is, a sequence of bytes with a specified text encoding,
but extra work will be required if programming libraries for the
format do not support encoding/decoding of a data value type.

2. the correspondence between each data value and its key data
names’ values must be representable. This requirement is met
by any format that can put data values into ordered lists; in this
case values at the same position in a list can be considered to
correspond.

3. The format must be extensible to an arbitrary number of multiple-
valued data names, to allow for future growth.

4. All other format considerations would be based on non-ontological
criteria, such as software support, efficiency, or long-term archival
support.

Exercise 4. Consider any data formats that you are familiar with. How well
do they meet requirements (1)–(3), and your particular requirements for (4)?

Further topics

Aggregate calculations

Q: Give a key data name for data name ‘average measured intensity’

Calculations that depend on a whole collection of data values, such as
‘number of measurements’, averages, observed uncertainties, and Fourier
transforms, have key data names that identify whole sets of data. For a typi- The individual ‘observational’ data names

clearly have some relationship to this ‘mea-
surement set id’. A particular measurement
can be derived from a measurement set by
assigning some unique identifier to each
member of each set (which could be our
‘measurement id’), and then specifying a
measurement set and the particular identi-
fier.

cal data block, there would be only one set of data and so an identifier for the
whole data set could be left out of the data file because it is both arbitrary and
single-valued. Its existence only becomes apparent when multiple data sets
are handled, and some way of referring to a particular set of measurements
is needed.
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A value that is the result of a Fourier transform will depend on a sim-
ilar ‘set id’ that in many cases is also isomorphic to a dataset id. Explicit
inclusion of this ‘set id’ would only become necessary when there are mul-
tiple runs of data requiring separate Fourier transformation and recording of
the result prior to, for example, merging. Such merging also constitutes an
aggregate function that might entail a new id if multiple separate merging
processes are to be recorded. And so forth.

Adding and redefining data names

Adding new non-key data names is unproblematic. This is often the case
for ‘observational’ data names, for example, providing a new data name to
report humidity during data collection does not affect the intepretation of
any other ‘observational’ information. Similarly, whole new categories (data
names and their key data names) can be added with no effect on existing data
names.

Once an ontology is published, the relationships between data names and
their key data names become embodied in software that is then distributed
and relied upon. If we change these relationships later, we risk silent misin-
terpretation of new data files by legacy software.

Adding new key data names to already-existing data names would, in the-
ory, never happen as the context was supposed to have been completely de-
fined when we selected our original key data names. However, as time goes
on calculations are improved by the addition of new parameters, or mod-
els are expanded. For example, our original ontology for single-crystal crys-
tallography might have listed model structure factor against key data name
‘hkl’. When we expand this ontology to include incommensurate structures,
we need to add the extra indices as additional key data names. We can avoid
the software errors mentioned above by simply duplicating our original cat-
egory with data names redefined to include the new key data names, but this
has the drawback that any categories that referred to data names appearing in
our original category will also need redefinition if the link is to be preserved.

A simple solution to this proliferation of data names that mean almost the
same thing is to define a data name that identifies the model used. This is an
additional key data name that is usually constant for a given data set. Such
a data name should be defined when an ontology is first published, so that a
check of its value is incorporated into all software.
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The Relational Model
The ontological structure described in the previous section maps precisely
onto the Relational Model used in relational databases. Insights from over Codd, E. F. (1970). Communications of

the ACM. Classics, 13 (6), 377–387.
doi:10.1145/362384.362685

40 years of working with this model can be usefully applied to the structure
of our ontology.

Tip:

This close correspondence to the relational model does not mean that
the data file format must be a relational database or related structure. As
discussed above, the ontology is applicable to any data file format, and
the format should be chosen to be effective given the desired usage pat-
terns (e.g. archiving, interchange, storage of massive datasets, centralised
access, manual editing...)

Description of the relational model

A relation can be represented by a table satisfying a few conditions:

1. Columns can appear in any order.

2. Rows can appear in any order.

3. The values in a given column are drawn from the same domain
(i.e. the same type).

4. No two rows contain completely identical values.

The column headings are called attributes. An m-row relation with n
attributes is, in fact, just an m-element set of n-element tuples, where el-
ements are indexed by attribute, not by column order. In the following the
words ‘tables’, ‘columns’, ‘headings’ and ‘rows’ refer to the relational un-
derstanding of these words.

The set of attributes whose values taken together uniquely identify a row
is called a key. Keys that are most relevant to us are:

Candidate key: a set of headings that taken together form a key.

Primary key: the set of headings that is actually used by other relations
when referring to this relation.

Foreign key: a heading that is a primary key in a different relation. Note that
the relation that has the foreign key is often called the child relation,
and the relation for which the foreign key is a primary key is called the
parent relation.

Correspondence to our ontology

Clearly, data names are attributes, categories are tables, and the key data
names form the primary key. Identifiers appearing as non-key data names are
usually foreign keys.
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Insights from Relational Databases: Normalisation

Database normalisation aims to define and allocate headings amongst tables
in order to meet certain goals. The goals that are relevant to us are:

• Remove redundancy.

Each piece of information should appear in only one place to
avoid the possibility of inconsistency and to save space.

• Minimise redesign when including new headings and tables.

This is crucial for us as we cannot change the way in which
data names are interpreted once the standard is embodied in dis-
tributed software.

Important normalisations that can be applied are:

• No embedded information within a data value. ‘unnormalised form’ → ‘first normal form’

• No repeated data names in a single relation (e.g. gas 1, gas 2)

• No non-key data names that depend on only a proper subset of the
key data names. This means that any non-key data name value in a ‘second normal form’

category requires knowledge of all key data name values in order to
be determined or interpreted. This avoids repetition. For example, if a
relation has a key composed of headings ‘K1’ and ‘K2’, and heading
‘C’ has a value that depends only on heading ‘K1’, if values for ‘K1’
are often repeated then values for ‘C’ will also be repeated, whereas if
a separate table had ‘C’ tabulated against ‘K1’, this repetition would
be avoided.

• No non-key data names depend on the key data names via a different
non-key data name. Repetition is likely to be reduced if such non- ‘third normal form’

key data names are moved to a separate table, where the non-key data
name on which the others depend becomes the key data name, and a
foreign key in the original table.

Normalisation techniques

The ionisation chamber example from part 1 is an example of a many-to-
many relationship. Each ionisation chamber can have many gases, and each
gas can be in many ionisation chambers. The standard way to express such
relationships while maintaining a properly normalised database is through an
associative table, as created in that example. One-to-many and many-to-
one relationships are simply expressed by using a (key data name) identifier
for the many and tabulating the one against it.
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Creating formal dictionaries
The previous sections described how to create a scientific ontology that would
underpin a fully-functional data transfer framework. That ontology was just
a collection of plain-text data name definitions that satisfied a few basic cri-
teria.

A CIF dictionary is a machine-readable version of that ontology. Just like
the original human-readable version, the ontology expressed in a CIF dic-
tionary describes data names that could appear in any format. Among other
things, machine-readable ontologies are useful for:

• automated data checking. Relationships between data names can be
checked for consistency in data files.

• assistance in constructing the ontology. Tools can ensure that all re-
quired information is provided and mutually consistent with other def-
initions

• assistance in accessing the ontology. Large ontologies benefit from au-
tomated tools that can perform searches, locate related data names,
and show relationships between data names. The ontology can also be
automatically transformed into different presentation formats, such as
HTML or PDF.

The structure of a CIF dictionary

Dictionary 

information

Head

category

de nition

Ordinary

category

de nition

Data block

header

Ordinary

dataname

de nition

Category

de nition

continued

#\#CIF_2.0
##############################################################################
# #
# CIF Twinning Dictionary #
# #
# This dictionary contains names and definitions of twinning data items #
# recognized by the International Union of Crystallography for the exchange #
# of data between laboratories and submissions to journals and databases. #
# #
##############################################################################

data_CIF_TWIN

 _dictionary.title CIF_TWIN
 _dictionary.class Instance
 _dictionary.version 3.1
 _dictionary.date 2016−11−15
 _dictionary.uri www.iucr.org/cif/dic/cif_twin.dic
 _dictionary.ddl_conformance 3.11.09
 _dictionary.namespace TwinCrys
 _description.text 
;
 The DICTIONARY group defines the data items used to specify the
 the twinning aspects of crystals in a crystallographic study.

;

save_TWIN_GROUP

 _definition.id TWIN_GROUP
 _definition.scope Category
 _definition.class Head
 _definition.update 2014−06−20
 _description.text 
;

 The TWIN_GROUP data items describe atomic information
 used in crystallographic structure studies.
;
 _name.category_id CIF_TWIN
 _name.object_id TWIN_GROUP
 _import.get [{"file":"cif_core.dic" "save":"CIF_CORE" "mode
":"Full"}]
save_

save_TWIN

 _definition.id TWIN
 _definition.scope Category
 _definition.class Set
 _definition.update 2014−06−20
 _description.text 
;

 Data items in the TWIN category record general details about
 the nature of the twinning in the sample.
 Terminology for twin dataname definitions was taken directly from:
 "International Union of Crystallography Commission on Mathematical
 and Theoretical Crystallography Research themes: Crystal twinning"
 by Massimo Nespolo, February 3, 2009.

http://www.crystallography.fr/mathcryst/twins.htm .
;
 _name.category_id TWIN_GROUP
 _name.object_id TWIN

save_

save_twin.dimensionality

 _definition.id ’_twin.dimensionality’
 _definition.update 2014−06−20
 loop_
 _alias.definition_id
 ’_twin_dimensionality’ 

_description.text 
;

 The degree of overlap between the twin lattices.
 Most twin lattice symmetry (TLS) and twin lattice quasi−symmetry (TLQS)
 twins as defined by Donnay and Donnay will be triperiodic.

Reference: Donnay, G. & Donnay, J. D. H. (1974). Can. Mineral. 12, 422−425.
;
 _name.category_id twin
 _name.object_id dimensionality
 _type.purpose State
 _type.source Assigned
 _type.container Single
 _type.contents Code
 loop_
 _enumeration_set.state
 _enumeration_set.detail
 triperiodic ’common lattice in three dimensions’ 

diperiodic ’common lattice in two dimensions’ 
monoperiodic ’common lattice in one dimension’ 

save_

save_twin.formation_mechanism

 _definition.id ’_twin.formation_mechanism’
 _definition.update 2014−06−20
 loop_
 _alias.definition_id
 ’_twin_formation_mechanism’ 

_description.text 
;

 A description of the method of twin formation.
;
 _name.category_id twin
 _name.object_id formation_mechanism
 _type.purpose State
 _type.source Assigned
 _type.container Single
 _type.contents Code
 loop_
 _enumeration_set.state
 _enumeration_set.detail
 gt ’growth twin formed during crystal growth’ 

Figure 2: General structure of a CIF dictio-
narySyntactically, a CIF dictionary is a CIF file. It contains a single CIF data

block, within which each data name definition is defined in a separate save
frame. Just as for a normal CIF data file, all information in a dictionary is
created by associating one or more values with textual tags. In a normal CIF The ‘CIF’ dictionary could itself be written

in any file format. It is written in CIF for-
mat both to save CIF users implementing or
learning a separate format, and because of
other positive attributes of the CIF format
for standards work, such as easy readability,
long-term support and easy transformation
to a variety of presentations.

data file, these tags are called ‘data names’. To avoid ambiguity, the tags used
in a dictionary are referred to as attributes. The collection of attributes that
can appear in a dictionary is called the Dictionary Definition Language or
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DDL. Two similar DDLs are in common use in the CIF framework, DDL2
and DDLm. The earlier DDL1 is no longer used in new dictionaries.

Earlier we listed the core elements of a data name definition: (i) a descrip-
tion of the data values (ii) a list of the key data names (iii) a description of
how the data values are interpreted given the values of the key data names.
In a practical dictionary, further tags give audit and management information
such as the date on which a definition was edited, other names for this data
name, and version information for the dictionary as a whole.

Table 1: Selected DDLm attributes.

Role Data names

Naming _alias.definition_id, _definition.id, _name.object_id

Describing

Values

_enumeration.{def_index_id/default/mandatory/range},

_enumeration_default.{index/value},

_enumeration_set.{detail/state},

_type.{container / contents / dimension},

_units.code

Key data names _name.category_id , _category_key.name

Interpretation

_description.{common/key_words/text},

_description_example.{case/detail},

_name.linked_item_id, _method.{purpose/expression}

Technical _definition.{class/scope},_import.*

Management

_dictionary.{title/class/version/date/uri/

ddl_conformance/namespace/*},

_dictionary_audit.{version/date/revision},

_alias.{deprecation_date/dictionary_uri},

_definition.{replaced_by/update/xref_code},

_dictionary_xref.{code/date/format/name/uri},

_enumeration_set.{xref_code/xref_dictionary},

_type.{purpose/source}

Table 2: Selected DDL2 attributes

Role Data names

Naming

_item.name, _item_aliases.alias_name,

_category.id

... continued on next page
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Table 2: Selected DDL2 attributes (... continued)

Role Data names

Describing

values

_item_enumeration.{value/detail},_item_default.value

_item_range.minimum, _item_range.maximum

_item_structure.{code/organisation},

_item_structure_list.{index/code/dimension}

_item_type.code, _item_units.code
_item_type_list.{code/detail/construct}

_item_units_list.{code/detail}

Key data names _item.category_id , _category_key.name

Interpretation

_item_description.description,

_category.description, _category.examples

_item_examples.{case/detail},

_item_linked.parent_name, _item_linked.child_name

_item_methods.method_id

_method_list.{id/detail/inline/language/code}

Management

_dictionary.{title/version/datablock_id}

_datablock.id, _datablock.description

_dictionary_history.{revision/update/version}

Differences between DDL2 and DDLm dictionaries

• DDL2 has a system for describing values in terms of regular expres-
sions, which the dictionary author may customise, whereas DDLm dic-
tionaries are restricted to the types provided in the DDLm attribute
dictionary and do not use regular expressions. The same customisable
approach is adopted by DDL2 for units.

• DDL2 dictionaries specify data name parent–child relationships (see
below) in the topmost category definition, and optionally at the site of
the child data name definition.

• DDL2 dictionaries restrict data names to single values per data block
by relating them to an identifier that is defined to be single-valued,
whereas DDLm uses a specific attribute for this purpose.

• DDL2 allows data transformation methods to be specified in any pro-
gramming language, whereas DDLm requires environment-agnostic
dREL code.

• DDLm has a well-specified protocol for combining dictionaries and
using templates to simplify dictionary construction.

• DDLm assigns meaning to category parent–child relationships.
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Understanding and composing DDLm dictionaries

Parent and child data names

Our earlier discussion supposed that key data names might appear in multiple
categories. When data from these categories is presented in CIF loops, iden-
tical data names would appear in each loop. CIF, however, strictly forbids
data names to appear more than once in a data block; therefore we must de-
fine distinct data names for each category in which a key data name appears.
Note that our suggested <category>.<name> naming strategy automatically
takes care of this for us.

We can arrange these data names into a parent–child hierarchy, where
child data names are expected to take a subset of the values of the parent
data names. In most situations, there will be only a single child level in this
hierarchy.

Semantic structure

As discussed earlier, the data names in an ontology can be distributed into
categories, within which every data name shares the same key data names
or is itself a key data name for the non-key data names. CIF dictionaries
describe each of these categories in their own save frames. Every data name
definition states the category to which it belongs, and likewise every cate-
gory has a single parent category. The category definition at the top of this The meaning of the category parent–child

relationship is discussed later.hierarchy is called a ‘Head’ category.
A category corresponds to the set of data names appearing in a loop within

a CIF file.

Data blocks and CIF

Data names that are restricted to single values within a CIF data block are
assigned to Set categories. All other data name definitions must belong to The type of category is indicated by setting

_definition.class to Set or LoopLoop categories.
The values of Set category key data names do not need to be provided in

a data file, as these values are both arbitrary and unique by virtue of being
the only value in the block. The same consideration applies to any child data A mechanism exists in CIF to add back these

key data names in supplementary dictionar-
ies, should they be required.

names. Key data names from Set categories, and their children, can therefore
be completely dropped from the CIF dictionary.

Writing a DDLm dictionary from scratch

You may find it convenient to use a shorthand notation while developing the
dictionary, that can be automatically transformed later to CIF. For example,
writing:

#N my_data_name

#C my_category

#D this is the definition

#L value1: stuff, value2: more stuff, value3: no more

instead of

_definition.id ’_my_category.my_data_name’
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_name.object_id my_data_name
_name.category_id my_category
_description.text ’This is the definition’

loop_

_enumeration_set.state
_enumeration_set.detail

value1 stuff

value2 ’more stuff’

value3 ’no more’

Step 1. Name, and write a definition for, the Head category

The name of the Head category is purely for internal use. The _definition.id
and _name.object_id attributes hold the name of the category. _name.category_id
should be set to the value of the _dictionary.title attribute. Here is a
template:

save_CIF_CORE

_definition.id CIF_CORE
_definition.scope Category
_definition.class Head
_definition.update 2014-06-18
_description.text

;

The CIF_CORE category contains the definitions of data items that

are common to all domains of crystallographic studies.

;
_name.category_id CIF_DIC #_dictionary.title from enclosing block
_name.object_id CIF_CORE

save_

Step 2. Write the category definitions

You will need to assign the following attributes:

• _definition.id: the name of the category

• _definition.scope: Category

• _definition.class: Set or Loop. See above for explanations of
these terms.

• _definition.update: the date the definition was written yyyy-mm-
dd

• _description.text: a human-readable description of this category

• _name.category_id: the category this belongs to (usually the Head
category)

• _name.object_id: the name of the category (again)

• _category_key.name: (possibly looped) the list of key data names
for this category. Only necessary for Loop categories

Here is a simple Loop category definition:
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save_DIFFRN_ATTENUATOR
_definition.id DIFFRN_ATTENUATOR
_definition.scope Category
_definition.class Loop
_definition.update 2013-09-08
_description.text

;

The CATEGORY of data items which specify the attenuators used in the

diffraction source.

;
_name.category_id DIFFRN
_name.object_id DIFFRN_ATTENUATOR
_category.key_id ’_diffrn_attenuator.code’

loop_

_category_key.name

’_diffrn_attenuator.code’

save_

Step 3. Write the data name definitions

You will need to assign the following attributes:

• _definition.id: the data name, usually <category>.<object>

• _definition.update: the date the definition was written yyyy-mm-
dd

• _description.text: a human-readable description of the data name

• _name.category_id: the category this belongs to

• _name.object_id: the name within the category

• _type.container: List/Array/Matrix/Table for compound data
values, Single otherwise

• _type.contents: the nature of the individual values taken by this
data name

• _units.code: the units for the data values. Leave out or put none if
none

• _type.source: where values come from (optional but useful)

• _type.purpose: a classification of the values into some general classes.
Useful information for dictionary tools

Some common situations covered by further attributes are:

• If your data name can take values from a restricted set, use
_enumeration_set.{state/detail} to list and describe each
option.

• If your data name corresponds to a key data name from another cate-
gory that appears in this category, set _name.linked_item_id to that a link within a single category is also possi-

bleother data name and set _type.purpose to Link.

• If your data name directly replaces another data name, assign the older
name to _alias.definition_id
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• If your data name is the standard uncertainty of another data name, set
_type.purpose to SU and _name.linked_item_id to that other data
name.

• If a specific value can be safely assumed when the data name is missing
from a data file, specify this with _enumeration.default.

• If your data value is a list, array or matrix give the dimensions using
_type.dimension. An asterisk (*) can be used for arbitrary values.

save__diffrn_source.device
_definition.id ’diffrn_source.device’

loop_

_alias.definition_id

’_diffrn_radiation_source’

’_diffrn_source.source’
_definition.update 2013-08-09
_description.text

;

Enumerated code for the device providing the source of radiation.

;
_name.category_id diffrn_source
_name.object_id device
_type.purpose State
_type.source Assigned
_type.container Single
_type.contents Code

loop_

_enumeration_set.state
_enumeration_set.detail

tube ’sealed X-ray tube’

nuclear ’nuclear reactor’

spallation ’spallation source’

elect-micro ’electron microscope’

rot_anode ’rotating-anode X-ray tube’

synch synchrotron
_enumeration.default tube

save_

Step 4. Create the enclosing data block

Assign the various dictionary.* attributes at the top of the data block.
Arrange the save frames (definitions) in alphabetical order, unless you are
sure some other order is more natural for a human reader searching for a
particular definition.

Adding to a pre-existing DDLm dictionary

Examine the currently-existing categories in the dictionary to determine if
any of them have matching keys. If not, follow step 2 to add new categories.
Add your new data names as in Step 3 above.

Further DDLm dictionary enhancements

Imports

DDLm dictionaries allow groups of attributes to be imported from another
dictionary using the _import.get attribute. The value for _import.get is
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a list of tables. Each table has a few keys that are set to guide the import
process:

file: the file to import from

save: the name of the save frame to import from the file

mode: Contents: only the contents of the save frame are inserted; Full:
the entire save frame and semantic children are included.

Importation is useful when many of the attributes for a set of data names
are identical. In this case, the attributes are put into a save frame in a separate
CIF ‘template’ dictionary, and the relevant save frame is simply imported
into each of the definitions.

save__diffrn_standard_refln.index_h

_definition.id ’_diffrn_standard_refln.index_h’
_import.get [{’save’:Miller_index ’file’:templ_attr.cif}]
_name.category_id diffrn_standard_refln
_name.object_id index_h

save_

The file templ_attr.cif contains save frame:

save_Miller_index
_definition.update 2013-04-16
_description.text

;

The index of a reciprocal space vector.

;
_type.purpose Number
_type.source Recorded
_type.container Single
_type.contents Integer
_enumeration.range -1000:1000
_units.code none

save_

Another use for this feature is to put long lists of enumerated items into
separate files to avoid cluttering the main dictionary. Examples include ele-
ment names, and units.

A separate use for imports is to specify dictionaries that your dictionary
builds on. If your dictionary adds (or changes) data names from any cate-
gories in another dictionary, it is sufficient for the Head category of your dic-
tionary to include an import of the Head category of the dictionary it builds
upon. In this case, the import mode should be set to Full. Semantically, any
definitions in the importing dictionary with the same _definition.id will
replace definitions in the imported dictionary unless you have set the import
key if_dupl to ignore.

save_PD_GROUP

_definition.id PD_GROUP
_definition.scope Category
_definition.class Head
_definition.update 2014-06-20
_description.text
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;

Groups all of the categories of definitions in the powder

diffraction study of materials.

;
_name.category_id CIF_POW
_name.object_id PD_GROUP
_import.get

[{"file":"cif_core.dic" "save":"CIF_CORE" "mode":"Full"}]

save_

Child categories

In DDLm, Loop categories may be child categories not only of the Head
category, but also of other Loop categories. A child category is obtained by
splitting a single category into two parts, so that each part retains the same
key data names, but the remaining data names differ. For most purposes, the
two categories can be considered to be a single category that have been split
for convenience, for example, when some subset of data names are likely to
have undefined values for some of the key data name values. It is permissible The combined category is obtained by a left

outer join of the parent with the child.for data files to present all of the data names from both categories in a single
loop.

Example:

The DDLm core CIF dictionary allows anisotropic displacement pa-
rameters to be presented in a separate loop, described in the atom_site_aniso
category, which is a child category of atom_site. This allows those ex-
periments for which many atoms do not have well-determined ADPs to
save space in the atom_site listing.

Example:

The magnetic structures dictionary makes atom_site_moment a child
category of atom_site, in recognition of the fact that for many structures
only a few atomic sites will have associated moments. In such cases, the
moments can be listed in a separate loop.

The child category after the split is the category that might take only a
subset of the key data values. In the examples above, not all atom sites have
to be listed in the atom_site_moment or atom_site_aniso loops, so these are
the child categories.

dREL

Mathematical relationships between data names can be expressed using the
_method.expression attribute. The value of this attribute is computer-parseable
program code written in dREL. A dREL expression in a data name defini-
tion describes how a value for the data name is calculated from the values of
other data names. The DDLm cif core dictionary contains many examples of
dREL expressions. dREL is described in Spadaccini et al. (2012), J. Chem.
Inf. Model. 52, 1917–1925.

The advantage of dREL over concrete programming languages is that no
CIF programming library or language environment is assumed, that is, dREL
is environment-agnostic. As a result, in order to execute dREL code it must
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first be transformed to a concrete language, inserting the particular function
calls required by the language and CIF API.

DDLm Dictionary extensions

_audit.schema

When writing the dictionary, you had to make a decision regarding which
categories would allow only single-valued data names. This set of single-
valued names would ideally satisfy the majority of data transfer scenarios in
your discipline. For those users who need some (or all) of those data names
to take multiple values (e.g. multiple samples per run), it is possible to define
an extension dictionary. This dictionary _imports the original dictionary,
and then redefines the relevant category to be a Loop category, creates and
assigns the key data names for the category, and adds the child key data
names to all affected categories.

Note that software written assuming the behaviour in the original dictio-
nary is susceptible to behaving incorrectly if it does not know which dictio-
naries a given data file is written to conform to. At the same time, program-
mers are not necessarily prepared to read and parse entire dictionaries at run-
time in order to check the interpretation of potentially only a few data names.
The _audit.schema data name in core CIF has therefore been introduced
as a shorthand flag that a data file is using a non-default set of single-valued
data names. It is sufficient for software to check this and the following data
name to ensure that the file contents are correctly understood.

_audit.formalism

Where a dictionary redefines one or more data names from the base dic-
tionary, for example, by enhancing a structural model (magnetism, powder,
modulated structures), the change in definition is flagged via the _audit.formalism
tag.

Further reading

Constructing scientific ontologies

• Hester, J. R. (2016). ‘A robust, format-agnostic scientific data transfer
framework’. Data Science Journal, 15, 12, pp. 1–17, DOI:10.5334/dsj-
2016-012

• Spivak, D. I. and Kent, R. E. (2012). ‘Ologs: a categorical framework
for knowledge representation’. PLoS One, 7, e24274

Relational model

• The imgCIF dictionary is an excellent, small-scale example of a nicely
normalised ontology. Find it at:
ftp://ftp.iucr.org/cifdics/cif_img_1.3.2.dic.pdf or Inter-
national Tables for Crystallography, Volume G (ITVG) , Sections 3.7
and 4.6, and see the draft updated commentary for the revised edition
of ITVG in Appendix 3 of this booklet.
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• Wikipedia articles ‘Relational Model’ and ‘Database normalisation’
are good starting points.

Writing CIF dictionaries

• Spadaccini, N. and Hall, S. R. (2012). ‘DDLm: A new dictionary def-
inition language’. J. Chem. Inf. Model. 52, 1907–1916

• Spadaccini, N. Castelden, I. R., du Boulay, D. and Hall, S. R. (2012).
‘dREL: A relational expression language for dictionary methods’. J.
Chem. Inf. Model. 52, 1917–1925

• Westbrook, J. D., Berman, H. D. and Hall, S. R. (2005).‘Specification
of a relational dictionary definition language (DDL2)’. International
Tables for Crystallography, Volume G, pp. 61–72. Dordrecht: Springer

• The DDLm attribute dictionary
(http://github.com/COMCIFS/cif_core/blob/cif2-conversion/ddl.dic)

http://github.com/COMCIFS/cif_core/blob/cif2-conversion/ddl.dic
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Dictionaries for Complex Raw Data such as Images
Herbert J. Bernstein

The earlier parts of this workshop described ontologies in which
the primary focus was on considerations of the data transfer
framework and we have the luxury of requiring not just the
ontology but the representation of each set of data to be human
readable. That is not always possible in practice. Some data,
such as diffraction images, can be too voluminous and com-
plex to be efficiently representable as text. That does not stop
us from creating a human-readable ontology, nor from using
CIF for that purpose, but it forces us to find ways to relate
CIF to binary data representations, such as NeXus/HDF5, and to
non-relational models, such as XML and JSON. In this section
we will explore the considerations involved in creating the CIF
imgCIF dictionary and its relationship to the Crystallographic
Binary Format (CBF) and other binary formats, as a model for
creating ontologies to deal with complex raw data such as images.

What is Similar and What is Different

In many ways the process of designing an ontology for complex
raw data such as images is similar to the process of designing
any ontology. We have data values that we wish to label with
data value names in an ontology and that we wish to present in
some appropriate data formats. All the considerations that apply
in designing a CIF dictionary for, say, small-molecule structures
or for macromolecular structures apply. In particular, if we are
to maintain relational databases of sets of data, it is very helpful
to follow a relational model, organizing data into categories to
that it will be relatively easy to search for particular sets of data,
say, all the images collected at beamline ID-XX by user John
Doe that related to NAG bound to lysozyme in the month of
May 2017. From this point of view, all we really need is a good
way to search the “metadata”, not the actual images.

What is different is that, while we may only need to search
through a bit more than 100,000 published macromolecular struc-
tures or almost 1,000,000 published small molecule structures,
the number of diffraction images behind the published struc-
tures may easily be 2 to 5 orders of magnitude larger than the
number of structures, and until we are certain which images will
be needed in the future, we also may need to search through
the images themselves, using both the metadata and the data it-
self to select and organize images for processing so we can see



26

which images are really needed. This makes the choice of a par-
ticular format for the data something that has to be carefully
considered and coupled very efficiently to the metadata format.
As crystallography moves towards handling larger numbers of
small crystals at increasingly brilliant light sources, we need to
be able to quickly cluster images into sets that are appropriate
to merge which is a process that demands access to the images,
not just the data about the images. In addition, science is mov-
ing towards more multimodal experiments in which raw data
and processed data from crystallography, cryo-EM and NMR
all must be considered in relationship to one another.

That is why, as noted earlier in the workshop discussion, the
imgCIF ontology has been carefully normalized – to facilitate
database use, and to facilitate interactions in processing meta-
data from multiple sources, and to make it easy to find the nec-
essary metadata to facilitate conversion of imgCIF/CBF data to
and from other formats, such as NeXus/HDF5.

In addition, raw data differs from processed data, precisely
in not yet having been processed. Therefore the results of that
processing may cause us to re-evaluate what has been observed.
Initial estimates of beam centres may need to be adjusted. The
positions of detector modules may need to be refined, etc. Pri-
mary data may need to be replaced with derived data in multiple
passes.

Further Reading

Bernstein, H. J. (2017), ‘Classification and use of image data’.
Draft Chapter 2.10 for future edition of International Tables for
Crystallography, Volume G, presented as Appendix 3 of this
booklet.



DDLm dictionary

BY SYDNEY R. HALL, NICK SPADACCINI, JAMES R. HESTER, JOHN C. BOLLINGER AND ANTANAS VAITKUS

APPENDIX 1: DDLm dictionary. This is a synoptic listing of the DDLm dictionary, formatted in the style of
International Tables for Crystallography Volume G: Definition and exchange of crystallographic data, a second edition of which
is in preparation.

This dictionary contains the definitions of attributes that make
up the DDLm dictionary definition language. It provides the
meta meta data for all CIF dictionaries.

ATTRIBUTES

This category is parent of all other categories in the DDLm
dictionary.

ALIAS

The attributes used to specify the aliased names of defini-
tions.
Category key(s): _alias.definition_id

_alias.definition_id (Tag)

Identifier tag of an aliased definition.

_alias.deprecation_date (Date)

Date that the aliased tag was deprecated as a definition tag.

_alias.dictionary_uri (Uri)

Dictionary URI in which the aliased definition belongs.

CATEGORY

The attributes used to specify the properties of a ‘category’
of data items.

_category.key_id (Tag)

Tag of a single data item in a Loop category which is the generic
key to access other items in the category. The value of this item
must be unique in order to provide unambiguous access to a
packet (row) in the table of values. This may be assumed to be
a function of the datanames listed in _category_key.name.

CATEGORY KEY

The attributes used to specify (possibly multiple) keys for a
given category.
Category key(s): _category_key.name

Affiliations: SYDNEY R. HALL, Biomolecular, Biomedical & Chemical Sci-
ences, Faculty Life & Physical Sciences, M310 University of Western Aus-
tralia, Nedlands 6009, Australia; NICK SPADACCINI, The University of
Western Australia, Crawley, 6009, Australia; JAMES R. HESTER, Australian
Nuclear Science and Technology Organisation, New Illawarra Road, Lucas
Heights, NSW 2234, Australia JOHN C. BOLLINGER, Department of Struc-
tural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee
38105, USA; ANTANAS VAITKUS, Institute of Biotechnology, Vilnius Uni-
versity, Vilnius, Lithuania.

_category_key.name (Tag)

A minimal list of tag(s) that together constitute a compound
key to access other items in a Loop category. In other words,
the combined values of the datanames listed in this loop must
be unique, so that unambiguous access to a packet (row) in
the table of values is possible. The dataname associated with
_category.key_id is only included in this loop if no other set
of datanames can form a compound key.

DEFINITION

The attributes for classifying dictionary definitions.

_definition.class (Code)

The nature and the function of a definition or definitions.
The data value must be one of the following:

Attribute Item used as an attribute in the definition of other
data items in DDLm dictionaries. These items never
appear in data instance files.

Functions Category of items that are transient function defi-
nitions used only in dREL methods scripts. These
items never appear in data instance files.

Datum Item defined in a domain-specific dictionary. These
items appear only in data instance files.

Head Category of items that is the parent of all other cate-
gories in the dictionary.

Loop Category of items that in a data file must reside in a
loop-list with a key item defined.

Set Category of items that form a set (but not a loopable
list). These items may be referenced as a class of
items in a dREL methods expression.

Ref-loop A category containing one item that identifies the a
category of items that is repeated in a sequence of
save frames. The item, which is specifies as a as a
Ref-table value (see type.container), is looped. This
construction is for loop categories that contain child
categories. If in the instance file, the child items have
only one set of values, the Ref-loop item need not
be used and child items need not be placed in a save
frame.

_definition.id (Code)

Identifier name of the Item or Category definition contained
within a save frame.

_definition.replaced_by (Tag)

A dataname that should be used instead of the defined
dataname. The defined dataname is deprecated and should not
be used.

_definition.scope (Code)

The extent to which a definition affects other definitions.
The data value must be one of the following:

Dictionary applies to all defined items in the dictionary

Category applies to all defined items in the category

Item applies to a single item definition
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_definition.update (Date)

The date that a definition was last changed.

_definition.xref_code (Code)

Code identifying the equivalent definition in the dictionary ref-
erenced by the DICTIONARY_XREF attributes.

DESCRIPTION

The attributes of descriptive (non-machine parsable) parts of
definitions.

_description.common (Text)

Commonly-used identifying name for the item.

_description.key_words (Text)

List of key-words categorising the item.

_description.text (Text)

The text description of the defined item.

DESCRIPTION EXAMPLE

The attributes of descriptive (non-machine parsable) exam-
ples of values of the defined items.
Category key(s): _description_example.case

_description_example.case (Implied)

An example case of the defined item.

_description_example.detail (Text)

A description of an example case for the defined item.

DICTIONARY

Attributes for identifying and registering the dictionary. The
items in this category are not used as attributes of individual
data items.

_dictionary.class (Code)

The nature, or field of interest, of data items defined in the dic-
tionary.
The data value must be one of the following:

Reference DDLm reference attribute definitions

Instance domain-specific data instance definitions

Template domain-specific attribute/enumeration templates

Function domain-specific method function scripts

_dictionary.date (Date)

The date that the last dictionary revision took place.

_dictionary.ddl_conformance (Version)

The version number of the DDL dictionary that this dictionary
conforms to.

_dictionary.formalism (Text)

The definitions contained in this dictionary are associated with
the value of this attribute. Datanames may only be redefined if
the value of this attribute is also changed, and any such redefi-
nitions must include the original behaviour as a particular case.

_dictionary.namespace (Code)

The namespace code that may be prefixed (with a trailing colon
‘:’) to an item tag defined in the defining dictionary when used
in particular applications. Because tags must be unique, name-
space codes are unlikely to be used in data files.

_dictionary.title (Code)

The common title of the dictionary. Will usually match the
name attached to the data_ statement of the dictionary file.

_dictionary.uri (Uri)

An absolute uniform resource identifier (URI) for this dictio-
nary.

_dictionary.version (Version)

A unique version identifier for the dictionary.

DICTIONARY AUDIT

Attributes for identifying and registering the dictionary. The
items in this category are not used as attributes of individual
data items.
Category key(s): _dictionary_audit.version

_dictionary_audit.date (Date)

The date of each dictionary revision.

_dictionary_audit.revision (Text)

A description of the revision applied for the
_dictionary_audit.version.

_dictionary_audit.version (Version)

A unique version identifier for each revision of the dictionary.

DICTIONARY VALID

Data items which are used to specify the contents of defi-
nitions in the dictionary in terms of the _definition.scope

and the required and prohibited attributes.
Category key(s): _dictionary_valid.application

_dictionary_valid.application (Code[2])

Provides the information identifying the definition scope (from
the _definition.scope enumeration list) and the validity
options (from the _dictionary_valid.option enumeration
list), as a two element list. This list signals the validity of apply-
ing the attributes given in _dictionary_valid.attributes.

_dictionary_valid.attributes (Code[])

A list of the attribute names and categories that are assessed for
application in the item, category and dictionary definitions.

_dictionary_valid.option (Code)

Option codes for applicability of attributes in definitions.
The data value must be one of the following:

Mandatory attribute must be present in definition frame

Recommended attribute is usually in definition frame

Prohibited attribute must not be used in definition frame
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_dictionary_valid.scope (Code)

The scope to which the specified restriction on usable attributes
applies.
The data value must be one of the following:

Dictionary restriction applies to dictionary definition data frame

Category restriction applies to a category definition save frame

Item restriction applies to an item definition save frame

DICTIONARY XREF

Data items which are used to cross reference other dictionar-
ies that have defined the same data items. Data items in this
category are not used as attributes of individual data items.
Category key(s): _dictionary_xref.code

_dictionary_xref.code (Code)

A code identifying the cross-referenced dictionary.

_dictionary_xref.date (Date)

Date of the cross-referenced dictionary.

_dictionary_xref.format (Text)

Format of the cross referenced dictionary.

_dictionary_xref.name (Text)

The name and description of the cross-referenced dictionary.

_dictionary_xref.uri (Uri)

The source URI of the cross referenced dictionary data.

ENUMERATION

The attributes for restricting the values of defined data items.

_enumeration.def_index_id (Tag)

Specifies the data name with a value used as an index to the
default enumeration list (in category ENUMERATION_DEFAULT)
in order to select the default enumeration value for the defined
item. The value of the identified data item must match one of
the _enumeration_default.index values.

_enumeration.default (Implied)

The default value for the defined item if it is not specified
explicitly.

_enumeration.mandatory (Code)

Yes or No flag on whether the enumerate states specified for an
item in the current definition (in which item appears) must be
used on instantiation.
The data value must be one of the following:

Yes Use of state is mandatory

No Use of state is unnecessary

_enumeration.range (Range)

The inclusive range of values ‘from:to’ allowed for the defined
item.

ENUMERATION DEFAULT

Loop of pre-determined default enumeration values indexed
to a data item by the item _enumeration.def_index_id.
Category key(s): _enumeration_default.index

_enumeration_default.index (Code)

Index key in the list of default values referenced by the value
of _enumeration.def_index_id.

_enumeration_default.value (Implied)

Default enumeration value in the list referenced by the value
of _enumeration.def_index_id. The reference index key is
given by the _enumeration_default.index value.

ENUMERATION SET

Attributes of data items which are used to define a set of
unique pre-determined values.
Category key(s): _enumeration_set.state

_enumeration_set.detail (Text)

The meaning of the code (identified by _enumeration_set.state)
in terms of the value of the quantity it describes.

_enumeration_set.state (Text)

Permitted value state for the defined item.

_enumeration_set.xref_code (Code)

Identity of the equivalent item in the dictionary referenced by
the DICTIONARY_XREF attributes.

_enumeration_set.xref_dictionary (Code)

Code identifying the dictionary in the DICTIONARY_XREF list.

IMPORT

Used to import the values of specific attributes from other
dictionary definitions within and without the current dictio-
nary.

_import.get (ByReference)

A list of tables of attributes defined individually in the category
IMPORT_DETAILS, used to import definitions from other dictio-
naries.

IMPORT DETAILS

Items in IMPORT_DETAILS describe individual attributes of an
import operation.
Category key(s): _import_details.order

_import_details.file_id (Uri)

A URI reference as per RFC3986 giving the location of the
source dictionary. When a relative URI is used, the base URI
for the URI reference is the _dictionary.uri of the importing
dictionary.

_import_details.file_version (Version)

The required version number for _dictionary.version of the
imported dictionary. Dictionaries with the same major version
number are compatible. If absent or null, any version is permit-
ted.
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_import_details.frame_id (Code)

The framecode of the definition frame to be imported.

_import_details.if_dupl (Code)

Code identifying the action taken if the requested definition
block already exists within the importing dictionary.
The data value must be one of the following:

Ignore ignore imported definitions if id conflict

Replace replace existing with imported definitions

Exit issue error exception and exit

_import_details.if_miss (Code)

Code identifying the action taken if the requested definition
block is missing from the source dictionary.
The data value must be one of the following:

Ignore ignore import

Exit issue error exception and exit

_import_details.mode (Code)

Code identifying how the definition referenced by
_import_details.frame_id is to be imported. ‘Full’ imports
the entire definition together with any child definitions (in the
case of categories) found in the target dictionary. The importing
definition becomes the parent of the imported definition. As a
special case, a ‘Head’ category importing a‘Head’ category is
equivalent to importing all children of the imported ‘Head’ cat-
egory as children of the importing ‘Head’ category. ‘Contents’
imports only the attributes found in the imported definition.
The data value must be one of the following:

Full import requested definition together with any child
definitions

Contents import contents of requested definition

_import_details.order (Integer)

The order in which the import described by the referenced row
should be executed.

_import_details.single (Text)

A Table mapping attributes defined individually in category
IMPORT to their values; used to import definitions from other
dictionaries.

_import_details.single_index (Code)

One of the indices permitted in the entries of values of attribute
_import_details.single.
The data value must be one of the following:

file URI of source dictionary

version version of source dictionary

save save framecode of source definition

mode mode for including save frames

dupl option for duplicate entries

miss option for missing duplicate entries

LOOP

Attributes for looped lists.

_loop.level (Index)

Specifies the level of the loop structure in which a defined item
must reside if it is used in a looped list.

METHOD

Methods used for evaluating, validating and defining items.
Category key(s): _method.purpose

_method.expression (Text)

The method expression for the defined item.

_method.purpose (Code)

The purpose and scope of the method expression.
The data value must be one of the following:

Evaluation method evaluates an item from related item values

Definition method generates attribute value(s) in the definition

Validation method compares an evaluation with existing item
value

NAME

Attributes for identifying items and item categories.

_name.category_id (Name)

The name of the category in which a category or item resides.
For Head categories this is the _dictionary.title given in the
enclosing data block.

_name.linked_item_id (Tag)

Dataname of an equivalent item which has a common set of
values, or, in the definition of a type SU item is the name of the
associated Measurement item to which the standard uncertainty
applies.

_name.object_id (Name)

The object name of a category or name unique within the cate-
gory or family of categories.

TYPE

Attributes which specify the ‘typing’ of data items.

_type.container (Code)

The container type of the defined data item value.
The data value must be one of the following:

Single single value

Multiple values as List or by boolean ,|&!* or range : ops

List ordered set of values. Elements need not be of same
contents type.

Array ordered set of numerical values. Operations across
arrays are equivalent to operations across elements
of the Array.

Matrix ordered set of numerical values for a tensor. Tensor
operations such as dot and cross products, are valid
across matrix objects.

Table An unordered set of id:value elements
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_type.contents (Code)

Syntax of the value elements within the container type. This
may be a single enumerated code, or, in the case of a list,
a comma-delimited sequence of codes, or, if there are alter-
nate types, a boolean-linked (or range) sequence of codes.
The typing of elements is determined by the replication of the
minimum set of states declared. Where the definition is of a
‘Table’ container this attribute describes the construction of the
value elements within those (Table) values. The CIF2 charac-
terset referenced below consists of the following Unicode code
points:
[U+0009], [U+000A], [U+000D], [U+0020–U+007E],
[U+00A0–U+D7FF], [U+E000–U+FDCF],
[U+FDF0–U+FFFD], [U+10000–U+1FFFD],
[U+20000–U+2FFFD], [U+30000–U+3FFFD],
[U+40000–U+4FFFD], [U+50000–U+5FFFD],
[U+60000–U+6FFFD], [U+70000–U+7FFFD],
[U+80000–U+8FFFD], [U+90000–U+9FFFD],
[U+A0000–U+AFFFD], [U+B0000–U+BFFFD],
[U+C0000–U+CFFFD], [U+D0000–U+DFFFD],
[U+E0000–U+EFFFD], [U+F0000–U+FFFFD],
[U+100000–U+10FFFD]
Two ‘case insensitive’ strings are considered identical when
they match under the Unicode canonical caseless matching
algorithm. In all cases, ‘whitespace’ refers to ASCII whitespace
only, that is [U+0009], [U+000A], [U+000D] and [U+0020].
The data value must be one of the following:

Text case-sensitive sequence of CIF2 characters

Code case-insensitive sequence of CIF2 characters contain-
ing no ASCII whitespace.

Name case-insensitive sequence of ASCII alpha-numeric
characters or underscore

Tag case-insensitive CIF2 character sequence with leading
underscore and no ASCII whitespace

Uri A Uniform Resource Identifier per RFC 3986

Date ISO standard date format 〈yyyy〉-〈mm〉-〈dd〉
Version version digit string of the form

〈ma jor〉.〈version〉.〈update〉
Dimension integer limits of an Array/Matrix/List in square brack-

ets
Range inclusive range of numerical values min:max

Count unsigned integer number

Index unsigned non-zero integer number

Integer positive or negative integer number

Real floating-point real number

Imag floating-point imaginary number

Complex complex number 〈R〉 + j〈I〉
Binary binary number \b〈N〉
Hexadecimal hexadecimal number \x〈N〉
Octal octal number \o〈N〉
Symop a string composed of an integer optionally followed by

an underscore or space and three or more digits
Implied implied by the context of the attribute

ByReference The contents have the same form as those of the
attribute referenced by
_type.contents_referenced_id.

Examples: ‘Integer’ (content is a single or multiple integer(s)), ‘Real,Integer’

(List elements of a real number and an integer), ‘List(Real,Code)’ (List of Lists of

a real number and a code), ‘Text|Real’ (content is either text OR a real number)

_type.contents_referenced_id (Tag)

The value of the _definition.id attribute of an attribute def-
inition whose type is to be used also as the type of this item.
Meaningful only when this item‘s _type.contents attribute
has value ’ByReference’.

_type.dimension (Dimension)

The dimensions of a list or matrix of elements as a text string
within bounding square brackets.
Examples: ‘[3,3]’ (3x3 matrix of elements), ‘[6]’ (list of 6 elements), ‘[]’ (unknown

number of list elements)

_type.indices (Code)

Used to specify the syntax construction of indices of the entries
in the defined object when the defined object has ‘Table’ as its
_type.container attribute. Values are a subset of the codes and
constructions defined for attribute _type.contents, account-
ing for the fact that syntactically, indices are always case-
sensitive quoted strings. Meaningful only when the defined
item has _type.container ‘Table’. See the definition for
_type.contents for the characterset definition.
The data value must be one of the following:

Text A case-sensitive sequence of CIF2 characters

Code case-insensitive sequence of CIF2 characters contain-
ing no ASCII whitespace.

Date ISO date format 〈yyyy〉-〈mm〉-〈dd〉
Uri a Uniform Resource Identifier string, per RFC 3986

Version version digit string of the form
〈ma jor〉.〈version〉.〈update〉

ByReference Indices have the same form as the contents of the
attribute identified by
_type.indices_referenced_id

_type.indices_referenced_id (Tag)

The _definition.id attribute of a definition whose type
describes the form and construction of the indices of entries in
values of the present item. Meaningful only when the defined
item’s _type.container attribute has value ‘Table’, and its
_type.indices attribute has value ‘ByReference’.

_type.purpose (Code)

The primary purpose or function the defined data item serves
in a dictionary or a specific data instance.
The data value must be one of the following:

Import Applied only in the DDLm Reference Dictionary
Used to type the SPECIAL attribute ‘_import.get’
that is present in dictionaries to instigate the impor-
tation of external dictionary definitions.

Method Applied only in the DDLm Reference Dictionary
Used to type the attribute ‘_method.expression’
that is present in dictionary definitions to provide the
text method expressing the defined item in terms of
other defined items.

Audit Applied only in the DDLm Reference Dictionary
Used to type attributes employed to record the audit
definition information (creation date, update version
and cross reference codes) of items, categories and
files.

Identify Applied only in the DDLm Reference Dictionary
Used to type attributes that identify an item tag (or
part thereof), save frame or the URI of an external
file.

Extend Used to extend the DDLm Reference Dictionary
Used in a definition, residing in the ‘extensions’ save
frame of a domain dictionary, to specify a new enu-
meration state using an Evaluation method.

Describe Used to type items with values that are descriptive text
intended for human interpretation.

Encode Used to type items with values that are text or codes
that are formatted to be machine parsable.

State Used to type items with values that are restricted to
codes present in their ‘_enumeration_set.state’
lists.

Key Used to type an item with a value that is unique within
the looped list of these items, and may be used as a
reference ‘key’ to identify a specific packet of items
within the category.

31



TYPE DATA DICTIONARIES DDL DIC

Link Used to type an item with a value that is drawn
from the set of unique values for another item. The
definition of this item must contain the attribute
‘_name.linked_item_id specifying the data name
of the other item. The defined item is usually (but not
always) a foreign key linking packets in this category
to packets in another category.

Composite Used to type items with value strings composed of
separate parts. These will usually need to be sep-
arated and parsed for complete interpretation and
application.

Number Used to type items that are numerical and exact (i.e.
no standard uncertainty value).

Measurand Used to type an item with a numerically estimated
value that has been recorded by measurement or
derivation. This value must be accompanied by its
standard uncertainty (SU) value, expressed either as:
1) appended integers, in parentheses (), at the preci-
sion of the trailing digits, or 2) a separately defined
item with the same name as the measurand item but
with an additional suffix ’_su’.

SU Used to type an item with a numerical value that is
the standard uncertainty of another dataname. The
definition of an SU item must include the attribute
‘_name.linked_item_id’ which explicitly identi-
fies the associated measurand item. SU values must
be non-negative.

Internal Used to type items that serve only internal purposes of
the dictionary in which they appear. The particular
purpose served is not defined by this state.

_type.source (Code)

The origin or source of the defined data item, indicating
by what recording process it has been added to the domain

instance.
The data value must be one of the following:

Recorded A value (numerical or otherwise) recorded by obser-
vation or measurement during the experimental col-
lection of data. This item is primitive.

Assigned A value (numerical or otherwise) assigned as part of
the data collection, analysis or modelling required
for a specific domain instance. These assignments
often represent a decision made that determines the
course of the experiment (and therefore may be
deemed primitive) or a particular choice in the way
the data was analysed (and therefore may be consid-
ered not primitive).

Related A value or tag used in the construction of looped
lists of data. Typically identifying an item whose
unique value is the reference key for a loop category
and/or an item which as values in common with those
of another loop category and is considered a Link
between these lists.

Derived A quantity derived from other data items within the
domain instance. This item is not primitive.

UNITS

The attributes for specifying units of measure.

_units.code (Code)

A code which identifies the units of measurement.

32
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BY J. D. WESTBROOK AND S. R. HALL

APPENDIX 2: DDL2 dictionary. This is a synoptic listing of the DDL2 dictionary, originally published as Chapter
4.10 of International Tables for Crystallography Volume G: Definition and exchange of crystallographic data. Dordrecht: Springer.
Reproduced by permission. c©2005 International Union of Crystallography

This is version 2.1.3 of the dictionary definition language
(DDL2) that provides a machine-readable description of the
attributes of data items in the mmCIF and related dictionar-
ies (Chapters 4.5 to 4.7). This version of DDL is described
in Chapter 2.6. The category groups in the DDL2 dictionary
are: ddl group (component categories of the macromolecu-
lar DDL); datablock group (categories that describe the char-
acteristics of data blocks); category group (categories that
describe the characteristics of categories); sub category group
(categories that describe the characteristics of subcategories);
item group (categories that describe the characteristics of data
items); dictionary group (categories that describe the dic-
tionary); and compliance group (categories that are retained
specifically for compliance with older versions of the DDL).

CATEGORY

Attributes defining the functionality for the entire category.
Category group(s): ddl_group

category_group
Category key(s): _category.id

_category.description (text)*
Text description of a category.

[category]

_category.id (idname)*
The identity of the data category. Data items may only be
looped with items of the same category.
The following item(s) have an equivalent role in their respective categories:

_category_examples.id,

_category_group.category_id,

_category_key.id,

_category_methods.category_id,

_item.category_id. [category]

_category.implicit_key
An identifier that may be used to distinguish the contents of like
categories between data blocks.
_category.mandatory_code (code)*
Whether the category must be specified in a dictionary.

[category]

CATEGORY EXAMPLES

Example applications and descriptions of data items in this
category.
Category key(s): _category_examples.id

_category_examples.case

_category_examples.case (text)*
A case of examples involving items in this category.

[category_examples]

Affiliations: JOHN D. WESTBROOK, Protein Data Bank, Research Collabora-
tory for Structural Bioinformatics, Rutgers, The State University of New Jersey,
Department of Chemistry and Chemical Biology, 610 Taylor Road, Piscataway,
NJ, USA; SYDNEY R. HALL, School of Biomedical and Chemical Sciences,
University of Western Australia, Crawley, Perth, WA 6009, Australia.

_category_examples.detail (text)

A description of an example given in _category_examples.case.
[category_examples]

CATEGORY GROUP

Provides a list of category groups to which the base category
belongs.
Category group(s): ddl_group

category_group
Category key(s): _category_group.id

_category_group.category_id

CATEGORY GROUP LIST

This category provides the definition of each category group.
A category group is a collection of related categories.
Category group(s): ddl_group

category_group
Category key(s): _category_group_list.id

_category_group_list.description (text)*
Text description of a category group.

[category_group_list]
_category_group_list.id (idname)*
The name of a category group.
The following item(s) have an equivalent role in their respective categories:

_category_group.id,

_category_group_list.parent_id. [category_group_list]
_category_group_list.parent_id
The name of the optional parent category group.

CATEGORY KEY

This category holds a list of the item names that uniquely
identify the elements of the category.
Category group(s): ddl_group

category_group
Category key(s): _category_key.name

_category_key.id

_category_key.name
The name of a data item that serves as a key identifier for the
category (e.g. a component of the primary key).

CATEGORY METHODS

Attributes specifying the association between categories and
methods.
Category group(s): ddl_group

category_group
Category key(s): _category_methods.method_id

_category_methods.category_id

DATABLOCK

Attributes defining the characteristics of a data block.
Category group(s): ddl_group

datablock_group
Category key(s): _datablock.id

_datablock.description (text)*
Text description of the data block.

[datablock]
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_datablock.id (code)(*)
The identity of the data block.
The following item(s) have an equivalent role in their respective categories:

_datablock_methods.datablock_id,

_dictionary.datablock_id,

_category.implicit_key . [datablock]

DATABLOCK METHODS

Attributes specifying the association between data blocks and
methods.
Category group(s): ddl_group

datablock_group
Category key(s): _datablock_methods.method_id

_datablock_methods.datablock_id

DICTIONARY

Attributes for specifying the dictionary title, version and data-
block identifier.
Mandatory category.
Category group(s): ddl_group

datablock_group
dictionary_group

Category key(s): _dictionary.datablock_id

_dictionary.datablock_id
The identifier for the data block containing the dictionary.
_dictionary.title (char)*
Title identifier of the dictionary.

[dictionary]

_dictionary.version
A unique version identifier for the dictionary.

DICTIONARY HISTORY

Attributes for specifying the revision history of the dictio-
nary.
Category group(s): ddl_group

dictionary_group
Category key(s): _dictionary_history.version

_dictionary_history.revision (text)*
Text description of the dictionary revision.

[dictionary_history]

_dictionary_history.update (yyyy-mm-dd)*
The date that the last dictionary revision took place.

[dictionary_history]

_dictionary_history.version (char)*
A unique version identifier for the dictionary revision.
The following item(s) have an equivalent role in their respective categories:

_dictionary.version. [dictionary_history]

ITEM

Attributes which describe the characteristics of a data item.
Category group(s): ddl_group

item_group
Category key(s): _item.name

_item.mandatory_code (code)*
Signals whether the defined item is mandatory for the proper
description of its category.
The data value must be one of the following:

yes required item in this category
no optional item in this category
implicit required item but may be determined from context

[item]

_item.name (name)(*)
Data name of the defined item.
The following item(s) have an equivalent role in their respective categories:

_category_key.name,

_item_aliases.name,

_item_default.name,

_item_dependent.name,

_item_dependent.dependent_name,

_item_description.name,

_item_enumeration.name,

_item_examples.name,

_item_linked.child_name,

_item_linked.parent_name,

_item_methods.name,

_item_range.name,

_item_related.name,

_item_related.related_name,

_item_type.name,

_item_type_conditions.name,

_item_structure.name,

_item_sub_category.name,

_item_units.name. [item]

ITEM ALIASES

This category holds a list of possible alias names or synonyms
for each data item. Each alias name is identified by the name
and version of the dictionary to which it belongs.
Category key(s): _item_aliases.alias_name

_item_aliases.dictionary

_item_aliases.version

_item_aliases.alias_name (aliasname)*
Alias name for the data item.

[item_aliases]

_item_aliases.dictionary (char)*
The dictionary in which the alias name is defined.

[item_aliases]

_item_aliases.version (char)*
The version of the dictionary in which the alias name is defined.

[item_aliases]

ITEM DEFAULT

Attributes specifying the default value for a data item.
Category group(s): ddl_group

item_group
Category key(s): _item_default.name

_item_default.value (any)

The default value for the defined item if it is not specified
explicitly. If a data value is not declared, the default is assumed
to be the most likely or natural value.

[item_default]

ITEM DEPENDENT

Attributes which identify other data items that must be spec-
ified for the defined data item to be valid.
Category key(s): _item_dependent.name

_item_dependent.dependent_name

_item_dependent.dependent_name
Data name of a dependent item.
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ITEM DESCRIPTION

This category holds the descriptions of each data item.
Mandatory category.
Category group(s): ddl_group

item_group
Category key(s): _item_description.name

_item_description.description

_item_description.description (text)*
Text description of the defined data item.

[item_description]

ITEM ENUMERATION

Attributes which specify the permitted enumeration of the
items.
Category group(s): ddl_group

item_group
Category key(s): _item_enumeration.name

_item_enumeration.value

_item_enumeration.detail (text)

A description of a permissible value for the defined item.
[item_enumeration]

_item_enumeration.value (any)*
A permissible value, character or number for the defined item.

[item_enumeration]

ITEM EXAMPLES

Attributes for describing examples of applications of the data
item.
Category group(s): ddl_group

item_group
Category key(s): _item_examples.name

_item_examples.case

_item_examples.case (text)

An example application of the defined data item.
[item_examples]

_item_examples.detail (text)

A description of an example specified in _item_examples.case.
[item_examples]

ITEM LINKED

Attributes which describe how equivalent data items are
linked within categories and across different categories.
Category group(s): ddl_group

item_group
Category key(s): _item_linked.child_name

_item_linked.child_name
Name of the child data item.
_item_linked.parent_name
Name of the parent data item.

ITEM METHODS

Attributes specifying the association between data items and
methods.
Category group(s): ddl_group

item_group
Category key(s): _item_methods.method_id

_item_methods.name

ITEM RANGE

The range of permissible values of a data
item. When multiple ranges are specified,
they are interpreted sequentially using a
logical OR. To specify that an item value may be equal
to a boundary value, specify an item range where the
maximum and mimimum values equal the boundary value.
Category group(s): ddl_group

item_group
Category key(s): _item_range.name

_item_range.minimum
_item_range.maximum

_item_range.maximum (any)

Maximum permissible value of a data item or the upper bound
of a permissible range (maximum value > data value).

[item_range]

_item_range.minimum (any)

Minimum permissible value of a data item or the lower bound
of a permissible range (minimum value < data value).

[item_range]

ITEM RELATED

Attributes which specify recognized relationships between
data items.
Category group(s): ddl_group

item_group
Category key(s): _item_related.name

_item_related.related_name
_item_related.function_code

_item_related.function_code (code)*
The code for the type of relationship between the item identi-
fied by _item_related.name and the defined item.

‘alternate’ indicates that the item identified in
_item_related. related_name is an alternative expression
in terms of its application and attributes to the item in this def-
inition. ‘alternate exclusive’ indicates that the item identified
in _item_ related.related_name is an alternative expression
in terms of its application and attributes to the item in this
definition. Only one of the alternative forms may be specified.

‘convention’ indicates that the item identified in _item_

related.related_name differs from the defined item only in
terms of a convention in its expression.

‘conversion constant’ indicates that the item identified in
_item_related.related_name differs from the defined item
only by a known constant. ‘conversion arbitrary’ indicates that
the item identified in _item_related.related_name differs
from the defined item only by an arbitrary constant.

‘replaces’ indicates that the defined item replaces the item
identified in _item_related.related_name. ‘replacedby’ indi-
cates that the defined item is replaced by the item identified in
_item_related.related_name.

‘associated value’ indicates that the item identified in _item_

related.related_name is meaningful when associated with
the defined item. ‘associated esd’ indicates that the item identi-
fied in _item_related.related_name is the estimated standard
deviation of the defined item. ‘associated error’ indicates that
the item identified in _item_related.related_name is the esti-
mated error of the defined item.
The data value must be one of the following:

alternate alternate form of the item
alternate exclusive mutually exclusive alternate form of the item
convention depends on defined convention
conversion constant related by a known conversion factor
conversion arbitrary related by an arbitrary conversion factor
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replaces a replacement definition
replacedby an obsolete definition
associated value a meaningful value when related to the item
associated esd an estimated standard deviation of the item
associated error an estimated error of the item

[item_related]

ITEM STRUCTURE

This category holds the association between data items and
named vector/matrix declarations.
Category group(s): ddl_group

item_group
Category key(s): _item_structure.name

_item_structure.organization (code)*
Identifies whether the structure is defined in column- or row-
major order. Only the unique elements of symmetric matrices
are specified.
The data value must be one of the following:

columnwise column-major order
rowwise row-major order

ITEM STRUCTURE LIST

This category holds a description for each structure type.
Category group(s): ddl_group

item_group
Category key(s): _item_structure_list.code

_item_structure_list.index

_item_structure_list.code (code)*
The name of the matrix/vector structure declaration.
The following item(s) have an equivalent role in their respective categories:

_item_structure.code. [item_structure_list]

_item_structure_list.dimension (int)*
Identifies the length of this row or column of the structure.
The permitted range is [1,∞). [item_structure_list]

_item_structure_list.index (int)*
Identifies the one-based index of a row or column of the struc-
ture.
The permitted range is [1,∞). [item_structure_list]

ITEM SUB CATEGORY

This category assigns data items to subcategories.
Category group(s): sub_category_group

item_group
Category key(s): _item_sub_category.id

_item_sub_category.name

ITEM TYPE

Attributes for specifying the data-type code for each data
item.
Category group(s): ddl_group

item_group
Category key(s): _item_type.name

ITEM TYPE CONDITIONS

Attributes for specifying additional conditions associated
with the data type of the item.
Category group(s): ddl_group

item_group
compliance_group

Category key(s): _item_type_conditions.name

_item_type_conditions.code (code)*
Codes defining conditions on the _item_type.code specifica-
tion. ‘esd’ permits a number string to contain an appended
standard deviation number enclosed within parentheses, e.g.
4.37(5). ‘seq’ permits data to be declared as a sequence of val-
ues separated by a comma <,> or a colon <:>. The sequence
v1, v2, v3 . . . signals that v1, v2, v3 etc. are alternative values
for the data item. The sequence v1:v2 signals that v1 and v2
are the boundary values of a continuous range of values. This
mechanism was used to specify permitted ranges of an item in
previous DDL versions. Combinations of alternate and range
sequences are permitted.
The data value must be one of the following:

none no extra conditions apply to this data item
esd numbers may have esd values appended within parentheses
seq data may be declared as a comma- or colon-separated sequence

[item_type_conditions]

ITEM TYPE LIST

Attributes which define each type code.
Category group(s): ddl_group

item_group
Category key(s): _item_type_list.code

_item_type_list.code (code)*
The codes specifying the nature of the data value.
The following item(s) have an equivalent role in their respective categories:

_item_type.code. [item_type_list]

_item_type_list.construct (text)

When a data value can be defined as a pre-determined sequence
of characters, optional characters or data names (for which the
definition is also available), it is specified as a construction.
The rules of construction conform to the the regular expression
(REGEX) specifications detailed in IEEE (1991). Resolved
data names for which _item_type_list.construct specifica-
tions exist are replaced by these constructions, otherwise the
data-name string is not replaced.

Reference: IEEE (1991). IEEE Standard for Information
Technology – Portable Operating System Interface (POSIX) –
Part 2: Shell and Utilities, Vol. 1, IEEE Standard 1003.2-1992.
New York: The Institute of Electrical Engineers.
Example: ‘ year- month- day’ (typical construction for date).

[item_type_list]

_item_type_list.detail (text)

An optional description of the data type.
[item_type_list]

_item_type_list.primitive_code (code)*
The codes specifying the primitive type of the data value.
The data value must be one of the following:

numb numerically interpretable string
char character or text string (case-sensitive)
ucharcharacter or text string (case-insensitive)
null for dictionary purposes only

[item_type_list]

ITEM UNITS

Specifies the physical units in which data items are expressed.
Category group(s): ddl_group

item_group
Category key(s): _item_units.name

36



ddl core 4.10. DDL2 DICTIONARY SUB CATEGORY METHODS

ITEM UNITS CONVERSION

Conversion factors between the various units of measure
defined in the ITEM_UNITS_LIST category.
Category group(s): ddl_group

item_group
Category key(s): _item_units_conversion.from_code

_item_units_conversion.to_code

_item_units_conversion.factor (any)*
The arithmetic operation required to convert between the unit
systems: 〈to code〉 = 〈from code〉〈operator〉〈factor〉.

[item_units_conversion]

_item_units_conversion.from_code
The unit system on which the conversion operation is
applied to produce the unit system specified in
_item_units_ conversion.to_code: 〈to code〉 =
〈from code〉〈operator〉〈factor〉.
_item_units_conversion.operator (code)*
The arithmetic operator required to convert between the unit
systems: 〈to code〉= 〈from code〉〈operator〉〈factor〉.
The data value must be one of the following:

+ addition
- subtraction

* multiplication
/ division

[item_units_conversion]

_item_units_conversion.to_code
The unit system produced after an operation is applied to the
unit system specified by _item_units_conversion.from_code:
〈to code〉 = 〈from code〉〈operator〉〈factor〉.

ITEM UNITS LIST

Attributes which describe the physical units of measurement
in which data items may be expressed.
Category group(s): ddl_group

item_group
Category key(s): _item_units_list.code

_item_units_list.code (code)*
The code specifying the name of the unit of measurement.
The following item(s) have an equivalent role in their respective categories:

_item_units.code,

_item_units_conversion.from_code,

_item_units_conversion.to_code. [item_units_list]

_item_units_list.detail (text)

A description of the unit of measurement.
[item_units_list]

METHOD LIST

Attributes specifying the list of methods applicable to data
items, subcategories and categories.
Category group(s): ddl_group

item_group
category_group

Category key(s): _method_list.id

_method_list.code (code)*
A code that describes the function of the method.
Examples: ‘calculation’ (method to calculate the item), ‘verification’ (method

to verify the data item), ‘cast’ (method to provide cast conversion), ‘addition’

(method to define item + item), ‘division’ (method to define item / item),

‘multiplication’ (method to define item × item), ‘equivalence’ (method to

define item = item), ‘other’ (miscellaneous method). [method_list]

_method_list.detail (text)

Description of application method in _method_list.id.
[method_list]

_method_list.id (idname)*
Unique identifier for each method listed.
The following item(s) have an equivalent role in their respective categories:

_item_methods.method_id,

_category_methods.method_id,

_sub_category_methods.method_id,

_datablock_methods.method_id. [method_list]

_method_list.inline (text)*
In-line text of a method associated with the data item.

[method_list]

_method_list.language (code)*
Language in which the method is expressed.
Examples: ‘BNF’, ‘C’, ‘C++’, ‘FORTRAN’, ‘LISP’, ‘PASCAL’, ‘PERL’, ‘TCL’,

‘OTHER’. [method_list]

SUB CATEGORY

The purpose of a subcategory is to define an association
between data items within a category and optionally to pro-
vide a method to validate the collection of items. For exam-
ple, the subcategory named ‘cartesian’ might be applied to
the data items for the coordinates x, y and z.
Category group(s): ddl_group

sub_category_group
Category key(s): _sub_category.id

_sub_category.description (text)*
Description of the subcategory.

[sub_category]

_sub_category.id (idname)*
The identity of the subcategory.
The following item(s) have an equivalent role in their respective categories:

_sub_category_examples.id,

_sub_category_methods.sub_category_id,

_item_sub_category.id. [sub_category]

SUB CATEGORY EXAMPLES

Example applications and descriptions of data items in this
subcategory.
Category group(s): ddl_group

sub_category_group
Category key(s): _sub_category_examples.id

_sub_category_examples.case

_sub_category_examples.case (text)*
An example involving items in this subcategory.

[sub_category_examples]

_sub_category_examples.detail (text)

A description of an example given in _sub_category_

examples.case.
[sub_category_examples]

SUB CATEGORY METHODS

Attributes specifying the association between subcategories
and methods.
Category group(s): ddl_group

sub_category_group
Category key(s): _sub_category_methods.method_id

_sub_category_methods.sub_category_id
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2.10. Classification and use of image data

BY H. J. BERNSTEIN

APPENDIX 3: Classification and use of image data. This is an early draft of chapter 2.10 of a new
edition of International Tables for Crystallography Volume G (ITVG). In order to be able to cite portions of the original ITVG, the
prefix oITVG- is used.

2.10.1. Introduction

This chapter describes the categories and organization of data
items defined in the CBF/imgCIF dictionary. The classifica-
tion of image data applies to both Crystallographic Binary File
(CBF) and Image-supporting Crystallographic Information File
(imgCIF) representations. An introduction to CBF data and
construction is given in Chapter oITVG-2.3. Full details of the
CBF/imgCIF dictionary are given in Chapter oITVG-4.6.

The main reason for introducing the new items defined in
the CBF/imgCIF dictionary was to extend the mmCIF dictio-
nary (Chapter oITVG-3.6) to allow the storage of synchrotron
diffraction images. However, these items are also important in
other fields that use binary image data, including the publica-
tion of articles, the creation of web pages and the production of
movies.

Data categories in the CBF/imgCIF dictionary can describe
one-, two- and three-dimensional array detectors that output
data organized by time and/or wavelength. The categories
defined at present support modular data that can be extended for
future applications without having to make fundamental struc-
tural changes. For example, it is anticipated that additional data
items will be needed soon to allow higher-dimensional data
representations and more complex data structures; these should
be accommodated easily.

The CBF/imgCIF dictionary consists of five groups of
categories of data items: the ARRAY_DATA group, the AXIS

group, the DIFFRN group, the MAP group. and the VARIANT

group (Table 2.10.1.1). The DIFFRN group already exists in
the mmCIF dictionary (Section oITVG-3.6.5.2; see also Sec-
tion oITVG-3.2.2.2) and describes the diffraction data and
their measurements. Definitions in the CBF/imgCIF dictionary
extend and in some cases restate the definitions in the mmCIF
dictionary.

The data categories defined in the CBF/imgCIF dictionary
are described in this chapter. Table 2.10.1.1 lists the formal cat-
egory groups declared in the dictionary and the sections of this
chapter in which they are discussed. Each section is divided
into subsections describing a single category or a small set
of closely related categories. Within each subsection, the data
names within the relevant categories are listed. Category keys,
pointers to parent data items and aliases to data items in the
mmCIF dictionary are indicated.

The data collected in an experiment are organized into scans.
Each scan consists of one or more frames. Each frame consists
of one or more data arrays. The logical data in the data arrays
need to be described in terms of physical arrays of image ele-
ments.

Affiliation: HERBERT J. BERNSTEIN, School of Chemistry and Materials Sci-
ence, College of Science, Rochester Institute of Technology, c/o National Syn-
chrotron Light Source II, Building 745, Brookhaven National Laboratory, P.O.
Box 5000, Upton, NY 11973-5000, USA.

Table 2.10.1.1. Category groups defined in the CBF/imgCIF dictio-
nary

Section Category group Subject covered

Experimental measurements
2.10.2 ARRAY_DATA Binary image data
2.10.3 AXIS Axes required to specify the data collection
2.10.4 DIFFRN Diffraction experiment
2.10.5 MAP Map data
2.10.6 VARIANT Variants of data values

The axes of the laboratory coordinate system needed to
describe the physical positions of the image elements and the
positioning of the specimen are given in the AXIS category. The
axes used for the positioning systems for the specimen and
the detector are constructed in the same laboratory coordinate
system. The DIFFRN_DETECTOR_AXIS category relates detec-
tor elements to axes. The DIFFRN_MEASUREMENT_AXIS cate-
gory relates goniometers to axes. The DIFFRN_SCAN_AXIS and
DIFFRN_SCAN_ FRAME_AXIS categories relate scans to overall
axis settings and individual frames to frame-by-frame axis set-
tings, respectively.

The organization of the data in the collected arrays
of data is given in the ARRAY_STRUCTURE_LIST and the
ARRAY_STRUCTURE_LIST_SECTION categories and the physical
settings of axes for the centres of pixels that correspond to data
points are given in the ARRAY_STRUCTURE_LIST_AXIS category.

2.10.2. Binary image data

The seven categories that collectively define the relationship
between the sequences of octets in arrays of binary data and
the information in the images those octets represent are:

ARRAY_DATA group
The image data (§2.10.2.1)

ARRAY_DATA

Array elements (§2.10.2.2)
ARRAY_ELEMENT_SIZE

Intensities (§2.10.2.3)
ARRAY_INTENSITIES

Organization and encoding of array data (§2.10.2.4)
ARRAY_STRUCTURE

ARRAY_STRUCTURE_LIST

ARRAY_STRUCTURE_LIST_SECTION

ARRAY_STRUCTURE_LIST_AXIS

2.10.2.1. The image data

Data items in this category are as follows:
ARRAY_DATA
• _array_data.array_id

→ _array_structure.id
• _array_data.binary_id
• _array_data.variant

→ _variant.variant
_array_data.data

The bullet (•) indicates a category key. The arrow (→) is a reference to a
parent data item.
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Each value of the _array_data.data data item is
a sequence of octets representing a binary image.
_array_data.array_id and _array_data.binary_id, and,
optionally,_array_data.variant taken together, uniquely
identify each image. The value of _array_data.array_id is
a pointer to _array_structure.id to provide the relationship
between the sequence of octets and the logical structure of
the image. Since multiple images may have the same logical
structure, the purpose of _array_data.binary_id is to ensure
that each image has a unique identifier. _array_data.variant
allows multiple observations of the same image to be image
to be recorded. For example, this can be the result of multiple
refinements of the positions of detector elements.

2.10.2.2. Array elements

Data items in this category are as follows:
ARRAY_ELEMENT_SIZE
• _array_element_size.array_id

→ _array_structure.id
• _array_element_size.index

→ _array_structure_list.index
• _array_element_size.variant

→ _variant.variant
_array_element_size.size

The bullet (•) indicates a category key. The arrow (→) is a reference to a
parent data item.

The value of the _array_element_size.size data item is
a size in metres of an image element (a pixel or voxel).
The direction of the measurement is given in each dimension
by _array_element_size.index. The array structure specify-
ing the organization of the dimensions is referenced by the
value of _array_element_size.array_id, which is a pointer
to _array_structure.id. The value of _array_element_

size.index is a pointer to _array_structure_list.index.
For data organized into rectangular arrays of pixels or vox-
els, this gives the spatial dimensions of the individual image
elements. The value of _array_element_size.variant is a
pointer to _variant.variant which may optionally be used to
present variants of image element sizes due, say, to multiple
measurements or refinements.

2.10.2.3. Intensities

Data items in this category are as follows:
ARRAY_INTENSITIES
• _array_intensities.array_id

→ _array_structure.id
• _array_intensities.binary_id

→ _array_data.binary_id
_array_intensities.details
_array_intensities.gain
_array_intensities.gain_esd
_array_intensities.linearity
_array_intensities.offset
_array_intensities.overload
_array_intensities.pixel_fast_bin_size
_array_intensities.pixel_slow_bin_size
_array_intensities.pixel_binning_method
_array_intensities.scaling
_array_intensities.undefined_value

• _array_intensities.variant
→ _variant.variant

The bullet (•) indicates a category key. The arrow (→) is a reference to a
parent data item.

The relationship between the data values for individual
image elements and the number of incident photons can be
complex. The data items in the ARRAY_INTENSITIES cate-
gory provide information about this relationship. The value
of _array_intensities.linearity states the type of rela-
tionship, and the values of _array_intensities.array_id

and _array_intensities.binary_id identify the array
structure and the image being discussed. The other items
are used in different ways depending on the relationship.
If the value of _array_intensities.linearity is raw,
then the image elements hold uninterpreted raw data val-
ues from the detector, e.g. for calibration. If the value of
_array_intensities.linearity is linear, then the count
in an image element is proportional to the incident number
of photons by the value of _array_intensities.gain. The
standard uncertainty (estimated standard deviation) of the gain
is optionally given in _array_intensities.gain_esd. The
value used for this should be estimated from a good under-
standing of the physical characteristics of the experimental
apparatus. If the value of _array_intensities.linearity

is offset, then the value of _array_intensities.offset

should be added to the image element value. If the
value of _array_intensities.linearity is scaling,
scaling_offset, sqrt_scaled or logarithmic_scaled,
the necessary scaling factor is given by the value of
_array_intensities.scaling. In all cases, the scaling
factor is applied to the image element value before the
other operations are applied. In the first case, only sim-
ple scaling is used. In the second case, the value of
_array_intensities.offset is added after scaling. In the
third case, the scaled value is squared. In the final case, 10
is taken to the power given by the scaled value. Binning is
recorded using _array_intensities.pixel_fast_bin_size,
_array_intensities.pixel_slow_bin_size, and _array_

intensities.pixel_binning_method. The optional value of
_array_intensities.variant is available to present multiple
observations or calculations of this data.

2.10.2.4. Organization and encoding of array data

Data items in these categories are as follows:
(a) ARRAY_STRUCTURE
• _array_structure.id

_array_structure.byte_order
_array_structure.compression_type
_array_structure.compression_type_flag
_array_structure.encoding_type

• _array_structure.variant
→ _variant.variant

(b) ARRAY_STRUCTURE_LIST
• _array_structure_list.array_id
• _array_structure_list.index

→ _array_structure.id
_array_structure_list.axis_set_id
_array_structure_list.dimension
_array_structure_list.direction
_array_structure_list.precedence
• _array_structure_list.variant

→ _variant.variant

(b) ARRAY_STRUCTURE_LIST_SECTION
• _array_structure_list_section.id
• _array_structure_list_section.array_id
• _array_structure_list_section.index

→ _array_structure_list.id
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_array_structure_list_section.start
_array_structure_list_section.stride
_array_structure_list_section.end

• _array_structure_list_section.variant
→ _variant.variant

(c) ARRAY_STRUCTURE_LIST_AXIS
• _array_structure_list_axis.axis_id

→ _axis.id
• _array_structure_list_axis.axis_set_id

→ _array_structure_list.axis_set_id
_array_structure_list_axis.angle
_array_structure_list_axis.angle_increment
_array_structure_list_axis.angular_pitch
_array_structure_list_axis.displacement
_array_structure_list_axis.displacement_increment
_array_structure_list_axis.radial_pitch

• _array_structure_list_axis.variant
→ _variant.variant

The bullet (•) indicates a category key. The arrow (→) is a reference to a
parent data item.

The data items in the ARRAY_STRUCTURE category show how
the stream of octets in a binary image is to be reorganized into
words of an appropriate size. Each possible encoding is identi-
fied by a value of _array_structure.id. In most cases, large
images will have been compressed. The type of compression
used is given by _array_structure.compression_type. Once
a stream of octets has been decompressed, it can be organized
into words. The type of each word is given by the value of
_array_structure.encoding_type and the order of mapping
octets onto words, most significant octet first (‘big-endian’) or
least significant octet first (‘little-endian’), is given by the value
of _array_structure.byte_order.

The data items in the ARRAY_STRUCTURE_LIST category
show how the list of words defined by the ARRAY_STRUCTURE

category should be organized into image arrays. The
value of _array_structure_list.array_id is a pointer to
_array_structure.id. Each dimension (row, column, sheet
etc.) of the image is identified by an index, counting from 1,
given by _array_structure_list.index.
The order of nesting of the indices is given by the val-
ues of _array_structure_list.precedence, with the index
of precedence 1 varying most rapidly (i.e. having val-
ues stored sequentially). The direction of index change
for increasing memory location is given by the value of
_array_structure_list.direction. For a given index, the
number of image elements in that direction is given by the value
of _array_structure_list.dimension.

The data items in the ARRAY_STRUCTURE_LIST_SECTION

category are used to define subsections of arrays.
The value of _array_structure_list_section.array_id

is a pointer to the _array_structure.id for which
_array_structure_list_section.id identifies an array sec-
tion. The start, stride and end of the section are defined
by the values of _array_structure_list_section.start,
_array_structure_list_section.stride, and _array_

structure_list_section.end. For any array of array_id,
ARRAYID, array section ids of the form
ARRAYID(start1:end1:stride1,start2:end2:stride2,...)

are defined by default.
Data items in the ARRAY_STRUCTURE_LIST_AXIS category

describe the physical settings of sets of axes for the cen-
tres of pixels that correspond to data points described in the

ARRAY_STRUCTURE_LIST category.
In the simplest cases, the physical increments of a single

axis correspond to the increments of a single array index. More
complex organizations (e.g. spiral scans) may require coupled
motions along multiple axes.

Fig. 2.10.2.1. ARRAY_STRUCTURE_LIST specification of linearly orga-
nized image elements.

Note that a spiral scan uses two coupled axes, one for the
angular direction and one for the radial direction. This differs
from a cylindrical scan for which the two axes are not coupled
into one set.

Multiple related axes are gathered together into sets.
Each set is identified by the value of the axis set
identifier, _array_structure_list_axis.axis_set_id, and
each axis within a set is identified by the value of
_array_structure_list_axis.axis_id. Each set given by a
value of *.axis_set_id is linked to a corresponding value
for _array_structure_list.axis_set_id to relate settings
of the axes in the axis set to particular image elements in
ARRAY_STRUCTURE_LIST.

If axes are all independent, no value need be given
for _array_structure_list_axis.axis_set_id, which is
then implicitly given the corresponding value of _array_

structure_list_axis.axis_id. Each axis given by a value
of _array_structure_list_axis.axis_id is linked to a cor-
responding value for _axis.id to provide a physical descrip-
tion of the axis. _array_structure_list_axis.axis_id

and _array_structure_list_axis.axis_set_id together
uniquely identify a row of data in an ARRAY_STRUCTURE_LIST

AXIS table.
For the remaining data items, there are two important cases

to consider: axes that step by Euclidean distance and axes that
step by angle. Fig. 2.10.2.1 shows a portion of an array of
image elements laid out on a rectangular grid. The starting
point of an axis is specified in millimetres by the value of
_array_structure_list_axis.displacement and the centre-
to-centre distance between pixels is specified in millimetres
by the value of_array_structure_list_axis.displacement_
increment.
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Fig. 2.10.2.2. ARRAY_STRUCTURE_LIST specification of ‘constant-angle’
image elements in a cylindrical scan. The angular and radial axes are inde-
pendent. Note that outer-zone image elements are further apart, centre-to-
centre, than inner-zone image elements.

Fig. 2.10.2.3. ARRAY_STRUCTURE_LIST specification of ‘constant-
velocity’ image elements in a cylindrical scan. The angular and radial axes
are coupled. Note that outer-zone image elements are the same linear dis-
tance apart, centre-to-centre, as the inner-zone image elements.

Fig. 2.10.2.2 shows a portion of an array of image ele-
ments laid out in concentric cylinders. The starting point
of the angular axis is specified in degrees by the value of
_array_structure_list_axis.angle and the centre-to-centre
angular distance between pixels is specified in degrees by the
value of _array_structure_list_axis.angle_increment.
The starting point of the radial axis is specified by the value of
_array_structure_list_axis.displacement and the radial
distance between cylinders of pixels is specified in millimetres
by the value of _array_structure_list_axis.radial_pitch.
Note that the image elements further from the centre are larger
than the image elements closer to the centre.

Fig. 2.10.2.3 shows a portion of a spiral scan array
in which the angular and radial axes are coupled. This
example represents a ‘constant-velocity’ scan, in which the
size of the image elements does not depend on the dis-
tance from the centre. The starting point of the angu-
lar axis is again specified in degrees by the value of

_array_structure_list_axis.angle, but the centre-to-centre
distance between pixels is specified in millimetres by the value
of _array_structure_list_axis.angular_pitch. The cou-
pled radial axis is handled in much the same way as for the
uncoupled radial axis in the cylindrical array.

These examples show some of the more common two-
dimensional data structures. By coupling an additional axis not
in the plane of the first two, regular three-dimensional arrays of
data can be represented without additional tags. The categories
in the DIFFRN group allow arrays of data to be associated with
frames and thereby with time and/or wavelength. More gen-
eral data structures, for example ones based on dope vectors
or hash tables, would require the definition of additional tags,
but any data structure (see Aho et al., 1987) that can be han-
dled by a modern computer should be manageable within this
framework.

Optional variants are permitted, but would not be commonly
used in crystallographic experiments.

2.10.3. Axes

The category describing the axes required to specify the data
collection is as follows:

AXIS group
AXIS

Data items in this category are as follows:
AXIS
• _axis.equipment
• _axis.id

_axis.depends_on
→ _axis.id

_axis.equipment_component
_axis.offset[1]
_axis.offset[2]
_axis.offset[3]
_axis.rotation
_axis.rotation_axis
_axis.system
_axis.type
_axis.vector[1]
_axis.vector[2]
_axis.vector[3]

• _axis.variant
→ _variant.variant

The bullet (•) indicates a category key. The arrow (→) is a reference to a
parent data item.

Data items in the AXIS category record the information
required to describe the goniometer, detector, source and other
axes needed to specify a data collection. The location of each
axis is specified by two vectors: the axis itself, given as a unit
vector, and an offset to the base of the unit vector.

The vectors defining an axis are referenced to an appropri-
ate coordinate system. The axis vector, itself, is a dimension-
less unit vector. Where meaningful, the offset vector is given in
millimetres. In coordinate systems not measured in metres, the
offset is not specified and is taken as zero.

The available coordinate systems are:
The imgCIF standard laboratory coordinate system
The direct lattice (fractional atomic coordinates)
The orthogonal Cartesian coordinate system (real space)
The reciprocal lattice
An abstract orthogonal Cartesian coordinate frame

For consistency in this discussion, we call the three coordi-
nate system axes X , Y and Z. This is appropriate for the img-
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CIF standard laboratory coordinate system, and the last two
Cartesian coordinate systems, but for the direct lattice, X cor-
responds to a, Y to b and Z to c, while for the reciprocal lattice,
X corresponds to a∗, Y to b∗ and Z to c∗.

For purposes of visualization, all the coordinate systems
are taken as right-handed, i.e., using the convention that the
extended thumb of a right hand could point along the first (X)
axis, the straightened pointer finger could point along the sec-
ond (Y ) axis and the middle finger folded inward could point
along the third (Z) axis.

THE IMGCIF STANDARD LABORATORY COORDI-
NATE SYSTEM

The imgCIF standard laboratory coordinate system is a right-
handed orthogonal coordinate similar to the MOSFLM coordi-
nate system, but imgCIF puts Z along the X-ray beam, rather
than putting X along the X-ray beam as in MOSFLM.

The vectors for the imgCIF standard laboratory coordinate
system form a right-handed Cartesian coordinate system with
its origin in the sample or specimen.

The origin of the axis system should, if possible, be defined
in terms of mechanically stable axes to be be both in the sample
and in the beam. If the sample goniometer or other ample posi-
tioner has two axes the intersection of which defines a unique
point at which the sample should be mounted to be bathed by
the beam, that will be the origin of the axis system. If no such
point is defined, then the midpoint of the line of intersection
between the sample and the centre of the beam will define the
origin. For this definition the sample positioning system will be
set at its initial reference position for the experiment.
1 (X) The X axis is aligned to the mechanical axis pointing

from the sample or specimen along the principal axis of
the goniometer or sample positioning system if the sam-
ple positioning system has an axis that intersects the ori-
gin and which forms an angle of more than 22.5 degrees
with the beam axis.

2 (Y ) The Y axis completes an orthogonal right-handed system
defined by the X axis and the Z axis (see below).

3 (Z) The Z axis is derived from the source axis which goes
from the sample to the source.. The Z axis is the com-
ponent of the source axis orthogonal to the X axis in the
plane defined by the X axis and the source axis.

If the conditions for the X axis can be met, the coordinate
system will be based on the goniometer or other sample posi-
tioning system and the beam and not on the orientation of
the detector, gravity etc. The vectors necessary to specify all
other axes are given by sets of three components in the order
(X ,Y, Z). If the axis involved is a rotation axis, it is right-
handed, i.e. as one views the object to be rotated from the origin
(the tail) of the unit vector, the rotation is clockwise. If a trans-
lation axis is specified, the direction of the unit vector specifies
the sense of positive translation.

Note: This choice of coordinate system is similar to but sig-
nificantly different from the choice in MOSFLM (Leslie &
Powell, 2004). In MOSFLM, X is along the X-ray beam (the
CBF/imgCIF Z axis) and Z is along the rotation axis.

In some experimental techniques, there is no goniometer or
the principal axis of the goniometer is at a small acute angle
with respect to the source axis. In such cases, other reference
axes are needed to define a useful coordinate system. The order

of priority in defining directions in such cases is to use the
detector, then gravity, then north.

If the X axis cannot be defined as above, then the direction
(not the origin) of the X axis should be parallel to the axis of
the primary detector element corresponding to the most rapidly
varying dimension of that detector element’s data array, with its
positive sense corresponding to increasing values of the index
for that dimension. If the detector is such that such a direction
cannot be defined (as with a point detector) or that direction
forms an angle of less than 22.5 degrees with respect to the
source axis, then the X axis should be chosen so that if the Y
axis is chosen in the direction of gravity, and the Z axis is cho-
sen to be along the source axis, a right-handed orthogonal coor-
dinate system is chosen. In the case of a vertical source axis, as
a last resort, the X axis should be chosen to point North.

All rotations are given in degrees and all translations are
given in mm.

Axes may be dependent on one another. The X axis is the
only goniometer axis the direction of which is strictly con-
nected to the hardware. All other axes are specified by the
positions they would assume when the axes upon which they
depend are at their zero points.

When specifying detector axes, the axis is given to the
beam centre. The location of the beam centre on the detec-
tor should be given in the DIFFRN_DETECTOR category in
distortion-corrected millimetres from the (0,0) corner of the
detector.

For convenience when describing detector element (module)
placement, and optional mounting rotation axis and rotation
angle may be specified. In such cases, the mounting rotation
axis and angle of rotation around the mounting rotation axis
are applied after applying the transformations upon which the
given axis depends.

It should be noted that many different origins arise in the def-
inition of an experiment. In particular, as noted above, it is nec-
essary to specify the location of the beam centre on the detector
in terms of the origin of the detector, which is, of course, not
coincident with the centre of the sample.

The unit cell, reciprocal cell and crystallographic orthogo-
nal Cartesian coordinate system are defined by the cell and the
matrices in the ATOM_SITES category.

THE DIRECT LATTICE (FRACTIONAL COORDI-
NATES)

The direct lattice coordinate system is a system of fractional
coordinates aligned to the crystal, rather than to the labora-
tory. This is a natural coordinate system for maps and atomic
coordinates. It is the simplest coordinate system in which to
apply symmetry. The axes are determined by the cell edges,
and are not necessarily orthogonal. This coordinate system is
not uniquely defined and depends on the cell parameters in the
CELL category and the settings chosen to index the crystal.

Molecules in a crystal studied by X-ray diffracraction are
organized into a repeating regular array of unit cells. Each unit
cell is defined by three vectors, a, b and c. To quote from
Drenth,

“The choice of the unit cell is not unique and therefore,
guidelines have been established for selecting the standard
basis vectors and the origin. They are based on symmetry and
metric considerations:

42



2.10. CLASSIFICATION AND USE OF IMAGE DATA

Fig. 2.10.3.1. AXIS laboratory coordinate system. The origin is centred in the
specimen.

“(1) The axial system should be right handed.
“(2) The basis vectors should coincide as much as possible

with directions of highest symmetry.
“(3) The cell taken should be the smallest one that satisfies

condition (2)
“(4) Of all the lattice vectors, none is shorter than a.
“(5) Of those not directed along a, none is shorter than b.
“(6) Of those not lying in the ab plane, none is shorter than

c.
“(7) The three angles between the basis vectors a, b and c are

either all acute (< 90%) or all obtuse ( ≥ 90% ).”
These rules do not produce a unique result that is stable under

the assumption of experimental errors, and the the resulting cell
may not be primitive.

In this coordinate system, the vector (.5, .5, .5) is in the mid-
dle of the given unit cell.

Grid coordinates are an important variation on frac-
tional coordinates used when working with maps. In
imgCIF, the conversion from fractional to grid coor-
dinates is implicit in the array indexing specified by
_array_structure_list.dimension. Note that this implicit
grid-coordinate scheme is 1-based, not zero-based, i.e. the ori-
gin of the cell for axes along the cell edges with no spec-
ified _array_structure_list_axis.displacement will have
grid coordinates of (1,1,1), i.e. array indices of (1,1,1).

THE ORTHOGONAL CARTESIAN COORDINATE SYS-
TEM (REAL SPACE)

The orthogonal Cartesian coordinate system is a transfor-
mation of the direct lattice to the actual physical coordinates
of atoms in space. It is similar to the laboratory coordinate
system, but is anchored to and moves with the crystal, rather
than being anchored to the laboratory. The transformation from
fractional to orthogonal cartesian coordinates is given by the
values of the _atom_sites.Cartn_transf_matrix[i][j] and
_atom_sites.Cartn_transf_vector[i] data names. A com-
mon choice for the matrix of the transformation is given in the
1992 PDB format document

⎛
⎝

a b cos(γ) c cos(β)
0 b sin(γ c(cos(α) − cos(β) cos(γ))/ sin(γ)
0 0 V/(ab sin(γ))

⎞
⎠

This is a convenient coordinate system in which to do fitting
of models to maps and in which to understand the chemistry of
a molecule.

THE RECIPROCAL LATTICE
The reciprocal lattice coordinate system is used for diffrac-

tion intensities. It is based on the reciprocal cell, the dual of the
cell, in which reciprocal cell edges are derived from direct cell
faces:

a∗ = bc sin(α)/V

b∗ = ac sin(β)/V

c∗ = ab sin(γ)/V

cos(α∗) = (cos(β) cos(γ)− cos(α))/(sin(β) sin(γ))

cos(β∗) = (cos(α cos(γ)− cos(β))/(sin(α) sin(γ))

cos(γ∗) = (cos(α) cos(β)− cos(γ))/(sin(α) sin(β))

V = abc
[
1 − cos(α)2 − cos(β)2 − cos(γ)2

+ 2 cos(α) cos(β) cos(γ)
]1/2

In this form the dimensions of the reciprocal lattice are
in reciprocal ångstroms (Å−1). A dimensionless form can be
obtained by multiplying by the wavelength. Reflections are
commonly indexed against this coordinate system as (h, k, l)
triples.

DIFFERENCES BETWEEN NEXUS AND CBF COORDI-
NATE FRAMES

The standard coordinate frame in NeXus is the McStas coor-
dinate frame, in which the Z axis points in the direction of the
incident beam, the X axis is orthogonal to the Z axis in the hor-
izontal plane and pointing left as seen from the source and the
Y axis points upwards. The origin is in the sample.

The standard coordinate frame in imgCIF/CBF aligns the X
axis to the principal goniometer axis, chooses the Z axis to
point from the sample into the beam. If the beam is not orthog-
onal to the X axis, the Z axis is the component of the vector
points into the beam orthogonal to the X axis. The Y axis is
chosen to complete a right-handed axis system.

Let us call the NeXus coordinate axes, Xnx, Ynx and Znx and
the imgCIF/CBF coordinate axes, Xcb f , Ycb f and Zcb f and the
direction of gravity, Gravity. In order to translate a vector
vnx = (x, y, z) from the NeXus coordinate system to the img-
CIF coordinate system, we also need two additional axes, as
unit vectors, Gravitycb f the downwards direction, and Beamcb f ,
the direction of the beam e.g. (0, 0,−1).

In practice, the beam is not necessarily perfectly horizontal,
so Ynx is not necessarily perfectly vertical. Therefore, in order to
generate Xnx, Ynx and Znx some care is needed. The cross prod-
uct between two vectors a and b is a new vector c orthogonal to
both a and b, chosen so that a, b, c is a right handed system. If
a and b are orthogonal unit vectors, this right-handed system is
an orthonormal coordinate system.
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In the CBF coordinate frame, Znx is aligned to Beamcb f

Znx = Beamcb f

Xnx is defined as being horizontal at right angles to the beam,
pointing to the left when seen from the source. Assuming the
beam is not vertical, we can compute Xnx as the normalized
cross product of the beam and gravity:

Xnx = (Beamcb f × Gravitycb f )/||Beamcb f × Gravitycb f ||

To see that this satisfies the constraint of being horizontal and
pointing to the left, consider the case of Beam = (0, 0,−1) and
Gravity = (0, 0, 1) then we would have Xnx = (1, 0, 0) from
the cross product above. The normalization is only necessary if
the beam is not horizontal.

Finally Ynx is computed as the cross product of the beam and
Xnx, completing an orthonormal right-handed system with Ynx

pointing upwards

Ynx = Beamcb f × Xnx

Then we know that in the imgCIF/CBF coordinate frame

vnx = X .Xnx + Y.Ynx + Z.Znx

Thus, given the imgCIF/CBF vectors for the true direction
of the beam and the true direction of gravity, we have a lin-
ear transformation from the NeXus coordinate frame to the
imgCIF/CBF coordinate frame. The origins of the two frames
agree. The inverse linear transformation will transform a vector
in the imgCIF/CBF coordinate frame into the NeXus coordi-
nate frame.

In the common case in which the beam is orthogonal to the
principal goniometer axis so that Beamcb f = (0, 0,−1) and the
imgCIF/CBF Y axis points upwards, the transformation inverts
the X and Z axes. In the other common case in which the beam
is orthogonal to the principal goniometer axis and the img-
CIF/CBF Y axis points downwards, the transformation inverts
the Y and Z axes.

Each axis is uniquely identified by the values of _axis.id

and of _axis.equipment. An axis may be a translation axis,
a rotation axis or an axis for which the mode of motion is
not relevant. The type of axis is specified by the value of
_axis.type. The base of the axis is specified by the point
in the laboratory coordinate system given by the values of
_axis.offset[1], _axis.offset[2] and _axis.offset[3],
and the direction of the axis from that base, as a dimensionless
unit vector, is given by _axis.vector[1], _axis.vector[2]
and _axis.vector[3]. Axes can be refined from the data col-
lected, so variants are relevant.

2.10.4. The diffraction experiment

The categories relating to the diffraction experiment are as fol-
lows:

DIFFRN group
Frames of data (§2.10.4.1)

DIFFRN_DATA_FRAME

The detector apparatus (§2.10.4.2)
DIFFRN_DETECTOR

DIFFRN_DETECTOR_AXIS

DIFFRN_DETECTOR_ELEMENT

Apparatus and instrumentation at the crystal (§2.10.4.3)
DIFFRN_MEASUREMENT

DIFFRN_MEASUREMENT_AXIS

The radiation source (§2.10.4.4)
DIFFRN_RADIATION

Intensity measurements (§2.10.4.5)
DIFFRN_REFLN

Diffraction scans (§2.10.4.6)
DIFFRN_SCAN

DIFFRN_SCAN_AXIS

DIFFRN_SCAN_FRAME

DIFFRN_SCAN_FRAME_AXIS

The CBF/imgCIF dictionary extends the mmCIF categories
in the DIFFRN group, which are very similar to their correspond-
ing categories in the core CIF dictionary. The DIFFRN group
is introduced in the description of the core CIF dictionary in
Section oITVG-3.2.2.2. Its use in the mmCIF dictionary is
described in Section oITVG-3.6.5.2, from which we quote:
‘The categories in the DIFFRN category group describe the
diffraction experiment. Data items in the DIFFRN category itself
can be used to give overall information about the experiment,
such as the temperature and pressure. Examples of the other
categories are DIFFRN_DETECTOR, which is used for describ-
ing the detector used for data collection, and DIFFRN_SOURCE,
which is used to give details of the source of the radiation used
in the experiment. Data items in the DIFFRN_REFLN category
can be used to give information about the raw data and data
items in the DIFFRN_REFLNS category can be used to give infor-
mation about all the reflection data collectively.’

In this chapter we focus on the CBF/imgCIF extensions.
Note that each category supports variants.

2.10.4.1. Frames of data

Data items in this category are as follows:
DIFFRN_DATA_FRAME
• _diffrn_data_frame.detector_element_id

→ _diffrn_detector_element.id
• _diffrn_data_frame.id

_diffrn_data_frame.array_id
→ _array_structure.id

_diffrn_data_frame.array_section_id
→ _array_structure_list_section.id

_diffrn_data_frame.binary_id
→ _array_data.binary_id

_diffrn_data_frame.center_fast
_diffrn_data_frame.center_slow
_diffrn_data_frame.center_units
_diffrn_data_frame.detector_element_id
_diffrn_data_frame.details

• _diffrn_data_frame.variant
→ _variant.variant

The bullet (•) indicates a category key. The arrow (→) is a reference to a
parent data item.

Data items in the DIFFRN_DATA_FRAME category record
details about each frame of data. An experiment may
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produce multiple frames of data and each frame may
be constructed from data provided by multiple detec-
tor elements. Each complete frame of data is uniquely
identified by the value of _diffrn_data_frame.id.
The detector elements used are specified by values of
_diffrn_ data_frame.detector_element_id, which forms
the category key together with _diffrn_data_frame.id.
_diffrn_data_ frame.detector_element_id is a
pointer to _diffrn_detector_ element.id in the
DIFFRN_DETECTOR_ELEMENT category. The structure of
the data in the frame is completed by giving values
for _diffrn_data_frame.array_id (a pointer to _array_

structure.id). The particular blocks of data in the frame are
specified by giving values of _diffrn_data_frame.binary_id
(a pointer to _array_data.binary_id).

The beam centre may be specified by the values of
_diffrn_data_frame.center_fast,_diffrn_data_frame.center
_slow, and _diffrn_data_frame.center_units. It is unusual
in CIF to specify units in the data, but there is no community
agreement on the use of millimetres, pixels or bins.

2.10.4.2. The detector apparatus

Data items in these categories are as follows:
(a) DIFFRN_DETECTOR
• _diffrn_detector.diffrn_id

→ _diffrn.id
• _diffrn_detector.id

_diffrn_detector.details
_diffrn_detector.detector
_diffrn_detector.dtime
_diffrn_detector.gain_setting
_diffrn_detector.number_of_axes
_diffrn_detector.type
_diffrn_detector.layer_thickness

• _diffrn_detector.variant
→ _variant.variant

(b) DIFFRN_DETECTOR_AXIS
• _diffrn_detector_axis.axis_id

→ _axis.id
• _diffrn_detector_axis.detector_id

→ _diffrn_detector.id
• _diffrn_detector_axis.variant

→ _variant.variant

(c) DIFFRN_DETECTOR_ELEMENT

• _diffrn_detector_element.id
• _diffrn_detector_element.detector_id

→ _diffrn_detector.id
_diffrn_detector_element.center[1]
_diffrn_detector_element.center[2]

• _diffrn_detector_element.variant
→ _variant.variant

The bullet (•) indicates a category key. The arrow (→) is a reference to a
parent data item. Items in italics are defined in the mmCIF dictionary.

The DIFFRN_DETECTOR category is defined in the mmCIF
dictionary (Section oITVG-3.6.5.2; see the detailed discus-
sion in Section oITVG-3.2.2.2.4). The CBF/imgCIF dictio-
nary restates the DIFFRN_DETECTOR category, adding new tags.
Data items in the DIFFRN_DETECTOR category describe the
detector used to measure the scattered radiation, including
any analyser and post-sample collimation. In order to allow
for multiple detectors, the category key has been extended
to include _diffrn_detector.id to uniquely identify each

detector. If there is only one detector, _diffrn_detector.id
need not be specified, and it will implicitly default to
the value of _diffrn_detector.diffrn_id (a pointer to
_diffrn.id in the DIFFRN category in the mmCIF dictio-
nary). The general class of detector is given by the value
of _diffrn_detector.detector with the make and model
given by the value of _diffrn_detector.type. Any spe-
cial aspects of the detector not covered elsewhere are given
by the value of _diffrn_detector.details. As in mmCIF,
the value of _diffrn_detector.dtime gives the deadtime of
the detector. Additional data items may need to be added
in the future for complex inhomogeneous deadtime situa-
tions. In addition, the number of axes can be specified using
_diffrn_detector.number_of_axes.

Data items in the DIFFRN_DETECTOR_AXIS category asso-
ciate axes with detectors. Each axis is associated with a detector
through the value of _diffrn_detector_axis.detector_id (a
pointer to _diffrn_detector.id). The value of *.axis_id

(a pointer to _axis.id) identifies an axis. Together
*.detector_id and *.axis_id form the category key.

Data items in the DIFFRN_DETECTOR_ELEMENT category
record details about the spatial layout and other character-
istics of each element of a detector which may have mul-
tiple elements, giving the X and Y coordinates of the posi-
tion of the beam centre relative to the lower left corner
of each detector element. Each detector element is iden-
tified by the value of _diffrn_detector_element.id and
the detector of which it is an element is identified by the
value of _diffrn_detector_element.detector_id (a pointer
to _diffrn_detector.id).

In most cases, it would be preferable to use the more
detailed information provided in the ARRAY_STRUCTURE_LIST

and ARRAY_STRUCTURE_LIST_AXIS categories rather than sim-
ply specifying the coordinates of the centre of the beam relative
to the lower left corner of each detector element.

2.10.4.3. Apparatus and instrumentation at the crystal

Data items in these categories are as follows:
(a) DIFFRN_MEASUREMENT
• _diffrn_measurement.diffrn_id

→ _diffrn.id
• _diffrn_measurement.device
• _diffrn_measurement.id

_diffrn_measurement.details
_diffrn_measurement.device_details
_diffrn_measurement.device_type
_diffrn_measurement.method
_diffrn_measurement.number_of_axes
_diffrn_measurement.specimen_support

• _diffrn_measurement.variant
→ _variant.variant

(b) DIFFRN_MEASUREMENT_AXIS
• _diffrn_measurement_axis.axis_id

→ _axis.id
• _diffrn_measurement_axis.measurement_device

→ _diffrn_measurement.device
• _diffrn_measurement_axis.measurement_id

→ _diffrn_measurement.id
• _diffrn_measurement_axis.variant

→ _variant.variant

The bullet (•) indicates a category key. The arrow (→) is a reference to a
parent data item. Items in italics are defined in the mmCIF dictionary.

The DIFFRN_MEASUREMENT category is defined in the
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mmCIF dictionary (Section oITVG-3.6.5.2; see the detailed
discussion in Section oITVG-3.2.2.2.3). The CBF/imgCIF dic-
tionary restates the DIFFRN_MEASUREMENT category, adding
new tags. Data items in the DIFFRN_MEASUREMENT category
record details about the device used to orient and/or position
the crystal during data measurement and the manner in which
the diffraction data were measured. To allow for multiple mea-
surement devices, _diffrn_measurement.id has been added to
the category key. The number of axes is given by the value of
_diffrn_measurement.number_of_axes. The axes should be
described using entries in DIFFRN_MEASUREMENT_AXIS.

Data items in the DIFFRN_MEASUREMENT_AXIS category
associate axes with goniometers, just as data items in the
DIFFRN_DETECTOR_AXIS category associate axes with detec-
tors.

2.10.4.4. The radiation source

Data items in this category are as follows:
DIFFRN_RADIATION
• _diffrn_radiation.diffrn_id

→ _diffrn.id
_diffrn_radiation.collimation
_diffrn_radiation.div_x_source
_diffrn_radiation.div_y_source
_diffrn_radiation.div_x_y_source
_diffrn_radiation.filter_edge
_diffrn_radiation.inhomogeneity
_diffrn_radiation.monochromator
_diffrn_radiation.polarisn_norm
_diffrn_radiation.polarisn_norm_esd

_diffrn_radiation.polarisn_ratio
_diffrn_radiation.polarisn_ratio_esd
_diffrn_radiation.polarizn_source_norm
_diffrn_radiation.polarizn_source_norm_esd
_diffrn_radiation.polarizn_source_ratio
_diffrn_radiation.polarizn_source_ratio_esd
_diffrn_radiation.polarizn_Stokes_I
_diffrn_radiation.polarizn_Stokes_I_esd
_diffrn_radiation.polarizn_Stokes_Q
_diffrn_radiation.polarizn_Stokes_Q_esd
_diffrn_radiation.polarizn_Stokes_U
_diffrn_radiation.polarizn_Stokes_U_esd
_diffrn_radiation.polarizn_Stokes_V
_diffrn_radiation.polarizn_Stokes_V_esd
_diffrn_radiation.probe
_diffrn_radiation.type
_diffrn_radiation.wavelength_id

→ _diffrn_radiation_wavelength.id
_diffrn_radiation.xray_symbol

• _diffrn_radiation.variant
→ _variant.variant

The bullet (•) indicates a category key. The arrow (→) is a reference to a
parent data item. Items in italics are defined in the mmCIF dictionary.

The DIFFRN_RADIATION category is defined in the mmCIF
dictionary (Section oITVG-3.6.5.2; see the detailed discussion
in Section oITVG-3.2.2.2.2). The CBF/imgCIF dictionary adds
the items

_diffrn_radiation.div_x_source, *.div_y_source and
*.div_x_y_source to specify beam crossfire, and the items

_diffrn_radiation.polarizn_source_norm and
*.polarizn_source_ratio to provide a definition of polar-

ization relative to the laboratory coordinate system rather than
relative to the diffraction plane. The value of the beam crossfire
component

_diffrn_radiation.div_x_source is the mean deviation in
degrees of the X-ray beam from being parallel to the X axis

as it illuminates the sample. The value of the beam crossfire
component

_diffrn_radiation.div_y_source is the mean deviation in
degrees of the X-ray beam from being parallel to the Y axis
as it illuminates the sample. The value of the beam crossfire
component

_diffrn_radiation.div_x_y_source is the correlation of
the X and Y components. The value of the normal component
of the polarization

_diffrn_radiation.polarizn_source_norm is the angle in
degrees, as viewed from the specimen, between the nor-
mal to the polarization plane and the laboratory Y axis as
defined in the AXIS category. The dimensionless value of
_diffrn_radiation.polarisn_ratio is the ratio (Ip − In)/
(Ip + In), where In is the intensity (amplitude squared) of the
electric vector of the illumination of the sample normal to
the polarization and Ip is the intensity of the electric vector
of the illumination of the sample in the plane of polarization.
With suitable choices of laboratory axes, the definitions con-
form to synchrotron conventions. See Chapter oITVG-4.6 for
a detailed description of these items.

_diffrn_radiation.polarizn_Stokes_I is Ip + In + Inp,
where Ip is the intensity (amplitude squared) of the electric
vector in the plane of polarization, In is the intensity (ampli-
tude squared) of the electric vector in the plane of the normal
to the plane of polarization, and Inp is the intensity (amplitude
squared) of the non-polarized (incoherent) electric vector. This
is an average or other representative sample of the scan. This is
the first of the Stokes polarization parameters, I, Q, U , V (also
known as I, M, C, S). See (Berry & Gabrielse 1977) If the abso-
lute intensity is not known, the value 1. is assumed for I, and
all 4 Stokes parameters are dimensionless. When the absolute
intensity is known,all 4 Stokes parameters are in units of Watts
per square meter. Note that, if the polarized intensity Ip + In is
required, (Ip + In)

2 is the sum of Q2 +U2 +V 2.
_diffrn_radiation.polarizn_Stokes_Q is (Ip− In) cos(2∗

θ), where Ip is the intensity (amplitude squared) of the electric
vector in the plane of polarization, In is the intensity (ampli-
tude squared) of the electric vector in the plane of the normal
to the plane of polarization, and θ is the angle as viewed from
the specimen, between the normal to the polarization plane and
the laboratory Y axis as defined in the AXIS category.

_diffrn_radiation.polarizn_Stokes_U is (Ip−In)∗sin(2∗
θ).

_diffrn_radiation.polarizn_Stokes_V is ±2 ∗ √
IpIn,

with a + sign for right-handed circular polarization.

2.10.4.5. Intensity measurements

Data items in this category are as follows:
DIFFRN_REFLN
• _diffrn_refln.frame_id

→ _diffrn_data_frame.id
• _diffrn_refln.id
• _diffrn_refln.diffrn_id

_diffrn_refln.angle_chi
_diffrn_refln.angle_kappa
_diffrn_refln.angle_omega
_diffrn_refln.angle_phi
_diffrn_refln.angle_psi
_diffrn_refln.angle_theta
_diffrn_refln.attenuator_code
_diffrn_refln.counts_bg_1
_diffrn_refln.counts_bg_2
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_diffrn_refln.counts_net
_diffrn_refln.counts_peak
_diffrn_refln.counts_total
_diffrn_refln.detect_slit_horiz
_diffrn_refln.detect_slit_vert
_diffrn_refln.elapsed_time
_diffrn_refln.index_h
_diffrn_refln.index_k
_diffrn_refln.index_l
_diffrn_refln.intensity_net
_diffrn_refln.intensity_sigma
_diffrn_refln.scale_group_code
_diffrn_refln.scan_mode
_diffrn_refln.scan_mode_backgd
_diffrn_refln.scan_rate
_diffrn_refln.scan_time_backgd
_diffrn_refln.scan_width
_diffrn_refln.sint_over_lambda
_diffrn_refln.standard_code
_diffrn_refln.wavelength
_diffrn_refln.wavelength_id

• _diffrn_refln.variant
→ _variant.variant

The bullet (•) indicates a category key. The arrow (→) is a reference to a
parent data item. Items in italics are defined in the mmCIF dictionary.

The DIFFRN_REFLN category is defined in the mmCIF
dictionary (Section oITVG-3.6.5.2; see the detailed dis-
cussion in Section oITVG-3.2.2.2.2). Data items in the
DIFFRN_REFLN category record details of the intensi-
ties measured in the diffraction data set identified by
_diffrn_refln.diffrn_id. The CBF/imgCIF dictionary
extends the key with _diffrn_refln.frame_id (a pointer to
_diffrn_data_frame.id), so that multiple data sets may be
recorded.

2.10.4.6. Diffraction scans

Data items in these categories are as follows:
(a) DIFFRN_SCAN
• _diffrn_scan.id

_diffrn_scan.date_end
_diffrn_scan.date_start
_diffrn_scan.frame_id_start

→ _diffrn_data_frame.id
_diffrn_scan.frame_id_end

→ _diffrn_data_frame.id
_diffrn_scan.frames
_diffrn_scan.integration_time

(b) DIFFRN_SCAN_AXIS
• _diffrn_scan_axis.axis_id

→ _axis.id
• _diffrn_scan_axis.scan_id

→ _diffrn_scan.id
_diffrn_scan_axis.angle_start
_diffrn_scan_axis.angle_range
_diffrn_scan_axis.angle_increment
_diffrn_scan_axis.angle_rstrt_incr
_diffrn_scan_axis.displacement_start
_diffrn_scan_axis.displacement_range
_diffrn_scan_axis.displacement_increment
_diffrn_scan_axis.displacement_rstrt_incr

• _diffrn_scan_axis.variant
→ _variant.variant

(c) DIFFRN_SCAN_FRAME
_diffrn_scan_frame.date

• _diffrn_scan_frame.frame_id
→ _diffrn_data_frame.id

• _diffrn_scan_frame.scan_id
→ _diffrn_scan.id

_diffrn_scan_frame.frame_number
_diffrn_scan_frame.integration_time
_diffrn_scan_frame.polarizn_Stokes_I

_diffrn_scan_frame.polarizn_Stokes_I_esd
_diffrn_scan_frame.polarizn_Stokes_Q
_diffrn_scan_frame.polarizn_Stokes_Q_esd
_diffrn_scan_frame.polarizn_Stokes_U
_diffrn_scan_frame.polarizn_Stokes_U_esd
_diffrn_scan_frame.polarizn_Stokes_V
_diffrn_scan_frame.polarizn_Stokes_V_esd

• _diffrn_scan_frame.variant
→ _variant.variant

(d) DIFFRN_SCAN_FRAME_AXIS
• _diffrn_scan_frame_axis.axis_id

→ _axis.id
• _diffrn_scan_frame_axis.frame_id

→ _diffrn_data_frame.id
_diffrn_scan_frame_axis.angle
_diffrn_scan_frame_axis.angle_increment
_diffrn_scan_frame_axis.angle_rstrt_incr

_diffrn_scan_frame_axis.displacement
_diffrn_scan_frame_axis.displacement_increment
_diffrn_scan_frame_axis.displacement_rstrt_incr

• _diffrn_scan_frame_axis.variant
→ _variant.variant

The bullet (•) indicates a category key. The arrow (→) is a reference to a
parent data item.

Data items in the DIFFRN_SCAN category describe the
parameters of one or more scans, relating axis positions to
frames. Each scan is uniquely identified by the value of
_diffrn_scan.id. The data items in this category give over-
all information for the scan.

The detailed frame-by-frame data are given in
DIFFRN_SCAN_FRAME and DIFFRN_SCAN_FRAME_AXIS. The
values of _diffrn_scan.date_start and *.date_end give
the starting and ending time for a scan. The original def-
inition of the yyyy-mm-dd data type, which includes date
and time, has been extended in the CBF/imgCIF dictio-
nary. This allows the seconds part of the time to include an
optional decimal fraction. The approximate average integra-
tion time for each step of the scan is given by the value of
_diffrn_scan.integration_time. The scan is tied to individ-
ual frame IDs by the values of _diffrn_scan.frame_id_start
and *.frame_id_end. The number of frames in the scan is
given by the value of _diffrn_scan.frames.

Data items in the DIFFRN_SCAN_AXIS category describe
the settings of axes for particular scans. Unspecified axes
are assumed to be at their zero points. The vector of
each axis is not given here, because it is provided in the
AXIS category. By making _diffrn_scan_axis.scan_id and
_diffrn_scan_axis.axis_id keys of the DIFFRN_SCAN_AXIS

category, an arbitrary number of scanning and fixed axes can be
specified for a scan. The value of _diffrn_scan_axis.scan_id
(a pointer to _diffrn_scan.id) identifies the scan and the val-
ues of _diffrn_scan_axis.axis_id (a pointer to _axis.id)
associate particular axes with that scan. The steps of each
axis are specified by *_start, *_range, *_increment and
*_rstrt_incr values for angles or for displacements. The
*_start value is the setting of the relevant axis at the start of
the scan. The *_range value is the total change in the axis set-
ting through the scan. The *_increment value is the increment
in the axis setting for each step of the scan. The *_rstrt_incr

value is the increment in the axis setting after each step of the
scan.

47



2. CIF DATA DEFINITION AND CLASSIFICATION

Data items in the DIFFRN_SCAN_FRAME category
describe the relationship of particular frames to scans.
The value of _diffrn_scan_frame.frame_id (a pointer
to _diffrn_ data_frame.id) identifies the frame. The
value of _diffrn_scan_ frame.scan_id (a pointer to
_diffrn_scan.id) identifies the scan of which the frame is a
part. Together _diffrn_scan_frame.frame_id and *.scan_id

form the category key. The value of _diffrn_scan_frame.date
gives the date and time of the start of the data collection for
the frame. The value of _diffrn_scan_frame.frame_number

gives the number of the frame (starting with 1). The value
of _diffrn_scan_frame.integration_time gives the precise
time in seconds to integrate this step of the scan.

Data items in the DIFFRN_SCAN_FRAME_AXIS category
describe the settings of axes for particular frames. Unspec-
ified axes are assumed to be at their zero points. If for
any given frame non-zero values apply for any of the data
items in this category, those values should be given explic-
itly in this category and not simply inferred from values in
DIFFRN_SCAN_AXIS. Since the collection for a given frame
may involve multiple axes, the frame involved is identified by
the value of _diffrn_scan_frame_axis.frame_id (a pointer
to _diffrn_data_frame.id) and each axis is identified by
the value of _diffrn_scan_frame_axis.axis_id (a pointer
to _axis.id). Together _diffrn_scan_frame_axis.frame_id
and *.axis_id form the category key. If the axis is
an axis of rotation, the axis settings for the frame are
given by the values of _diffrn_scan_frame_axis.angle,
*.angle_increment and *.angle_rstrt_incr. If the axis is
a translation axis, the axis settings for the frame are given
by the values of _diffrn_scan_frame_axis.displacement,
*.displacement_increment and *.displacement_rstrt_incr.
The integration begins at the setting given by the value of
_diffrn_scan_frame_axis.angle or of *.displacement. The
*_increment value gives the change of axis setting during the
scan. At the end of the integration, the axis may need to be
repositioned by an additional amount. That amount is given by
*_rstrt_incr.

2.10.4.7. Map data

Data items in these categories are as follows:
(a) MAP
• _map.id
• _map.diffrn_id

→ _diffrn.id
• _map.entry_id

→ _entry.id
_map.details

• _map.variant
→ _variant.variant

(b) MAP_SEGMENT
• _map_segment.id
• _map_segment.map_id

→ _map.id
_map_segment.array_id

→ _array_structure.id
_map_segment.array_section_id

→ _array_structure_list_section.id
_map_segment.binary_id

→ _array_data.binary_id
_map_segment.mask_array_id

→ _array_structure.id
_map_segment.mask_binary_id

→ _array_data.binary_id

_map_segment.mask_array_section_id
→ _array_structure_list_section.id

_map_segment.details
• _map_segment.variant

→ _variant.variant

The bullet (•) indicates a category key. The arrow (→) is a reference to a
parent data item.

Data items in the MAP and MAP_SEGMENT categories
describe the details of maps. Maps record values of parame-
ters, such as density, that are functions of position within a cell
or are functions of orthogonal coordinates in three space. A
map is composed of one or more map segments (sections or
bricks) specified in the MAP_SEGMENT category.

The value of _map_segment.array_id identifies the array
structure into which the map is organized. The value of
_map_segment.binary_id distinguishes the particular set of
data organized according to _map_segment.array_id in which
the data values of the map are stored. The value of
_map_segment.mask_array_id, if given, is the array structure
into which the mask for the map is organized. If no value
is given, then all elements of the map are valid. If a value
is given, then only elements of the map for which the cor-
responding element of the mask is non-zero are valid. The
value of _map_segment.mask_array_id differs from the value
of _map_segment.array_id in order to permit the mask to be
given as, say, unsigned 8-bit integers, while the map is given as
a data type with more range. However, the two array structures
must be aligned, using the same axes in the same order with the
same displacements and increments.

2.10.4.8. Variants of data values

Data items in this category are as follows:
(a) VARIANT
• _variant.variant
• _variant.diffrn_id

→ _diffrn.id
• _variant.entry_id

→ _entry.id
_variant.details
_variant.role
_variant.timestamp
_variant.variant_of

→ _variant.variant

Data items in the VARIANT category describe the details about
sets of variants of data items. There is sometimes a need to
allow for multiple versions of the same data items in order to
allow for refinements and corrections to earlier assumptions,
observations and calculations. In order to allow data sets to con-
tain more than one variant of the same information, an optional
...variant data item as a pointer to _variant.variant has been
added to the key of every category, as an implicit data item with
a null (empty) default value.

All rows in a category with the same variant value are con-
sidered to be related to one another and to all rows in other
categories with the same variant value. For a given variant, all
such rows are also considered to be related to all rows with a
null variant value, except that a row with a null variant value
is for which all other components of its key are identical to
those entries in another row with a non-null variant value is
not related the the rows with that non-null variant value. This
behavior is similar to the convention for identifying alternate
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conformers in an atom list.
An optional role may be specified for a variant as the value

of _variant.role. Possible roles are null, ”preferred”, ”raw
data”, ”unsuccessful trial”.

Variants may carry an optional timestamp as the value of
_variant.timestamp.

Variants may be related to other variants from which they
were derived by the value of _variant.variant_of

Further details about the variant may be specified as the value
of _variant.details.

In order to allow variant information from multiple
datasets to be combined, _variant.diffrn_id and/or
_variant.entry_id may be used.

We are grateful to Frances C. Bernstein, Paula Fitzgerald and
Bob Sweet for their helpful comments and suggestions on the
original version of this chapter in 2003 and to Frances C Bern-

stein for helpful comments on the revised version in 2017.

References
Aho, A. V., Hopcroft, J. E. & Ullman, J. D. (1987). Data structures

and algorithms. Reading, MA: Addison-Wesley.
Berry H. H., Gabrielse, G. & Livingston, A. E. (1977), ”Measurement

of the Stokes parameters of Light. Applied Optics, 16:12, 3200 –
3205.

Drenth, J. (2001). Introduction to basic crystallography. chapter 2.1
in Rossmann, M. G. and Arnold, E. Crystallography of biological
macromolecules, Volume F of the IUCr’s ”International tables for
crystallography”, Kluwer, Dordrecht 2001, pp 44 – 63

Leslie, A. G. W. & Powell, H. (2004). MOSFLM v6.11. MRC Lab-
oratory of Molecular Biology, Hills Road, Cambridge, England.
http://www.CCP4.ac.uk/dist/X-windows/Mosflm/.

Stout, G. H. & Jensen, L. H. (1989). X-ray structure determination.
2nd ed., Wiley, New York, 1989, 453 pp.

PROTEIN DATA BANK ATOMIC COORDINATE AND BIB-
LIOGRAPHIC ENTRY FORMAT DESCRIPTION. Brookhaven
National Laboratory, February 1992.

49



3.1. General considerations when defining a CIF data item
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APPENDIX 4: General considerations. This is an edited and updated extract of Chapter 3.1 of International
Tables for Crystallography Volume G: Definition and exchange of crystallographic data. Dordrecht: Springer. Reproduced by
permission. c©2005 International Union of Crystallography

3.1.1. Introduction

Much of the power and usefulness of the Crystallographic
Information File (CIF) arises from the existence of a compre-
hensive set of data dictionaries that define all data items com-
monly used in the field. These are the dictionaries that are pre-
sented in Part 4 of this volume.

The existence of global dictionaries does not in any way
restrict the expressive power of CIF. A CIF may contain items
not in the standard dictionaries, as well as items in local dictio-
naries with quite idiosyncratic definitions. The choice of which
items to include in a CIF depends on the capabilities of the
applications that are intended to use the data in the file. It is also
influenced by the extent to which the author of the file wishes
the data to be retrievable without ambiguity in the future.

This chapter discusses the general concepts behind defining
data items in CIF dictionaries. It describes how standard dictio-
naries may be constructed and disseminated, and also how local
extensions may be built and used in ways that do not conflict
with the need for community standards.

3.1.2 Informal definition procedures

Before considering the techniques for defining data items in
standard globally adopted dictionaries, it is important to dis-
cuss the techniques for including information that is only of
local interest in a way that does not conflict with public data
names.

An author of a CIF is free to include data names for local
use (i.e. names not intended for common use across the com-
munity). However, such local data names must not conflict with
those defined in public dictionaries, since the data name alone
identifies the meaning that one must attach to an associated data
value. Some protocols and conventions exist to prevent conflict
in data names when the local data name is invented or subse-
quently, when later public dictionaries are released.

An author may also define local data names in some com-
pletely informal manner; that is, there is no obligation to con-
struct an attribute table in an external file that conforms to the
style of the public dictionaries. Nevertheless, there are clear
advantages to doing so: the author will benefit from standard
software tools that validate data against dictionaries and the
data names are more easily exported to the public domain if
they subsequently become relevant to a wider community. In
the following, it is assumed that the author of a new data name
wishes to define fully its attributes in an appropriate standard
dictionary formalism.

3.1.2.1. The [local] prefix

The string _[local]_ is reserved as a prefix to identify data
names that do not appear in any public dictionary. (The left
and right square brackets are included in this label.) Hence
an author may construct private data names according to one
of the following models, secure in the knowledge that the

name will not appear in any global dictionary. The forms
_[local]_new_category_name.private_data_name and
_existing_category_name.[local]_private_data_name

should be used. The first form is used for private data names
in a category not already defined by a public dictionary; the
second form permits the addition of local data names to an
existing category. Note that the initial underscore character is
dropped in the second form.

While this convention guarantees that the new data name will
not conflict with a public one, it cannot guarantee that it will
not conflict with a local data name created by another author.
Therefore these data names are appropriate only for testing pur-
poses and not for release in data files that may be used by oth-
ers.

3.1.2.2. Reserved prefixes

To guarantee that locally devised data names may be placed
without name conflict in interchange data files, authors may
register a reserved character string for their sole use. As with
the special prefix _[local]_ discussed in Section 3.1.2.1, the
author’s reserved prefix is simply an underscore-bounded string
within the data name (i.e. it may not itself include an under-
score character). It forms the first component of the data name
if describing data names in a category not defined in the official
dictionaries; or the first component after the full stop (category
delimiter) if the local data name is an extension to an existing
category.

Prefixes may be registered online through a web form
at http://www.iucr.org/iucr-top/cif/spec/reserved.html. Table
3.1.2.1 gives a list of prefixes registered as of July 2017; this
list will of course go out of date, but a current list will be main-
tained on the web at the address above.

An example of a data name incorporating a reserved prefix
is the listing of a protein amino-acid sequence recorded tem-
porarily by the Protein Data Bank before a protein structure is
released, _pdbx_prerelease_seq.seq_one_letter_code.

3.1.3. Formal definition process

This section describes the formal system for creating public
dictionaries or appending to them. It includes information on
the review and approval cycles currently required by COM-
CIFS, which could change if these procedures are modified.
The IUCr web page (http://cif.iucr.org) should be consulted for
current practice. However, a short overview of the existing pro-
cedures is helpful in describing how the community can partic-
ipate in extending the standard.

3.1.3.1. Dictionary maintenance groups

Each published dictionary authorized by COMCIFS has a
group of specialists appointed or invited to extend and main-
tain the dictionary to serve the changing needs of the subdisci-
pline that sponsors the dictionary. Members of these dictionary
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Table 3.1.2.1. Reserved prefixes for private CIF data names

String Reserved for the use of

acihd Local names used by ACI Heidelberg
aflow AFLOW high-throughput density functional calculations
amcsd Identifier for file created as entry in the American Mineralogist

Structure Database
anbf Australian National Beamline Facility
asd Active Site Database
B+S Software developers Bernstein + Sons
BplusS Alternative to B+S for use with DDLm
bruker Bruker AXS software
ccdc Cambridge Crystallographic Data Centre
CCP4 CCP4 program system
cgraph Oxford Cryosystems Crystallographica package
cifdic Register of CIF dictionaries
cod Data items added by maintainers and depositors of the

quad Crystallography Open Database
crystmol CrystMol package
csd Cambridge Structural Database
dft Data pertaining to density functional theory calculations,

such as convergence criteria, precise method used etc.
ebi European Bioinformatics Institute
edchem Edinburgh University Chemistry Department
gsas GSAS powder refinement system
gsk Glaxo Smith Kline
H5 HDF5 related tags for CIF support of HDF5 and NeXus
iims EBI project on integration of information about macromolecular

structure
itqb Instituto de Tecnologia Quimica e Biologica da Universidade

de Lisboa, especially for molecular modelling extensions
iucr IUCr journal use
mdb Model Database (Glaxo)
montpellier University of Montpellier
mpod Material Properties Open Database
msd EBI Molecular Structure Database Group
ndb Nucleic Acids Database Project, Rutgers University
NIEHS general-use local prefix for NIEHS (National Institute of

Environmental Health Sciences)
nomad NOMAD Center of Excellence for theoretical material science

calculations and structures
nottingham University of Nottingham
NX NeXus-related tags for CIF HDF5/NeXus integration
oxford CRYSTALS package, University of Oxford
parvati Validation and statistical summaries from PARVATI validation

server
pdb Protein Data Bank
pdbx Protein Data Bank exchange dictionary prefix
pdb2cif Additions to mmCIF used by program pdb2cif
phenix Phenix software suite for the automated determination of

macromolecular structures using X-ray crystallography
and other methods

prop Properties as used in the Material Properties Open Database
publcif Local items used by the publCIF editor
raman Data items for recording spectra obtained by the Raman

spectroscopy technique
rayonix Information specific to Rayonix (Mar USA) instruments
rcsb Research Collaboratory for Structural Bioinformatics
shelx SHELXL solution and refinement programs
solsa SOLSA H2020 project: sonic drilling coupled with automated

mineralogy and chemistry on-line-on-mine-real-time
SSAD Prefix for Sulfur SAD Database CIFs
tcod Theoretical Crystallography Open Database
vrf Validation reply form (IUCr/Acta Crystallographica use)
wdc Entries in the World Directory of Crystallographers
xtal Xtal program system

maintenance groups (DMGs) may suggest extensions or corri-
genda on their own initiative or may pass on requests for exten-
sions from individual crystallographers. A DMG will typically

debate and review any suggested amendments and produce a
draft revised dictionary for approval by COMCIFS.

3.1.3.4. New dictionaries

A completely new dictionary to cover a subdiscipline not
otherwise catered for may be commissioned by COMCIFS or
may arise from community action, occasionally sponsored by
an IUCr Commission. A working group is appointed to create
the dictionary and relevant example files or software. The work-
ing group is expected to test the new dictionary extensively
within its own community before submitting it to COMCIFS
for initial approval. It is the responsibility of COMCIFS to
check the dictionary for technical consistency and for compat-
ibility with related dictionaries. COMCIFS may refer the dic-
tionary back to the working group for further revisions. When
the dictionary finally receives formal COMCIFS approval and
is published, a dictionary maintenance group is formed to pro-
mote its further development (Section 3.1.3.1). The DMG usu-
ally includes one or more members of the initial working group
and at least one voting member of COMCIFS.

3.1.6. Constructing a DDL2 dictionary

The DDL2 dictionary definition language was designed to
specify a relational data model and has provision for including
within a dictionary tables of relationships between data entries.
Like a relational database which contains tables describing the
data tables in the database, DDL2-based dictionaries contain
definition blocks describing CIF categories, units and relation-
ships as well as data items.

A DDL2 dictionary is presented as a single data block.
Within this data block a number of looped lists describe proper-
ties of the dictionary as a whole, or properties and relationships
shared across the items defined in the dictionary. Typically
these are: the dictionary name, version identifiers and revision
history; the category groupings that give structure to the items
defined by the dictionary; the labels that identify closely related
data items; and the physical units employed in the dictionary,
their definitions in terms of base units and their interconversion
factors.

Definitions of individual data items and categories are con-
tained within save frames. While the save frames are not ref-
erenced by name in any dictionary application, they permit
multiple occurrences of data definition tags within the scope
of a single data block and are therefore suitable for structur-
ing a data dictionary. It is a convention that the name of a
save frame defining a category is given in capitals, and the
name of a save frame for a definition of a data item is given
as lower-case. For example, save_ATOM_SITE is the name of
the save frame defining the category with the atom_site iden-
tifier, while save_ _atom_site.details is the name of the
save frame holding the definition of the individual data name
_atom_site.details (note how the initial underscore charac-
ter of the data name is preserved following the initial save_
string of the save-frame name).

The name of the dictionary itself (given by the
data name _dictionary.title) is usually of the form
cif_identifier.dic, where the identifier is a short code for
the topic area of the dictionary (e.g. ‘img’ for the image dictio-
nary, ‘sym’ for the symmetry dictionary).
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The names themselves are formed from the category name
separated by a full stop from the specific descriptor of the item.

Fig. 3.1.6.1 shows the structure of the macromolecular CIF
dictionary. The ordering of the various looped lists and save
frames is of no significance for machine parsing but has been
selected to make it easier for someone to browse through the
dictionary file. The name of the sole data block is chosen to
be the same as the dictionary title string and the data block is
introduced by the dictionary identification data items. The dic-
tionary revision history has been placed at the end of the file so
that someone reading through the file in sequence reaches the
dictionary entries early on. Units tables are also near the end of
the dictionary. Near the beginning are the lists of closely related
items (called ‘subcategories’) and lists of category groupings.
The body of the dictionary contains category and item defini-
tions. Each category definition is followed by the definitions of
its component data items. The ordering is alphabetic by cate-
gory and then alphabetic by item name within categories.

data_mmcif_std.dic

_dictionary.title mmcif_std.dic
_dictionary.version 2.0.07
_dictionary.datablock_id mmcif_std.dic

(a)

loop_
_sub_category.id
_sub_category.description . .

loop_
_category_group_list.id
_category_group_list.parent_id
_category_group_list.description . . .

(b)

save_CATEGORY_A . . . save_
save__category_a.item_1 . . . save_
save__category_a.item_2 . . . save_
save__category_a.item_3 . . . save_

save_CATEGORY_B . . . save_
save__category_b.item_1 . . . save_
save__category_b.item_2 . . . save_

(c)

loop_
_item_units_list.code
_item_units_list.detail . .

loop_
_item_units_conversion.from_code
_item_units_conversion.to_code
_item_units_conversion.operator
_item_units_conversion.factor . . . .

(d)

loop_
_dictionary_history.version
_dictionary_history.update
_dictionary_history.revision . . .

(e)

Fig. 3.1.6.1. Schematic structure of the macromolecular CIF dictionary. (a)
Dictionary identifiers. (b) Subcategory and category group listings. (c)
Multiple category and item definition blocks. (d) Units descriptions and
conversion tables. (e) Dictionary history.

Example 3.1.6.1. DDL2 dictionary identification entries.

data_mmcif_std.dic

_dictionary.title mmcif_std.dic
_dictionary.version 2.0.07
_dictionary.datablock_id mmcif_std.dic

loop_
_dictionary_history.version
_dictionary_history.update
_dictionary_history.revision

0.1.1 1993-02-11
; Highlighted all notes with # %%%%% surrounds.
;

. . .

Example 3.1.6.2. DDL2 subcategories defined in the mmCIF
dictionary.

loop_
_sub_category.id
_sub_category.description

’fractional_coordinate’
; The collection of x, y, and z components of a

position specified with reference to unit cell
directions.

;
’matrix’

; The collection of elements of a matrix.
;

’miller_index’
; The collection of h, k, and l components of the

Miller index of a reflection.
;

’cell_length’
; The collection of a, b, and c axis lengths of a

unit cell.
;

’mm_atom_site_label’
; The collection of alt id, asym id, atom id, comp

id and seq id components of the label for a
macromolecular atom site.

;

3.1.6.1. Dictionary identification

Dictionary files must contain information that unambigu-
ously states their identity and version. The name of the data
block that includes the whole content of a DDL2 dictionary
is chosen by convention to be the same as the dictionary
identification string given as _dictionary.title. This value
is repeated as the value of _dictionary.datablock_id (see
Example 3.1.6.1) for use in checking the consistency of the dic-
tionary.

The dictionary history is also an important audit record of
changes to the dictionary content. DDL2 provides a looped list
of version labels, dates and annotations. For convenience, the
history records in large dictionaries are placed at the end of the
dictionary file.

3.1.6.2. Subcategory definitions

Mechanisms exist for formal and machine-parsable state-
ments of relationships. The _sub_category.id attribute is
a label shared by several data items within a category that
are related in a specific way described by the associated
_sub_category.description attribute. The relationships may
be rather general, such as elements of a matrix; or they may
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Example 3.1.6.3. Category groups in a DDL2 dictionary.

loop_
_category_group_list.id
_category_group_list.parent_id
_category_group_list.description
’inclusive_group’ .

; Categories that belong to the macromolecular
dictionary.

;
’atom_group’
’inclusive_group’

; Categories that describe the properties of
atoms.
;

’audit_group’
’inclusive_group’

; Categories that describe dictionary maintenance
and identification.

;
’cell_group’
’inclusive_group’

; Categories that describe the unit cell.
;

be specific physical properties or attributes, such as the collec-
tion of axis lengths of a unit cell. The dictionary should list all
such labels that occur within its included data definition blocks.
Example 3.1.6.2 is an extract from the macromolecular dictio-
nary.

3.1.6.3. Category groupings

In the DDL2 data model, a category of data corresponds
to a set of related data items that may be stored in a sin-
gle relational database table. A number of such tables may
collectively describe the complete properties of some physi-
cal object. This is expressed formally by assigning the same
label (_category_group.id) to the relevant categories. Rela-
tionships between categories are formally stated.

For subcategories, the category-group relationships present
in the dictionary are listed in a separate looped list. Exam-
ple 3.1.6.3 is an extract from the macromolecular dictionary.
The inclusive_group entry shows the common parentage of
all categories (and ultimately all data items) in the dictionary.

3.1.6.4. Category definitions

The dictionary entry for a category includes the name of
the category (an identifying label which is referenced by the
_item.category_id attribute of each component data item)
and a list of the category groups of which it may be consid-
ered a member. The category key is explicitly specified – that
is, the data item (or group of items) that uniquely identifies an
individual row in a table of data of that category.

Where a category encompasses a set of data items that are
not normally specified in a looped list, the category may nev-
ertheless be taken to represent a degenerate table with a single
row, and therefore there is still a category key. For degenerate
categories the key value is often set equal to the name of the
parent data block.

Example 3.1.6.4 shows a category of non-looped core data
items.

For categories of looped items (those normally presented in
a table of values) it is sometimes appropriate to have as the
category key a data item that has the sole function of index-
ing unique table rows. However, it is also often the case that a

composite key is formed from existing data items, and in these
cases the category definition must loop the components of the
key, as in Example 3.1.6.5 from the macromolecular dictionary
definition of the GEOM_BOND category.

It must be remembered that, in practice, data files may
lack some of the items required to determine the cate-
gory key formally. For example, in the data set given
in the GEOM_BOND example here, it is possible that the
_geom_bond.site_symmetry_ items may be absent because the
listing is for a single connected molecule within an asymmet-
ric unit. Robust parsing software must construct data keys by
assigning NULL or other suitable default values to the missing
key components.

3.1.6.5. Data-item definitions

The bulk of a DDL2 data dictionary comprises the save
frames that include descriptions of the meaning and properties
of individual data names.

Note that each save frame contains the definition of a
single addressable concept. For example, the three Miller
index components of a diffraction reflection are described

Example 3.1.6.4. A category description in a DDL2 dictio-
nary.

save_EXPTL
_category.description

; Data items in the EXPTL category record
details about the growth of the crystal,
and about experimental measurements on
the crystal, such as shape, size, density,
and so on.

;
_category.id exptl
_category.mandatory_code no
_category_key.name ’_exptl.entry_id’
loop_

_category_group.id ’inclusive_group’
’exptl_group’

loop_
_category_examples.detail
_category_examples.case

# - - - - - - - - - - - - - - - - - - - - - - - -
; Example 1 - based on laboratory records for

Yb(S-C5H4N)2 (THF)4
;
; _exptl.entry_id datablock1

_exptl.absorpt_coefficient_mu 1.22
_exptl.absorpt_correction_T_max 0.896
_exptl.absorpt_correction_T_min 0.802
_exptl.absorpt_correction_type integration
_exptl.absorpt_process_details
; Gaussian grid method from SHELX76

Sheldrick, G. M., "SHELX-76: structure
determination and refinement program",
Cambridge University, UK, 1976

;
_exptl.crystals_number 1
_exptl.details
; Enraf-Nonius LT2 liquid nitrogen

variable-temperature device used
;
_exptl.method ’single-crystal x-ray diffraction’
_exptl.method_details
; graphite monochromatized Cu K(alpha) fixed

tube and Enraf-Nonius CAD4 diffractometer used
;

;
# - - - - - - - - - - - - - - - - - - - - - - - -
save_
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Example 3.1.6.5. A DDL2 category with a composite key.

save_GEOM_BOND
_category.description

; Data items in the GEOM_BOND category record
details about molecular and crystal bonds, as
calculated from the contents of the ATOM,
CELL, and SYMMETRY data.

;
_category.id geom_bond
_category.mandatory_code no
loop_

_category_key.name ’_geom_bond.atom_site_id_1’
’_geom_bond.atom_site_id_2’
’_geom_bond.site_symmetry_1’
’_geom_bond.site_symmetry_2’

loop_
_category_group.id ’inclusive_group’

’geom_group’
loop_

_category_examples.detail
_category_examples.case

# - - - - - - - - - - - - - - - - - - - - - - - -
- -
; Example 1 - based on data set TOZ of Willis,

Beckwith & Tozer [(1991). Acta Cryst. C47,
2276-2277].

;
;

loop_
_geom_bond.atom_site_id_1
_geom_bond.atom_site_id_2
_geom_bond.dist
_geom_bond.site_symmetry_1
_geom_bond.site_symmetry_2
_geom_bond.publ_flag

O1 C2 1.342(4) 1_555 1_555 yes
O1 C5 1.439(3) 1_555 1_555 yes
C2 C3 1.512(4) 1_555 1_555 yes
C2 O21 1.199(4) 1_555 1_555 yes
C3 N4 1.465(3) 1_555 1_555 yes
C3 C31 1.537(4) 1_555 1_555 yes
C3 H3 1.00(3) 1_555 1_555 ?
N4 C5 1.472(3) 1_555 1_555 yes

# - - - - data truncated for brevity - - - -
;
# - - - - - - - - - - - - - - - - - - - - - - - -
- -
save_

in a DDL2 dictionary in three separate save frames, save_

_diffrn_refln.index_h, save_ _diffrn_refln.index_k and
save_ _diffrn_refln.index_l. The intimate relationship
between these three components is expressed through the com-
mon _item_sub_category.id value of miller_index and the
mutual reference of the other Miller-index components by
the _item_dependent.dependent_name entries in each sepa-
rate save frame.

An apparent exception to this general rule is the case of save
frames defining an item, often a category key, that is an identi-
fier common to several categories. In this case, the save frame
defining the ‘parent’ identifier implicitly defines the complete
property set of each child identifier. For completeness, the
respective child identifiers are each declared in their own save
frames, but these act only as back references to the parent def-
inition. This is explained more completely in Section 3.1.6.5.1
below.

3.1.6.5.1. Inheritance of identifiers

Example 3.1.6.6 is from an mmCIF of two related cate-
gories that describe characteristics of an active site in a macro-

molecular complex. The sites are described in general terms
with a label and textual description in the STRUCT_SITE cat-
egory (the first looped list in the example). Details of how
each site is generated from a list of structural features form the
STRUCT_SITE_GEN category (second loop or table).

It is clear that each instance of the data item _struct_site_

gen.site_id in the second table must have one of the values
listed as _struct_site.id in the first loop, because it is the
purpose of these identifiers to relate the two sets of data: they
are the glue between the two separate tables and must have the
same values to ensure the referential integrity of the data set
(that is, the consistency and completeness of cross-references
between tables). Within a group of related categories like this,
it is normal to consider one as the ‘parent’ and the others as
‘children’.

Because all such linking data items must have compatible
attributes, it is conventional in DDL2 dictionaries to define all
the attributes in a single location, namely the save frame which
hosts the definition of the ‘parent’ data item. In early drafts
of DDL2 dictionaries, the ‘children’ were not referenced at all
in separate save frames; software validating a data file against
a dictionary was required to obtain all information about a
child identifier from the contents of the save frame defining the
parent. However, subsequent drafts introduced a minimal save
frame for the children to accommodate dictionary browsers that
depended on the existence of a separate definition block for
each individual data item.

Consequently, the definition blocks in current DDL2 dictio-
naries conform to the structure in Example 3.1.6.7, which refers
to the simple STRUCT_SITE example used above.

Example 3.1.6.6. Illustration of parent/child relationships
between identifiers in related categories.

loop_
_struct_site.id
_struct_site.details

’P2 site C’
; residues with a contact < 3.7 Angstrom to an
atom

in the P2 moiety of the inhibitor in the
conformation with _struct_asym.id = C

;
’P2 site D’

; residues with a contact < 3.7 Angstrom to an
atom

in the P1 moiety of the inhibitor in the
conformation with _struct_asym.id = D

;

loop_
_struct_site_gen.id
_struct_site_gen.site_id
_struct_site_gen.label_comp_id
_struct_site_gen.label_asym_id
_struct_site_gen.label_seq_id
_struct_site_gen.symmetry
_struct_site_gen.details

1 ’P2 site C’ VAL A 32 1_555 .
2 ’P2 site C’ ILE A 47 1_555 .
3 ’P2 site C’ VAL A 82 1_555 .
4 ’P2 site C’ ILE A 84 1_555 .
5 ’P2 site D’ VAL B 232 1_555 .
6 ’P2 site D’ ILE B 247 1_555 .
7 ’P2 site D’ VAL B 282 1_555 .
8 ’P2 site D’ ILE B 284 1_555 .

54



3.1. GENERAL CONSIDERATIONS WHEN DEFINING A CIF DATA ITEM

Example 3.1.6.7. A definition of an identifier which is parent
to identifiers in other categories.

save__struct_site.id
_item_description.description

; The value of _struct_site.id must uniquely
identify a record in the STRUCT_SITE list.

Note that this item need not be a number;
it can be any unique identifier.

;
loop_
_item.name
_item.category_id
_item.mandatory_code

’_struct_site.id’ struct_site
yes
’_struct_site_gen.site_id’ struct_site_gen
yes
’_struct_site_keywords.site_id’

struct_site_keywords
yes
’_struct_site_view.site_id’ struct_site_view
yes

loop_
_item_linked.child_name
_item_linked.parent_name

’_struct_site_gen.site_id’ ’_struct_site.id’
’_struct_site_keywords.site_id’ ’_struct_site.id’
’_struct_site_view.site_id’ ’_struct_site.id’

_item_type.code line
save_

Example 3.1.6.8. Definition of a child identifier.

save__struct_site_gen.id
_item_description.description

; The value of _struct_site_gen.id must
uniquely

identify a record in the STRUCT_SITE_GEN
list.

Note that this item need not be a number;
it can be any unique identifier.

;
_item.name ’_struct_site_gen.id’
_item.category_id struct_site_gen
_item.mandatory_code yes
_item_type.code line

save_

Note that the dependent data names are listed twice: once
in the loop that declares their _item.name values and the cat-
egories with which they are associated; and again in a loop
that makes the direction of the relationship explicit. A parent
data item may have several children, but each child can have
only a single parent (i.e. related data name whose value may
be checked for referential integrity). Note also that each listed
item has an _item.mandatory_code value of yes: because they
are identifiers which link categories, they must be present in a
table to allow the relationships between data items in different
tables to be traced.

Other than the specific description text field, any declared
attributes (in this example only the data type) have a common
value across the set of related identifiers.

As mentioned above, it is not formally necessary to have a
separate save frame for the individual children; but it is conven-
tional to have such individual save frames containing minimal

definitions that serve as back-references to the primary infor-
mation in the parent frame. These also provide somewhere for
the specific text definitions for the children to be stored. The
definition frame for _struct_site_gen.id is shown in Exam-
ple 3.1.6.8.

3.1.6.5.2. Definitions of single quantities

While it is important to ensure the referential integrity of the
data in a CIF through proper book-keeping of links between
tables, the crystallographer who wishes to create or extend a
CIF dictionary will be more interested in the definitions of data
items that refer to real physical quantities, the properties of a
crystal or the details of the experiment. The DDL2 formalism
makes it easy to create a detailed machine-readable listing of
the attributes of such data.

Example 3.1.6.9 shows a definition of the ambient temper-
ature during the experiment. In the definition save frame, the
category is specifically listed (although it is deducible from the
convention of separating the category name from the rest of the
name by a full stop in the data name). The data type is specified
as a floating-point number. The range of values is also specified
with separate maximum and minimum values The assignment
of the same value to a maximum and a minimum means that the
absolute value is permitted; without the repeated ‘0.0’ line the
range in this example would be constrained to be positive defi-
nite; the equal value of 0.0 for maximum and minimum means
that it may be identically zero.

The _item_units.code value must be one of the entries in
the units table for the dictionary and can thus be converted into
other units as specified in the units conversion table.

The aliases entries identify equivalent names for the corre-
sponding quantity defined in other dictionaries.

3.1.6.6. Units

The physical unit associated with a quantitative value in a
DDL2-based file is specified in the relevant dictionary. There
is no option to express the quantity in other units. How-
ever, DDL2 permits a dictionary file to store not only a
table of the units referred to in the dictionary (listed under

Example 3.1.6.9. DDL2 definition of a physical quantity.

save__diffrn.ambient_temp
_item_description.description

; The mean temperature in kelvins at which
the intensities were measured.

;
_item.name ’_diffrn.ambient_temp’
_item.category_id diffrn
_item.mandatory_code no
_item_aliases.alias_name

’_diffrn_ambient_temperature’
_item_aliases.dictionary cif_core.dic
_item_aliases.version 2.0.1
loop_

_item_range.maximum
_item_range.minimum . 0.0

0.0 0.0
_item_related.related_name

’_diffrn.ambient_temp_esd’
_item_related.function_code associated_esd
_item_type.code float
_item_type_conditions.code esd
_item_units.code kelvins

save_
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_item_units_list.code and the accompanying descriptive
item _item_units_list.detail), but also a table specify-
ing the conversion factors between individual codes in the
_item_units_list.code list. In principle this allows a pro-
gram to combine or otherwise manipulate different physical
quantities while handling the units properly.

3.1.7. Composing new data definitions

Preceding sections have described the framework within which
CIF dictionaries exist and are used, and their individual formal
structures. While this is important for presenting the definition
of new data items, it does not address what is often the most dif-
ficult question: what quantities, concepts or relationships merit
separate data items? On the one hand, the extensibility of CIF
provides great freedom of choice: anything that can be char-
acterized as a separate idea may be assigned a new data name
and set of attributes. On the other hand, there are practical con-
straints on designing software to write and read a format that is
boundless in principle, and some care must be taken to organize
new definitions economically and in an ordered way.

3.1.7. Granularity

Perhaps the most obvious decision that needs to be made is
the level of detail or granularity chosen to describe the topic of
interest. CIF data items may be very specific (the deadtime in
microseconds of the detector used to measure diffraction inten-
sities in an experiment) or very general (the text of a scientific
paper). In general, a data name should correspond to a single
well defined quantity or concept within the area of interest of a
particular application. It can be seen that the level of granularity
is determined by the requirements of the end application.

A practical example of determining an appropriate level of
granularity is given by the core dictionary definitions for biblio-
graphic references cited in a CIF. The dictionary originally con-
tained a single character field, _publ.section_references,
which was intended to contain the complete reference list for
an article as undifferentiated text. Notes for Authors in jour-
nals accepting articles in CIF format advised authors to sepa-
rate the references within the field with blank lines, but other-
wise no structure was imposed upon the field. In a subsequent
revision to the core dictionary, the much richer CITATION cat-
egory was introduced to allow the structured presentation of
references to journal articles and chapters of books. This was
intended to aid queries to bibliographic databases. However, a
full structured markup of references with multiple authors or
editors in CIF requires additional categories, so that the details
of the reference may be spread across three tables correspond-
ing to the CITATION, CITATION_AUTHOR and CITATION_EDITOR

categories. Populating several disjoint tables greatly compli-
cates the author’s task of writing a reference list. Moreover,
the CITATION category does not yet cover all the many differ-
ent types of bibliographic reference that it is possible to spec-
ify, and is therefore suitable only for references to journal arti-
cles and chapters of books. However, it is possible to write a
program that can deduce the structure of a standard reference
within an undifferentiated reference list (provided the journal
guidelines have been followed by the author) to the extent that
enough information can be extracted to add hyperlinks to refer-
ences using a cross-publisher reference linking service such as

CrossRef (CrossRef, 2004). Therefore, in practice, IUCr jour-
nals still ask the author of an article to supply their reference
list in the _publ.section_references field, rather than using
the apparently more useful _citation_ fields. It remains to be
seen whether this is the best strategy in the long term.

In more technical topic areas, the details of an experimental
instrument could be described by a huge number of possible
data names, ranging from the manufacturer’s serial number to
the colour of the instrument casing. However, many of these
details are irrelevant to the analysis of the data generated by
the instrument, so the characteristics of an instrument that are
assigned individual data names are typically just those parame-
ters that need to be entered in equations describing the calibra-
tion or interpretation of the data it generates.

3.1.7.2. Category ‘special details’ fields

When the specific items in a particular topic area that need
to be recorded under their own data names have been decided,
there is likely to be other information that could be recorded,
but is felt to be irrelevant to the immediate purposes of the data
collection and analysis. It is good practice to provide a place
in the CIF for such additional information; it encourages an
author to record the infomation and permits data mining at a
later stage. Each category typically contains a data name with
the suffix _details (or _special_details) which identifies a
text field in which additional information relating to the cate-
gory may be stored. This field often contains explanatory text
qualifying the information recorded elsewhere in the same cat-
egory, but it might contain additional specific items of informa-
tion for which no data name is given and for which no obvi-
ous application is envisaged. This helps to guard against the
loss of information that might be put to good use in the future.
Of course, if a *_details field is regularly used to store some
specific item of information and this information is seen to be
valuable in the analysis or interpretation of data elsewhere in
the file, there is a case for defining a new, separate tag for this
information.

3.1.7.3. Construction of data names

Since a dictionary definition contains all the machine-
readable attributes necessary for validating the contents of a
data field, the data name itself may be an arbitrary tag, devoid
of semantic content. However, while dictionary-driven access
to a CIF is useful in many cases, there are circumstances where
it is useful to browse the file. It is therefore helpful to construct
a data name in a way that gives a good indication of the quan-
tity described. From the beginning, CIF data names have been
constructed from self-descriptive components in an order that
reflects the hierarchical relationship of the component ideas,
from highest (most general) level to lowest (most specific) level
when read from left to right.

In a typical example from the core CIF dictionary, the data
name _atom_site.type_symbol defines a code (symbol) indi-
cating the chemical nature (type) of the occupant of a location
in the crystal lattice (atom_site). The full stop (.) separates the
category to which the data name belongs from its more specific
qualifiers.

However, it may not always be easy to establish the
best order of components when constructing a new data
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_database.code_CSD ’VOBYUG’

(a)

_database_2.database_id ’PDB’
_database_2.database_code ’5HVP’

(b)

Fig. 3.1.7.1. Alternative quantities described (a) by data-name extension (core
dictionary) or (b) by paired data names (mmCIF dictionary).

name. In the JOURNAL category, there was initially
some uncertainty about whether to associate the tele-
phone numbers of different contact persons by append-
ing codes such as _coeditor and _techeditor to a com-
mon base name. In the end, the order of components was
reversed to give names like _journal.coeditor_phone and
_journal.techeditor_phone. Examining the JOURNAL cate-
gory in the core CIF dictionary will show why this was done.
Similarly, the extension of geometry categories to include
details of hydrogen bonding went through a stage of discussing
adding new data names to the existing categories, but with
suffixes indicating that the components were participating in
hydrogen bonding, before it was decided that a completely
new category for describing all elements of a hydrogen bond
was justified. These examples show that the correct ordering
of components within a data name is closely related to the
perceived classification of data names by category and subcat-
egory.

Sometimes it is useful to differentiate alternative data items
by appending a suffix to a root data name. For example, the core
dictionary defines several data names for recording the refer-
ence codes associated with a data block by different databases:
_database.code_CAS, _database.code_CSD etc. This is con-
venient where there are two or three alternatives, but becomes
unwieldy when the number of possibilities increases, because
new data names need to be defined for each new alternative
case. A better solution is to have a single base name and a
companion data item that defines which of the available alter-
natives the base item refers to. The mmCIF dictionary fol-
lows this principle: the category DATABASE_2 contains two
data names, _database_2.database_code (the value of which
is an assigned database code) and _database_2.database_id

(the value of which identifies which of the possible databases
assigned the code) (Fig. 3.1.7.1).

Note the distinction between a data name constructed with
a suffix indicating a particular database, and a data name
which incorporates a prefix registered for the private use of
a database. The data name _database.code_PDB is a public
data name specifying an entry in the Protein Data Bank, while
_pdb_database.code is a private data name used for some
internal purpose by the Protein Data Bank.

3.1.7.4. Parsable data values versus separate data names

An advantage of defining multiple data names for the
individual components of a complicated quantity is that
there is no ambiguity in resolving the separate compo-
nents. Hence the Miller indices of a reflection in the list of
diffraction measurements are specified in the core dictionary
by the group of three data names _diffrn_refln.index_h,
_diffrn_refln.index_k and _diffrn_refln.index_l. In

principle, a single data name associated with the group of three
values in some well defined format (e.g. comma separated, as
h, k, l) could have been defined instead. However, this would
require a parser to understand the internal structure of the value
so that it could parse out the separate values for h, k and l.

On the other hand, there are many examples of data
values that are stored as string values parsable into
distinct components. An extreme example is the ref-
erence list mentioned in Section 3.1.7.1. More com-
mon are dates (_audit.creation_date), chemical formu-
lae (e.g. _chemical_formula.moiety), symmetry operations
(_symmetry_equiv.pos_as_xyz) or symmetry transformation
codes (_geom_bond.site_symmetry_1). There is no definitive
answer as to which approach is preferred in a specific case. In
general, the separation of the components of a compound value
is preferred when a known application will make use of the sep-
arate components individually. For instance, applications may
list structure factors according to a number of ordering conven-
tions on individual Miller indices. As an extreme example of
separating the components of a compound value, the mmCIF
dictionary defines data names for the standard uncertainty val-
ues of most of the measurable quantities it describes, while the
core dictionary just uses the convention that a standard uncer-
tainty is specified by appending an integer in parentheses to a
numeric value.

A related problem is how to handle data names that describe
an indeterminate number of parameters. For example, in the
modulated structures dictionary an extra eight Miller indices
are defined to span a reciprocal space of dimension up to 11. In
principle, the dimensionality could be extended without limit.
According to the practice of defining a unique data name for
each modulation dimension, new data names would need to
be defined as required to describe higher-dimensional systems.
Beyond a certain point this will become unwieldy, as will the
set of data names required to describe the n2 components of
the W matrix for a modulated structure of dimensionality n
(_cell_subsystem.matrix_W_1_1 etc.).

The modulated structures dictionary was constrained to
define extended Miller indices in this way for compatibility
with the core dictionary. Data names describing new quanti-
ties that are subject to similar unbounded extensibility should
perhaps refer to values that are parsable into vector or matrix
components of arbitrary dimension.

3.1.7.5. Consistency of abbreviations

One further consideration when constructing a data name is
the use of consistent abbreviations within the components of
the data name. This is of course a matter of style, since if a data
name is fully defined in a dictionary with a machine-readable
attribute set, the data name itself can be anything. Nonetheless,
to help to find and group similar data names it is best to avoid
too many different abbreviations.

Table 3.1.7.1 lists the abbreviations used in the current public
dictionaries. Note that there are already cases where different
abbreviations are used for the same term.

3.1.8. Management of multiple dictionaries

So far this chapter has discussed the mechanics of writing dic-
tionary definitions and of assembling a collection of definitions
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Table 3.1.7.1. Abbreviations in CIF data names

Terms for which abbreviations are defined are sometimes found unabbreviated.

Abbreviation Term Abbreviation Term Abbreviation Term

abbrev abbreviation eqn equation oper operation
abs absolute (configuration, not structure) esd standard uncertainty (estimated org organism
absorpt absorption standard deviation) (see su) orient orientation
alt alternative expt experiment origx orthogonal coordinate matrix (PDB files)
amp amplitude exptl experimental os operating system
AN accession number fom figure of merit param parameter
anal analyser fract fractional pd powder diffraction
aniso anisotropic* Fsqd F squared PDB Protein Data Bank
anisotrop anisotropic* gen generation PDF Powder Diffraction File
anom anomalous gen generator perp perpendicular
ASTM American Society for Testing and Materials gen genetic phos phosphate
asym asymmetric geom geometric pk peak
atten attenuation H-M Hermann–Mauguin polarisn polarization
au arbitrary units ha heavy atom poly polymer
auth author hbond hydrogen bond pos position
av average hist history prep preparation
ax axial horiz horizontal proc processed
B B form of atomic displacement I intensity prof profile

parameter (a.d.p.) ICSD Inorganic Crystal Structure Database prot protein
backgd background* id identifier ptnr partner
beg begin illum illumination publ publication
bg background* imag imaginary R agreement index
biol biology inc increment rad radius
bkg background* incl include recd received
bond bonding info information recip reciprocal
Bsol B form of a.d.p. for solvent instr instrument ref reference
calc calculated Int international refine refinement
calib calibration (pd) ISBN International Standard Book Number refln reflection
cartn Cartesian iso isotropic reflns reflections
CAS Chemical Abstracts Service iso isomorphous res resolution
char characterization (pd) ISSN International Standard Serial Number restr restraints
chem chemical IUCr International Union of Crystallography rev revision
chir chirality IUPAC International Union of Pure and Rmerge agreement index of merging
clust cluster Applied Chemistry rms root mean square
coef coefficient len length rot rotation
com common lim limit S goodness of fit
comp component loc lack of closure samp sample
conc concentration ls least squares scat scattering factor
conf conformation max maximum seq sequence
config configuration MDF Metals Data File sigI σ(I)*
conform conformant meanI mean intensity sigmaI σ(I)*
conn connectivity meas measured sint sin θ
cons constant mid middle (between max and min) sint/lambda sin(θ)/λ*
CSD Cambridge Structural Database min minimum sol solvent
db database mod modification spec specimen
defn definition mods modifications src source
detc detector mon monomer std standard
der derivative monochr monochromator (pd)* stol sin(θ)/λ*
dev standard deviation mono monochromator (pd)* struct structure
dict dictionary nat natural su standard uncertainty
dif difference* NBS National Bureau of Standards (now suppl supplementary
diff difference* National Institute of Standards and sys systematic
diffr diffractometer Technology) tbar mean path length
diffrn diffraction NCA number of connected atoms temp temperature
displace displacement ncs noncrystallographic symmetry tor torsion angle
dist distance netI net intensity tran transformation*
divg divergence NH number of connected hydrogen atoms transf transformation*
dom domain nha non-hydrogen atoms transform transformation*
dtime dead time norm normal tvect translation vector (PDB files)
ens ensemble nst nonstandard vert vertical
eq equatorial* nucl nucleic acid wR weighted agreement index
equat equatorial* num number wt weight
equiv equivalent obs observed

* Terms with multiple definitions.

in a single global or local dictionary file. In practice, the set
of data names in a CIF data file may include names defined
in several dictionary files. A mechanism is required to iden-
tify and locate the dictionaries relevant to an individual data
file. In addition, because dictionaries are suitable for automated
validation of the contents of a data file, it is convenient to
be able to overlay the attributes listed in a dictionary with an
alternative set that permit validation against modified local cri-
teria. This section describes protocols for identifying, locat-
ing and overlaying dictionary files and fragments of dictionary
files.

3.1.8.1. Identification of dictionaries relevant to a data file

A CIF data file should declare within each of its
data blocks the names, version numbers and, where
appropriate, locations of the global and local dictio-
naries that contain definitions of the data names used
in that block. The relevant identifiers are the items
_audit_conform.dict_name, _audit_conform.dict_version
and _audit_conform.dict_location, defined in the core dic-
tionary.

The values of the items _audit_conform.dict_name

and _audit_conform.dict_version are character strings
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that match the values of the _dictionary.title and
_dictionary_version identifiers in the dictionary that defines
the relevant data names. Validation against the latest version of
a dictionary should always be sufficient, since every effort is
made to ensure that a dictionary evolves only by extension, not
by revising or removing parts of previous versions of the dictio-
nary. Nevertheless, including _audit_conform_dict.version

is encouraged: it can be useful to confirm which version of the
dictionary the CIF was initially validated against.

The data item _audit_conform.dict_locationmay be used
to specify a file name or uniform resource locator (URL).
However, a file name on a single computer or network will
be of use only to an application with the same view of the
local file system, and so is not portable. A URL may be
a better indicator of the location of a dictionary file on the
Internet, but can go out of date as server names, addresses
and file-system organization change over time. The preferred
method for locating a dictionary file is to make use of a
dynamic registry, as described in Section 3.1.8.2. Nevertheless,
_audit_conform.dict_location remains a valid data item
that may be of legitimate use, particularly in managing local
applications.

The following example demonstrates a statement of dictio-
nary conformance in a data file describing a powder diffraction
experiment with some additional local data items:

loop_
_audit_conform.dict_name
_audit_conform.dict_version
_audit_conform.dict_location
cif_core.dic 2.3 .
cif_pd.dic 1.0 .
cif_local_my.dic 1.0

/usr/local/dics/my_local_dictionary

It is clear that the location specified for the local dictionary
is only meaningful for applications running on the same com-
puter or network, and therefore the ability to validate against
this local dictionary is not portable. On the other hand, it may
be that the local data names used by the authors of this CIF are
not intended to have meaning outside their own laboratory.

3.1.8.2. The dictionary register

COMCIFS maintains a register of dictionaries known to it,
including the identifying name and version strings within those
dictionaries. The register also includes the location of each
dictionary, expressed at present as a URL designed to allow
retrieval by file transfer protocol (ftp) from the IUCr server.
Changes in the location of a particular dictionary file can be
made by modifying the entry in the register, avoiding the prob-
lem of specifying a URL in a data file that would then become
outdated if the dictionary was moved. Dictionary applications
can consult the register (according to a protocol outlined below)
to locate and retrieve the dictionaries needed for validating data
files. It is of course essential that the validation software knows
how to locate the register. The location is at present given by
the URL ftp://ftp.iucr.org/pub/cifdics/cifdic.register. The prob-
lem of changing URLs has therefore not disappeared com-
pletely, but is at least confined to the need to maintain one sin-
gle address.

Table 3.1.8.1 is an extract from the current register (the com-
plete version includes contact details for the maintainer of each

dictionary). The latest version of the register will always be
available from the URL given above.

The entries for each dictionary include one with the version
string set to ‘.’, representing the current version; this is the
version that should be retrieved unless a data file specifies oth-
erwise.

Note that the register may also contain locators for local dic-
tionaries constructed by owners of reserved prefixes (Section
3.1.2.2) when the owner has requested that a dictionary of local
names be made publicly available. An appropriate name for
a local dictionary in the register (_dictionary.title) would
be cif_local_myprefix.dic, where the string indicated by
myprefix is one of the prefixes reserved for private use by the
author of the dictionary (see Section 3.1.2.2). This scheme
complements the naming convention for public dictionaries.

3.1.8.3. Locating a dictionary for validation

The following protocol applies to the creation and use of
software designed to locate the dictionaries referenced by a
data file and validate the data file against them. The protocol is
necessary to address the issues that arise because dictionaries
evolve through various audited versions, because not all dictio-
naries referenced by a data file may be accessible, and because
data files might not in practice contain pointers to their associ-
ated dictionaries.

Software source code for applications that use CIF dictio-
naries to validate the contents of data files should be distributed
with a copy of the most recent version of the register of dic-
tionaries, and with the URL of the master copy hard-coded.
Library utilities should be provided that permit local cacheing
of the register file and the ability to download and replace the
cached register at regular intervals. Individual dictionary files
located and retrieved through the use of the register should also
be cached locally, to guard against temporary unavailability of
network resources.

Each CIF data file should contain a reference to one or
more dictionary files against which the file may be validated.
At the very least this will be _audit_conform.dict_name (N).
*_version (V ) and *_location (L) are optional. In the event
that no dictionaries are specified, the default validation dictio-
nary should be that identified as having N = cif_core.dic and
V = ‘.’ (i.e. the most recent version of the core dictionary). Since
dictionaries are intended always to be extended, it is normally
enough just to specify the name (and possibly the location).

A software application validating against CIF dictionaries
should attempt to locate and validate against the referenced dic-
tionaries in the order cited in the data file, according to the fol-
lowing procedure. The terms ‘warning’ and ‘error’ in this pro-
cedure are not necessarily messages to be delivered to a user.
They may be handled as condition codes or return values deliv-
ered to calling procedures instead.

If N, V and L are all given, try to load the file from the loca-
tion L, or a locally cached copy of the referenced file. If this
fails, raise a warning. Then search the dictionary register for
entries matching the given N and V . (An appropriate strategy
would be to search a locally cached copy of the register, and
to refresh that local copy with the latest version from the net-
work if the search fails.) If a successful match is made, try to
retrieve the file from the location given by the matching entry
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Table 3.1.8.1. CIF dictionary register (maintained as a STAR File), as

current in March 2005

data_validation_dictionaries
loop_
_cifdic_dictionary.name
_cifdic_dictionary.version
_cifdic_dictionary.DDL_compliance
_cifdic_dictionary.reserved_prefix
_cifdic_dictionary.URL
_cifdic_dictionary.description

cif_core.dic . 1.4 .
ftp://ftp.iucr.org/pub/cifdics/cif_core.dic
’Core CIF Dictionary’

cif_core.dic 1.0 1.4 .
ftp://ftp.iucr.org/pub/cifdics/cifdic.C91
’Original Core CIF Dictionary’

cif_core.dic 2.0.1 1.4 .
ftp://ftp.iucr.org/pub/cifdics/cif_core_2.0.1.dic
’Core CIF Dictionary’

cif_core.dic 2.1 1.4 .
ftp://ftp.iucr.org/pub/cifdics/cif_core_2.1.dic
’Core CIF Dictionary’

cif_core.dic 2.2 1.4 .
ftp://ftp.iucr.org/pub/cifdics/cif_core_2.2.dic
’Core CIF Dictionary’

cif_core.dic 2.3 1.4 .
ftp://ftp.iucr.org/pub/cifdics/cif_core_2.3.dic
’Core CIF Dictionary’

cif_pd.dic . 1.4 .
ftp://ftp.iucr.org/pub/cifdics/cif_pd.dic
’Powder CIF Dictionary’

cif_pd.dic 1.0 1.4 .
ftp://ftp.iucr.org/pub/cifdics/cif_pd_1.0.dic
’Powder CIF Dictionary’

cif_ms.dic . 1.4 .
ftp://ftp.iucr.org/pub/cifdics/cif_ms.dic
’Modulated structures CIF Dictionary’

cif_ms.dic 1.0 1.4 .
ftp://ftp.iucr.org/pub/cifdics/cif_ms_1.0.dic
’Modulated structures CIF Dictionary’

cif_rho.dic . 1.4 .
ftp://ftp.iucr.org/pub/cifdics/cif_rho.dic
’Modulated structures CIF Dictionary’

cif_rho.dic 1.0 1.4 .
ftp://ftp.iucr.org/pub/cifdics/cif_rho_1.0.dic
’Electron density CIF Dictionary’

cif_mm.dic . 2.1.2 .
ftp://ftp.iucr.org/pub/cifdics/cif_mm.dic
’Macromolecular CIF Dictionary’

cif_mm.dic 1.0 2.1.2 .
ftp://ftp.iucr.org/pub/cifdics/cif_mm_1.0.dic
’Macromolecular CIF Dictionary’

mmcif_std.dic 2.0.7 2.1.2 .
ftp://ftp.iucr.org/pub/cifdics/mmcif_std.dic
’Macromolecular CIF Dictionary’

cif_img.dic . 2.1.2 .
ftp://ftp.iucr.org/pub/cifdics/cif_img.dic
’Image CIF Dictionary’

cif_img.dic 1.0 2.1.2 .
ftp://ftp.iucr.org/pub/cifdics/cif_img_1.0.dic
’Image CIF Dictionary’

cif_img.dic 1.3.1 2.1.2 .
ftp://ftp.iucr.org/pub/cifdics/cif_img_1.3.1.dic
’Image CIF Dictionary’

cif_sym.dic . 2.1.2 .
ftp://ftp.iucr.org/pub/cifdics/cif_sym.dic
’Symmetry CIF Dictionary’

cif_sym.dic 1.0 2.1.2 .
ftp://ftp.iucr.org/pub/cifdics/cif_sym_1.0.dic
’Symmetry CIF Dictionary’

cif_compat.dic 1.0 1.4 .
ftp://ftp.iucr.org/pub/cifdics/cif_compat_1.0.dic
’Legacy CIF Dictionary of deprecated terms’

in the register (or a locally cached copy with the same N and V
previously fetched from the location specified in the register).
If this fails, try to load files identified from the register with the
same N but progressively older versions V (version numbering
takes the form n.m.l . . ., where n, m, l, . . . are integers refer-
ring to progressively less significant revision levels). Version
‘.’ (meaning the current version) should be accessed before any
other numbered version. If this fails, raise a warning indicating
that the specified dictionary could not be located.

If N and V but not L are given, try to load locally cached or
master copies of the matching dictionary files from the location
specified in the register file, in the order stated above, viz: (i)
the version number V specified; (ii) the version with version
number indicated as ‘.’; (iii) progressively older versions. Suc-
cess in other than the first instance should be accompanied by
a warning and an indication of the revision actually loaded.

If only N is given, try to load files identified in the regis-
ter by (i) the version with version number indicated as ‘.’; (ii)
progressively older versions.

If all efforts to load a referenced dictionary fail, the valida-
tion application should raise a warning.

If all efforts to load all referenced dictionaries fail, the vali-
dation application should raise an error.

For any dictionary file successfully loaded according to
this protocol, the validation application must perform a con-
sistency check by scanning the file for internal identifiers
(_dictionary.title, _dictionary.version) and ensuring
that they match the values of N and V (where V is not ‘.’).
Failure in matching should raise an error.

Reference
CrossRef (2004). Query spec. http://www.crossref.org/03libraries/

25query spec.html.
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to all fields of science and technology. CODATA provides scientists and engineers with access
to international data activities for increased awareness, direct cooperation and new knowledge. It
is concerned with all types of data resulting from experimental measurements, observations and
calculations in every field of science and technology, including the physical sciences, biology,
geology, astronomy, engineering, environmental science, ecology and others. Particular emphasis
is given to data management problems common to different disciplines and to data used outside the
field in which they were generated.
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