Moving towards a more data-centric scientific literature

S.J.L. Billinge

Columbia University, Brookhaven National Laboratory

Scientific literature in the service of mankind since 1665

- Transactions of the Royal Society, first published March 1665
- "giving some accompt of the present undertakings, studies and labours of the ingenious"

The first academic journal

I O V R N A L DES SÇAVANS

Du Lundy V. Janvier M. DC. LXV.

Par le Sieur DE HEDOVVILLE.

A PARIS, Chez IEAN CUSSON, ruë S. Iacques, à l'Image de S. Iean Baptifte.

M. D.C. LXV. AVEC PRIVILEGE DV ROY.

- January 1665!
- But not a scientific journal...
- later renamed Journal des savans and then Journal des savants, established by Denis de Sallo,
- Its content included obituaries of famous men, church history, and legal reports.

COLUMBIA UNIVERSITY

Here are some statistics

Licensed under CC-BY-SA by the author Max Roser.

Some more statistics

Source: Broadberry, Campbell, Klein, Overton, and van Leeuwen (2015) via Bank of England (2017) Note: Data refers to England until 1700 and the UK from then onwards. OurWorldInData.org/economic-growth • CC BY

Summary

• The scientific literature has caused all of human development

- We should be proud.
- Making life better for humans one paper at a time for 354 years!

How did it do it?

A personal perspective

(with apologies to professional librarians and Journalistas)

The success rests on 3 pillars

I. Disclosure

- Creating an environment where people freely share (disclose) their ideas
 - Create incentives...
 - Citations

2. Qualitation

- (needed an English word for the act of assuring quality, sorry)
- Ensuring some level of quality of the work
 - peer review
 - reproducibility of work
- 3. Curation
 - Two aspects to this
 - Persistence of the information
 - Access to the information

COLUMBIA UNIVERSITY

The problem

- For 350 years, we have designed the scientific literature to be read by humans
- ... and humans are so 20th Century!

Now we need a scientific literature that can be read by machines (and humans)

• People are building machines that can read the existing literature

• A process called Natural Language Processing (NLP)

• I am not talking about that

I want a literature that can be read by machine directly

Wait, did I just rediscover the database?

Well, yes, but I think that integrating complementary roles of databases and journals we can do much more.

What kinds of things can we do if we have a literature that can be read by machines

Two examples from my group:

• Obtaining the space-group of a structure from its atomic pair distribution function (PDF) using Machine Learning

Discovering candidate structures to fit to the PDF of an unknown structure

Local atomic structure from the Atomic Pair Distribution Function (PDF)

A PDF is from a powder diffraction pattern. Why can't we index it?

Same information as the powder diffraction pattern Different encoding!

Can we get the s.g. just by looking at the PDF?

 I don't know an person who can look at a PDF and tell the s.g. (except perhaps if it is an fcc material or something)

Question:

• Can we train a Machine Learning model to recognize it?

Answer:

IN THE CITY OF NEW YORK

• Yes! Liu, Chia-Hao, Tao, Yunzhe, Hsu, Daniel J., Du, Qiang, and Billinge, Simon J. L.. Acta Crystallogr.A . To be published. (2019) OLUMBIA UNIVERSITY

Teaching the machine

- Have a database with 100,000 solved structures in it
- Make that database machine readable (using CIF!!!!!) 2.
- 3. Divide the structures into a set of 80,000 for learning and 20,000 for testing
- 4. Show the ML algorithm the learning set: give it the PDF (a set of intensity-position pairs) and tell it the right answer. It will adjust its internal parameters so as to predict the right answer as often as possible
- 5. Check how well it did by showing it the 20,000 testing sets without telling it the right answer, but checking its answer
- 6. Tweak the learning till it is doing well on the test

IN THE CITY OF NEW YORK

7. The algo is ready....give it some real data and it will tell you the space-group olumbia [Jniversity

Details

- Work of Yunzhe Tao and Chia-Hao Liu
- PDF itself is the input feature vector
- 101,802 structures in 45 space-groups
- Train on 80% of data, 20% retained for testing

Space Groups from PDFs

• First try, Logistic Regression

 Second try, Convolution Neural Net

olumbia University

IN THE CITY OF NEW YORK

Classification ratio's are for finding the right s.g. in the top
6

THE

Confusion Matrix

- Rows: true label
- Columns: predicted label

IN THE CITY OF NEW YORK

Columbia University

Predicted label	
P-1 (2) P2_1 (4) -Cc (9) -C2 (13) -P2_1(12) -P2_1(13) -P2_1(15) -P2_1(15) -P2_1(13) -P2_1(11) -P2_1(11) P4_1(11) -P4_1(11) -P4_1(11) -P4_1(11) -P4_1(11) -P4_1(11) -P4_1(11) -P4_1(14) -P4_1(14) P4_1(14) <td< td=""><td>_</td></td<>	_
P-1 (2) 055 0.00 0.01 0.01 0.03 0.00 0.25 0.05 0.11 0.00 0.00 0.00 0.00 0.00 0.0	
P2_1 (4) -0.06 0.28 0.00 0.01 0.04 0.01 0.03 0.07 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00	
Cc (9) 0.08 0.02 0.21 0.02 0.04 0.01 20 0.14 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00	
P2_1/m (11) 0.06 0.01 0.00 0.04 0.00 0.16 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00	
C2/m (12) 0.05 0.00 0.00 0.02 0.05 0.00 0.00 0.05 0.01 0.00 0.00 0.00	
P2/c (13) 0.18 0.00 0.02 0.01 0.05 0.01 0.15 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
P2_Vc (14) 020 0.01 0.01 0.01 0.02 0.00 0.03 0.06 0.01 0.01 0.00 0.00 0.00 0.00 0.00	
C2/c (15) 0.15 0.00 0.03 0.01 0.04 0.01 0.20 0.41 0.01 0.00 0.00 0.00 0.00 0.00 0.0	
P2_12_12_1 (19) 0.13 0.01 0.00 0.02 0.05 0.00 0.30 0.06 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00	
Pna2_1 (33) 00 0.01 0.01 0.00 0.03 0.00 0.17 0.04 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.14 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00	
Cmc2_1 (36) 044 0.00 0.00 0.01 0.05 0.00 0.08 0.04 0.02 0.01 022 0.01 022 0.00 0.00 0.00 0	
Pmmm (47) - 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.	
Pbam (55) 402 0.00 0.00 0.01 0.03 0.00 0.03 0.03 0.00 0.01 0.00 0.00	
Pcr (60) 311 0.00 0.00 0.02 0.06 0.00 0.15 0.07 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00	
Pnma (62) 43 5 600 5 00 5 0.0	
Cmce (64) 0.04 0.00 0.01 0.01 0.08 0.00 0.08 0.04 0.00 0.00 0.00 0.00	
Cmmm (65) 400 000 0.00 0.01 0.00 0.01 0.00 0.00 0	
14m (87) 41 0.00 0.00 0.1 0.02 0.00 0.44 0.1 0.00 0.00 0.00 0.00 0.00	
(4_1/a (8)) 0.05 0.02 0.00 0.03 0.00 0.06 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00	
1-42d (12) 401 000 0.0 1 0.00 0.0 2 0.0 0.4 0.0 3 0.00 0.00 0.00 0.00 0.00	
P4/mm (123) 300 000 0.00 0.00 0.00 0.00 0.00 0.00	
P4/mm (129) 000 000 000 000 000 000 000 000 000 0	
P4_2/mnm (136) 400 0.00 0.00 0.00 0.00 0.02 0.01 0.02 0.00 0.00	
14/mmm (139) • • • • • • • • • • • • • • • • • • •	
(4/mcm (140) - 300 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
[4_1/amd (141) 401 000 0.00 0.01 0.01 0.00 0.01 0.02 0.00 0.00	
R 3 (14) 0.03 0.00 0.00 0.02 0.00 0.04 0.03 0.00 0.00 0.00 0.00 0.00	
R3m (160) 400 000 0.02 0.01 0.01 0.00 0.01 0.03 0.01 0.00 0.00	
Pa-3 (20) state and a state an	

BRUUKHAVEN

1.0

0.8

0.6

0.4

- 0.2

- 0.0

Automating modeling

• Can we think about how to make modeling more automated, and possibly introducing it into the pipeline?

Standard approach

THE

- I PDF
- I model
- 20 parameters
- Vary the parameters until the model agrees as well as possible with the data.
- Emphasis on parameter estimation, not on model selection
- Challenge is finding the right model

COLUMBIA UNIVERSITY

New approach: Structure-Mining

- I PDF
- many models
- few parameters
- Iterate over large numbers of models
- Emphasis on model selection
- Advantage: find multiple nearby models!
- Challenge: structure must be in the structure-mine

Structure-mining: An automated screening of large numbers of candidate structures to the atomic pair distribution function (PDF)

Long Yang, Pavol Juhas, Maxwell W. Terban, Simon J. L. Billinge Acta Crystallographica A (2019) in review

Introduction

Crystal structural database
Materials Project Database Crystallography Open Database
PDF auto-refinement

DiffPy-CMI

R_w sorted structure-mining result

No.	R_w	formula	space_group	Ba_Uiso_r	O_U_iso_r	Ti_Uiso_r
20	0.143308	Ba2 O6 Ti2	Amm2	0.002085	0.018062	0.008006
21	0.144425	Ba2 O6 Ti2	Amm2	0.002027	0.017803	0.008684
22	0.145316	Ba2 O6 Ti2	Amm2	0.001999	0.017465	0.009089
26	0.146433	Ba2 O6 Ti2	Amm2	0.001973	0.016756	0.009420
30	0.148121	Ba2 O6 Ti2	Amm2	0.001957	0.017870	0.009978
33	0.151343	Ba2 O6 Ti2	Amm2	0.002535	0.006989	0.008263
2	0.155847	Bal O3 Til	P4mm	0.002735	0.011571	0.006421
8	0.161942	Bal O3 Til	P4mm	0.002634	0.016226	0.008579
0	0.161942	Bal O3 Til	P4mm	0.002634	0.016226	0.008579
31	0.163028	Bal O3 Til	R3m	0.002704	0.016278	0.007618
29	0.163086	Ba2 O6 Ti2	Amm2	0.002827	0.002921	0.005437
28	0.163120	Bal O3 Til	R3m	0.002699	0.016083	0.007675
27	0.163405	Bal O3 Til	R3m	0.002681	0.015975	0.007887
25	0.163844	Bal O3 Til	R3m	0.002663	0.015968	0.008149
17	0.163934	Bal O3 Til	R3m	0.002649	0.015838	0.008251
24	0.164318	Bal O3 Til	R3m	0.002630	0.015253	0.008431
16	0.164382	Bal O3 Til	R3m	0.002639	0.015667	0.008449
18	0.164820	Bal O3 Til	R3m	0.002614	0.015019	0.008652
32	0.165866	Bal O3 Til	R3m	0.002599	0.014932	0.009055
3	0.165928	Bal O3 Til	P4mm	0.002610	0.015074	0.009552
9	0.166332	Bal O3 Til	P4mm	0.002616	0.015758	0.009675
4	0.167933	Bal O3 Til	Pmm2	0.002485	0.015098	0.009475
23	0.169423	Bal O3 Til	P4mm	0.002625	0.016343	0.010339
11	0.170190	Bal O3 Til	P4/mmm	0.002643	0.017426	0.010542
10	0.170190	Bal O3 Til	P4/mmm	0.002643	0.017426	0.010542
15	0.210176	Bal O3 Til	Pm-3m	0.004582	0.017209	0.013186
1	0.210176	Bal O3 Til	Pm-3m	0.004582	0.017209	0.013186
13	0.210176	Bal O3 Til	Pm-3m	0.004582	0.017209	0.013186
12	0.210176	Bal O3 Til	Pm-3m	0.004582	0.017209	0.013186
5	0.210176	Bal O3 Til	Pm-3m	0.004582	0.017209	0.013186
14	0.210176	Bal O3 Til	Pm-3m	0.004582	0.017209	0.013186
6	0.366657	Bal O3 Til	Pm-3m	0.005790	0.079941	0.012610
7	0.573221	Ba6 O18 Ti6	P6_3/mmc	0.006970	0.046913	0.004137
19	0.707676	Bal O3 Til	P4mm	0.004189	0.047858	0.248950

Example result of BaTiO3 nanoparticle heuristic- I

BaTiO₃ nanoparticle

• Heuristic I: BaTiO₃

27

- Heuristic 2: Ba-Ti-O
- Heuristic 3: Ba-Ti-O-*
- Heuristic 4: Ba-*-* or even *-*-*

Heuristic-I

Heuristic-I (search for $BaTiO_3$)

Candidate structures

Figures are from: Fujioka, J., et al. Scientific reports 5 (2015).

Lombardi, J., Yang, L., Pearsall, F.A., Farahmand, N., Gai, Z., Billinge, S. J., & O'Brien, S. P. (2019). Stoichiometric control over ferroic behavior in $Ba(Ti_{1},Fe_{2})O_{3}$ nanocrystals. Chemistry of Materials.

	No. R_w formula space		space_group	Ba_Uiso_r	O_U _{iso} _r	Ti_U _{iso} _r	
	20	0.143308	Ba2 O6 Ti2	Amm2	0.002085	0.018062	0.008006
	21	0.144425	Ba2 O6 Ti2	Amm2	0.002027	0.017803	0.008684
	22 0.1 26 0.1	0.145316	Ba2 O6 Ti2	Amm2	0.001999	0.017465	0.009089
		0.146433	Ba2 O6 Ti2	Amm2	0.001973	0.016756	0.009420
	30	0.148121	Ba2 O6 Ti2	Amm2	0.001957	0.017870	0.009978
	33	0.151343	Ba2 O6 Ti2	Amm2	0.002535	0.006989	0.008263
	2	0.155847	Bal O3 Til	P4mm	0.002735	0.011571	0.006421
	8	0.161942	Bal O3 Til	P4mm	0.002634	0.016226	0.008579
	0	0.161942	Bal O3 Til	P4mm	0.002634	0.016226	0.008579
	31	0.163028	Bal O3 Til	R3m	0.002704	0.016278	0.007618
	29	0.163086	Ba2 O6 Ti2	Amm2	0.002827	0.002921	0.005437
	28	0.163120	Bal O3 Til	R3m	0.002699	0.016083	0.007675
	27	0.163405	Bal O3 Ti1	R3m	0.002681	0.015975	0.007887
	25	0.163844	Bal O3 Til	R3m	0.002663	0.015968	0.008149
	17	0.163934	Bal O3 Til	R3m	0.002649	0.015838	0.008251
	24	0.164318	Bal O3 Til	R3m	0.002630	0.015253	0.008431
	16	0.164382	Bal O3 Til	R3m	0.002639	0.015667	0.008449
	18	0.164820	Bal O3 Til	R3m	0.002614	0.015019	0.008652
	32	0.165866	Bal O3 Til	R3m	0.002599	0.014932	0.009055
	3	0.165928	Bal O3 Til	P4mm	0.002610	0.015074	0.009552
	9	0.166332	Bal O3 Til	P4mm	0.002616	0.015758	0.009675
	4	0.167933	Bal O3 Til	Pmm2	0.002485	0.015098	0.009475
	23	0.169423	Bal O3 Til	P4mm	0.002625	0.016343	0.010339
	11	0.170190	Bal O3 Til	P4/mmm	0.002643	0.017426	0.010542
	10	0.170190	Bal O3 Til	P4/mmm	0.002643	0.017426	0.010542
	15	0.210176	Bal O3 Til	Pm-3m	0.004582	0.017209	0.013186
	1	0.210176	Bal O3 Til	Pm-3m	0.004582	0.017209	0.013186
	13	0.210176	Bal O3 Til	Pm-3m	0.004582	0.017209	0.013186
	12	0.210176	Bal O3 Til	Pm-3m	0.004582	0.017209	0.013186
	5	0.210176	Bal O3 Ti1	Pm-3m	0.004582	0.017209	0.013186
	14	0.210176	Bal O3 Ti1	Pm-3m	0.004582	0.017209	0.013186
	6	0.366657	Bal O3 Til	Pm-3m	0.005790	0.079941	0.012610
	7	0.573221	Ba6 O18 Ti6	P6_3/mmc	0.006970	0.046913	0.004137
	19	0.707676	Ba1 O3 Ti1	P4mm	0.004189	0.047858	0.248950

structure-mining finds them all. RHUDGHAU HTTP://thebillingegroup.com

- H-2 found all the structures that were found with H-I, as expected
- It additionally returned some oxygen deficient models
 - MPD No. 43 (BaTiO_{2.25})
 - MPD No. 44 (BaTiO_{2.67})
 - COD No. 4 (Ba_{0.92}Ti_{0.9}O_{2.89})
 - oxygen is most likely deficient in the nanoparticle samples, which was missed in the original structure refinements (Lombardi et al., 2019), but is suggested by the structure-mining.
- Models with stoichiometry far away from 1:1:3 results in poorer fit.

Heuristic-3 (Ba-Ti-O-*)

- Most of the best fit structures in H-3 have slightly worse Rw (~ 0.2) than those in heuristic-1 and 2 (~ 0.14).
- The new structures pulled are mostly Ba or Ti site doped by another element and they also have an approximate stoichiometry 113.

- The normal BaTiO3 perovskite structures are still ranked at the top.
- Following that, it additionally returns some perovskite structures that have Ti replaced with other species with similar x-ray scattering power to Ti, such as MPD No. 1660 (BaVO₃), MPD No. 1268 (BaMnO₃), and COD No. 683 (BaFeO₃). These gave agreements of $R_w \sim 0.2$ to 0.1433 for the best-fit structures (BaTiO₃).
- So the structure-mining is able to distinguish these nearby but incorrect structures from the ones with correct atom species.

Nanowire NaFeSi₂O₆

- A large amount of labor and time were spent to **manually** determine the structure of the pyroxene-type silicates with a generic composition of XYSi2O6 (wherein both 'X' = mono- or divalent metals and 'Y' = diva- lent or trivalent metals).
- The prior work found that the structure is most likely NaFeSi₂O₆ (s.g.: C 2/c).

Table S1: Information for all structures tested against the PDF data is tabulated. The results of the Pearson correlation calculation between model and experimental PDFs are shown. The most highly correlated model results are highlighted (red > orange).

	Composition		Composition	Name	Space group	Pearson
	Database	#				DM154_1
1	AMCSD	0009492	Na Sc Si2 O6	Jervisite	C 1 2/c 1	0.67
2	COD	9000393	Co2 (Si O4)	Co-olivine	Imma	0.19
3	COD	9005438	Na Fe Si2 O6	Aegirine	C 1 2/c 1	0.92
4	COD	9007046	Fe2 O4 Si	Fayalite	Pnma	0.23
5	ICSD	844	Fe2 (Si O4)	Spinel-Al2MgO4	Fd-3mS	0.17
6	ICSD	845	Co2 (Si O4)	Spinel-Al2MgO4	Fd-3mS	0.20
7	ICSD	4353	Fe2 Si O4	Olivine-Mg2SiO4	Pbnm	0.21
8	ICSD	4369	Na6 Fe (Al4 Si8 O26)	Naujakasite	C 1 2/m 1	-0.06
9	ICSD	6248	Co2 (Si O4)	Olivine-Mg2SiO4	Pbnm	0.23
10	ICSD	8132	Co2 Si O4	Mn2GeO4	lmma	0.19
11	ICSD	9362	Co3 O4	Spinel-Al2MgO4, reduced symmetry	F-43m	0.19
12	ICSD	9671	Na Fe Si2 O6	Pyroxene-CaMg(SiO3)2	C 1 2/c 1	0.92
13	ICSD	10480	Li Al5 O8	Spinel-LiFe5O8	P 43 3 2	-0.06
14	ICSD	15388	Na2 (Si O3)	Na2SiO3	C m c 21	-0.15
15	ICSD	17054	Co (Si O3)	Pyroxene-MgSiO3 (cobaltian)	Pbca	0.68
16	ICSD	34669	Na2 (Si2 O5)	Li2Si2O5	Pcnb	-0.02
17	ICSD	34688	Na2 (Si2 O5)	Na2Si2O5 (Natrosilite)	P 1 21/a 1	-0.04
18	ICSD	34950	Na2 Li Fe Si6 O15	Tuhualite (Emeleusite)	Acam	0.21
19	ICSD	41257	(Fe2.38 Co0.62 O4)	Spinel-Al2MgO4	Fd-3mS	0.21
20	ICSD	62594	Na4 (Si O4)	Na4SiO4	P-1	0.31
21	ICSD	64802	Fe1.58 (Si O4)	Laihunite 3M substructure	P 21/b 1 1	0.09
22	ICSD	66759	(Co Fe2) O4	CoFe2O4	R-3 m H	0.21
23	ICSD	68984	Na (Fe O2)	NaFeO2(beta)	Pn21a	0.17
24	ICSD	68985	Na0.975 (Fe0.975 Si0.025) O2	NaFeO2(beta)	Pn21a	0.24
25	ICSD	68986	Na0.95 (Fe0.95 Si0.05) O2	NaFeO2(beta)	Pn21a	0.17
26	ICSD	68987	Na0.925 (Fe0.925 Si0.075) O2	NaFeO2(beta)	Pn21a	0.17
27	ICSD	68988	Na0.9 (Fe0.9 Si0.1) O2	NaFeO2(beta)	Pn21a	0.16
28	ICSD	68989	K (Ga O2)	KAIO2	Pbca	0.29
29	ICSD	68990	Na0.895 (Fe0.905 Si0.095) O2	(NaFe)1-xSixO2	Pbca	0.42
30	ICSD	74640	Na2 (Si O3)	Na2SiO3	C m c 21	-0.13
31	ICSD	80378	Na2 (Si2 O5)	Epsilon sodium silicate	Pbc21	0.18
32	ICSD	81134	Na2 (Si3 O7)	Na2Si3O7(mS48)	C 1 2/c 1	0.14
33	ICSD	82410	Na2 Si (Si3 O9)		P 1 21/n 1	0.25
34	ICSD	84819	Na2 Co (Si4 O10)	KNaFeS14O10	P-1	0.41
35	ICSD	85551	Na8 Si (Si6 O18)		R-3 R	-0.04
36	ICSD	98551	(Co0.465 Fe0.535) (Co1.535 Fe0.465) O4	Spinel-Al2MaO4	Fd-3mZ	0.22
37	ICSD	98564	Na2 (Si2 O5)	Na2Si2O5(oP36)	Pn21a	0.23
38	ICSD	98710	Na2 (Si2 O5)		I 41/a Z	-0.08
39	ICSD	109044	Co Fe2 O4	Spinel-Al2MgO4	Fd-3mS	0.20
40	ICSD	154114	Na6 (Si8 O19)		P 1 21/c 1	0.08
41	ICSD	166645	Na0.628 ((Co0.97 Fe0.03) O2)	NaxCoO2	P 63/m m c	-0.17
42	ICSD	200805	K2 Na2 Fe2 (Si4 O10)2	KNaFeS14O10	P-1	0.02
43	ICSD	240870	K2 Na2 Fe2 (Si4 O10)2	KNaFeS14O10	P-1	0.53
44	ICSD	250222	K2 Na2 Fe2 (Si4 O10)2	KNaFeS14O10	P-1	0.21

Lewis, Crystal S., et al. "Synthesis, characterization, and growth mechanism of motifs of ultrathin cobalt-substituted NaFeSi2O6 nanowires." CrystEngComm 20. 2 (2018): 223-236.

- Structure-mining found the same model as in prior work, MPD No. 1003 (NaFeSi₂O₆) and COD No. 2983 (NaFeSi₂O₆), s.g.: C 2/c.
- It also returns some structures with space group C 2, such as MPD No. 998 (Na_{0.83}FeSi₂O₆), which may be viewed as a very similar structure but with a lowered symmetry and deficient atoms at some sites
- It also returns some structures substituting at Na or Fe sites by other elements. For example, MPD No. 1021 (NaGaSi₂O₆).

Heuristic-4 (*-*-Si-O)

MPD

COD

					COD			
No.	R_w	formula	space_group	No.	R_w	formula	space_group	
1021	0.341109	Ga2 Na2 O12 Si4	C2/c	709	0.344690	Ga4 Na4 O24 Si8	C2/c	
377	0.349254	Ca1 Ni2 O12 Si4	C2	2935	0.344690	Ga4 Na4 O24 Si8	C2/c	
294	0.352749	Cal Co2 O12 Si4	C2	2809	0.344713	Ga4 Na4 O24 Si8	C2/c	
658	0.356962	Cr2 Na2 O12 Si4	C2/c	2810	0.345004	Ga4 Na4 O24 Si8	C2/c	
998	0.361981	Fe6 Na5 O36 Si12	C2	2811	0.345617	Ga4 Na4 O24 Si8	C2/c	
360	0.362239	Ca1 Mn2 O12 Si4	C2	2813	0.345751	Ga4 Na4 O24 Si8	C2/c	
1003	0.364362	Fe2 Na2 O12 Si4	C2/c	2812	0.345756	Ga4 Na4 O24 Si8	C2/c	
322	0.364513	Ca1 Fe2 O12 Si4	C2	2983	0.347616	Fe4 Na4 O24 Si8	C2/c	
999	0.380528	Fe2 Na1 O12 Si4	C2	2513	0.348362	Fe4 Na4 O24 Si8	C2/c	
1600	0.385671	Na2 O12 Si4 V2	C2/c	2512	0.350588	Fe4 Na4 O24 Si8	C2/c	
			*					

PDF in the cloud

What would a machine-readable journal look like?

- It would look like a database!
- Why do we need it, don't we already have databases?
- We do, but they are limited (and despite their limitations, they are so powerful!)
- Imagine if every table in every paper in the literature could be read (and understood) by a computer
- And if every plot could be viewed (in .pdf or .png format) by a human, but the data and plot metadata (so it knows what it is a plot of) could be read by a machine
- We could do so much more science!

Proposal

- IUCr has a tradition of taking the lead in scientific computing and scientific information science (CIF!)
- Let's do it again!
- Prototype a machine-readable journal in the IUCr family
- There are many hurdles, including some we don't know about yet, but if we don't start the journey we will never get there.

Random thoughts I: How do we get there

- I. Database infrastructure
- 2. Schema that will grow, mechanism to grow it
- 3. REST-API
- 4. Browser access
- 5. Load all the IUCr back-catalog of cifs in there, or partner with databases to pull from them?
- 6. Infrastructure to deliver cif data as documents (e.g., json)
- 7. Infrastructure to capture usage

Vision: Raw data, tables and figures available through the API

- Create an infrastructure that
 - Makes it easy to upload crystallographic structure factors and measured intensity data
 - Creates tables from data in different forms (excel spreadsheets, web-forms, python pandas dataframes or numpy arrays)
 - Similarly for figures
 - Metadata schema to capture as much information about the experiments/calculations as possible
 - Access to these through the API

Finally, let's return to the 3 pillars

I. Disclosure

- Creating an environment where people freely share (disclose) their ideas
 - Citations

2. Qualitation

- (needed an English word for the act of assuring quality, sorry)
- Ensuring some level of quality of the
 - peer review
 - reproducibility of work)

3. Curation

- Two aspects to this
 - Persistence of the information
 - Access to the information

How would HMR literature impact these?

It will be disruptive, can we make it positively disruptive?

- Disclosure
 - Incentives to share data:
 - Citecoin? Get citecoin when someone pulls yo
 - Incentives to take the effort to put data into standard form:
 - Tools that make it easier (lower the cost)
- Qualitation
 - Much more validation on data because it is much easier to do on standardized data!
 - Easier to detect plagiarism and fraud? Use ML to flag suspicious data?
 - Capture the raw data, analyzed data, and the analysis

Data analysis/modeling as pipes

Data as streams through those pipes

Take inspiration from the Open Source Software community

- They have largely solved the problem of maintaining integrity of codes that are developed over time by large groups of people
 - Versioning software now very sophisticated (Git)
 - Workflow software and workflows now sophisticated (GitHub, release management, continuous integration)

- Save pipeline in a database with a uuid
- Users can search for this and pull it from the db and rebuild it using properties of CI
- Users can adapt it then resave it to the database (with a NEW uuid)

- Analyses can be "published" by linking a doi to the uuid
- (uuid is universal unique ID)

xpdAn/xpdtools

Acknowledgements

- A special thank you to all my current and former students and post-docs
- Also my many wonderful collaborators, mentioned during the talk
- Facilities:
 - APS, CHESS, NSLS, NSLS-II (and people therein)
 - MLNSC, ISIS, SNS (and people therein)
- Funding: DOE-BES and NSF-DMR

