Validation: Understanding CheckCIF for small molecules

Larry R. Falvello Universidad de Zaragoza – CSIC Departamento de Química Inorgánica e ICMA Pedro Cerbuna 12 50009 Zaragoza falvello@unizar.es

AICS2019 - Crystallographic Information Fiesta 1 September, 2019

www.chemcrystal.org

Summary

Validation: Understanding CheckCIF for small molecules

A brief description of the historical background of, and motivation for, small-molecule structure validation is used to introduce the logical structure of CheckCIF and the categories of tests that it conducts. The corresponding categories of alerts are presented, and examples are given of selected alerts and appropriate actions in response to those alerts. Emphasis is placed throughout on the main issues addressed by CheckCIF:

- - Completeness and self-consistency of the data provided in the CIF;
- - Detection of errors or important deficiencies in the structure analysis;
- - Estimation of the quality of the structure analysis.

The presentation concludes with a suggested strategy for practical and efficient use of structure validation in a small-molecule crystal structure analysis.

Historical Background

Some information on early thoughts is given here: Commission on Crystallographic Teaching International Union of Crystallography Newsletter No. 2, November 2007

https://www.iucr.org/resources/commissions/crystallographic-teaching/newsletters/2

The History of the ORTEP of the Year ("OOTY") Award Richard L. Harlow

'I found that the most common point of interest (among chemists at Dupont) was around the issue of how a chemist could tell a reliable crystal structure from an incorrect one,....'

Troublesome Crystal Structures: Prevention, Detection, and Resolution. Richard L. Harlow. J. Res. Natl. Inst. Stand. Technol. 101, 327-339 (1996)

Crystallographic Data Validation – Ten Years On Anthony Linden

'The validation of crystal structures became a formal procedure in late 1997 with the introduction of the *checkCIF* software by the *IUCr* journals. This was an initiative of Syd Hall who was Section Editor of *Acta Crystallographica Section C* at the time. Together with Mike Hoyland of the *IUCr* Chester office and Ton Spek from Utrecht University, author of *PLATON*, the Chester *checkCIF* suite was developed and augmented with additional tests incorporated in *PLATON*.'

Historical Background

The ORTEP of the Year Award was first inspired by the structure analysis represented in the drawing. An important feature of this drawing, which indicates that something is likely to be wrong, is the diversity of displacement parameters.

Motivation for Small-Molecule Structure Validation

To ease the load on the human operator. Structure determination has become much more rapid than it was a half- or quarter-century ago. The number of structure analyses that can be done in a given time by one operator is usually more than one person can validate.

To improve the efficiency of the crystal-structure-determination process as a whole. If the laborious aspects of results-checking can be automated, the operator will be free to concentrate on those parts of the procedure that need human intervention – such as interpreting the chemical implications of the results.

To assist those users who have not had detailed crystallographic training. Advances in hardware and software have brought accurate crystal structure determination to within reach of a large and growing number of scientists whose expertise lies in other areas, such as synthetic chemistry. Structure validation can assist in identifying potential problems in the results of a structure analysis, in some cases even when the primary quality indicators (R-factors) do not signal a problem.

Computerized structure validation can be viewed as a tool that **partially** automates an important part of crystal structure analysis, namely quality control.

Note that structure validation can be useful at any stage of a structure analysis.

Running CheckCIF

You can get to the CheckCIF web page through your favorite search engine.

0	checkcif						
v	Neb	Images	Video	News	More ~	Anytime ~	

Also try: iucr checkcif, checkcif full, platon checkcif, checkcif file

(IUCr) checkCIF

checkcif.iucr.org 🗸

checkCIF: checkCIF is sponsored by: A service of the International Union of Crystallography: checkCIF reports on the consistency and integrity of crystal structure determinations reported in CIF format. Please upload your CIF using the form below.

(IUCr) IUCr Journals - details of checkCIF/PLATON tests for ...

journals.iucr.org/services/cif/checkcif.html 🗸

Crystallography and related science Journals Online. checkCIF/PLATON (full publication check) Please upload your CIF using the form below.

(IUCr) checkCIF/PLATON report

checkcif.iucr.org/help.html v

checkCIF/PLATON reports: checkCIF is sponsored by checkCIF reports on the consistency and integrity of crystal structure determinations reported in CIF format. The following information is organized in question-and-answer format.

Running CheckCIF

A service of the International Union of Crystallography

checkCIF reports on the consistency and integrity of crystal structure determinations reported in CIF format.

Please upload your CIF using the form below. 🕖

File name: Seleccionar archivo Ningún archivo seleccionado

Select form of checkCIF report HTML
PDF

PDF (recommended for CIFs that might take a long time to check)

Select validation type

Full validation of CIF and structure factors

Full IUCr publication validation of CIF and structure factors

Validation of CIF only (no structure factors)

Output Validation Response Form

- Level A alerts only
- Level A and B alerts
- Level A, B and C alerts

None

Send CIF for checking

Information about this version of checkCIF ...

Useful links

Prepublication check for submissions to IUCr journals Details of checkCIF/PLATON tests CIF dictionary Download CIF editor (publCIF) from the IUCr Download CIF editor (enCIFer) from the CCDC

What it is based on

Small-molecule structure validation is based conceptually on three questions:

- Is the structure analysis correct?
- What is the quality of the structure analysis?
- Is the information provided complete and self-consistent?

The quality of a crystal structure analysis, reflected in the answers to the first two questions, can be classified within one of four groups:

- "Class I:" High-quality analyses from near-ideal crystals with diffraction measured under optimal experimental conditions such as low temperature and high resolution.
- "Class II:" "Good" structure determinations obtained under routine conditions but not the highest attainable quality. This could include room-temperature studies or analyses from large, irregularly shaped highly absorbing samples, or unusually rapid data collection.
- "Class III:" These are "poor quality" analyses which are nevertheless correct for the purposes of the study. The quality issues could arise from incomplete data, bad crystal quality, or a modelling problem such as severe disorder.
- "Class IV:" These are analyses that are incorrect in a manner relevant to the conclusions drawn from them. A bad element assignment, or an incorrect hybridization for a carbon atom (reflected in the number of hydrogen atoms bonded to it) may originate such results.

What it is based on

Small-molecule structure validation is based conceptually on three questions:

- Is the structure analysis correct?
- What is the quality of the structure analysis?
- Is the information provided complete and self-consistent?

(continued from previous slide)

For the third question – about complete and self-consistent data – a checklist is used to perform tests for this.

For the first two questions – is the analysis correct and what is its quality? – it is not possible to invoke a set of rigorous, objective , computer-ready tests for classifying a structure analysis into one of the four classes.

Instead, for CheckCIF/PLATON a set of tests has been devised which produce their corresponding alerts when the software detects a condition that may need user intervention. In this sense, CheckCIF/PLATON is informative and the user is responsible for evaluating the structure analysis in the light of the alerts and for taking any corrective action necessary. In some cases all that is needed is further explanation in the CIF or journal article.

CheckCIF/PLATON tests -- overview

Note. Small molecule structure validation, as presently implemented, is closely tied to the use of CIF for reporting the results of structure analyses. CIF as a standard for communicating the results of structure determinations, has been a strong enabling factor in the development of CheckCIF and in its facile implementation and use throughout the scientific community.

In the absence of clear, objective, programmable criteria for classifying structure analyses into the four quality categories given earlier, validation in CheckCIF/PLATON conducts a large number of tests, which can produce ALERTS that fall into one of four classes, depending on the potential severity of the condition that causes the alert. The validation criteria have evolved with time, and are in general based on knowledge, experience and current best practices.

Now that most CIF produced by structure refinement programs also contain the reflection data, CheckCIF/PLATON can perform very useful tests using the data, such as a test for twinning.

CheckCIF/PLATON tests -- overview

There are four general types of validation test, and there are alerts of four levels of possible severity.

Classes of validation test [verbatim, from Spek (2009)]:

- 1. Missing or inconsistent data.
- 2. Indicators that the structure model may be wrong or deficient.
- 3. Indicators that the quality of the results of the study may be low.
- 4. Cosmetic improvements, queries and suggestions.

Levels of alert (verbatim, from the code):

ALERT_Level_A = Could Indicate a Serious Problem - Consider Carefully. # ALERT_Level_B = Might Indicate a Potentially Serious Problem. # ALERT_Level_C = Check to Ensure it is OK and not Because of an Oversight. # ALERT_Level_C = Concral Info. Check that it is not Something Unexpected.

ALERT_Level_G = General Info. Check that it is not Something Unexpected.

CheckCIF/PLATON tests -- overview

Summarizing: We cannot (yet) program a good, objective set of criteria for classifying structures into the four quality classes that we have defined. But we do have a large number of tests that can reveal localized problems with the results as well as more subtle defects that may be identified through combinations of alerts.

In addition, a computerized checklist is used to test whether the reported results are complete and self-consistent.

Levels of alert (verbatim, from the code): # ALERT_Level_A = Could Indicate a Serious Problem - Consider Carefully. # ALERT_Level_B = Might Indicate a Potentially Serious Problem. # ALERT_Level_C = Check to Ensure it is OK and not Because of an Oversight. # ALERT_Level_G = General Info. Check that it is not Something Unexpected.

Today's CheckCIF Tests

- # Tests are identified with three-digit numbers
- # _0xx general
- # _1xx cell/symmetry
- # _2xx adp-related
- # _3xx intra geometry
- # _4xx inter geometry
- # _5xx coordination geometry
- # _6xx void tests & varia
- # _7xx varia
- # _8xx (Fatal) Software Errors/Problems
- # _9xx Reflection data issues

Sum formula

C21 H25 Cu N2 O3

[(E)-2-({[2-(diethylamino)ethyl]imino}methyl)phenolato- κ^3 N,N',O](2-phenylacetato- κ^2 O,O')copper(II), [Cu(C₈H₇O₂)(C₁₃H₁₉N₂O)], **2**

In many cases these issues arise before publication and are corrected by the time the structure is published. In this case the published structure is correct.

Acta Cryst. (2019) **C75,** 538-544. doi: 10.1107/S2053229619003267 The crystal and molecular structures of three copper-containing complexes and their activities in mimicking galactose oxidase.

Kahn, M. L., Sutter, J.-P., Golhen, S., Guionneau, P., Ouahab,, L., Kahn, O. & Chasseau, D. Systematic Investigation of the Nature of The Coupling between a Ln(III) Ion (Ln) Ce(III) to Dy(III)) and Its Aminoxyl Radical Ligands. Structural and Magnetic Characteristics of a Series of {Ln(organic radical)₂} Compounds and the Related {Ln(Nitrone)₂} Derivatives J. Am. Chem. Soc. (2000) **122**, 3413-3421.

CheckCIF indicates that something is wrong.

Alert level A

LABEL01_ALERT_1_A An _atom_site_label occurs more than once in the atom list. H9D LABEL01_ALERT_1_A An _atom_site_label occurs more than once in the atom list. H9E LABEL01 ALERT 1 A An atom site label occurs more than once in the atom list. H9F And 2 other PLAT070 Alerts More ... PLAT211 ALERT 2 A ADP of Atom N13 is N.P.D. or (nearly) 2D . Please Check PLAT211 ALERT 2 A ADP of Atom C2 is N.P.D. or (nearly) 2D . Please Check PLAT211 ALERT 2 A ADP of Atom C4 is N.P.D. or (nearly) 2D . Please Check PLAT211 ALERT 2 A ADP of Atom C8 is N.P.D. or (nearly) 2D . Please Check PLAT211 ALERT 2 A ADP of Atom C10 is N.P.D. or (nearly) 2D . Please Check PLAT211 ALERT 2 A ADP of Atom C11 is N.P.D. or (nearly) 2D . Please Check PLAT211 ALERT 2 A ADP of Atom C13 is N.P.D. or (nearly) 2D . Please Check PLAT211 ALERT 2 A ADP of Atom C17 is N.P.D. or (nearly) 2D . Please Check PLAT211_ALERT_2_A ADP of Atom N101 is N.P.D. or (nearly) 2D . Please Check PLAT211 ALERT 2 A ADP of Atom N105 is N.P.D. or (nearly) 2D . Please Check PLAT211 ALERT 2 A ADP of Atom N108 is N.P.D. or (nearly) 2D . Please Check PLAT211_ALERT_2_A ADP of Atom N111 is N.P.D. or (nearly) 2D . Please Check PLAT211 ALERT 2 A ADP of Atom N112 is N.P.D. or (nearly) 2D . Please Check PLAT211 ALERT 2 A ADP of Atom C101 is N.P.D. or (nearly) 2D . Please Check PLAT211 ALERT 2 A ADP of Atom C105 is N.P.D. or (nearly) 2D . Please Check PLAT211 ALERT 2 A ADP of Atom C115 is N.P.D. or (nearly) 2D . Please Check PLAT211 ALERT 2 A ADP of Atom C117 is N.P.D. or (nearly) 2D . Please Check PLAT213 ALERT 2 A Atom O5 has ADP max/min Ratio 7.4 oblate PLAT213 ALERT 2 A Atom N5 has ADP max/min Ratio 7.5 oblate PLAT213 ALERT 2 A Atom C7 has ADP max/min Ratio 5.5 oblate PLAT213 ALERT 2 A Atom N106 has ADP max/min Ratio 7.0 prolat PLAT213 ALERT 2 A Atom N113 has ADP max/min Ratio 8.5 prolat PLAT213 ALERT 2 A Atom C112 has ADP max/min Ratio 7.9 prolat PLAT213 ALERT 2 A Atom C116 has ADP max/min Ratio 5.4 oblate

J. Am. Chem. Soc. (2000) **122**, 3413-3421.

CheckCIF indicates that something is wrong.

Alert level B

PLAT029_ALERT_3_B_diffrn_measured_fraction_theta_full value Low . 0.952 Why? PLAT111_ALERT_2_B ADDSYM Detects New (Pseudo) Centre of Symmetry . 100 %Fit PLAT113_ALERT_2_B ADDSYM Suggests Possible Pseudo/New Space Group P-1 Check PLAT213_ALERT_2_B Atom O6 has ADP max/min Ratio 4.6 oblate

And 3 other PLAT213 Alerts Less ...

PLAT213_ALERT_2_B Atom N4 has ADP max/min Ratio 4.4 oblate PLAT213_ALERT_2_B Atom C110 has ADP max/min Ratio 4.4 prolat PLAT213_ALERT_2_B Atom C111 has ADP max/min Ratio 4.7 prolat PLAT220_ALERT_2_B Non-Solvent Resd 2 C Ueq(max)/Ueq(min) Range 8.4 Ratio PLAT234_ALERT_4_B Large Hirshfeld Difference O5 --N11 . 0.26 Ang.

And 2 other PLAT234 Alerts More ...

PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of C110 Check PLAT342_ALERT_3_B Low Bond Precision on C-C Bonds 0.0395 Ang. PLAT369_ALERT_2_B Long C(sp2)-C(sp2) Bond C114 - C115 . 1.61 Ang. Here, among lots of alerts related to the displacement parameters, is the alert about higher symmetry.

... and lots of C-level alerts involving the displacement parameters.

J. Am. Chem. Soc. (2000) 122, 3413-3421.

CheckCIF indicates that something is wrong.

There are alerts at every level related to the displacement parameters.

Alert level C

SHFSU01 ALERT 2 C The absolute value of parameter shift to su ratio > 0.05 Absolute value of the parameter shift to su ratio given 0.091 Additional refinement cycles may be required. PLAT036 ALERT 1 C No s.u. Given for Flack Parameter Please Do ! PLAT052 ALERT 1 C Info on Absorption Correction Method Not Given Please Do ! PLAT080 ALERT 2 C Maximum Shift/Error 0.09 Why ? PLAT090 ALERT 3 C Poor Data / Parameter Ratio (Zmax > 18) 6.72 Note PLAT213 ALERT 2 C Atom O11 has ADP max/min Ratio 3.2 oblate And 12 other PLAT213 Alerts More PLAT220 ALERT 2 C Non-Solvent Resd 1 C Ueg(max)/Ueg(min) Range 4.0 Ratio And 2 other PLAT220 Alerts More ... PLAT222 ALERT 3 C Non-Solv. Resd 1 H Uiso(max)/Uiso(min) Range 4.3 Ratio PLAT222 ALERT 3 C Non-Solv. Resd 2 H Uiso(max)/Uiso(min) Range 6.4 Ratio PLAT230 ALERT 2 C Hirshfeld Test Diff for O12 -- N13 . 5.5 s.u. PLAT234 ALERT 4 C Large Hirshfeld Difference Pr2 -- 012 . 0.20 Ana. And 26 other PLAT234 Alerts More ... PLAT241 ALERT 2 C High 'MainMol' Ueg as Compared to Neighbors of O1 Check And 5 other PLAT241 Alerts More ... PLAT242 ALERT 2 C Low 'MainMol' Ueq as Compared to Neighbors of Pr2 Check And 7 other PLAT242 Alerts

J. Am. Chem. Soc. (2000) 122, 3413-3421.

All the evidence leads us to the conclusion that we have higher symmetry. We can solve the structure again using space group P(-1), or we can ask Platon to make the change for us (ADDSYM function).

Cell Lattice a b С Alpha Beta Gamma Volume CrystalSystem Laue Input aP 10.199 10.630 14.062 82.49 69.36 83.35 1410 triclinic -1 Reduced P 10.199 10.630 14.062 82.49 69.36 83.35 1410 Convent aP 10.199 10.630 14.062 82.49 69.36 83.35 1410 triclinic -1 Page "Pr(Nitrone" PLATON-ADDSYM 3 _____ Conventional, New or Pseudo Symmetry Space Group H-M: P-1 Laue: -1 Space Group Hall: -P 1 [Schoenflies: Ci^1] Lattice Type: aP, Centric, And if we use ADDSYM-Triclinic, Multiplicity: 2(1), No: 2 Nr ***** Symmetry Operation(s) ***** SHX, Platon will write a 1 х, Υ, Shelx-style .res file with a z 2 - X . -Y, - z model based on the new :: Origin Shifted to: 0.1919, 0.1874, 0.2457 after Transformation space group. $(1.0000 \ 0.0000 \ 0.0000) \ (-0.1919)$:: :: R/t for Coordinates (0.0000 1.0000 0.0000) (-0.1874) :: $(0.0000 \ 0.0000 \ 1.0000) \ (-0.2457)$ Symmetry Elements Preceded by an Asterisk are New and Indicate :: -:: Missed/Pseudosymmetry .:: - Proposed Inversion or (Glide) Planes do NOT Apply for Chiral Molecules. :: :: - Glide Plane Codes are with Reference to the Input Cell !! P! Pr(NitronP1 aP=>aP 1.0 0.000 0.00 0.500 1.00 100% P-1

Missed symmetry example; displacement and geometry

Kahn, M. L., Sutter, J.-P., Golhen, S., Guionneau, P., Ouahab,, L., Kahn, O. & Chasseau, D. *J. Am. Chem. Soc.* (2000) **122**, 9566. New description in the centric group P(-1).

Overlay of the molecule from the new P(-1) refinement (pink) with molecule 1 (left) and molecule 2 (right) of the original P1 refinement (green).

This is much better.

Missed symmetry example; displacement and geometry

Kahn, M. L., Sutter, J.-P., Golhen, S., Guionneau, P., Ouahab,, L., Kahn, O. & Chasseau, D. *J. Am. Chem. Soc.* (2000) **122**, 9566. New description in the centric group P(-1).

This is much better.

Alert level A

EXPT005_ALERT_1_A _exptl_crystal_description is missing Crystal habit description. The following tests will not be performed. CRYSR_01 DIFF003_ALERT_1_A _diffrn_measurement_device_type is missing Diffractometer make and type. Replaces _diffrn_measurement_type. PLAT183_ALERT_1_A Missing _cell_measurement_refins_used Value Please Do ! PLAT184_ALERT_1_A Missing _cell_measurement_theta_min Value Please Do ! PLAT185_ALERT_1_A Missing _cell_measurement_theta_max Value Please Do !

Alert level B

PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full value Low . 0.952 Why?

Alert level C

PLAT052_ALERT_1_C Info on Ab	sorption Correction Method	Not Given	Please Do !			
PLAT213_ALERT_2_C Atom C91	has ADP max/min F	latio	3.1 prolat			
PLAT232_ALERT_2_C Hirshfeld	Fest Diff (M-X) Pr1O63	3.5.5	s.u.			
PLAT241_ALERT_2_C High 'Ma	inMol' Ueq as Compared to N	leighbors of	058 Check			
PLAT241_ALERT_2_C High 'Ma	inMol' Ueq as Compared to N	leighbors of	072 Check			
PLAT242_ALERT_2_C Low 'Ma	inMol' Ueq as Compared to I	leighbors of	Pr1 Check			
And 3 other PLAT242 Alerts						

More ...

PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds 0.0085 Ang.

Alert level G

PLAT005 ALERT 5 G No Embedded Refinement Details Found in the CIF Please Do ! PLAT066 ALERT 1 G Predicted and Reported Tmin&Tmax Range Identical ? Check PLAT093_ALERT_1_G No s.u.'s on H-positions, Refinement Reported as mixed Check PLAT154_ALERT_1_G The s.u.'s on the Cell Angles are Equal ..(Note) 0.01 Degree PLAT199 ALERT 1 G Reported cell measurement temperature (K) 293 Check PLAT200_ALERT_1_G Reported __diffrn_ambient_temperature (K) 293 Check PLAT232 ALERT 2 G Hirshfeld Test Diff (M-X) Pr1 --089 8.5 s.u. PLAT794 ALERT 5 G Tentative Bond Valency for Pr1 (III)3.91 Info PLAT899 ALERT 4 G SHELXL97 is Deprecated and Succeeded by SHELXL 2018 Note

Azumaya, I., Kagechika, H., Yamaguchi, K. & Shudo, K. (1995). *Tetrahedron* **51**, 5277-5290. The structure in question is compound **6**. CSD refcode ZEMKIL.

	space group	<i>a,</i> Å	<i>b,</i> Å	<i>c,</i> Å	<i>V</i> , A ³	z	R
$C_{33}H_{33}N_3O_3$	Pbca	17.862 (1)	17.863 (1)	17.816 (1)	5684 (2)	8	0.067

The molecule looks like it has a threefold symmetry axis.

Herbstein, F. H. (1999). *Acta Cryst.* **C55**, 1196. doi: 10.1107/S0108270198013924

Please Do L

Please Add

Alert level A EXPT005_ALERT_1_A _exptl_crystal_description is missing Crystal habit description. The following tests will not be performed. CRYSR 01 DIFF003 ALERT 1 A diffrn measurement device type is missing Diffractometer make and type. Replaces _diffrn_measurement_type. ATOM007_ALERT_1_A _atom_site_aniso_label is missing Unique label identifying the atom site. GEOM001_ALERT_1_A _geom_bond_atom_site_label_1 is missing Label identifying the atom site 1. GEOM002_ALERT_1_A _geom_bond_atom_site_label_2 is missing Label identifying the atom site 2. GEOM003_ALERT_1_A __geom_bond_distance is missing Distance between atom sites 1 and 2. GEOM006_ALERT_1_A _geom_angle_atom_site_label_2 is missing Label identifying the atom site 2. GEOM007_ALERT_1_A _geom_angle_atom_site_label_3 is missing Label identifying the atom site 3. PLAT029 ALERT 3 A diffrn measured fraction theta full value Low . 0.000 Why? PLAT043 ALERT 1 A Calculated and Reported Mol. Weight Differ by ... 519.62 Check PLAT046 ALERT 1 A Reported Z, MW and D(calc) are Inconsistent 0.000 Check PLAT183_ALERT_1_A Missing _cell_measurement_refins_used Value Please Do ! PLAT184 ALERT 1 A Missing cell measurement theta min Value Please Do 1 PLAT185_ALERT_1_A Missing _cell_measurement_theta_max Value PLAT197_ALERT_1_A Missing _cell_measurement_temperature Datum PLAT198 ALERT 1 A Missing diffrn ambient temperature Datum Please Add PLAT201_ALERT_2_A Isotropic non-H Atoms in Main Residue(s) 39 Report 01 02 03 N1 N2 N3 etc. PLAT880_ALERT_1_A NO datum for _diffrn_reflns_number Please Do ! PLAT881 ALERT 1 A No Datum for diffrn refins av R equivalents ... Please Do !

Please note: When you use an old CIF, for example for a structure retrieved from the CSD, there may be a lot of information lacking in the CIF.

The alerts that are generated as a result of that, in this case, are not important.

We are interested in knowing about the symmetry.

No A-level alerts about symmetry!

Alert level B

PLAT112_ALERT_2_B ADDSYM Detects New (Pseudo) Symm. Elem 3 And 3 other PLAT112 Alerts 100 %Fit

Here it is!

More ... PLAT113_ALERT_2_B ADDSYM Suggests Possible Pseudo/New Space Group Pa-3 Check PLAT391_ALERT_3_B Deviating Methyl C24 H-C-H Bond Angle 100 Degree PLAT391_ALERT_3_B Deviating Methyl C33 H-C-H Bond Angle 98 Degree

Alert level C

PLAT151_ALERT_1_C No s.u. (esd) Given on Volume	Please Do !							
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds	0.0043 Ang.							
PLAT351_ALERT_3_C Long C-H (X0.96,N1.08A) C12 - H8 .	1.11 Ang.							
PLAT351_ALERT_3_C Long C-H (X0.96,N1.08A) C22 - H19 .	1.11 Ang.							
PLAT390_ALERT_3_C Deviating Methyl C15 X-C-H Bond Angle	116 Degree							
And 2 other PLAT390 Alerts								
Mana								

More ...

Alert level G

 PLAT005_ALERT_5_G No Embedded Refinement Details Found in the CIF
 Please Do !

 PLAT808_ALERT_5_G No Parseable SHELXL Style Weighting Scheme Found
 Please Check

 PLAT882_ALERT_1_G No Datum for _diffrn_refIns_av_unetI/netI
 Please Do !

 PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .
 Please Do !

 PLAT981_ALERT_1_G No non-zero f" Anomalous Scattering Values Found
 Please Check

 PLAT986_ALERT_1_G No non-zero f' Anomalous Scattering Values Found
 Please Check

For more recent structures, the CIF will have the diffraction data embedded within. So it would be possible for you to re-refine the structure in the new space group. For an older structure like this one, the reflection data are not present.

	space group	<i>a,</i> Å	<i>b,</i> Å	<i>c,</i> Å	<i>V</i> , A ³	z	R
$C_{33}H_{33}N_3O_3$	Pbca	17.862 (1)	17.863 (1)	17.816 (1)	5684 (2)	8	0.067
	Pa(-3)	17.862 (1)				8	

•						The mole crystallog The multi group Pa(gives Z = 8	cule raph plicit -3) is 8.	lies on a ic symm y of the 24, so t	site of etry 3. space this
		space group	<i>a,</i> Å	<i>b,</i> Å	<i>c,</i> Å	<i>V</i> , A ³	z	R	
	C ₃₃ H ₃₃ N ₃ O ₃	Pbca	17.862 (1)	17.863 (1)	17.816 (1)	5684 (2)	8	0.067	
		Pa(-3)	17.862 (1)				8		

2,6-dimethylphenylisocyanide, CNXyl

Ref.		space group	α, Å / α (°)	<i>b,</i> Å / β(°)	c, Å / γ(°)	<i>V</i> , A ³	Z	R
[1]	C ₉ H ₉ N	P(-1)	7.551 (1) 83.39 (2)	8.888 (2) 72.87 (1)	12.820 (2) 64.87 (1)	744.3 (2)	4	0.0621
	Platon	12/a	14.580 89.99	7.551 113.41	14.735 90.00	1489	8	
[2]	C ₉ H ₉ N	12/a	14.5535 (6) 90	7.5199 (2) 113.548 (5)	14.6333 (7) 90	1468.12 (11)	8	0.0397

[1] Mathieson, T., Schier, A. & Schmidbaur, H. (2001). J. Chem. Soc., Dalton Trans. pp. 1196 – 1200. doi: 10.1039/b100117p Deposition CCDC 155748. Refcode EBONAK.

[2] Brennessel, W. W., Kucera, B. E., Young, V. G. Jr., Ellis, J. E. (2019). Acta Cryst. C75.

ADDSYM - CHECK (cf. MISSYM (C): Le Page, Y., J. Appl. Cryst. (1987), 20, 264-269; J. Appl. Cryst. (1988), 21, 983-984) _____ - ADDSYM Search on ALL NON-H Chemical Types [Max NonFit 20 Perc] - Number of Input Atoms Included in Search 20 (Unitcell 40) - Density based on Input Atom Set = 1.170 g.cm-3 - Vol / Non-H atom = 18.6 Ang+3 - The Structure Implies the Following Symmetry Elements Subject to the Criteria: - Criteria 1.00 Deg (Metric), 0.25 Ang (Rot), 0.45 Ang (Inv), 0.45 Ang (Transl) Symm. Input Reduced (Ang) (Deg) Perc AvrDev.(Ang) Input Cell Elem Cell_Row Cell_Row d Typ Dot Angle Fit MaxDev. x y z n * [100] [100] 7.55 2 2 0.01 100 0.005 Through 1/4 0 0 C7 -C9 0.008 Glide 1/2 1/2 1/2 [1 0-2] 24.50 2 2 0.66 Metric [-1 2 0] 16.09 2 2 0.66 Metric 0 0 at 0 0 -1 T.R.A.N.S.F.O.R.M.A.T.I.O.N M.A.T.R.I.X for CELL and HKL DATA Reduced->Convent Input->Reduced T = Input->Convent: a' = T a -1) (-1 0 0) (1 -1 -1) 0 1 Det(T) $0 \quad 0 \quad X \quad (\quad 0 \quad -1 \quad 0 \quad) = ($ -1 1 0 0) = -1 1 1) (-1 0 1) (0 -1 1) (2.000 b c Alpha Beta Gamma Volume CrystalSystem Laue Cell Lattice a Input aP 7.551 8.888 12.820 83.39 72.87 64.87 744 triclinic -1 Reduced P 7.551 8.888 12.820 82.24 72.87 64.87 744 Convent mI 14.580 7.551 14.735 89.99 113.41 90.00 1489 monoclinic 2/m :: Cell Angles differ 0.01 Deg. from (90/120) "EBONAK" PLATON-ADDSYM Page з

Missed symmetry example - 3

Green: EBONAK Red: Brennessel *et al.*

The results of the two analyses overlap very well.

[1] Mathieson, T., Schier, A. & Schmidbaur, H. (2001). J. Chem. Soc., Dalton Trans. pp. 1196 – 1200. doi: 10.1039/b100117p Deposition CCDC 155748. Refcode EBONAK.

[2] Brennessel, W. W., Kucera, B. E., Young, V. G. Jr., Ellis, J. E. (2019). Acta Cryst. C75.

CheckCIF as an aid during structure solution and refinement

Design and synthesis of methyl 2-{[4-phenyl-5-(pyridin-2-yl)-4H-1,2,4-triazol-3 yl]sulfanyl}acetate (phpy2NS) as ligand for complexes of Group 12 elements: structural assessment and hydrogen-bonded supramolecular assembly analysis Alfonso Castiñeiras, Isabel García-Santos and Manuel Saa (2019). Acta Cryst. C75, 891-903. doi: 10.1107/S205322961900682X

From the preparation, it was expected to be a Cd compound – no other d-block element.

Cd model – displacement parameters

Refinement In	dicators
---------------	----------

	0.0000	R1(all data)	0.0919
wR2	0.1817	GooF	1.0520
GooF(restr)	1.0520	Highest peak	1.7000
Deepest hole	-5.9400	Params	268
Refs(total)	39302	Refs(uniq)	38522
Refs(Fo > 4sig(Fo))	4673	R(int)	0.0787
R(sigma)	0.0778	F000	1460.0
p/g*mm ⁻³	2.140	µ/mm ⁻¹	6.50
	wR2 GooF(restr) Deepest hole Refs(total) Refs(Fo > 4sig(Fo)) R(sigma) p/g*mm ⁻³	wR2 0.1817 GooF(restr) 1.0520 Deepest hole -5.9400 Refs(total) 39302 Refs(Fo > 4sig(Fo)) 4673 R(sigma) 0.0778 p/g*mm ⁻³ 2.140	wR2 0.1817 GooF GooF(restr) 1.0520 Highest peak Deepest hole -5.9400 Params Refs(total) 39302 Refs(uniq) Refs(Fo > 4sig(Fo)) 4673 R(int) R(sigma) 0.0778 F000 ρ/g^*mm^{-3} 2.140 μ/mm^{-1}

Cd model – difference Fourier map

Cd model – CheckCIF

💁 Alert level A EXPT005 ALERT 1 A exptl crystal description is missing unimportant! Crystal habit description. The following tests will not be performed. CRYSR 01 DIFF003 ALERT 1 A diffrn measurement device type is missing Diffractometer make and type. Replaces diffrn measurement type. PLAT057 ALERT 3 A Correction for Absorption Required RT(exp) ... 21.00 Do ! PLAT183 ALERT 1 A Missing cell measurement reflns used Value Please Do ! PLAT184 ALERT 1 A Missing cell measurement theta min Value Please Do ! PLAT185 ALERT 1 A Missing cell measurement theta max Value Please Do !

Alert level C

DIFMN03_ALERT_1_C The minimum difference density is < -0.1*ZMAX*0.75 The relevant atom site should be identified. PLAT052_ALERT_1_C Info on Absorption Correction Method Not Given Please Do ! PLAT220_ALERT_2_C Non-Solvent Resd 1 C Ueq(max)/Ueq(min) Range 3.8 Ratio PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds 0.012 Ang.

Cd model – difference Fourier map

Zn model – displacement parameters

When refined as Zn, the displacement parameters of the metal atom appear to be too small.

Refi	nem	ent	Ind	ica	tors
------	-----	-----	-----	-----	------

Ð	R1(Fo > 4sig(Fo))	0.0426	R1(all data)	0.0770
	wR2	0.1112	GooF	1.0170
	GooF(restr)	1.0170	Highest peak	2.1800
	Deepest hole	-1.0200	Params	268
	Refs(total)	39302	Refs(uniq)	38522
	Refs(Fo > 4sig(Fo))	4673	R(int)	0.0787
	R(sigma)	0.0778	F000	1520.0
	o/o*mm ⁻³	2.231	u/mm ⁻¹	6.99
	p/g*mm ⁻³	2.231	µ/mm ⁻¹	6.99

Zn model – difference Fourier map

Zn model – difference Fourier map Useful Olex2 graphics

Ig3239 sx Zn PZ_1/n E:\Acta-C\7proofs-2019-Feb-Julio\lg3239\Lwork\lg3239_sx_Zn.res
C34H36Br6Cd3N8O6S2Zn 🗯 🛛 📈 🎽 🦳 💢
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
d min (Mo) 0.72 V// 12.9 Rint 7.87% complete 100%
Shift 0.000 Max Peak 2.2 Min Peak -1.0 GooF 1.017
Home Work View Tools Info
AutoChem 3.1
HARt
Images
Maps
O View contour+plane → Colours 5 → min: -1.771 max: 3.088 Edit
0 a 1
Contours 15
Map Scale Scaled to Visible Scaled to Full Map
Contours Contours
Contours Scaled to Visible Scaled to Full Map Map Scale Scaled to Visible Scaled to Full Map Scale 10 0 Fix 0 Depth 0 0 0 0
Contours Scaled to Visible Scaled to Full Map Map Scale Scaled to Visible Fix 0 Scale 10 0 Fix 0 0 Depth 0 15 15 0
Contours Scaled to Visible Scaled to Full Map Map Scale Scaled to Visible Scaled to Full Map Scale 10 0 Fix 0 Depth 0 Size 0 Is 15 Centrol 15
Contours Contours Is Map Scale Scaled to Visible Scaled to Full Map O Scale 10 O Fix O 0 O Depth O O O O O O Size O Fix O
Contours Contouts Contouts Contouts <t< td=""></t<>
Contours Contouts Contouts Contouts <th< td=""></th<>
Map Scale Scaled to Visible Scaled to Full Map Scale 10 0 Fix 0 Scale 10 0 Fix 0 0 Scale 10 0 Fix 0 0 Scale 10 0 Fix 0 0 Scale 0 Fix 0 0 0 Size 0 Scale 15 0 15 Electron Density Map diff Source 0 ker/A 0.1 Mask Hide Map Calculate Voids Calculate Solvent Accessible Voids 0 Calculate Solvent Accessible Voids 0 Masks
Map Scale Scaled to Visible Scale 10 0 Fix 0 O Fix O 0 Size 0 Size 0 Is 0 </td
Map Scale Scaled to Visible Scale Scaled to Visible Scale 0 Fix 0 O Fix O 0 Size 0 Size 0 Is 0 Is 0 Size 0 Is <td< td=""></td<>
Map Scale Scaled to Visible Scale Scaled to Visible Scale 0 Fix 0 O Fix O 0 Size 0 Size 0 Is 0 Is 0 Size 0 Is <td< td=""></td<>

Zn model – difference Fourier map

Zn model – CheckCIF

🎈 Alert level B

PLAT043_ALERT_1_B Calculated and Reported Mol. Weight Differ by .. 112.42 Check PLAT051_ALERT_1_B Mu(calc) and Mu(CIF) Ratio Differs from 1.0 by . 6.23 %

Alert level C

PLAT041 ALERT 1 C Calc. and Reported SumFormula Strings Differ Please Check PLAT052 ALERT 1 C Info on Absorption Correction Method Not Given Please Do ! PLAT068 ALERT 1 C Reported F000 Differs from Calcd (or Missing)... Please Check PLAT094 ALERT 2 C Ratio of Maximum / Minimum Residual Density 2.13 Report PLAT220 ALERT 2 C Non-Solvent Resd 1 C Ueg(max)/Ueg(min) Range 3.8 Ratio PLAT242 ALERT 2 C Low 'MainMol' Ueg as Compared to Neighbors of Zn1 Check 3.52 Ang. 3/2-x,-1/2+y,1/2-z = 2 645 Check 3.06 Ang. PLAT480 ALERT 4 C Long H...A H-Bond Reported H1B ..BR3 . PLAT480 ALERT 4 C Long H...A H-Bond Reported H3A ... BR3 . 3.11 Ang. PLAT480 ALERT 4 C Long H...A H-Bond Reported H3C ... BR1 . 3.02 Ang. 2.98 Ang. PLAT480 ALERT 4 C Long H...A H-Bond Reported H12 ... BR2 . PLAT911 ALERT 3 C Missing FCF Refl Between Thmin & STh/L= 0.600 16 Report 2.17 eA-3 PLAT971 ALERT 2 C Check Calcd Resid. Dens. 0.37A From Zn1 PLAT978 ALERT 2 C Number C-C Bonds with Positive Residual Density. 0 Info PLAT232 ALERT 2 G Hirshfeld Test Diff (M-X) Zn1 --010 . 10.0 s.u. PLAT232 ALERT 2 G Hirshfeld Test Diff (M-X) Zn1 --N11 . 12.0 s.u. PLAT232 ALERT 2 G Hirshfeld Test Diff (M-X) Zn1 --N12 9.0 s.u. .

Zn/Cd (0.758/0.242) model

Q1 Q2 Q3

Q4 Q5

	-							
0	R1(Fo > wR2 GooF(rd Deepes Refs(to Refs(Fo R(sigma p/g*mm)	→ 4sig(F estr) t hole tal) o > 4sig a) -3	io)) i(Fo))	0 0 1 - - 3 4 0 2	0.0391 0.0856 1.0140 0.9400 39302 4673 0.0778 2.090	R1(all da GooF Highest Params Refs(un R(int) F000 μ/mm ⁻¹	ata) peak iq)	0.0732 1.0140 0.8500 269 38522 0.0787 1432.7 6.55
1	0.51	.69	-0.0361	0.04	56	1.0000	0 0.05	-0.94
1	0.53	05	0.0414	0.41	31	1.0000	0 0.05	-0.88
1	0.43	92	0.0380	0.41	03	1.0000	0.05	-0.87
1	0.49	92	0.1224	0.45	47	1.0000	0.05	-0.86
1	0.85	85	0.1383	0.11	89	1.0000	0 0.05	0.85
Zn1′	`a	0	.50000	0.000	00 0	0.0000	0.37	891
0.	.00000	0	.00000	0.000	00 0	0.00000	0.00	000
Cd1′	Ъ	0	.50000	0.000	00 0	.00000	0.12	112
0.	.00000	0	.00000	0.000	00 0	0.00000	0.00	079

Zn/Cd model – CheckCIF

Bond precision: C-C = 0.0059 A

Wavelength=0.71073

Note how the bond precision improves when we get the strong scatters right.

PLAT171_ALERT_4_G	The CIF-Embedded .res File	Contains EADP Recor	ds	1 Report
PLAT232_ALERT_2_G	Hirshfeld Test Diff (M-X)	Cd1010		5.3 s.u.
PLAT232_ALERT_2_G	Hirshfeld Test Diff (M-X)	Cd1N11		7.7 s.u.
PLAT232_ALERT_2_G	Hirshfeld Test Diff (M-X)	Zn1010		5.3 s.u.
PLAT232_ALERT_2_G	Hirshfeld Test Diff (M-X)	Zn1N11		7.7 s.u.
PLAT300_ALERT_4_G	Atom Site Occupancy of Zn1	Constrained	at	0.7578 Check
PLAT301_ALERT_3_G	Main Residue Disorder	(Resd 1)	4% Note

One of the metal atom sites is a composite of Zn and Cd. Its displacement parameters and the positions of the atoms in the coordination shell will be "apparent" and can fail to adhere to the Hirshfeld test.

You may have to explore your results to understand the origin of an alert. Example: A Self-Consistency Problem

L. Qiao, X.-G. Chen, J.-X. Gao and Y. Ai (2019). *Acta Cryst.* C**75**, 728-733. Three new quinuclidine-based structures: second harmonic generation response for 1,2-bis(1-azoniabicyclo[2.2.2]octan-3-ylidene)hydrazine dichloride Compound 1: $C_7H_{13}N_3 \cdot H_2O$.

(1-Azabicyclo[2.2.2]oct-3-ylidene)hydrazine monohydrate (P2₁/c)

When a CIF reports geometrical parameters (bond distances, angles, etc., which all CIF invariably have), CheckCIF recalculates these results using the available information – unit cell, symmetry, atomic coordinates – and compares its calculated values to the values reported in the CIF. If the results do not agree, an alert is raised.

Tmax=0.983 AbsCorr =

Datablock: P21C

Example: A Self-Consistency Problem

	Calculated	Reported
Volume	844.29(8)	844.29(8)
Space group	P 21/c	P 21/c
Hall group	: -P 2ybc	-P 2ybc
Moiety formula	C7 H13 N3, H2 O	C7 H13 N3, H2 O
Sum formula	C7 H15 N3 O	C7 H15 N3 O
Mr	157.22	157.22
Dx,g cm-3	1.237	1.237
Z	4	4
Mu (mm-1)	0.086	0.086
F000	344.0	344.0
F000'	344.12	
h,k,lmax	16,12,12	16,12,12
Nref	2616	2616
Tmin,Tmax	0.974,0.983	0.974,0.983
Tmin'	0.968	

parameters. But CheckCIF finds that the geometrical parameters calculated by CheckCIF for one of the reported hydrogen bonds do not agree with the geometrical

Nothing unusual in the global

parameters reported in the CIF.

Correction method= # Reported T Limits: Tmin=0.974 Data completeness= 1.000 Theta(max)= 30.705 R(reflections)= 0.0394(1640) wR2(reflections)= 0.0971(2071) S = 1.045 Npar= 116

This gives A-level alerts!

Alert level A

PLAT70<u>6 ALERT 1 A</u> H...A Calc 13.726(18), Rep 2.042(2), Dev.. 649.11 Sigma H2 1.555 2.555 26 Check -N3 PLAT707 ALERT 1 A D...A Calc 13.7449(17), Rep 6370.53 Sigma 2.915(2), Dev.. -N3 1.555 2.555 26 Check 01 PLAT708 ALERT 1 A D-H..A Calc 89.4(11), Rep 176.05(2), Dev.. 78.77 Sigma 01 -H2 -N3 1.555 1.555 2.555 47 Check

Alert level A Example: A Self-Consistency Problem						
PLAT706_ALERT_1_A H.	A Calc	13.726(18), Rep	2.042(2), Dev		649.11 Sigma	
H2	-N3	1.555	2.555	#	26 Check	
PLAT707_ALERT_1_A D.	A Calc	13.7449(17), Rep	2.915(2), Dev		6370.53 Sigma	
01	-N3	1.555	2.555	#	26 Check	
PLAT708_ALERT_1_A D-	HA Calc	89.4(11), Rep	176.05(2), Dev		78.77 Sigma	
01	-H2	-N3 1.555	1.555 2.555	#	47 Check	

In order to identify the source of this inconsistency, it is necessary to consider the various factors that enter into the calculation of hydrogen-bond geometry. These are the unit cell parameters, the atomic coordinates, and the symmetry operations.

We will look first at the symmetry operation involved in this calculation. From the CIF:

```
loop_
_geom_hbond_atom_site_label_D
_geom_hbond_atom_site_label_H
_geom_hbond_distance_DH
_geom_hbond_distance_DA
_geom_hbond_distance_DA
_geom_hbond_angle_DHA
_geom_hbond_site_symmetry_A
O1 H1 N1 0.864(18) 1.994(19) 2.8207(13) 159.9(16) .
O1 H2 N3 0.874(2) 2.042(2) 2.915(2) 176.05(2) 2_555
N3 H3A O1 0.908(17) 2.186(17) 3.0517(15) 159.3(14) 3_666
N3 H3B O1 0.898(17) 2.212(17) 3.0529(15) 155.6(13) 1_565
```

loop_
_space_group_symop_operation_xyz
'x, y, z'
'-x, y+1/2, -z+1/2'
'-x, -y, -z'
x, -y-1/2, z-1/2'

SK3730: María Soledad Garraza, María Emilia Gimenez, Daniel Roberto Vega and Ricardo Baggio*

Crystal structure and pseudosymmetry analysis of the triclinic prodrug cloxazolam (Z' = 4) *Acta Cryst.* (2019) **C75**, 851-858. doi: 10.1107/S2053229619008404

There are four molecules in the unit cell, with pronounced pseudosymmetry. The authors found it convenient to use a double cell with the unconventional space group B(-1).

SK3730: María Soledad Garraza, María Emilia Gimenez, Daniel Roberto Vega and Ricardo Baggio*

Crystal structure and pseudosymmetry analysis of the triclinic prodrug cloxazolam (Z' = 4) *Acta Cryst.* (2019) **C75**,

"...when the four-membered group in the asymmetric unit was analyzed for eventual hidden relationships, a number of pseudosymmetry operations were readily apparent."

"In order to make this symmetry analysis more easily comprehensible, the description of the crystal structure has been made in the centred nonconventional B(-1) spacegroup setting¹."

¹ The original reduced triclinic unit cell, as determined in the datacollection procedure, was a' = 12.6268 (6), b' = 15.0541 (6), c' = 17.0054 (7) Å, α' = 81.837 (2), β' = 80.311 (2), γ' = 74.146 (2)°, V' = 3049.4 (2) Å³, space group P-1. With the transformation matrix M = (1 -1 0, 0 0 1, 1 1 0), the centred nonconventional unit cell we are working with is obtained: a = 16.7989 (6), b = 17.0054 (7), c = 22.1341 (7) Å, α = 78.897 (2), β = 100.411 (2), γ = 90.042 (3)°, V = 2V' = 6098.8 (4) Å³, space group B-1. In this unit cell, the triad (a,b,c*) defines an almost perfect orthogonal reference frame, suitable for describing the pseudosymmetry of the current structure.

SK3730: María Soledad Garraza, María Emilia Gimenez, Daniel Roberto Vega and Ricardo Baggio* Crystal structure and pseudosymmetry analysis of the triclinic prodrug cloxazolam (Z' = 4) *Acta Cryst.* (2019) **C75**,

Alert level A

```
<u>SYMMG01_ALERT_1_A</u> Unrecognised _symmetry_space_group_name_H-M
From the CIF: _space_group_IT_number
From the CIF: _symmetry_space_group_name_H-M B -1
Int. Tables space group number for B -1 is 0
```

Author Response: As explained in the text, in order to make pseudo-symmetry analysis more easily comprehensible, the crystallographic description has been performed in a redundant, non-conventional space group, the centred triclinic B-1, with two nodes per cell, instead of the conventional P-1, with one single node.

Author Response: see above

SK3730: María Soledad Garraza, María Emilia Gimenez, Daniel Roberto Vega and Ricardo Baggio.* Crystal structure and pseudosymmetry analysis of the triclinic prodrug cloxazolam (Z' = 4). *Acta Cryst.* (2019) **C75**,

Alert level C
PLAT048_ALERT_1_C MoietyFormula Not Given (or Incomplete)
PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density

Please Check 2.77 Report

Author Response: Both the Maximum and Minimum Residual Density are well within expected values for a medium quality organic structure,

PLAT155_ALERT_4_C The Triclinic Unitcell is NOT Reduced Please Do !

Author Response: see above

 PLAT340_ALERT_3_C
 Low Bond Precision on
 C-C Bonds
 0.0048 Ang.

 PLAT480_ALERT_4_C
 Long H...A
 H-Bond Reported H10B
 ..CL1D
 2.99 Ang.

Author Response: Even if weak, these interactions are obviously real, as assessed by the supramolecular discussion included

<u>PLAT480_ALERT_4_C</u> Long H...A H-Bond Reported H9D ...CL1A . 2.97 Ang.

Author Response: Even if weak, these interactions are obviously real, as assessed by the supramolecular discussion included

<u>PLAT480_ALERT_4_C</u> Long H...A H-Bond Reported H17C ...CL2D . 2.95 Ang.

Author Response: Even if weak, these interactions are obviously real, as assessed by the supramolecular discussion included

<u>PLAT906_ALERT_3_C</u> Large K Value in the Analysis of Variance	4.050 Check
PLAT910 ALERT 3 C Missing # of FCF Reflection(s) Below Theta(Min).	7 Note
<pre>PLAT978_ALERT_2_C Number C-C Bonds with Positive Residual Density.</pre>	0 Info

0

HN

Ш

IV

CI

Ш

SK3730: María Soledad Garraza, María Emilia Gimenez, Daniel Roberto Vega and Ricardo Baggio.* Crystal structure and pseudosymmetry analysis of the triclinic prodrug cloxazolam (Z' = 4). *Acta Cryst.* (2019) **C75**,

```
Alert level G
                                                                                   Cloxazolam
PLAT002 ALERT 2 G Number of Distance or Angle Restraints on AtSite
                                                                           8 Note
PLAT128 ALERT 4 G Alternate Setting for Input Space Group B-1
                                                                         P-1 Note
PLAT172 ALERT 4 G The CIF-Embedded .res File Contains DFIX Records
                                                                           1 Report
PLAT398 ALERT 2 G Deviating C-O-C Angle From 120 for O1A
                                                                       108.9 Degree
PLAT398 ALERT 2 G Deviating C-O-C Angle From 120 for O1B
                                                                       108.5 Degree
PLAT398 ALERT 2 G Deviating C-O-C Angle From 120 for O1C
                                                                       108.0 Degree
PLAT398 ALERT 2 G Deviating C-O-C Angle From 120 for O1D
                                                                       108.4 Degree
PLAT432 ALERT 2 G Short Inter X...Y Contact Cl2D
                                                     ..C16B
                                                                        3.21 Ang.
                                                                   3 576 Check
                                                -x,2-y,1-z =
PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. #
                                                                           4 Note
             C17 H14 Cl2 N2 O2
PLAT793 ALERT 4 G Model has Chirality at C1A
                                                    (Centro SPGR)
                                                                           S Verify
PLAT793 ALERT 4 G Model has Chirality at C1B
                                                    (Centro SPGR)
                                                                          S Verify
PLAT793 ALERT 4 G Model has Chirality at C1C
                                                    (Centro SPGR)
                                                                          S Verify
PLAT793 ALERT 4 G Model has Chirality at C1D
                                                    (Centro SPGR)
                                                                          S Verify
PLAT860 ALERT 3 G Number of Least-Squares Restraints .....
                                                                          4 Note
PLAT912 ALERT 4 G Missing # of FCF Reflections Above STh/L= 0.600
                                                                          25 Note
```

Acta Cryst., Section C: Structural Chemistry (2014), 70(9), 834-836.

scientific comment

Acta Crystallographica Section C Structural Chemistry

ISSN 2053-2296

Some more space-group corrections

Lawrence M. Henling and Richard E. Marsh*

Beckman Institute, California Institute of Technology, Caltech 139-74, Pasadena, CA 91125, USA Correspondence e-mail: rmarsh@caltech.edu

Received 11 May 2014 Accepted 30 July 2014

A survey of approximately 100 000 entries in recent releases of the Cambridge Structural Database (CSD) has uncovered 156 crystal structures that were apparently described in inappropriate space groups. We have revised these space groups and prepared CIFs containing the new coordinates and brief comments describing the revisions.

Keywords: space-group corrections; Cambridge Structural Database (CSD) survey; database survey.

DOI:10.1107/S2053229614017549

FA3343 September, 2014

1. Introduction

It is the purpose of this paper to report on the reliability of small-molecule crystal-structure results in recent years, when computers have essentially replaced human beings in the entire process of determining a structure. A rough estimate of the incidence of inappropriate assignments to space group P1 (the most common miscreant) suggests that they now occur slightly less than 2% of the time – far less than the 10% frequency that one of us observed in a 2005 survey (Marsh, 2005). This is indeed good news.

We greatly appreciate the help of Michael Takase, who carried out some of the calculations and participated in many of our discussions about the various compounds.

References

Spek, A. L. (2009). *Acta Cryst.* **D65**, 148-155. Structural validation in chemical crystallography. doi: 10.1107/S090744490804362X
