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PREFACE

In 1923, Sir William Bragg received the following
- letter from the mineralogist, Arthur Hutchinson in Cambridge:

Dear Sir William Bragg 25th June 1923

I am venturing to write to you on behalf of a pupil
of mine, Bernal by name, whose work on point systems has, I
think, been sent to you - Bernal is I think quite a remark-
able person; he is a shy, diffident, retiring kind of creat-
ure, but something of a genius. He attended my course on
Elementary Crystallography and I realized that he was inter-
ested and was taking things in quickly. I did not however
realize (and he never let on) that he had got so keen that
he'spent the whole of his next vacation in developing a meth-
od of dealing with point systems in the hope that it might
be useful in X-ray work! ithen therefore, he suddenly appear-
ed and deposited on my table a thick type-written MS., rather
with the air of a dog bringing a poached rabbit to his
master's feet, I was quite amazed - of course I make no

- pretence of being able to appraise its merit or even its use-

fulness - still it seemed to me a remarkable effort for an
undergraduate in his third vear - and Professor H.F.Baker
was much interested in it and I believe thinks well of it...

This paper yas thus written by John Desmond Bernal
(1901-1971) when he was 21. It was submitted as a prize
essay to Emmanuel College, Cambridge where Bernal was an
undergraduate and earned him the Sudbury Hardyman prize of
© £30, but it also got him a post with Sir William Bragg and
set him on a career in crystallography. The paper was then
presented to the Cambridge Philosophical Society on 7th July
1923 as "The Analytic Theory of Crystals" but, although it
was accepted, the paper was, on account of its length, never
published. One manuscript copy, typed, we believe, by
Mrs Eileen Bernal, has circulated in this department for many
years, surviving precariously, but we now hasten to publish
it in facsimile to avoid further danger of its loss.

Some of the circumstances of the production of this
paper are described at length by Professor Dorothy Hodgkin,
0.M., F.R.S., who was the earliest of Bernal's students and
co-workers during his period in the crystallographic laborat-
ory at Cambridge, in her biographical notice of Bernal
(Biographical Memoirs of Fellows of the Royal Society, 26,
(1980) which we quote for Prof, Hutchinson's letter and to
which reference should be made for details of Bernal's
scientific career.

.
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The accompanying article, ”X-rayé and Crystal Structure”
was written by Bernal in 1929 for the 14th Edition of the
Encyclopaedia Britannica {and is herc reproduced by kind
permission of the copyright holders). It clearly follows
from Bernal's essay. Bernal also wrote the corresponding
article for the 1953 edition of the Encyclopaedia (Vol. 6,
pp. 809-829. It ends with the sentences:

"The beating out of metal under the hammer, the brittleness
of glass and the cleavage of mica, the plasticity of clay,
the lightness of ice, the greasiness of oil, the elasticity

of rubber, the contraction of muscle, the waving of hair and
the hardening of a boiled egg are among the hundreds of
phenomena that had already been completely or partially ex-
plained. They were an earnest of the millions of others, old
or new, that still had to be explained.”

In the pericd Bernal prepared a further version for the
succeeding edition but, regrettably, this was not published
hecause it was too long and had too many illustrations.
fvidently the successes of crystallography in explaining the
material world and Bernal's enthusiam had outrun commercial
prudence!

J.D.Bernal was elected a Fellow of the Royal Society
in 1938 for his work on the elucidation of the structures of
biological molecules by the methods of X-ray crystallography
and in the same year he succeeded P.M.S.Blackett as Professor
of Physics here at Birkbeck College in the University of
London. Almost immediately Bernal was drawn into the war
but in 1946 the Birkbeck College Research Laboratory for
bio-molecular structure was founded in two old houses at
21/22 Torrington Square (now the site of the library of the
School cf Oriental and African Studies). This was formally
cpened by Sir Lawrence Bragg on 1 July 1948 for which occasion
Bernal wrote: "the central theme of the ‘laboratory is the
application of physical methods to the understanding of the
structures and reactiouns of molecules in biological systems". .
The formal teaching of crystallography (M.Sc. by examination)
began at Birkbeck also in 1948 and has continued ever since.
In 1954 the Laboratory became the Department of Crystallo-
graphy (moving into the new extension building and separating
from the Department of physics) with Bernal as its first Head
and first Professor of Crystallography, bur in the same year
Bernal suffered the first of a series of strokes. O©n his
retirement in 1968 he was succeeded by C.H.Carlisle and in



1978 by T.L.Blundell, the present occupant of the established
chair of crystallography and Head of the Department.

We have invited Professor Rolph Schwarzenberger of
Warwick University to give an assessment of this, Bernal's
first paper, which, by accident, has ryemained hitherto
unpublished, and we are mest grateful for his note which puts
the paper into perspective and explains quaternions.

We believe that nothing could be more appropriate
as Occasional Paper No.l from the Department of Crystallograhy
which Bernal founded to continue the studies which he
himself had advanced so much.

Alan Mackay

July 1981



INTRODUCTORY NOTE

R.L.E. Schwarzenberger
Science FEducation Department
University of Warwick

One way to assess the novelty of Bernal's manuscript is
to place it side by side with the two books which he him~
self used:

H.HILTON. Mathematical Crystallography and the theory of
groups of movement, Clarendon Press,Oxford 1903.

P.NIGGLI. Geometrische Kristollographie des Diskontinuums,
Borntraeger, Lelpzig 1910.

The two books have in common that they include the listing
of the 230 space groups as it was published by Sch8nflies* in
1891 (Niggli copies Schénflies exactly whereas Hilton
changes some nomenclature in translation and alters the
order in which the crystal systems occur. Bernal follows
Hilton). They differ in that Hilton attempts to give

a full proof that there are precisely 230 possibilities
whereas Niggli gives proofs of general results, l1stings

of groups and much additicnal information about each

group (along the lines of the future International Tables).
Hilton is more interested in group theory than in
Crystallography and uses geometrical methods which stem
directly from those of Schdnflies, whereas Niggli uses
algebra more and deals also with crystal form and with
deformations of structure.

It is worth recalling that neither Schonflies nor Fedorov
nor Barlow succeeded in getting the number of distinct
groups correct at their first attempt: the list of 230
space groups was achieved only as a result of mutual
checking between Sch¥nflies and Fedorov. I do not
believe that Hilton would have done better, had he

not been writing with the list of Schdnflies in front

of him, because his method is not guaranteed to catch
every possible special case of existence or equivalence.
Thus Bernal was inspired by Niggli's more analytic approach
to try to make more precise the "simple and geometric"
qualitative proof contained in Hilton’s book. In this
approach Bernal was following very closely in the foot-
steps of Fedorov who had written over 30 years earlier:

*Kristallsysteme und Krystallstruktur, B.G.Teubner,
Leipzig, 1891.

The second revised edition appeared as Theorie der
Kristallstruktur-ein Lehrbuch, Borntraeger, Berlin, 1923.
There is no evidence in the manuscript of Bernal having
consulted Schonflies directly - in any case Hilton is
considerably clearer.




"...here, for the first time, the symmetry of figures

is expressed in analytical terms and in this way the
theory ¢f symmetry is itself introduced into the realm
of analytic geometry. Originally I intended to find
anaiytic terms for the symmetry of finite regular
systems. I was prompted to do this by the difficulty
of interpreting Sohncke's derivations.......an error
which remained unnoticed for a long time by the author
himself....... .this could hardly have happened if these
systems had been expressed in analytical terms"

(E.S.Fedorov "Symmetry of Finite Figures”" 1889
translated by D.Harker 1971)

Similarly Bernal realised that more precise and analytic
methods were required for the qual.itative listing
{Sohncke,Schdnflies,Barlow,Hilton) to become useful in
the new crystallographic applications. In the remainder
of this note I would like to draw attention to three

ways in which Bernal notably achieved this aim.

The first important improvement made to Hilton's proof
is the decision to work in vector space (i.e. with fixed
origin) rather than in affine space. Hilton follows
Schonflies in writing, for example, A(x) to denote a
rotation through angle o« about an dxis A, or S(t) to
denote a glide transformation with translation component
t 1lying in the plane of reflection S. But the axis A
and the plane S need not pass through the origin, which
is gcod for nice gualitative pictures of crystals but
bad for precise analytic proofs of the mathematics.
Bernal chooses an origin and assigns each affine
transformation

X r——p QX + ¢

its linear part @ and its translation component c. The
importance of this change for the development of mathematical
crystallcgraphy is in no way diminished by the fact that,
under the steadily increasing influence of modern algebra,
many other mathematicians did the same thing quite naturally
and most crystallographers do so today.

This leads to the most striking aspects of the manuscript:
the influence of modern algebra in the discussion of
quadratic forms(in Chapters II and III the symbol SXY

is the scalarproduct of X and Y) and in the use of quater-
nions throughout. In crystallography the linear part

of a symmetry is, of course, a 3x3 matrix determined by
coefficients. The fact that @ preserves lengths and
angles imposes 6 conditions so only 3 degrees of freedom
are left for ¢ . Clearly a more precise analytic approach
would benefit from a more economic method of presentation
of 3 paramcters., It was fairly well known among
theoretical physicists and mathematicians that all such
linear parts arise from transformations of the form

X > +qXq!

where q is a unit quaternion (the correspondence between
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unit quaternions and liinear parts is actuwally not one-one,
bacause -g @etermines the same transiormation as q ; this
does not cause any confusion in practice). Most readers
of this note wiill be familiar with this fact but, for
those who are nct, a brief note on guaternions is appended
which covers those facts assumed without comment by
Bernal in Chapters II and III. Note that the quaternion
tation - unlike matrix notation - allows angles of
rotation, axis of rotaticn, plane of rotation to be read

1
t
off immediately. *his is a great advantage when trying
to decide whether two groups are or are not equivalent.

The third important 1.prcvement is the explicit mention
of specialisation : no doubt influenced by the algebraic
geometry of the time. This is merely the very simple
observation that, for example, a tetragonal lattice is

a special case of a orthorhombic lattice. This
observation is present but less explicit in Hilton, and
explains why Hilton tand so alsc Bernal) deals with the
tetragenal system immediately after the orthorhombic
system ( Schdnflies has therthombohedral system in between,
presumably on the ground that 12 is between 8 and 16).

The effect of these three improvements is that far

more facts can be established as general theorems
applicable to many crystal systems. Here Bernal is
follewing the example set by Niggli in centrast to Hilton's
insistence on a separate discussion for each crystal
system. It folleows too that the listing of space groups
becomes essentially a listing of the relevent translation
components which can be handled algebraically. In modern
language, Bernal is listing the relevant cocycles to
determine a first cohomology group.

In summary, Bernal has rewritten the proof (Sohncke,
Schdnflies) which he found in Hilton but has brought

to it the more analytic attitudes of a quite different
crystallographic tracdition (MObius, Fedorov,Niggli).

His excellernt knowledge of current mathematics yields

an improvement upon the treatment of Hilton,20 years
earlier,and comes close to foreshadowing the cohomological
work of Zassenhaus, 20 years later.

AR A——-

Afn‘l 1959



NOTE ON QUATERNIONS

Any set of 4 real numbers a, b, ¢, d can be displayed
conveniently as a single quaternion a+bi+ci+dk. The
chief advantage of the notation is the ability to multiply
using the idenitities i®=j%=k?=-1 and 1ij=-ji=k. Many
properties are analogous to those of complex numbers;for
example if g=a+bitcj+dk then the conjugate g=a-bi-cj-é&k

satisfies qg = aZ+nZeci+al.

For present purposes we need to consider two very special

kinds of quaternion q : those for which g=-q (pure quaternions
so called because they must necessarily have the form

q =xi+yj+zk) and those for which a=q‘1(unit quaternions

so called because if q =atbit+cj+dk then necessarily
a2+b2+c2+d2= 1). Note that a pure quaternion xi+yj+zk

may be identified with a point X ={x,y,z) in ordinary three
dimensional space, while a unit quaternion g=a+bi+jc+kd

can also be writeen in the form q = cosed + sin o (b'i+c’j+d'k
for some angle o« where b'2+c'2+d’2=1. We assume this

form for q in what follows.

If X 1s a pure quaternion then the transformation

Q H X —> qu-:L

sends X to another pure quaternion because

gxq"' = g% = afql = -axg7?

Moreover it is easily shown to preserve lengths and angles.
The vector X is fixed under the transformation if and only
if gX=Xq. Inspection shows that this happens if and only
if X 1is a multiple of b’i+c’j+d’k. Thus & is a
rotation about the axis (b’, ¢’, d'), and it can be checked

that the angle of rotation is 2«.



Similarly the transformatien

-g : X —> -qu-l
is a combination of a reflection and a rotaticn, that
is a symmetry of the second kind.
Thé power of this notaticn can be seen when considering
composition. If the rotation X t=> q1Xq1'1 is
preceded’ by the rotation X ¥ qyXq,~! then the .

composite rotation may be revrresented by the transformation

X > g Xg,~1 V> q, (q2Xq1'1)q,’1
or precisely the transformation X > q3Xq3’l where
3= 9,9 - This is a very much simpler formula for the
composition of two rotations than that of Euler and

Rodrigues quoted by Hilton.
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I was led to the subjeot of the present paper by a ocon-
sideration of the X-ray esnalysis of orystals. The general
uncoordinated and tentative aspect of the methods used seemed
to point to an unsuitable geometriec groundwork. Vhen
Schoenflies, Von Fedorof snd Barlow solved the finsl problen
of the 230 types of homogeneous structures there conclusions
were purely geometric and therelseemed no immediate prospect
of epplying them to actual crystal structurs. 4s it wes only
neoeésary to distinguish one such structure from anotler, &
qualitative basis was sufficient. But this qualitative baesis
4id not meet the needs of I-ray analysis of srystal atructure,
and the pioneers in this field consequently fell back upon
eimple and geometric methods which they evolved in the course
of their work.

What was wanted, it seemed to me, was an snalytic theory
in which the structure of & crystal could be recresented by
a quéntltativa formula, end the analyesis of this structure
could be reduced to the solution of certain egquationa. it
occurréd to me that the application of simple vector and
.quaternion calculus would supply the need of exparimentalists
while at the seme time providing yet another solution to the

-problem of homogeneous structures.
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This solution ocouples the fizst aix chapters of the

‘ Paper. It is given in extremely condensad form, and the absence
of examples and diagrams may meke it A1fficult to follow the
gaometrio mesning of the various expressions. In this conneo-

tion references under the heads of Classes and Systems should

be made to Hilton's Hathematical Cryétallography. Chapters
VII and VIII are deductions from the theory which lesd to
Chapter IX on the X-ray snalysis.

Cirocumstances prsvented this Chapter from being as full
a8 was originally intended, especially with respeat to the
lack of examples and the scant attention pald to the Leue and
Hull methods, deficiencies which I intend to make good at a
later date.

As the theoretical part has been written independently
the absence of references will be understood: the only works
to which I am indebted are Hilton {ib1d) and diggls, Analytische

_Geometris der Discontinuums, from which I have tekensome of the

proofs in Chepter III. 1In Chapter IX I have relied almost

entirely on Bragg's X,rays and Crystal Structure, and in view

of the forthcoming appearance of the 2nd edition of this work,

the elementary neture of the Chepter is perhaps not unfortunate.
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CHAPTER I

POINT SYSTEMS

- -

Point Systems

Consider a system of points in an n dimensionsl continuum,
The position of any point ies determined by the vector I representing
the line drawn from an arbitrary origin 0 ( not necessarily a point
of the system) to the point. This point is called:the point. X.

The whole system ia determined when the origin O and the vectors

sorresponding to all the points are given, Thus the system is aompletely

Retermined by
XXX, X, written for short /X_
/X, 18 oalled the aspect of the system from O.
If n independent veotors are ohosen. lo00 124, 4, 00,4,
oan be chosen such that o
T Az A+x, A, 40000 XA 40 unleas x ax, =,... =X, o0
then X, can always be written
\ x4 +x A +x A, YooaetX A,
and the aspeat of the system represented by
/244X A tieiraas. X A,

EN

The vectors Avd yiineese «A,. are 0slled the coordinate system
or reference vectors.

The acalar coeffioients TioXeeeceeeeX o 8T8 O8lled the coordine

ates of the point X and are often used to denote the point X,



} _Discomtinmous Systema,
If for two points of the SYsteR X X, jeccceesX,0 X X, (000X,

a1l the positive scalar differences
t X3 I 08 S TTTTTTRRRRS o3
ars sither =0 or e, when o 1* finite positive soalar, the‘system is
8aid to be dlascontinuous. In everything that follows all syetems
ars assumedto de discontinuoua.
s Komgéneons Systems.
If thore exists at least n points whosse veotors sre independent
and from which the aspeot of the system is the same, i.e. for which
‘ /X, represents the aspect of the system; then the syetem is called
homogeneoud.
Lat the points

B = b.A‘*b"A‘*-.owooao.hnA.;
B‘. b“A, ‘buA.§cn..oncl-h“A

Wy o
. PTserersnee se0breesaey

) B“;- b,A +b,A +eeeeececeb Ao Do such & set of points
;l;on since the system has the same aspect from B ,B,, B,. as it
has from O there is correspondigg to any point x ,x,, +eX,e
the points X, +‘,., X, 4D,y s0sees X 4D, o
o R
X, 4b,, X, 4D, e000ace XD, e
Corresponding to these again eare the pointe
X, +2b,, X, 42, e0sesX, +2N . oto,
also the points x +b, +b,, X, +D +b , .......xnoh“ob“. sta.
in general all the points

x +n b +4nb,+..4n b, X 40D +nb ¢+, Mmb o, eee X R D U D teetn b o



odl

where i /n_ can have integral velues positive or negative
Further, the ooordinates of any point X, ,X,,X,,eeee X,, -
bsoome if the point n,b +n . b,+..4n.h,, Db, 40 b teet b Leoree

be chosen as origin
x,-n,b -n.b ~ee-nb,, X, -N Db Db ciiB b  e00ee
and since there id4 a point with the same ocoordinates referred to tha ola
origin, the system mmet have the same aspect from all ths points
[ nyb smub,eeain b, Byby +1,,, +e e 40, Byy vesees Dpbyn, bugre et b,
These points form a point system inside tthe given one and as the
origin was chosen arbitrarily in $he first plecs a s:t:ilhe same aspect

ocan dbe found for esny origin.

These systems have the property of having the same aspeot from every

point of the system, Such systems are called lattisces., All lattices
oan be written in the form

/nh +n Ay soiaiiatn Ao
when /nsr are integers and A,7 4,,¢e.. 4, + & 86t 0f properly choeen

veotors.
Returning to the original systemy now suppose there is another
point b|-. .‘“,,.ooccobnmw isognomic with the origin i.e. such that

the syatem has the same acpeot when viewed from these twe pointe ;

then thepoint x +n b +n b teotn, b, x, 40 b 40 b 4040 b eeaied

e TN L

end the point x +n b, +n.b,+, o0 B,, X, b 40 b, teet, D, L evseene
are points of the system. Subtraoting, we have the diffsrence of
eoordinates n b,  -nh,, 0, b ~Bb, ,eec00ce0

How none of these must bdbe infinitensimsl and this oan only happen

b

for all integral values of n,, if 1! 18 commensurate,

extending we have /Dran
LR

commensurate,
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Therefore all points isognomic with O may bo written in the form
p“bll ‘P"b,z +e -OP"b‘“ p"b" ‘n‘bu." "pmbu\' Ssonse
whers [p,, are rational fraotions
) A1l the isognomio poimts of the system msy he written
/p".B, #pirBt 00000 .4pn,,B,\ .
P oan always be written 1+

m, '
T, where l.m.n . are all integers

The pointa g:- %L tees E: must belong to the system
' t n
and there must be a finite number k of such pointa, Of thess n
. a8 reference veotorw
independent points may be chosen, (If k«n acme of the poi.nts
Iangnomio
BB, B oanbe taken as well) The number of/points with pure

fractional ocoeffiolents referred to these vectors must be less
than before,ant oontinuing the prcoess we must arrive after s finite
munbsr of operations to a set of referencs veotors in which there 18

only one point with fractional coefficients and this is the point

set
“: 070,+04040, Suoh a Spetem=is called i primitive.
+61 Alﬂtho isognomio points referred to & primitive sot of vectors

A & ,,00.0.4,, 08N be expressed in the form
P TV U WV W YOS B W
where /1, take all integral values positive or negative.
This lattioce which inocludes allthe i:ognomic pointe of the system

with respeot to the origin O is oalled the skelmtal lattice of the syx
system, '



X
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The cholae of an olamentary set is not unigue. There are except
for the case {n=0) an infinite number of such sets.

It _‘:‘1”A| "1[;&;‘ oococo-lm‘n .
“l -lnAc “‘1"_“* .lt-votl'[A’ )

[ ] 830 9008000000000

A'"SI..A. +1h; ¢ ceencesl A, o is such another set it must
be possible to express A,in the form

4,31 K, 4 A+ eeieessll A, o« oto. Where /1., are integers
Now the oondition for this is

1,41, 1}, = 21
L, L1, )
11510 1

@ & & o 8 e

11“1,'1,‘. .« .
8o that this relation must hold good for $he ooordinates of any

.,

primitive set expressed in terms of any other.

By an extension of this proof it oan be seen that i{f the determinant -
£ (L, ....1,) = :h the set of referrence veotors A.',A',.....L',,.

is of the m th order,that {s the number of proper fractional points
is m apd the highest value of any denominator must also be m.

Component Set.

The general expression for a homogeneous system may now de

written /(x,.+1.. )‘. *“x""’ln)A; +oececnsns (x,.*l,..)& .
(x, 41, )4, +(x,+1,, A, +40s. N ¢ S5 WY O

0P 0000000000008 0000000800 0000 sves o0 o

HE LA, (2400 A b eeneneea (X, 31,04 &
where /A, iax a primitive set. This expression represents every point
of the system onae and once only 1f /lxﬁ-x,ﬂ) are.not all integers
for all values of r(s constant ) end of s. B¢ &ach point X XX, X,
is seen to to de acoompanied by a lattice of equivalent points; end
$the number-of euch -lattices-m—4e—callet—the |
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Since thers are m of such latiisces the ritem 1s ocalled an m laitice
or = point system. ‘The set 07 poinis jx:i,l, 1> 3 VR SRPSRL . W YR

is oslied a component set of the sysiem. (me component set corresponds
to savu point of the skelets. lattics. Instesd of /x, X, X%, X,
‘/(x,,‘l.,). {x,41,;)yeenasel(x, +1,) might Ravé been chosen as one of the
oomponent set, it is consequently poaaihio and sometimes useful to
limit the values of the coordinates of the points in & component set,
The limits most often employed ere (A} 0<X<1 and (B)-}<x<t

(4) avoids negative coerdinates, (B) is more symmetrioal,



£.1

o2

b

Charsoteristios of a Veotor set
; Por every set of n indepsndent vectors there existz n.(.gﬂl
symmetrical_of thetype 1284ratic forme of the type Q(X) A(XY)
these forms are called the oharactoristiés of the aet,
Congruence
Two sets of veotors/4 and /A, are said to be congruent 1if
QUA)=3(AY and Q(A. A) =Q(Ay Ay) for all values of rand e
Taking these veotora as reference veotors, We have 28
Q (x.A,+xtAz¢...+x,A")iﬁ(x,L:#x;A;+.....+x‘l;)
and Q(x,L.+1‘A.¢...4+1“A,)(x:l,*x{Ato....+x:A.)

% Q(x,A+ x‘ﬂlt....¢x“12)(x:124:{144....0:*L;)
for a1l velues of /x. ., From this it follows that if in two systems
with oongruent reference vectars, there corresponds to every point
X,X, eeeeX, in One Shere— a point X, X,ces0x, in the other, then the
two systems are congruent and oonversely.

Symmetry |
1f£ a system is such th@t two or more aspeots of it are congruent
though not in general identical, it is said to be symmetriocal,
12 0,¢ ,C' .... are the points from which tke ay;tem has ¢he—same—
congruent aspests then for any two poimts X snd Y there are correapond
ing points  C +X,C <Y’ ; €+X',C oY joiiuiis
where x',r H x',Y' {eeees @are connected by the equations

UIZQUX) veveoss
AUXN = AUA)  ceeeens



o4

+B

. 8

Now X muat obviously bs some veotor funotion of X consistent
with the abtove eonditions. Friting x’- 40 4 a:-r:;:n—if Y is the
point corresponding to X, .5 if Y = x'+C we mAy write as the
general form of the my oondition of symmetry the identity,

Y 2 £(X)+C,

Symmetry in three dimensions,

Leaving at this point the study of point systems in n 4imensions
we may examine the form which the symmetry funotion f(X) takes up =k
where n = 3 that is in the ordinary space of three dimensions,

In this case We may write Q(X) a X' and Q(XY) #=3.XY and the
oconditions which £(X) must satisfy bemome
' £(X)" = X and S£(X)2(Y) =SIY
One form of f£(X| whioh satisfies both thess oconditions is the
quaternion transformation

2(X) = gXq' ‘where q is a quaternion
ansthqr is the negative quaternion transformation

£(X) = -qXq” .
There are no other forms which cen satisfy the conditions; for since
2(X)" = X°,q oan slways be found such that £(X) = qq’ and similarly
q' can always be found such that £(X) » dxg”,

then § £(X)£(X) aSqX{§Xg™= 8 IX'1f and only 1f ¢ =g

Thus the general condition of symmetry met‘nluya take one or
other of the forme Y & aXq'+8 _Y 5-qXq +C , These identities are

known &8s symmetry relations of the firat and second sort respectively
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N3 The symmetry relation Y!B:dXg:0 may alwaye be written in tha &
inverse form X &:qYqFC whers C =qCq Multiplying both of these
expressions by q adding them angd dividing the sum by two we errive
at the symmetry relation in its moat symmstriocal shape,

(Y- $1g %a(xs $) w0

or (Y- %h +q(X -2) £ 0 for relations of the first an
second sort respectively, or more eimply still

{Y-C)g-q(X+D}) 20

{Y-C)g+q(X-D} 20  where 0§-qD=0

In the importsnt partioular case in which Cw» O the relation takes
the simplest form of all

Yq * qX 3 0 ,
The nnlymmoéfioal forms ars in general more easy to deal with because
they involve only one conatant vector, and they wilﬂbo used in all
the s?bsoquent work. The other formd were only introduced to show

the essential symmetry of the relations.
[}

o7 Combinations and Trensformations of Symmetry Relations,

If a system posesses two symretry relasions
(1) Yes (.1 YqXxq'+C
(2) Y= (a1 Y&x§”+c' where v is an integer 0dd or even
and in (1) we put X 5Y', we have
N (12) ¥z (-1 J{(-1 Yaxq'+c)g e’

which reduces to - -

(12) & (<) dazaq e 1) qeq +c" -
and since qq 18 a quaternion whose reciproocal is g'q” this 1e squivalent

to enother symmetry reclation,
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This new relation 18 called the acktiaes reistion (1B} .
The combined relation (21)

(21) ¥ & (-1)"qqxq"q" + (<1705 s -
is in general not the same ., . ‘
It should be noticed that if (1) and {2) be both relations of the first
or both of the second sort their combination is ax relation of the

firat sort;whereas if one is of the first and the cther of the second

. sort their combination is of the second sort.

«73

«78

«8

. The acombination of one relation with it self n times will always
ba ad relation of the syatem s0 that the relation
YS (-1)qXq +C  alwsye implies the Efurther relations
ve (1" xq"
where ‘n may have all integrak values positive or negative,
. The combination (-§213 | '
(-1e1)  ¥= l-.lquq 2qq"q" ~(-1Vady” qu g’ +qCq” +0
18 oalled the transformation of (2) vy (1)

_Reduced Symmetry Relations

In any point system we can always write :

Xo X, 4T Yoy, Y whers IX,, =li+mBsnC , 4,B,0
being primitive reference vectors, andll.n;ﬁ integers ; wiile
X )giAqu+ic where p.q.i are proper fractions though not necessarily
ratioﬁal:-similarly for Y, ,and Y. The gensral eymmetry relat;on now
tekes the form ) _

Yy 3 Y& (-l)vq(xm:l')q" +D (writing D for C to avoid ooni’uai#n)
1,m,n are the integers corresponding to 1,m,n .
Por the skeletal lattics that includes the origin XaY=0

The rélation oan therefore de ovnaidered as the sum of thévtio rel-
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relations

Yian® (-1 ﬁlxlnq*’n'

Y’ w(-11qx’ q'+D, where §4+DsD
If 1,m,n be put = O@t can be seen from the first relation that
D = 1asmB4nC where 1,m,n are integers, now putting YiD, instesd
" of ¥ we have Y.z ( -1)qX,_d'} In the seme way D,oan be made to take
the form pA+qB+rC where O < p,q,r<1 .lThus every symmetry relation
implies a relation of'thc yype

| Yz (-1)gXq’ for the skeletal lattice, and of the
type Y = (-lqud'+pA+gB+rc for s componsnt set, or for the

whole eystem. If in addition the eystem has no relation of the type
Y 2 (-1)qXq+D where q'=q

the above relations aré called the reduced symmetry relations of the

skeletal lattice and of the system respestively.

Equivalent Points, Simple and multiple Systems,
A point system possesses in general m distinot reduoed symmetry

relations, m being always finitekr there would be in infinits numbder
of points in each component set. Of thess m relations mn oaly will@o
independent allhhe others can be derived from these m by combining
them in aifferent waya. To any point X there correspond the points
X, X, cecenee, to which it is related
by the m relations, also the points X ,X ,..+.X derived from X by
the m relations applied 2,3,...k timea easch(the values of k will
bekxplsined subsequently,) All the points I, XX, X, . belong

tp the same component aot’they are cailed equivalent points.
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I£ these are all the points {n esch component set,the point system

15 ocalled simple. If there ars other groups of equivelent points

/Y. /Z eto the eystem is oalled mmultiple. The groups /%p/XS. sto

may have more but cannot hhave fewer symmetry elements than (BYe eyste
* The group with the

fowest symmetry elements determines the symmetry of the system.,

Ir /x,ia such a group th: other groups /Y,./z*? can bhe apl?t up into

partiasl groups /Y,,/Y.eto. each with the symmetry of /X and deriv- |

able from each other by relstions not included in the symmetry of /x@

The whole eystem is now expressible as: the points X W el 2 20

and their. eqliivalent points making up smcomponent sat ;and the points

corresponding to allhheso rointa. The points X ,Y R SR

Z 03 geene

may be infinite in number and taken togsther make up a geometrical
figure which is in genefal asymmetriocel. For most purposes however
it is suffioclent to oonsider simple syatems remombering that every

point may represent an aspmmetrical figure.

Sty
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RUTATIONS

3.2 Symmetry of System and of Skeletal lattiocg
' It hae deen shéwn already that if a syatem has a oymnntry

relation !-(-1)ng +D the sreletal lattice has the relation

c Ym (-lfQXQ* + Suoh relatione not involving any oonstant vector

are called rotations. They are in fact repressntatles goom;trically
by a rotation of the whols systsm sbout the axis of q through twice
1ts<;nglo. Parther we must have 1f / Yi(-lfrq}qj~n,1s the symmetry
group of the syatem that the skeletal lattioe possessea the group

of rotations /Y 5(-1)"qXq, We must therefore examine allthe poesidle
olasass of groups of rotation that lattiocss ocan possess.

o2 Possible Rotations.

To begin with we need only consider the form Y-quJtor sinae
the relation Ys-X holds for allpattioos Y-qui:eafﬁﬂSG::pliea Yi-qXq™”
end only those relations of the aecond kind whiech $o possible relat.
ions of the first can exist,

’ Writing q in the form A Ibcrc A is & vector and h s soalar
tho general rotation beoomoa.

Ys Azt
The veotor A i{s called the axis of the rotation,
This relation implies Y = S0™ where m o1 an imteger
But Y s AU 1.6 YE X is always a
relation of the lattice.
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bl
the Battioe.

Combining we have Y & Pt 7 S

Now EETEa » € where ¢ is & finite positive sesler or (x = Y)wsuld not
be & f£inite veotor; b must therefore he rationsl

Writing bk in the form k—f'g— _'h°1‘° k,m,n are integers and n>m
2k ' .1}

then kh = Tm = g - Tgnﬁ—
v B O

-

g-xh = .2 2 where p is gn integer >m
Al cubgl S5 1 ’ )

and this must be & possible value of the index of A. Contimuing the

process we must arrive ultimately at a valus —%— sinoe the value
reduced

2 general rotation now takes the

_2_ i{s inadmissible. The_syumetsy

form I
Y s A"ZA®

Such & rotation im called a k £014 axies of symmetry because repeated
k times it leaves the aspect of the lattice as it was to begin with,

Possible values of A and k.
From the oconditions of symmetry we have
3.AY & S.AX
S.A(¥-X} & O
tut(Y - I)must be a point of the lattice for all corresponding values
of Y and X, This shows that in e plane through any point of the lattice
perpcndionhr to any naxis of symmetry thqz-a is a net of points of

further let X,

aldding <X <A LA
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this 1s only possidle if 2 X _=pA . dut as the value of "he tensecr
of A does net affect the symmetry relation,and fx 18 a point of the

lattice L‘uan slways be chosonhs e point of the lattise.

Let X, X, I be three ppints of the lattice satisying the
conditions S.AX = S.AX = S.AX = C
z, -atxt o oxediat
Rational values of p;q;r oan always de tonnd such that
P, +qX,+rX, -0
Multipiying throughout by Iz ané $eaing sesalar produots
pS.X, X, +gX,+rS.X X, =0 ; _
(p+r)X cos TeqX, =0  since $.X,X,= 8. X XjoosT
cossr = 5-}_%—
oos T is rational it can only have the values
-1, -3, 0, §,1 ocorresponding tothe values
g, 3, 4, 6,° of k, and thess must be the only
values that k oan have. ixoluding the identical relation k =00
we have. $he following theorem.
IN any lattice or point syetem there cen only de axo“s of
2, 3, 49ré fold symmetry. Such axes are known as diesd, triad, tetrad
and BerBd axed pespectivelyThe general rotation mist now take one of

the perticunlar forms -

k=2 : = axa'
=3 Y-A%n*
-4 y=atat

=6 =2t
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o Combinations of Rotations

We will tirst eatablish some trigonometrical formulse connecting

sngles between axes mnd their asgles of rotation i.e. the angles %\E

[ 3 4 o
41 Transform & rotation Y # R"IR  »y the rotation Y & Ak
S S R PR W SR X O W
this gives Y= A B A XA B A -"(A‘BA‘) X{A BA’) «B XB

' %
B =A§BA is called an axis equivalent to B. The angle between B And .}

is given by ocos? =5,55= 5. BE'BX *~3.B(oos X +Xsin ¥ )Blooel +Xsin ')
(where & B stande for versor A B) = cos’y +aos2isin’

am - sin— siné

where ¢ is the angle :AB
42 combining the two relations Y - A n and Y & n‘n we have
Y EA{ B*XB A =c xc where C =A B , writing the quaternions in full

(cos T +Tsin T )= (00s” +Aein 7 )(cos  +BsinZ)

cosF-008 7 008 +00888inT 810E Whepre O the angle A

43 Consider the two equivalent rotations YeAJ"‘x.A—*", Y—B%XB—%'
Transforming the geoond by the first gives Y= B“Xﬂw"'hero B~ A%BA-%
A rotation G%may exist that transforms B into 4 and A intc B.
Then B EC%AC' ;b.nd B+C &Acﬁh Prom these we have
B-a-c'(4-B)C "
The angle between (B-A) and (A-B)= ¥

oos & -S(B-A)(A-B)
“S(BRVBTACB)

. SA -SAB-SBA+SBB
STACE]

_ =1s8c08f-cog'fcosefsinFwhere O 1s the angle
+2008 between A and B.

=1-sin'7(1+008")
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That is sin¥-stnZoosl or oosf. o =

in %

Giving m and n sll allowable values for which m > n we obtain all the
possible values of cos %vhich ares shown in the fcllowing table

4
) 00030600038 20000080080sc000

n<6: 4 : 3 : 2
3---5--.3.i.3-..:..-3...
'm'6‘1'.)2',/§‘

. . . .
.o-on.ono.lono
.

o oo oo

.

.

.
c10s 0
. .
. .

RO P

=C";.|;;Qll:tO.:.?—(:..'
H : H HE T

. » . .
‘e Geo 000 tsa0 s

es so @0 0¥ 8 o5 ae

from this we ses that

6 fold ixu cennot exist in different direotions

4 f0l4 axes must be at right angles

3 fo0ld axes must interseot at angles of ooi'gor the complementary s
angle of oos 'L

£ f0ld axes when equivalent must intersect at angles of %l" { 1{
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1.

Clasees of Rotaﬁon groups; Yirst Sort,

We ere now in a position to consider the various olasses into
which groups of rotations of the first sort may be divided. These o
slesses will be designated for convenience of reference,by their
"Sohoenflies symbols.

L4 1
Groups containing one rotation only. General tyre YA XAK

; ” fhere arc four olasses x=2 3 4 6

58

.

T e

R symbol ¢, ¢, 6, ¢,

}'x' _ Groups with one k fold and 2 fold axes only.

; ;'nnural type Y~ 5{11-{ B,,B,? are  equivalent axes, Any two
. X B,XB”  of the axes A? B, ,B, B,. ou#» taken

Y = B,XB;' a8 the independent rotations of the
Y ¢ B XB' group.
W&&t@t&u—u Transforming A by B we must odtain -A
or they would be two k f01d axes which is inadmiassible in this type
The angle 95 between A and B must be Jf ,and substituting in 34/
we have sin? - sin7 g~ 4t
If k is of the form 2h , B >-B, there are only h distinot axes equiv-
valent to B. In this case also the combined relations A'B givtr. b
rise to b #iad axes #istinet B B, B;distinot from ]3,‘?8'2 B,
Now £3'- 4"B- B, so thet B can be put in the form B:B, .
1f x =3 the combined relation A%B,—B;so that there are only three

squivalent 4iad axes and no more,
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Here again there are four olasses: n=2 3 4 §

symbol I‘-Q n, D‘ D,
Q Rotations Y=AXA" With the conditions S.BC=8.CA=8.AB=0
- .

=

Y= cxc” S.AB0=-1

Fgﬁﬁ "~ . " 8.AB=5.AC=8,30=0
= =i
Y=Cxc” =7
Y = (B+C)X(B+C)
‘(B-C)I(B-C)"

p = y=afxgt e e * 8,48 =S,AC =3,4D =0
3 : Y= BB’

Y=CxC” _ 8.T5 =8, 78 =8, 5C=-¢

Y = DXD £ 2 g

FRE B=¢C =D

Y =BXB” : .  B4+Cs+D=0
XD . Same asD
C+D)X(C+D)"

D+B)X(D+B]! .
B+C)X(B+C) _

P

More than one k fold axes (k> 2) . There are two olseses:
T with triad and disd axes; O with tetrad,triad and diad axes.
Both have s set of four trisd axes 7,,7,,T,,T, which are all equivel-
ent and must by ¥43 and considerations of symmetry fulfil the condit-
fons ST, T, =50, Tast, Tast, Bo o8, T oF, Fm- /L ¢ MEM=Fion) ¢ TuTp0u0,=0

there, }n addition
In class T only the three disd axes A,B,6 related to T,T,,T !

3 Bk )
By the rotations ¥written in their symmetrical form)
AT-T A‘AT-'T A‘BT TB‘BT-TB 0’1' C'CT—TC=0

3 3 $ . R
r*a-cr*a'r‘c-u =7 5y~ BT, = T‘B —~CT} T°C+AT =T, .A.+B'r = 0 similarly
for T and %,, from these we find 3.BC ~3,0Am5.ABm0 A=B~C
8180 T,=A+B+0; T,=A-B-C; T,=-A+B-C; T=-A-B+C , Wé have therefors for

f Rotations ¥ !

o4
nk
o
pe
o
r

= (A+B+C} A+Be
=(A B CYXiA

= (4+B C):’X(A‘rs
£ (A B+C)*X(A B+

uuP\’ !

}.
72

]
BC
¢
c)
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Class O differs dy having ATE,C as tetrad axes and in oconsequenc
-t
has four more triad axes whaAskh sy virtue of the rolsticns,brS: At'r, A’
are the inverses of the original four. Also for the Beme réasons

as D“ it has three pairs of diad axes of the type B+C or T, T,
are
Intnll‘thore thirteen rotations any twoe of which may be chosen as

independent if they are of Aifferent kinds,

!=lA‘xA1

YanXB‘f

y=ctxct y _
Y = (A+B+C)}X(A+B+C)
YE(A+B+C)’X(A B C)
Y= (A+B C)VX({A+B CY
Y={A B+C)SX(A B+CY
(B+C)X{B+C)"
(B~C)x({B~C)'
(C+A)X(C+AT"
g c-a)X(C~A)"
(

4
3
5

A+B)X(A+B)!
A-B)X(A-B)"

R L]
W w oo

Thercare no other clacsas of rotition groups of the first sort
By'ﬂ!the'r' are no ot,’:er arrancements of triad and tetrsd axes possibl.

than those of T and O and a lattice ocan only posses one hexad axis.
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6 Classes of Rotation groups: Second sort St

The general rotation of the second sort is
e A{‘slﬁ
Combined with another relation of the second sort it gives fiss t9
one of the firat sort, 80 we need only oonsider olasses oontsining
second sort operations only ,or those formei by oombining with one
of the classes of the first sort one rotation of the seoond sort.

Further since the effect of combining IEAiXA.’and Y= —A*X.L"‘ to

form YE-A%ZA.%is the same as that of combining Y= A"‘n-iand Y=z -X l
we noegn'}zoonsiaer the combinations of Y=-X with classes of the first
sort ent the combinations of vz - ith olasses of the first

sort which have no axia in the direotion 4 . Y.'.'-AXA-‘is the only
seoond sort rotation which oan be oombined in this way because alll

the others inolude a rotation of the first aortt

61 & -% |
. Seocond sort operations alone . General type . Y=-A XA |
i
THers are five olasses K=00 g 3 4 6 i
) Symbol ¢, Cs G, Cp Gy
C; Rotations Y=-X This is oalled a centre of aymmetry.
C " R axy’ LI b a plane of symmetry.
-
Cp. * Y= -ﬁn'
. Y= -—g _
c/ . iy
4 ye —gfpif
Y2 AXA™
c n
A y=-But
Y= ~AXA~
Yz A’iuu 3

*Emept in the case where the axis to which A is perpendioular is a
diad axis., We have therefore also to consider the results of combining

second class eperat rotations with perpendiocular #1ad axes,
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.62 Gombination of Y=-X with first sort mek classes
Ten classes oorresponding to G C, ¢ ¢, % o, b, D 2 0

&

Smbol 0“ C,'- C‘i 2‘*5 Q,. D’( D“ D“ TQ V~ “
One of these c".bolonge also to the last set so that their are really
only nine classes.

t:ul ReXations 1x+dution tothose qt C, Y=-x

Y = -axa
Congitiona as fer C, " o v
=-1
O ? oya afxgd

" . . ¢, Ya-x
- Ys-AXA
Y=-ptxad

. . " ¢ Y=-x
% . : ¢ ¥s -axa” .
Ya-Atxad
Y=-A¥z)f

Q‘ " L] [ Q Y=-x o
. Ya~5XK

Y= -Bxp~

Y= -0xcY

Cu

Y=-x

3 Ye~afxgh
Y= ~BxB~’
Y = -cx¢™
Y= -DXp~

Y = ~(B+C)X(B+C)™"
=~(B C)X{B o)~

¥
n“ L] L L J . D‘ g:_x

Y= Dxp~ -
Y= (C+DIX{04D) ,
Y = (D+B)X(D+B)7
Y=z (B+C)X(B+C)



§. Relations in addition to those of ?

c

(0
0,

-

€,

Gr

oonditions as for

T

¥=x
Yo ~-AXA ,
Y= -BXB™ 4
Y® CXC - ‘

Y= - (4+B+CIX(A+B+C) R0,

Yz -X

Yo -axa”

Y=-BxB~’

Y= —~Cxc™’ —

Y2 ~(B+C)X(B+C) ETC.
+yrt

Y=-A"XA " ETC,

Y= —(Am*c)*xuon.c»)"mc;

Combination of Y BIF with rotaticnsYof fhe first sort
Four olasses oorreaponding to 0,

Symbol S,
Relations inaddition to those of

c,

c”v

c

c e

4 <
c‘r c‘r
Y= -pxp™ .
Y® -CXC”

Y= -Bx§~
Y= -cxc”
Y= -DXD~

Y=~ ~BXB~’

Y= ~Cx¢™

Y= -DX0” -
Yz ~{C+D)X{C+D)
Y= ~{D+BIX(D+B)”’
Y= -{B+C)}X{B+C)”’

Y = -pxa~’

4 yYe-cxc”’

T= ~(B+C)X(B+2)7
Y= -(B-C)X(B~C]

The only ather class of the first loit with no axes perpendiocular
to ! k 2018 axis (k>2) 18 T, Prom this we have therefore.ome
class T; Relations in addition to Thoseof T Y2 —(BsC)X(B+C =

Y= -$B~C)X(B-C =~
Y= -(C+A}X(C+A)7
Y 24C ~A)X(C-A)"
Y= -{a+B)X(A+B)”
Y= —{A-B)X{A-~B)™
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Lastly we have io conaidsr the classes whioh are the result of
combining & diad axis Y= m_'uth with & rotaticn of the second
sort Y= -ﬁ‘x&h&hero S.AB=0 @nd X >2 , There are three classes

k = 3 4 6 4AS Ys-fxi&iteelf posaesses a centre of sym-

symbol Dq Dz( D,“ metry deuat have one and we have already
' dealt with {t. There remain two new olasses
DI/ whose rotations are Y= —AtlgAt with the oonditions
Y= AXA™ :
Y= pxp~ S.AB~S8.,AC=8,BC=0
Y=C0Xe- - e e
YE‘lB+C)X(B+O)_‘ B=¢C
Y=~(B C)X(B C) .
ra -l
D, . d " Y=—A’xA,’ 3,AB=8,AC=8,4D=0
% : Y® AixqS
Y= BXB~' 8,00 =8.58 =8.50 =}
Y =cxe” : x
Y =Dxp™~ - B=(C =p
Y= —(C+D)X(C+D) n
¥= ~{D+B)X(D+B)~’ BsC4D =0 °

Y= ~(B+C)X(B+C)™
IN both these oases can be expressed alternatively with rotations
Y= ~AXX" oto ana Y=(B+C)X(B+C)™" oto . Thie 1e 48 some importance
subsequantly,
We' have now derivea all the classes of both sorts into which
groupa of rotations can be divided. There are thirty two in alllif
we inolude that oclass with no rotation buy the identity relation Y=X

They are divided for reasons that lillkppear later into five "systems"

I. Triolinic system ¢ ,C,
II. Monoolinio system o cs +C, ,c“
III, Orthorhombic system ' C, +D; WD, or W@,
IV. Tetragonal system (a) totraa axis lst .sort Cq +CireCetsD, +Dyg o
(b) » N gng ® €, WDy .
V. Rhohkbohedral system cs ,c,‘. ,C

seeD3 oDy
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VI. Hexagonal system (a) Hexad axis 1st sort ¢, ,C, ,C, ,D, ,D, .

. * " " ¢, Dy o
VI1I. Regular aystem : .!“ W2/ 40 ,0,. .

Dar
The classes C; , c“ 9, .0, ,Du A0, 8re called holobedral.

Holohedral olasses have alh the rotations of doth sorts that are in
the other classes of the same system.

The classes ¢, ,8 ,D, ,D, ,D; ,0 . are ocalled holoaxial . They o

contain all the rotations of the first sort that are in the eystem.

and D,

The classes C, +Cy ,C, ,C, .G, .C, ,C C,+T T, . are oslled

Te ¢ S0 ¥ V60 ¥ T
hemimorphic . They all oontain one aided axss, that is axes such as

A ,to which there corresponds no axis -4,



CHAPTER  IV. z8

0 _Types of sysmetrical lattices .
We are now in & position to examine the mumber of types to

2 40 one of whioh any lattice must correspond. The symetry of any

lattice mustbe that of one of the thirty)two classes, but the following
oonatderations show that the choloe of these {8 limited.

&

01 In a lattice containing a K fold axis A,(k?2) let B be a primitivo

K;»L
vector perpendicular to A snoh that no veotor B also porpendioulnr

to A exists smx meking B 78 « Then if B, =Ai *

B

-ARBA" the pairs

‘8 8 ana B must be primitive veotors for the net perpendiculsr

i
i

. %0 A » Aleo since B,=B B B B and likewiee B,and B pust be diad axes
for the net , further 4 ,B .B,md -A ,B .B.l are ocongruent reference
i systems which ars related by a rotation about B so that B must be a
', Qiad axis of the mgxtlattice. From this we have the theorem
There are diad axes perpendicular to every triad )tetrad ,and hexad axis
of a lattioce.
‘62 Every lattics has a centre of symmetry Y®=-~I , Combining thie with
_ the symmetry axes of the lattice we have the theorem.
Parpendicular to every diad, tetrald, and hexad axis of kikma lattice
there is a plane of symmetry and every triad axis is u{uis of the
seoond sort. From theas two theorems we can aee thet the only

olasees of symmetry to which lattices oan belong are the holohedral

classes ct N “‘ 'Ql * IIA QD,( 1D“ .0,, .
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Y .C Let us begin with lattices whute siuss of sysmetiry i taat of
C; This ia the most general type i ihe choice of & suitaiie 7
reference set is arbitrary so that we oan 2lways choose taree” primitiwve
ioctora a ,b ,¢ and write the formula of the lattice

]: / 1a + mb + no
,

Hers and in the subsequent work the small letters a,b,o {(d) are
need{-xoluaively to denote reference veotors; capitala A,B, Ddeing
used in the general expressions for axes. The letters 1,m,n,fo) will

‘4ni-ngg rspresent integers, while p,q,r,{8) and u,v.w,(t) stand for
raﬁional fractions, The rotationas of the various lattices are not given
iord +» they are those of the class of symmetry to whioh the lattice
belongs.

2 Cy ) ‘

e can here de chasan to bhe the one diad axis while b and o can be
ahosen arbitrarily 80 as to be primitive veotora in the net perpen-
dioular to a . The formula of the lsttice is now /pasgbsrc as &,b,0
sra not necessarily primitive vedtors for the lattice. Now if p,q,r
is8 & point of the lattice the rotation ¥m sxa’'gives p,-q,-r, as an
equivalent point. By subtraction we find that X¥%2p,C,0 and O,2q,2r
must be points of the lattine. But by the ochoise of the reference set
1.0,0 and O,m,n are points of the lattioe. 1,q,r, therefors must have
the form !“,g, % R When:}s 0dd m and n cannot both be even, N?w as
b and o wre chosen arbitrarily in the first place we san always choose
them so‘that either 1,m,n are always even or ao thatrn is always even
and 1 and m both even or both 0dd. Thus there are two types of lattioe

whose formulae may be written.

.21 1: /la + mb ¢+ no .
022 I = b
7: ‘/iliyl& + LLEP) + ne
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.3 <, a,b,6 sre hers chosen along the three 4isd axes, Writing the
formula of the Rattioce in the firat place as / la+mb+no.we oan show

exaotly as in the previous case that the points 2pa , Bqd , Bre

i1 2n
2,2.2.&“

however as a,b,c are geomstrically indistinguishable, there are four

belone to the lattice p,q,r, must have the form

Ly ) ’
types TZ,C:T;']I," according as /, ,1,m,n are always even;/ ,1(say) is
[ 4
always even and n\hnd n are both 0dd or both even; ]:' Jfwo of the numbers
o
are cdd and the other is even or they are all even; 7:' l,m,n are all

0dd or all even. The formulae of these are written

. b
i) / 1a + 3+ no With the conditions S.bo= S.oa=S.sbe
32 T /18 s Byt B
D RAM lsmsn ,, l-me+ +
. * / ——E-—"U‘ /_T!b* L%—k
34 7:" /_n%r_n.*gmlh lsm o
4 8 18 ohosen along,the tetrad asks b and ¢ along 4iad axes

then either b}md o are primitives or {b+c) and (b-o) are, dut as
these are also diasd axes q'and ¢ can always be chosen as primitives.
Since a is also a diad axis this is only a special case of Q;

but here there oan be no types corresponding to 7:’u.nd E”becsuse

when 1 18 even mrnd n must also be even 8o that there are only two

/
/
types: 72 1,m,n always even; 7: l,m,n all o0d4d or all even. their -

formulae are written as before

41 Tt1 / 1a + mb + nos  with the conditione
S.ab*™=3S,80 =8,bc =0
f R L ¢
o482 ‘7;’ / -lsm:n, . lom+N, l+m-n, L b=e
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+8 0, a,b,0 are chosen llong' the thres tetrad axes, and since &ll
three are d1ad axes as well,the case is similar tothat of Q,
except that in this case symef:ry makes 7,"' the same &8s 7;' 'co that
in this olase thero are three types only

8.3 R A / la + mb + no . With the condifions
B2 min_ . nil . 1lem S.bo=S.ca=8.ab=0
r / b‘t =z . . .
) " a =2bmo
83 7;' -1+m+n 1-m+g‘ 1+m-n

o6 Du In this and the luoooodimg class four reference veotors .'111
bte ochosen , this is not atriotly neocessary but it exhibits the
symmetry of the lattices. Whenever four vedtors are taken the linear
relation between them of the type pA#qB+rC+8D=0 imposes s relation
of the type tp+uqs+vr+ws = 0 upon the coordinatos of any point
If the coordinates eatisfy such a relation there can be no ambiguity
sbout them . .

a 15 teken slong $he triad axis,b,o,d along the dlad axes
perper}dioular to it. The formulae of the lattices can then be written
¢ / Pasrgberodsd with the condition ger+s=0. Inthe net /qbsroesd
any pair of b,0,4 are primitivea’.' Any point of the net is mbsne
dbut to satisfy the condition we must add t{a+b+o) =0 so that
m+ten+t+t =0 , 3t muat be an integer. The most symmetrical expreasion
that satisfiea these oconditions forpoints in the net is
with the condition 1;m+n=0 Now by the rotation about a }there
&ro the three oorresponding points of the lattice p,q,r,8; p.8,q,r
and p,r,8,q hence we must have $he point 3p, (g+s+r), (r+q+8), (8+r+q)
that is the point 3p,0,0,0. Therefore 3p = 1 gzn «nleger
also by rotation about b there are the corresponding points
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P,q,r,s, and -p,q,r,s; hence the point O, 2q , (r+s) ,(s+r)

and similarly the points O, (s+q),2r,(q+s) and 0,{q+z), (r+q), 28

and since these must be points of the net /(2l-m-n)b/3 +

q,r,s must be of the form 1/3,m/3,n/3. Now i since p+§+r+so 0
(2m-n-0)/3, {~m+2n-01/3, (-m-n+20)/3 :

we may write g,r,s either as 1ut.-..s or aw (m-n)/3, (n-1)/3, (1-m)/:

This 1leads to two lattices: H written

/1a+(2m-r--0)b/3+(-m+Ln-0)o/3+¢-m-n+20)a/3
Por 1 must be an integer as the remainderof the exprnsi.on is the
formila of the net 1=0 ;ana [} written

/(1+m+n)a/3+(m-n)b/3+(n-1)o/3+-m)a/3

D“ Every lattioce with a ‘hond axis also has a triad oneso thet
the only type of lattioe that can correspond to Iikmult be one of
thoae corresponding to Ihm.mely ]: and ]:" .Now in the olass D“
there are ocorresponding points p,q,r,s and -p,q,r,8; and hence the
pqint 2p,0,0,0. p must be of the form 1/2 but p cannot at the
same time be of the form 1/3 unless B is an integer, and this is
only thee case for 7; s0 that there &8 only one type of hexad latti
This completss the number of possible lattices. There are

fourteen in all and every lattice can be reduced to one of these,
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CHAPTER V. s

ENERAL SYMMETRY RELATIOHNS .

e e e e P e v I W e W R W S

i’ouible formy ¢f the Gensral Symmetry relation.

Returning to the general symmetry relation which we may write
ve (cafatxitic  wnere x-;; 3,400 8
we are now in a position to examine the possidble values of the conetant .
vectoi C and their signifiocance, ‘ ‘

Sorew and Rotsation Axes,

Consider the the most genersl relation of the first sort
written in the form Y= a&xiémawbwc whers &, b , o are primitive
vectors of the skeletal lattice. If the origin is on the axis s
it can olly be related to the points pa and consequently vaw=0
and the relation takes the form
‘ Y= afzatiua
Repeating this k times we obtain

Y=X + kua
4 has one of the values J; but w must slso have the value mi+ %
g0 that the value of n may always be made to lie between such limits

a8 (1) Oeén<k or (ii) -§<o<.§

As it 18 always pos"aible to chose one of the ir:lmitiu veotors along
any axis of the system the same argument applies to all axes, met
in.general-if-12 so that we may write the general relation of the
first sort in the form l

Y= (pa+qh+ro)*x*.(pa+qb+ro’)g+¥( pa+qb+re)sua+vbswo '
where apgs are the roference vectors of one of the 14 lattices
h 18 an integer and S.(pa+qb+ro)}{ua+vb+wo) =0



S11 When h 18 not O suoh & relation is called a8 sorew; if h=0
it 1a. called as before a rotation. Conasider the two sorews
Ym A*x:‘f %a and Y= aixj- 3 %a where h(% +«The second may be writte
in the inverse form Y=a XA‘&@ Ea which shows that it differs from th
first only in the sense of its rotation, if the sense of one is that
& right handed sorew the second is left handed and vice versa,

1

If however k=2 or 2h=X right and left handed screws are indistingui
able,.

T &

CE & - +
.12 When h is a factor of k the sorew reduces to !sa"xa"“+ %,Ihere

¥h =k Repeating k times we have Yzakx.&%m , ther is a rotation
ve dat, » ‘

. The poaul;le typevs of sorews and rotations are given in the table$
They are expressed as if the axis passed through the origin and with

a primitive vector a as axis bup this is only for convenisnce ssake,



+«13 _Typen of screws and rotations.

General form -&
Yal%xa + )E‘A
Particular forms
k=2 h=0 Y= aXa'
1l Yu axajoa/e
or Y= aXs’-.a/t
k=3 h=0 Y=alxzs}
1 Yea'Xatia/3
2 Y= s¥Xati2a/3
or Ysa'Xs'.a/3
or Y=uaXa +a/3
k=4 B=~0  Ymalxst
1 Y=aiXdi+a/4
i Y=alXaisa/2
or YwalXai.a/2
3 Y=aiXaf +20/4
or YratXat.a/4
or Y=aiXxe «a/4
k=8 hm0 Yeoiml
1 Y=a%Xa a/6
g2 YeadZatia/3
3 Yﬁa"’Xa"ua/z
. or Y=gbXal.a/p
4 Y=eiXadi2a/3
or Y=a'Xal.p/3
or Y=a X' /3
5 Y=atXatsa/e
or YaalXdi.af
or Ya&%Xal+a/6

Inoluding the Nad axis
" " q}' sorew
L L} L] uis
- " ¥ gsorew
"  axis

[ ] » tread

" diad & "

diad axis & " gorew
" sorew & " axis
" axis & " Berew
"aorew & [ 4 "

Y=
Y=
=
Y=2a

Y=a

gsorews Y=a

Y=a
y=a

Y=a

Y=a

33

=

als
aXa
Xa

B OEREF

5

-‘“/2

+‘/2

+a/3
+2a/3

+8/3

+2a/3
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of _Aves pot throught the origin

3

We mey now write tthe genoral relatddn of symmetry of the first

sort in the form Y*."-Aﬁlite + pA +B where S.AB=0

Lat us chenge the origin to e point C whare S.+AC=0 If Xand Y
are the new vealues of X and Y then x=xic : ¥ =Yic and the relation

K3 -3
becomes YiC = AR(x5C)A SipasB

g2 4t

Y 2 A XA +pAATCA -84B

The axis passes throughthe new origin if

Atcii.cm-o
This eguation gives the the position of any sorew or rotation axis
in terms of the constants of its symmetry selatsOild . »

An importsnt particular csee is when A‘le the reference veotor a )
and B tekes the form vb+wo S‘'bawmS.0a =0
£ -t s Xb+yo

If also a'ba afb+go a oa&t}ugto the equation for a point on the axi
tekes the form z{f,b + g,0)+y(£,b + g,0)-xb-yo+vbiwo =0

which gives for +nd ¥ (1-2, )x; y -.—s;v
-8, xt(l-g,ly=w

Relatdons df the second sort

As before we may write the general relation sf the second sort

in the form £ -4
Yar-A XA +pA+B whers S.AB = 0

Transferring the origin to the point ;EA + 5  s.a8'm0
L &t 3z .2
we have S T T 14 )
3 % l'é' .
and 1% § 18 chosen to satisfy A BA +B’-B==0 this reduces to
LN
= ®
Thus the general relation of the second sort, except in the particular
redvces toavrotation of the second sort.

case k=2Awhose centre is in general not the origin. In particular

the general inversion Y=-X4B is a centre of syrmotry at the point g



.31 _Refleotions and glide planes

In the case k=2 the equation for the centre becomes
ABIII¢B-B-0
-B¢B+B=O
From this equation we see that Broo'iand that in general the equation
ocannot he reduced any further than
!I-AXA+B
This relation repeated onoce gives

Y= X+2B

B met take the form }(pe+gbsrc) where pasgb+ro 1is a veoter of the
skeletal lattice, thie may alwaya be redunoced to one of the forms

0,0,0; #,0,0 oto ;4,%4,0 oto ; },4.4 sor 12 p,q,r are of the form

lmn
or 1 210 t04,0,0 eto or 1,0 ,0 ete
Egirla c%ns. ' 4

If the pimus ocan be reduced to the form Yl-m+'!p

l

here S.AB==0
it is 0alled a plane refleotion; if it reduces tothe form

Y -m+pA+BJ:{t is oalled a gliding-refleotion; in either case
the plane passes through the point 3pA ,

«4 Parameters of the gemeral symmetry relation,

I the general relation be writtem in the form
y=(1) A XA +na+vb+vo
u,¥,w are called the parcmeters of the relation, they fix the type of
the relation when the axis and rotation are given, !ho;orisin ocan .
always be choaen either to be on the axis of'rotation or in the plane
of ‘rotation,vhioh ellows u,v,w to be given any desired values subjeot to
certain restriotions; one for an axie,two for a plane,none for a centre

of symmetry,
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The symmetry of a point system is oomplctoly'dotormlned when the
rotations and parameters ofm its symmetry relationa are known
te. (€ / ;-(1) A'LA *uawbwo are known
shotoe—od the same origin being taken for al%of them Akhange of origir
'ilsgivo different values for the parameters but thers are some invaria
relations between them. Two partioular cases are of special importance
If three of the relationa are of the form
Iss 'Xa"'mpwbwo Where S.bo=S5.0a=S.ab=0
Yﬂi"‘Xh ‘wugq’bmp .
Y= oth quawbmo . ,
Here 1t is oaaily soen that ohange of origin does not alter the
values of the three quentities Uy, ¥-v,, w-w ; and that any three
parameters,one chosen from each of the pairs ﬁ,us;g.v,: w,w can be
given any desired value.
If the olass of symmetry ie hemimorphic and it hes relations
Yeafxéiqugbmp Where S.abmS.a0=0
p&-35 0.0 0 rua+vbiwe
Y= .oXe' +UR+D WD
here only V-V, and w.w are unaltered by ohange of oricin and only two
of VsV, iW, W oan be given any desired value.

Relatfons between parameters

Inﬁeneral the set of parameters in any class of syumetry
a

are notAindependent, they are¢ oonnected by relations and can c: .

‘be determined when some of them; usu(ly one,tro or three are knawn,

’Aa these can only have soma fow fractional valuea the number of

of types of symmetry in any olass is always ﬂnite. It is the purpose
ter

of the next &eegicn to derive all these types,but itis férst necessary
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~ to obtain in their mast general form some of the relations connecting

the perameters of different symmetry relations.

, Relations with the same rotation

51 Parallel axes

Consider the symmetry relations
Ye=4A x;;§+hA/k+B Where S.AB=S8.A8'=0
!éAtxA"‘*hh/kd ‘ 7
Subtraocting we have Y - Y =(11%1;_)A+B'-B. (_h:Kg)MB-’-B met de a point of

the skeletal lattice. In general A=pa:qb+ro VB’=nao;:+:g
B=ua+vb+

with the conditions Zupa + S (vr+wg)S.b0o =0
2upa + 2 (vr+wq)S.bo =0

then if pa+gbire represents a vector of the lattice, we have
l-{i'lz(p;nqp'r:t;o)4(u’-u)a.+(v’-\ir)tv(|vf-w)o=-pa~~qb+ra

which gives the three conditions
H-h hih,, h-h

—-—p+u -u=p  SpQav-v=q T.r;wf-w=r .

an 1mportant partioular case n,-‘l;q’-o; #r=0 : S.ab=8.a0=0
){-h ’ ’ weun=0
T =P M V-V:q ' W-W=17T

]
If p,q,r take the form 1l,m,n h'-h=k1;allparallal gerew axes must

have the same pitoh.

.62 _Parallel planes

Consider the planes
Y= -AXA +ua+vbewo : Y’a -m.'mﬁﬂ‘bw'o « Subtracting and
equnting to a vector of the lattice.we odtain
. wu=p ;vev =q ; Wewmr
In the particular case where A=a and p,q.r‘. are 1,m,n we see that

parallel planes are all reflection or all glide planes and that they

are placed at distances %1 apart,
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.6, _Centres of symmetiry
Consider the two centres Y= X +ua+vb:wo ; Y= ~X+da+vbiwd

nubtrpoting and equating to a vestor of the lattice we obtain
w/-u=p; v-veq ;¥-war
there sre cemtres of symmetry at all the points
[h(usplash(veq)bed(wsr)o
7 Relatibns with different rotations

.71 Perpendicular axes
Consider the relations
Y= a'%xéiha/k Where Sab=S.a0 =0
Y= {gb+ro)}X{gb+re 7 sus+vbiwe
*ransforming the first by the second we obtain
Ye a{ixé%ma/'k -a.{(vbwc)iawbmo.
subtracting the original relation and equating to a point of ths latti
ai(vbwc)éfvb-vo = pa+qb+ro
e e
And if a ' ba =f'b+%c : aoca :f‘bmg we have

vif-1)+wf =q
vgfwlg‘-l F=r

.72 Axis and parallel plene

Consider the relations
Y=ot Xa +ha/k
I= —(Qb+ro)x(qh*rc)4 +ua+vhws .
transforming the first by the second we obtain
1=8 xé%-ha/k-a{(vbmo)a-;wbmo
fhis is seen to be an screw of opposite pitoh. Subtracting from the
original relation and equating we}xann

t Y
2ha/k+a*(vb+wo)a “-vb-wo = pa+qb+ro



rd ‘ . x _s
If s befors aéba*'aflmg;o : a"oa‘-f‘hgg we have
2n=kp ; v(£-1)+w=q ; vg;w(g;l):r .

73 Axis and Centre of Symmetry.

Conslder the relations
3 .z , .
Y=a"Xa “+ha,;k+Vb+wo where S.ab=S.s0=0
I= -x+u‘a+zb +Wo
transforming the first by the second we obtain
£ 3 3 -t
Y= a"Xa‘-ha/k-aI(v‘bw,_c )& (Vv )b+ {w-w)o
8 sorew of opposite pitch . subtracting and equating as before
S 2 -t
gha/k+( 2v-v)b+pw-wlc +a”(yb+wuo)a =pa+qb+re
as abovr e this gives
_ gh=Xkp ; 2v,+(¢,-1)v'_+{w‘=q : wag'w(s-l)w,.-r
In this and in the previous casa if p is of the form1l , h ix
- sevre
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CHAPTER VI

We are now in a poeition to to derive the poasible types of
aymmetry of point systems in three dimensiona. The plan adopted in the
work is as follows.

The symmetry relations of every class are given in their genersal
form. Whera)howeverlany class is derived from another by the sdiition
of : symmetry reilations cnly these relations are given. The conditions
connecting the parameters are then found,the origin i. is chosen eand

parameters

the possible reduced values of sugh,as are chosen to be independent
determined. Corresponding to each permutation of these thsre is a type
of symmetry but some of thess types may be shown to be geometrially
1ndistingulshable,and will not count as separste types. In general
there are several lattices whicbh include any class of symmetry, The
types of symmetry oorrsepondins toﬁhese lattices willke derived in
turn. fThe lattice whose formula may be written /la+mbsnoc whare a,b,0
are axes of symmetry is dealt with first, to every type of symmetry
which 1t gives rise té ,there corresponds one for the other lattices of
the same olass, but hers they are not all distinot. ,

The types are designated by their Schoenflies aymbols even when*
the order of their derivation would suggest different notation,

In scme cases the position and nature of axes and planes are
given but these can slways be obtained by from the parameters
The formulae of the varigus types of symmetry are reserved for a

later chapter.
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Triclinic %ypes

Two olasses C, and C, one lattice T,

C, only the identity relation Y= X+ua+vb+wo u,v, % alwsys reduscidle .
to 0,0,0 . only one type C,

C; only the centre Yz -X+ua+vb+wo u,v,¥ always reducible to
0,0,0 . only one type C;

Momoclinic Types

’

Three classes C,,C;,G,. Two lattices /) anall
C, the axis Ym=aXa'+ua+yb+wo The origin cen alwaye be chosen io '
make vaw=0 By 5 lwe) opdy5s18hows that for /p u=0Oand u=}
glve distinot types dbut that for 7,;','11:0 implies u # so that there
is only one type. In all there are the three types

c; skeletal lattice 7, , parameters 0,0,0

¢ *~ o I " },0,0

¢ n . n " 0,0,0, and },0,0.
§@ The plane Y .aXa +ua+ybiwc The origin can always be chosen to
meke p O , v and w oan have the values O or ¥ . In band o have been
chosen arbitrarily so that the values for v,w 3,0 ;0,% ;%,% are
geometrically indistinguisheble so that there are only two distinet
typea, In by 5?53_the values 0,0 imply ¥,0 but there are still two, 'z
types since b and o 8re no longer arbitrary, and the values 0, ;3,3
are distinat from the former pair. In all th ere are the four types

Cs' skeletal lattice 7: » parameters 0,0,0

¢! n "N " 0,4,0
G " - o P " 0,0,0 and 0,§,0
¢ = = T " 0,0,% ana 0,3,3
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+23 C, Derived from C,by the sddition of the centre u=0
Yé ~X+ua+vbewo i‘l'he origin ocan still %e chosen BP thatA
By $Bwe have for I, 2v=1; 2wmm ; and fprZ;'IQu_—.l;! : zvnl—;-g : 2wan
bat since u cannot=i— theseboth give the same pbseiblo values for the
paramsters namely 0,0,0; O0,%,0; 0,0,%4; 0,3 3.For/2the last three
are geometrically indistinguishable, foralthe Tirst two and the last

two imply each other. In all there are 8ix types

c;‘skeletal lattice /], derived :fromC”_, parameters 0,0,0
c:‘\ n . n ];: n " C,l " 0'%’0
c; " LI " " c; T 0,0,0
c:; " " ): " " C: " 0'%’0
C " -7 LI . 0,0,0 and 0,%,0
¢t " - N . " " 0.0, " 0,44

3 Orthorhombio Xypes,

Three olasses Q, G,.Q, : four lattices
«31 Q Three axes Y =aXa“+ua+vb+wg
Y =bXb"' +ua+vd+wo
Y s0Xo” +ua+vb+wo .
Combining the three we obtain T= abolo"b'fu“dn‘mt-l})u‘ ,-v‘-vJ)h(w‘.vv’)o

and since Usbo=-1 we have

[
tor T T A x
wrusn, = 1 1l =1l:m+n min
5=
SVAVY, = m m+ l-m+n n+1
. == 5
WeWiW, = n m-n l+m-n l+m
atp=t =

we oan always choose the origin to make n;?V,-y'l:;."O
u,,v,,%, can take the wvalues Oor #;here a,b,c are geometrically

[
indistinguishable this leads to four types forf;' , for T,'theae reduce
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to two since the values 0,0,0 for u,,v, ,w,, implies the values 0,},{‘
and the values: $,0,0 implies %,%,4; for 77 'allthe types reduce to
one; for U"’thera arc egain two types 0,0,0 {mplying '&,f,}, and $,0,0
0,%,2, 8o that there ars aitogethor nine types.
R'sxeletal lattica I, , parameters 0,0,0

000
000
¢ - - T . §00
000
+£00
Q’ - L] I:' L] ggo
‘¢ =w B ] n [ 00%
q 7 3%%
, ot %
F - . i . ooo.mg‘gij v
000 "
: 000 "™ O
¢ - TR R }oo-}ﬁ
000 " 0O
, $o0o0 " %
J - " A . 0ooo0 0% ¥ it
TR RN
T " . Y " 000 and
s8s it
? ]
Q » " 7;' L] ooi:&
RS

From thess parameters-we can ua(r.hat

z
Q'haa three intersecting diad axes; Q hae one diad sorew meeting both
of two non 1nterseot1:xg dliad axes; thas one diad axis passing through
reclangles '
the centres of the squeree formed by two intersecting diad sorews;

5~ 1
Q“hasthree non»intereecting diad sorews; Q is a combination of Q and Q
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[ ’
Qo ' ant of @’ combines a11 the types 2.Q,3,Q'; @ combines q and ¢’
Q » Q &nd Q [ ]

C»An axis and two planes
-~
Y= aXa +u8+vbixo
Y= -bXb+ula+v"_b+wp
Ys -oXc’iuawb+wc

Oombining the thrme we obtain Y madoXsba’ 0(umm)u(v-wv)b#(m'.‘)o

. ’ ” e
and since Uabc=-1 we have ; for n r ,:1 I ]‘-;p'
u++ L 1 m+n ~l:m4n il+n
TS - —F =z
VoV, m m+n nél l-m+n m
LAL L A n m-n 1+m 1l+m-n i-n
’ 2 == 5

We can always choose the origin to make T=v =0

u,.9,,%,7; can take the values O or #. For ];'permtations of these
lead to 16 types but since b and o are indistinguishable 6 pairs of t
these types are likewise leaving only 10 distinet types . Por f"

as 5b and' 0 are no longer indistinguishable there are two divisions
eocording as we write /, as /lm—-—r-lb»'-'i'—go or “P/lm +mb+12 + In each
of these divisions several sets of types corresponding to the 10 above
imply each other which reduces the number to 3 in the first and 4 in
the second division. For the number is reduced to two and tor/:t”;
three types. In all there ars £2 types which are set forth)with thety
rarameters in the following table,
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33 Q, Derived froam Q by the addition of the cantre of aymmetry
Y= -X+ua+rdb+wo
By §$73we have th:gc{ss:l&gse 'ur?vsdo‘i.tz.v ,w are 0,0,0;4,0,0;0 1}.0 0,0,%;
0,%,4:4,0,%:4,4,0:4. 3, é For Q sinoo a,b,0 are equivalent this reduces
to four types. For Q a—oze-e—oqz-«}* 0,4,0 & $,0,3 ; 0,0,3 & 3,},0;
0,4,% & },3.} give rise to indististinguishable types leaving four. j
Por 7 0,3,0 & 0,0,% and $,4,0 & 4,0,% do the same leaving six types. |
Por 270,0,0 & $,4.4 end 4,0,0 ....0,%,} give rise to indistinguishable
types leaving only two.
Por Q' and by5i30,0,0 implies 0,3, 4 ; %,0,0 &, ; 0,3,0 0,0,%
and },4,0 %,0,% also in ({ 0,6,0 & 3,0,0 end 0,4,0 & },%,0 give rise
to indistinguisheble types but they do not do so in Q‘ao that four

latter
types correspond to the farmmx and only two to the former.

For Q by $63p,0,0, imply 0,4} :%.0.F :}.3.0 and §.4.3:4.0,0 50,},0;0,0,%
80 that there are only two types.

For 3 and g by $30,0,0 implies 3,4, ; i.o 0 0,33 ; eto and as the
last three give rise to indistinguishable types there are only two

types corresponding to each of Q' and Q:
Inall there are 28 types
Q’h lattioce /Z derived from Q‘ parameters 0 0 0 w

I A T
¢ "+ " " & too
S Q¢ " ot}
¢ v " L 000
¢ v o omd ot b
¢ " « =~ "q& " 030
Qi " « " ot » 0 ob} 3
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Q: lattice Udorived from @ parameters 0 0 O
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Tetragonal 08

!
Seven oclastoo 0‘ ,cd,q“.nq ,Dd,c“,q“

-t
c* The axis Yx atXa ;na+vb+wo . The origin oen elwcya be chosen to

!
« Two lattices T:end 7: N

make v =w=0, u can have the values 0,3,%,7 {the relations they
represent are called tetrad axis,right, neutral,snd left tetrad;screwa
respectively) BySéwe have for’{'n:-u =1 forl’{l‘-ua]z{ so that i’or’;'there
are four classes and for letwo. The position of the tetred axes

ere given by$'2, here £=g 20 g=1 ff:-l 80 that the coordinates

of a point on the axis are given by x*y=vV ;x-y=w for Etbis gives

x w M40 y-%l‘— : for7;7'x=im y =3n but here if m and n sre both o0dd

or even ,tie pitch of the axis differs by 3 from that which passes throug}
a point where one i1s 0d4 and the other even., The tetrad axis implies ‘
the d4iad axis YgaXa,—‘+2ua and we have tromf"Z::;ese rust pass through thov
points 4m,4n forrzand g_;_n_’ Ei.’.‘ forf;"; being all of the same kind ig the .
first case and alternately rotation or screw axes in the second

In all there are six types

c, la%tioe?parmetere 000
z L]

c; T | oo

¢ o m too0
¢t " o  Foo

A T AR 000eanat t}

c; L 300 " 333}
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.42 0: the sxis Yr -atXa‘iua+vbiwo . The origin can slwaye be chosen

43

to make u=v=w=0 650 that there are only two types one derived fron\T;’

—‘ -
and one troml;". By subtracting Y= -a‘Xa‘we have u,v,w=l,m,n forl}
«Lim+n .

and

l-m+n

2

set of alternasting tetrapgonal axes are at the points
in the first case and :l-t%ﬂ’ 3, B30 in the seoond.
There are two types

c;' lettice ['perameters 0 0 O

ot 00Oend 3% 4

"
%

C

Since bySsl¥a centre of symmetry trang forms right into left handed
8
sorews types of thie clneA can only be derived from the types 04' R >

we have also the conditions: for
. 2u

2
v and w may have the values 0,0 or #,% but for O:linoo uis Oor %

v,w can only be 0,0 while for C eince u is } or 1 , v,w can only be

T,I

¢

v‘-" =

A4
1
n

n

4,4 + There are in all six types.

. 1“;"“ for 7;’.’By$2thia shows that th centres of the

" Dsrived from q‘by the addition of the centre of symmetry
!s-XHu'aw'bw'o The origin gan be chosen to make u=0

’
A
=l+m+n
l.m+n

2
l+m-n

c,'“ lattice[] derived from CJ.parametou 0060

c "

Gy "
¢, -
O "
¢ "

<3 )

-

N ek

50- {p 'S ‘-"q ‘ovl 'C‘o.

o}#
000

ot}

000

0%4

ke sl
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" D, tive axes ?e tﬂm 1
I & bIb +ua+¥b+wp 2

Y& clo +ua+gbewp 3
Y =(b4c)x(b+c) +na+xdexs 4
Y=(b-0)X9b-0) +ua+vbevo 5
The paremsters are connected by ssveral conditions
Transforning £ by 1 we obtain Y=oXo +(zu+u,)a-w,b+vp but this may de

the same as 3 and we have n-n+2u AR AL AR AR

8imilarly for 4 and 5 u =u- ~2u; V= ",%-.--v
Combininz 1,2,and 4 we have sinae atb(b+odX(b+o) v i‘:l
For' r 1Al
u-u+a, 1 =1+m4n
=
LA A m l-m+n The equivalent parsmeters n,.v_‘,v,and
2
';- v, n l+m-n u‘,v;l,w, or u,,‘,w‘d reprosent different axes
By‘:"we have torrv-!’;—n W —— forr' v-%;wgﬁ"_‘. but by'“{:he vsluen
0,0,0 for u,v,w, imply the nlues %, -} + 80 that these can only give
two
rise to one case, There corresponds smm &¥pes of this olass to each of

type
the al.ssm ,Cq,(.‘4 ,C,' , and one to the &jmes c‘.c(,; making 10 in all

D lattioce Pparametera 0000

000
000
000
Doy » 00
4 )
0
P " s " 03
4 o000
%oo
00
$o00
D: . | . *§%§
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62
njlattioo I} parameters %

=)
3
=
t
t0p=

RO O PO O

bt OO OO

0
)
0
)
b
1
D " v " 4000
+ %oo
00
00
3 " » "
D, a}o%§
§§
p = N 0000and 3
4 4 000”'5i
ooo "
000 "
. .
D " . n 000 "
4 *too"i}%
00 2
00 * i
D

) three axes and two planes
‘Ye_gixgt

Y=DbXb +na+vdmp
Y= oXo +ua+vb+wc

Y= o(b+e)X{b+a) + gwc
Y& «(b-0)X(b-0) +UB+Y) +v‘:’o

The rela.tlions of this class can also be written ina form where diad
axes and planes change places each of these ways give rise to distinot
tyres; it is more oomvenient however to consider them derived from
the above relations with skeletal 1attioesr'r rwrltten /1a+2§§b %‘—'o
andftéwritten /B4, Bely., Lyme ‘

As in D we obtain the conditions Uil | VoW, ; W, 2oy,

weu o ov, -'s; W=V
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¢ ]
Combining 1,2,3,4 we have: for I [y o
,-u=1l =l+m+n 1 men
2
vevanm l-m+n m+n n+l
g 2 T
w-wz=n l+m-n m-n l+m
2 & T

A8 in q equivalent paramesters u,¥,w and u, v+l, w represent differ-
ent kinds of plane.' The actual arrangement 0f axes and planes can
be seen by considering the arrangement in the corresponding types
of Q and C.

By 5.71 we have: for ; & * Iy
vVenmin 1 m 2l+m+n
2 T 2 2
wsm.n p-n n m-n
4 g & B e
and by u = %

Yor [ T,"“ since u, v,

oen have the values 0,% there are four types
eack for (' the values 0,0 and #,4,0,%, and #,0 imply each other eo
that there are only two, for It“‘so d0 0,0 and 0,%4; $,0 end #,% so

that epain there are only two.

\

In 81l there are twelve types { only the parameters u,v,w, ere given)
u,v,w,

D, latticel] o

¢ 1attioe i corresponding to ¢ (‘,‘, parsmeters

D:,I " " " Q c:;- "

s
-
a
O,
S
3
OO X OO v OO
CO P e OO0 OO0
g
(=]
opr
o

OO e N OO 0O
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lattice Hoorroapondiug to Q‘({. paremeters
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«46 C,,. one exis and four planes

4 4
Yxa“Xa fﬂm
Y= .bXb” +ua+Td+Y;
Y =-0Xo" +u, +§bmg
Y= -(b+ciX(bsc)” +u'a+§g+v
Y=-(b-0)X{buc] +qa+Ybeno

2x 48 in D‘ wo have the conditions ‘H‘_au,i = -‘.‘; =Y,
ERIRA O R
Combininglf4 we have : for 7 [ Al
usus, 1 -l+m+n

2
v-v, m 1-m+n
s =T
+W, n i+m-n
% 2
By we have U~ 1 l:m+n
2 T M
¥, min 1
- 2

¥, m-n 25'2
Pow Klinoo u oan only have the values 8,4 and Y,W, 0an only kave0,0 or +H
there are 8 types. l‘or[v'z' can have the valuesO} 4 § but O implies # ana

. i,mrther An the first case the valus of Y,w are limited to 0%o

end ,% and these imply each other; while in in the second the values
are limited to $,0 and 0,4 which also imply each other, so that in

each of these cases there are only two types. In sll there are twelve t
types whose parameters are shown on the following table.( Only the va
reduced values of the parameters u u,v,w are shown the others nay res-

Uy Vy Wy
d4ily de osloulated by the equations abave,
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C, 1lsttice]] parameters 6000

g 000
( q -

c n " 0033}

Ay 0%%

¢ wow " 0300
4r 00

A 5
Ld -,

C: n [[] '} ‘}OQO
g 000
&

c‘h " ' " %gig .

c’ LI n $3o00
n 199

“ vt R
9 ?

c LI n 0000and $ 000
4 ¢ 000 g%i’
[ 4

¢ L " 000 " $3%00
- 190 - *89%
"

c " " {o%o"%oog
” 10% 3o
n # ] ey " 0

<ot SR £

D“ Derived from D4by the additicn of a centre of cymmetry
I= —x+u‘g.+vb +W0

F &
As in the oase of C“the only ‘typea of D from which types of D may
be derived are are those for which u =0 or % or wrere it =0,% ;1.%

’ t s & ? /6
at the ssme time namely I)4 ,Dq ,Dd ,D, .D, 'L):
As in Qh us,;.w, can take the values O and % but since b and o are equi

valent axes there are only four values 0 ,0,0 ; 0,%4,% ; 4,0,0 ;4,4,%



57

s
Thus esch of D;' ‘givo rise to four types, For D" uvw must be 0,0,0
or $,0,0 and for D‘"n,v,w mist either be 0,},0 tmplying 00,% or %.4,0

implying +,0,% . D: and D': give rise to two types esch. In sll there
are 20 types.

121‘& derived fmom D‘: parameters 0 O O

D:; n n Di " "

D{.K " " D; n "

4 v

14 ' [
D‘k ” i D‘ ” "
o, " " D, " 2 00

D:h " " D; ’ " "
Dzk " . " D: " "

‘:: " " D: " n .
D:A " " D,: [} 0 i, i,

Dl’l\ n " D: " "
Qﬁ " " D: " " .
D‘;: " " D: " "

4 '

ORI N 15

\J t
D‘i n " Dq " ”n
D"H“ n " Df " "
D;: " " D: " "

7 M
7 v vm " 000

" n n " } o0

L o) 4
D, " " " 003enda 0% 0

-
>
a2
 §
o
-+ g

" 1ot " %0
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s
Thus esch of D“u ‘givo rise to four types, For D" uvyw must be 0,0,0
or },0,0 snd for D‘"n,v,w mist either be 0,3,0 tmplying 010,% or 3.4,0

implying +,0,% . D: and D': give rise to two types esch., In all there
are 20 types.

Q"A derived fmom D‘: parameters O 0 O

Dj"‘ n n DZ " "
D:‘“ ] 7 L] D: ” "
D(,I n n n "
4

o, " * D, " $ 00
DA‘A " n D; ’ " "
Dzk " . " D: " "

’: n " D: " n

4 \
D:k " n D,: » 0 .i, *
Dl’l\ n " D: " "
D-ﬁ " n D: " n
D'l’ L L) D‘ L] L
ih 4

4 '

AR IS R £ 3
D’ n " D:‘ " "

4
D.,HA " " Df n n
D‘f " " D‘ " n

Gk 4
7 " " p’ " 000
3 ]

" n n " i, o0
“n 4
D, " "~ " 00}rand 020

a
2
=4

L
3

-
>
-3

1od " 320
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«6 Rbombohedrsl Types }
Five classes cs,c,i,nJ

A,(!".1)!“(. Two lattices 74’ 7,"'
«51 C; the axis £ -%
Y= a’Xa *sua+vbewe+xR td

The origin can alwaye be chosen to make Y=w =§ =0
¥ can have the values 0,1/3,2/3 For/ these are independent, the
positions of the similar trisd axes or screws can be found bySlto be

;33 {21-n-n)/3, eto
dissimilar axes pass through the ssme pointa. There are four types

B-n. n-o o-m, For F the values 0,1/3,2/3 1m§>1y each other but these &i

03 lattioelzn 80:0, lattioe?,nz‘jz '(:3 lattiooa’,uag
$

) " Tiu=0 ana lana 2

3 " 33

+52 C;; Derived from 8 by the addition 46f sm xxtx a centre of symmetry
' = -X+un+ybewpstp
The origin can always be chosen to make u=0,
48 in the oage of C only the types C and C can give rise to a type of
this class. By "%e have: for bothr'[’{ v= —-—9-'-93‘-9't o-m

nom 3 3 3
80 that there are only the two types '

C,,- lattioeﬂ:' derived from C, perameters 0 0 0

A A 000 E

«83 D four exes P .
3 Ysa’ia'q4ue

Y= bXy ﬂlp.+7b+'0+td or (o+d).x(o4d)‘ + ete

= CXO—' +Vb+l:’ +t4 (a+d)X(a+b ) n
e S e S 1O

the two weys of writing the relations depend on the fact that doth

b,0,4 and (o+4},(a+b} ,(b+cd can be taken as 2iand axes of the lattioo]:
though only the first can be taken for/y.
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'lrensfomina 2 by 1 aml equating to # wa obtun v n2usY =tiwW =V,
3" g n-u+8u AL B AT RS

-

this holds for both for bdoth forms of the relationa.

-7
By e have v,-D3R jw aBzQ ;¢ 0D yut this is of the same form as

S 3 3
we obtained for the axial parameters in c, 80 that only one type in

each form corresponds to the three types C, c c and only one of the

[ S et 3 ]
first w to c « there are in all seven types.

D'lattice I! parameters 0 0 0 0 O Diad axes b,0,d
3 : 000 o
D n " . 0000 " n {o+d), (d+b), (bee
3
D" ] n L] % 000 " " » )
. 000
D; " " " 000 L " L]
) .
D’ L] ’ ” %oooo " " L]
5~ 000
D " " " é " L n
s £000 000
5, ~ 0y - 00000eanalfoileatloll
. 0000 g%ﬁg %0%
0000 %
Bido 2d2do0

cbona axis and three planes

Y= a‘}XE} +us

Y= -bXb +uasybewpetd or -(a+2)X{o4d] +eto
Y= -oXo +u‘a+vb+!c+td «{d+b)X{a+b)' +ete
Ye -dxd +ua¢v'b+wo*td «{b+c)X(b+a)! +oto

Exnotly a8 for}) we obtain LAL ALY v-w-t-w:tsv- t-vaw

by $77u =0 and by$ha =0 or ¥ . Further as for Dythere oen only one
of eack sort.

cet of independent values of v Y. W, t Thus we have two types corresponding
tws of th-ﬂr;t sortte C}

to aaah of 0 ,~A,x , In al],six types,
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C,',lattica

3
Cd

"

L2
S

o

<

3

Q,

3

cé

I~

Upumotersgg'zlg'g
T n otooo
T " 0000C0O
n " 03000
T " 00000
L " 0000

"

60 v &!

planes perpendioular to b,o0,4

n" " .
" {o+d), {a+d), {bee).
” L]

" b,0,4 E
" " i

Du derived from D by the eddition of a centre of symmetry

Y= ~X+ua+vhiwo+td
« 4 4 «

Exaoctly as in ane £ind that the only types of D ,that oan give rise to

types of Duare D;,D:,DJ', also that A0 t~ glways roduce td the same

values 0,0,0 . but in this case u

can have the values O or ’k 8o that

to each of D',,D;,D:,oorresponda two types, making six in sll,

1 U
Dycorrasponding to D,

T

D

&

‘.Lun Kit"‘) f* (q‘

D

~ ‘.‘n \-:Un

=

~t

(<]

w N

u=0

u-%

[
ant
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o5 _Nazagonel Types
Seven classes c‘,c“,c ,D”., +Cpe “. One lattiocs

+61.¢, the axie 4 -4
Y=na"Xa ‘+ua+vhewostd

The origin csn a.lways be chosen to make vawest=0

u oan have the values 1/6 1/3,1/2,8/3,5/6,

Ry 5./we can find the position of the hexad axea to be g}-lgl'ﬂbwto
snd as each axis is also & triad and diad sxis there are such axes
through the points -li-@bwtc and 2_}_.:_%1:31” respectively.

Thers are six types C‘ ,c‘ ,c‘ ,c, cf C’ « withe the six values respect-

(3
ively ’that are given above for u.

centrs
.52(3“\ derived from C,by the addition of am xxix of symmetry

Y= -X+ua+vbiwo+td
i3 in cﬁwe can ses that the only types of C,from which types of C,
can be derived are C" and 06‘, also that that u,v,w,t,always reduce to}O

Thus there are only two thpes: C derived from C ;C derived from C

c
+53 G, The a¥is A ’
S Y= -ana Jua +vh swo +td

The origin ocan slways be chosen sothat u,v,w,t, 0,0,0,0.

There is only one type c,',‘

54 D]‘ The four axes, and the three rlanes

rFs .L
« Yw=-a’Xa‘'+ua : -
Y= bXb” +ua+yb+wo+td and (o+d)X(0+d) '+ oto
Y= cXoo +ua+gbewp+td
Y= a4 +ua+v +wc+*d
Ye -{c+d)X(c+d ) +ur+vbswottd and -dXb'+ ete
Y= -(d+biX(d+d)’ nlpoviw,aw_d
Y= ~({b+c)X(b+ac)” sus+yb+wa+td

The relations between the parameters are similar to those in Dsand !!3
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* Here however U can be O or} so that there two types of esch sort.
D;‘\n =0 diad axoes b,0,4, D:‘n=0 d1ad axes (o+d).(d+b).(b+o§
g“\ a=d " " " P;"ﬂ"} " " "
65 D, Seven axes '
Y=a In +us
Y= bXb +\‘a+v;b¢qo+tp
I (sla.)ii;;é.i.;ﬁ‘;:ibwon‘d
i ] ,’...‘......Q......'.‘..

The relations detween are gimilar to those of D_’_

There are six types D, D, o p: v’ D} 3
u = O % 1 2 8

3 8 3 %

66 C_Six planes and onid axis

Y= a"lxa"‘ma
Y= -bXb +up+vbewo+ta
¥s -(c+d)X({0+d) +ua+v‘bwy+§d

The relations between the parametess are similar to those of C,
n='0 or % WJ u=n, =u-= Oor % there are four types
L 3
c;'_nao ju=0 , C u=0 ;u=§,0"u=§ ju=0 C‘f_u-} =}

centre
«67 D“Derived from D, by te addition of a piems of symmetry

=X +u7a+z'b+l’o+t7d
As in the oese of Cé'f,va,,goan always be reduced to 0 0 0

s=* and u ,u oan only have the values 0,% so that again there are four

!
types

' (3 ¥ v
D, © =0; w =0, D‘Ln'aO: uxd. lz‘ua};nno.n‘;nwkz u=~}
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.7 Remlsar Trpes.

PFivo classes T »5.%,,0 ,0 . Thres lattices

3
2
al

«71 T s8even axes

Y. aXa' +ug+vhiwo

Y« pXb +ua+vh+wc

Ye cXo'+ ua»vbmc

Y= la+b+c§X(a+b+o) +qa+vb+wo

Y= (s+beo)X(a«becT} mawbﬂr

Y= {a+b-c)X(a+b-o )‘Hupwb*wo

I= {(a- b*o)l(a-b+c]’»+u,a¢vb+wo ,
FeINN f‘nuy all be considered as special forme of [ we muat accordingly
have rotation exes in the direction of each of the trimd axes,
the origin may accordingly be ochosen to lie on the rotation axis

triad
44b+c 80 that LAS A A 0 also the parameters of the other setetien ax:
can always be made to refer to rotatiosn axes if U-V=W_ ] =UsV-W; -u,-v,nv’
respectively are made » O,
Trans-forming 1 by 4 and equating to 2 , and similarly for £ andp
we hve the sonditions u- Y- Wil=V =W jU-V-W.,
as :

Now'('l‘ may also be regarded as a specisl form of § then the only types
of 3 to which types of T may correspond are those which satisfy the
above conditions namely 3 ,Q',?’,9 @'s0 that there five types of T.

Tranafoming 4 by 1 and equating to 5 we have Vs WAW, (Vs V4R, JW - WAY,
4

" s 3 v ; 7 n ?“322 o
1 A et BRI AR

‘1" lettice foorresponding to Q' paranaters

Ot OOl OODOMTOO

OO0 OO0OQOO000
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, ‘
* lattice Eoorroapomlmg to Q’paramotora

HEHITIET
S
88 11¢ o} 184
M Ind " q " 000 gg
000
000 R
000
) 000 ; %
: 333{5%
o n]:‘ ] Q' ] 00%‘}
iz 14t
000 %%
g?f“’ai
nggoo

%, Derived from by tho addition of 8 gentre of symmetry

Y= X +uD +vb+wg
A8 in the case of Q, the only possible values for w,v,% are 0 or +
but by the trigonal symmetry ur= V.= W, 80 that these reduce to two
000end 4 #4 but just as tn q'we have for 7'0 00 and 3 §
are indistinguishable and in P’ ana T{they imply esch other so that
only 1 and T’give rise to two types of T, thus meking 7 1n|'5111.
T, lattice [[derived from T'parameters 0 0 O

T: L S n o . 333

L L A 000

O L S 000

Tlt LI LI TR i3

L L Sl L L 000and } 4%
I L M SE 000 " 3343
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73 !l‘4 Derived from 7 by the addition of the six planes
Y= o(b+o)X(beo) + a+yh+

I= -(b-o)X(b-o)! +da+vbewo
Y= -(o+a)X(o+a]' +ua+vbiWo

2

Y= -{o-a)X{o-a) +ua+yb+we
Y= ~{a+b}X(a+b) +ua+vh+wo
Y= }(a-b)X(a-b ) +ua+vbhwe
This olass may be considered as & special cese of bdoth Du and C
From the first we sece that as there 1s no type of D“corresponding to 3
there can be no type of ¢ gorresponding to ™. Frgm the second we see
g e 4
that a8 in ¢ uw 0 or % ao Ueyew =0 or 3 forf,Zand 0 or { for [,
" Further D‘"d is the only type of l}ioorreeponding to Q'and usviw =0
also D;: "n. n " L] L] Du_ " Q' " u¢7,'=*
80 that there 1is only ons type corrssponding to 'ana ¥
In all there are six types

Ti lattice corresponding to v D;C,': paramoters 0O 0 O

» Y I
ot " . TDC, " + 44
TP " " ™ e " 000
oot " ¢ " too0anad i
Yo" " T ocl " 000

2d Twy

§ . " T nc " 1 13

+74 O Derived from 7 by the addition of the six axes
Y= (b+e)X(b+c) +ugsybewe

Y= (deb)X(eb) +ua+vbiwe
[ I )
This class may be regarded as a particular gase of D,the 4iad and triaa
or
axes must accordingly elways interseot, 4Alse by we can see that there

15 always a diad axis 1.e v+w 0. 41s0 a3 0 18 a particular case of D

we have for types corresponding to 't T o s
u Qe ¢ Oudf Fa2 Lot }



J
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o7
Thera in &1l then eight types. As the glsss 0 has tetrald axss in the plece

of the &ied exes of T the parameters u,v,w are given as well as.u,v,w

o' 1attice Jcorresponding to T' D, parameters 0 0 O
000
000
; 000
0! " ] ‘¥ "
Lo D ggo
5 4
§05
oo ¢ I . L 34 . 000 }
: : 000
000 # %1
000 %
" ! " s ] 3
¢ * T 3] 390 %4
i 3 ]
g0t
00
. » .
oF r = o g " 000
000
00
000
ot = r; " *p* " oo
_ oto
004 -
108
0' L] n L) T‘I’; L] %00 2
o2 0
4
00%
200
o rt " ' p* " o0
* * 311
4
234
+ 00 %
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.750 Derived from O by the addition of a centre of symmetry
2 .X m..9+v~b+v’lp
4As in the case of D, we can only derive types of this cless from
olasses oorresponding to D, D D D, D, nemely 0'0°0°0' ¢ o
For I we have u=v =w =0 or % Forlju =0 133 but for 0° O implies %
. and 1,1 while for o'u cannot have the values O or % so that in each oase
only two types are derivable,. Eor[fﬂ-:O implies u=%4 8o that on}y one t
type corresponds to esch of O’and 0, In all there are ten types

0' derived from O'parameters 000

ot v "o " Pk . n
o " n ot m 000
of » « o " +1 3
of - “no on 000

o' - "o® 114
o - "ot it

o " Y " 131
1
Y . = o " 000
0" L] ] § L]

0 000

o 3
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CHAPTER VII

COMPONELRT SETS

- = aw e = = e e

E

Eguivaelent pointe

We have already deduced all tho symmeffy reletions of the
230 types of point systems. By means of thoso we cen in any
system write down the veotors ef all the points equivaient to
a given point.
1f the reduced relations of eny system be given by
va(-1Tafait B,
v2(-1 A iien,
YE(-lfhkﬁﬂtiB,
£11 the points equivalent tc X erc given ty tho rclations
/Yei-1 )"’I‘f‘ﬁ;&%:qh,
where h_has £ll the velues 1,2,.....k for each of the n values
of k_
The number of such equivelent peints in 2 compbnent set
oen only depend on the retetional peri 6f the relation so that

in whet follows we will deal only with this part.
x5, Eh

Now since  Y=(-1} A™4"™ reduces to Y=X (except ir the
onses where V=1 end k =1 or 3 when it reluces to g;,-z)
+*
and there ere n relntions of this type, there sre in general
.ka’n points cguivalent to any point and in all

Sk _-n+sl points in the set.
I~n
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If there is a rotation of the type Y=-X there are
ZK ~n+8

-and if there m ofmthe type Yz -A x&* there are

Zk,-n+5m+1 points in the set
Alternatively we may start with the independent reduced
v, & —i_
relations / Ya (-1)A™aA
all points equivalent to X are given by:: . ‘
¢ 2h, e 2) N, A, u. rt
Y= (1) AR ARKA =, L A%A S
where h has all the values 0,1,2, ...(k-ﬂ
The number of equivalent points is in general
ykt..nkl
4s befors the existance of a relation Ys-X doudlea the number
of eqnivalent poihts; but we need not consider the effect of
-§
Y!-l XA since it can always be derived from Y=-X and Y;A§XA
Sometimes the first, sometimes the second method is the most
osqnvenient for deriving the equivalent points,
In the followin~ table there is given for weach class of rot-
ation the most natural way of doinz this.,

Note  Abbreviations used

[
At denotes the relation YaA£XA x
% Eo-%
-A " " " Yz2.A" XA
1 L ] “ Ya%
* " " " Y2 X
£

> 3 .
(%A% ‘ﬁ(A A" .455 signifies that every pain- Felation
in the first bracket is to be combined in turn with each one in
the second, and similarly for products with more then two

brackets
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Symbol Group of rotations . Fumbeo of .

cf class equivalont_points
c, 1 1
c, 21 2
C, 1,-4 2
Cy 1, A 2
G $(1,4) 4
Cy,. 1,4:8,C 4
Q 1,4,8,C 4
Q +(1,4,B,¢) : 8
¢ 1 ,’A{, Py 4
c, 1,44, 4t 4
4 2
Ci +0(1,4,4,4%) 8
(3 1
D,, (174,4,4%)(1,B) 8
4 X
c,, (1,4,4,a%)(1B) 8
D, (1,4 4,11, B 8
D, (1,484, 4%)(1,8) 16
C, 1,A?;\.* 3
v o f
C,‘ i(l,:;,ﬂ ) 6
L 1
Cs, (1,4,2" M{(1B) 6
D, (1,AfA’)(1,B) ' 6
[ Y
D, +(1,40471(1,B) 12



Symbol
‘of class

7

Group of rotations
(172001, 8 4%
LK
$(1;74)(1,4,47)
1,884, a34F
(1,AfAfA,A‘fA()(1,-B)
(I.A‘,A?A.A*,A’f)(l.n)
;(1,4‘,.&&,1.?;1{)(1.3)
(1,4,8,C )(1,'1‘?3‘*)
3_¢
£(1,4,B,¢ }(1,T,7")
{1,4,8,C )(1,'1*?'1*")(1,-12)
(1,4,8,¢ M1,77%)(1,R)
£(1,4,8,¢, (1,7 0 (1, »)

78"

Humber of
equivalent points

&
12

6

iz

12

24

12

24

24

24

48
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Coordinates )
In general we refer the points of a system to three =
reference vectors,and the posiition of any point ia given
by its coordinates /\,rt,v with respeot to these vectors.
{In the rhombohedral and hexagonal systems four reference
vectors are employed.)
If we write X= \a+pb+ve ; Y:/\é/«,t'lnré in the relation
Y2 (-154" 4% 1t veoomes
Aa-vrlbWO !(-I)At(/\&r b+yola )
= (crhad (arhid kst
How (- ))'Aia . la+mb+no
(-17oir = la+mb+ng
(-1fkit - lasmbsne - where 1 1 1 eto are intessrs
Eéuating ooefficients of a,b,c we have
)’ﬂll)\*]iwl,v
P = mhompeny '
vis nﬂm,‘« ny

The relations betweon the ccordinstes of two points connected

by a rotation can be expressed in the form of a matrix

1,1,1,
m‘ m‘m,
Ill n" n’

Bince the inverse of a rotation is & rotation)this matrix

—tl
mmm

must have the property 1,1, ],
n n n

“In the following tetle are given the matrices corresponding to

L
& number of rotations, torether with the values of X'(" in

terms of ,\rv
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0 - -
o = - > > L L
.M 1 t > ] > > [ * ] L |
- - - - - - . - .
S > X = >
m i _ﬁ _ﬂ 3 u.vl J‘l 1 L ! )
- - - - - - - - - -
[ - - -, \41
° - \A. - lﬂv : < A - N - -~ .
o 1
131
X 00H 00H ©0OM 0O0H OOM OOH O0OMH 0O0M 0OMO OHO O0HO oMo
1]
L ©HO ©OMHO OHO OMO OHO OHO OHO 2O 00M OO0~ 00+ OO
2 -Ho o HOO MO0 HOO HOO HOO HOO MO0 OO MOO MOG OO
]
8
Laps § "~
Lal o (4]
B o~ - o P o o o ° =, o Ve *a
€ 1 1 v i = " i
[ o] J



Rotation

‘1'

)
T% a+b+c]’

]

a

Matrix

[=XeXo)
oOrHOO
OO0
CO-O

coor
éogo oroO
oo+ O ~0OO
okoo ocor

Coordinates

A, g.‘/l.. v
' A-fk

B S a

78
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*23 To obtain the coordinates of points equivilent to \ [
in the most general point system we add to the coordinates
of the eguivalent points derived by rotations the corresponding
parameters of the general relation
Here \ = I,leful,ynx
= mhoamyee
v'= n'\u}fun}/w
and similarly for svery relation of the system.
The parameters can be taken from the yarious tables of Ch.VI
the rotations are given in table J./3and their matrices in
table /92. ,
For example in tho system Q’,we have for equivalent points
Auv ihopodi-Ws ~Aped,-veds -A-poved
These will appear in & mors symmetrical form m if we put
TS forp, Vv +i forv.
A, prbors
MR i
-\ "—} -y+i Here -1 haes been writ%:en for

A, i vl
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Unit c;ils '

As has been alrasdy shown (1.8) we can always choose
certain limits for the coordinates of the points in a component
set, Such limits mark off a portion of space inside of which
81l the points of a component set may lie, such & portion ié
called a unit osell. There is one unit cell corresponding to
every po{nt in the skeletal lattice,

Two elternative limits were suggested {AY< A ,F,V‘/(B)‘;!C A,r‘,vsf
(B) will be used in what follows. The unit cell has thus the
shape of a parallopiped whose centre is at the origin; a point
of the set mey lie anywhere inside this cell,on three of &ts
faces, three of 1ts edges and one of its engulsr points. This
arrangement is unsymmetrical but 1f we meke the limits -3¢ /\.}‘\‘f.éf
80 that points may lis on all the faoes,edges and corners,
such points must count as %,} and % of a point respectively
‘whtbch is liable to ceuse confusion,

The above limits for the unit cell are only usefulk for
the lattices ’:#C":'Q’:' If we write the formula of any other ¥
lattice in terms of its primitive vectors and introduce these
limits we obtain unit cells which do not possess the symmetry
of the system, .

The limits for ocells satisfying this condition for each of
the 14 lattices,are given with their desoriptions in the
following table, A



Lattioe

L

P

53 43 +3 137

3

-

47

E

Limite ¢
of cell

S )€l
1
-T4vg

-%¢ 0)',..)’ Ly

) P

-t Ve
Al

-3<)s3
-l<lr-v-( £1
-lc .roly-e‘]_
-l¢ -p-vkel

sf<ZA-vep st
~hemnersd
LA £

78
Desoription of cell

Parallelopipedon

Oblique rectangular prisem
Rectangular rhombic prism
Tetragonal prism

Cube

Clinodomal prism and pinecoid

.(Obligue prism on rhombic bdasel

Primary rhombic prism )
(Rectangular prism on rhonbic
base)

Rhombic, macro- and brachy-
domel prisms; (

{Llongnted dodccshedron)

Rhombic dodecanedron

Rho: bic %ypyramid and pinacoids
(Blongated truncated ootshedron)

Tetragonalbipyramid second order
prism and pinacoids.

Octahedron and cube; (truncated
octahedron)

Hegagonal prism and pinacoids

RHOLBOHEDRON
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Submultiple sets

-

If X 18 such that the relation Y= 91)1?&4_,"25 reduces
to Y#X then the rélationtA"‘,B 4068 not increase the number
of points equivalent to x,derived from the other inderendent
relations, The total number of points equivalent to X will
accordingiy be 1;k, the number for. the most general value of X
Such a set of equivalent points is called a submultiple or sube
set. If in addition another independent relation of the set
reduces to Y=X we have a subset, 1/k'k'_the full set, and we may
ultimately arrive at a sub set containing only one point.

ﬁx&im/mn reduces to Y&X in the

The relation Y= (14
L -4

following ceses.wIf va2 and h=0 Xm=pA+C where A CA =-C+B=0
LI

1£ B=0. C=0 .¥)Ifvy=1 and x#2 X=ha/2k +C " A CA™C-B=0

@IFvel ¢ k=2 X=haf4+C " SAC =0

Expressing this in words; A sub eset can be formed when,and

only when,its points 1lie on &) axes of rotation,Yoentres of *

sotary reflections or¢jreflection planes. (see 5.2 ¥t seq

For example: The 48 pointer full set o? OA reduces to a 24

pointer sub set when #’P’and when )=0 ; toa 12 when/t'Vand :\'0_

to an 8 pointer when A==V ; to a & pointer when X=V =0

ani to a 1 pointer when A-g=v=0. i :
Consider the case of a multiple point system containing

axes of sorew symmetry or glide planes whioh have no rotation

axes or refleotion planes parallel $o them. If a point lie on i

such an axis or plane the number of points will only be reduced

by a rotation included in the sgrew axis if any such exist,
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In no case oan the number of points in the sudb set reduce to
one. All non equivalent points in & multiple system connot
1ie on the same screw axes or glide plane., In this case
relation y %

sa squation of the type Y= A"XA +hA/k reduces to Y= X +hi/k
or in the case of a glide plens Y= -A XA’.#B/zto Y= X +B/2
which would imply that A/k and B/2 were veotors of the skeletal
lattice. .

In any class of symmetry a subset of one can he formed.,
All the points of a multiple system however can only form
subsets of one in holohedral olasses. Similar conditions

hold for all other sub sets. If we consider simple systems

only we have for each class a sub set that exhibits the symmetry

of the class with the least number of points.

In the following table is given a 1list of sub sets for
every olasa with sub sets oharacteristioc of it ., In these
classes the last sub set)and in all other olasses the full
Bat,is the least sub set. The values of ),fﬁV for each sub set

are also given.
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Sud set

)-ﬂ=V=0

A=0

ey =0
'4 4
Aar'V'O

A=0
Fs v:o ‘
x:#;V‘O

pev
A=0

A20
P,-on— P‘V
X’O,'u() ~pry
'4:‘/:0
Nepeved

A0
pey
pov
A0

,u-V, A=0
Aﬂp=’V
Favzo
Aep=v=l.

Rumber in
sub set

1

92

-

-~ D > @ O &

12
12
24
24
12

Class

Dy

Sub set

vs{
ve=-¢
A;—r =V:(”0

A=0
v=L
v=¢
A=/
v=(
y=0 v@
pev=e

-)’,‘evle =0

)]

Number in
sub set

6
6
1

12
12

[
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-*45 Avallsble positi8ns

" The points of & sub set must 1lie either on rotation axes
unit cell in any
or refleotion planes. There are thus in everxﬂpoint system
& #int— finite number of plenes,lines and points in which the
points of sud sets must lie. All the poins of the component
8et may be looated there only in those olaéggg:fn-the foregoing
table. The case of onse point sub sets is peculiar; in that
ionly 8 limited number of such sub sets can co-exist in any
8ys_tem . Only a certain number of systems can reduce to ons
point sub sets + Other systems can only reduse to two pointers
and so forth,
(At this point 1t was hoped to be able to introduce a

table showing everi sub set possible in each of the 230 systenms
together with the avsilable positions £;rﬁzsg points of such

sub sets,)

Ay ,%%' xyfwm An 5(; ,féCMlqjém

ol fotor.” gmg
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CHAPTER VIII

PLANES

The equation to a plane

If the variable vestor X be expressed in terms of the
vectors a,b,0 4hen-the s0 that X= pa+qb+rc ; then the
existance of an equation of the type‘
~ fp+gq+hr+J = O .
between the variable scalars P,q,r and the oonstant scalars r,g,h,j
indicates that the extremity of X must always lie on a plane
determined by f,g,h,J . . 4
If X i8 & veoctor of a point system the values of P.q.r &re
restricted. All permissible values of p,q,r which satisfy the
equation fp+ga+hr+J=0 indicate points of the system lying
in the plane f,g,h,] . Should any such points exist, the numbem
of them is giyen by the number of permissible solutions of the

above equation.

The law of rational indices

P.q,r can always te put in the form /’1+l,m+fl ,0+¥; where 1,m,n
faiea ¥ 4 v
can teke all integral values -{%lx,‘%.Cand z is finite,
If any point correspondinz to A,ht', be on the plane we have
2(14A) 1g(mep)+n(iiey)s §= 0 .
or fl-sm-kn+J = 0 - where bR f/\:gf(ghvﬁj
this is an equation which only edmits of integral solutions,
there will be a doubly infinite set of these if'anl only if

f,g,h,) are all rational multiples of the same irretional number.
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By multiplying by a suitable faotor £,g,h may be reduced to
integers with no common faotor'in this form f,g,h are called the
indices of the plane. In the subsequent work we are only
concerncd with sugh planes; the ternm plane will refer exclusively
to planes containing a doubly 1nfin1te.system of pointsl )
corresponding to a gtven point of the three dimensiomal point
system. As aliiggints form lattices wo will in the following

sections consider lattices only.

Formula of & plene net

The points of the lattice /lasmbsne which 1lie in the plane
fl+gm+hn+ j= 0 form a two dimensional net. We can obtain the
formula of this net by eliminating l,m,or n from the formula of
the lattice by means of the equation of the plane., The following
pProceedure is however more symnetrical,
Let UiV s¥W, ju,,V,,w, be two poimts on the plane fl+gm+hn =0
and u,,V,,%, be a point on the Plane fl+gm+hn+j=0
the general solution to the 6quation of the plane may now be written
1= su, +tu +u,
=8, +tg +v,
n 25w, +tw, o Wy Introducing these vealues into
the formula of the lattice we obtain thé formula of the net
as /e, +tu ¢ 3186y, Ly, +g)b+ (5w, +tw, +W)o
or /s(u 84V, b+w o)+t(u a+v bew (014 (u asv bew 50}
writing (u 8V brw, c) = 8,3 u,8+v, bW, o =6, i ua+v;biwcae,

the formula becomes /se'+tq.+es
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If the plane passes through the origin e’tO and the formula
of the net reduces to /se‘ rte,

6,and e ,will be primitive veotors of the net if e, 8, o,
are for the system  lattice. That is if
u, v, W,

Uy Vo W
u’ v‘ w)

=21

If we substitute for the first column,that formed by

muktiplying the columns by f.g.h respectively and adding.

'

we have 0 v, wl=a2t
0 v, w,
-3 v, W,
Expanding v\ W -V, W =1P/]
similarly Wu -vou = +g/ )

W, v, -u,v,2+h/§

Since /u' are all intcgers and f,g,h have no common factor

J.-tl , but the condition that 6, and e, should de primitive is
independent of the value of e,a8nd consequently of Jj:this con-
dition &s therefore v, W, -V, W, axT

LA AT

u,v, -u, v, =+h

Parallasl planes

Planes with the same values of f,g,h dbut with different
velues of J are parallel. If the indices are expressed in
terms of primitive veotors J must be an interer and ss no plene
can lle between the pnrallel plenes f,g,h, ; and f,g,h,(,hl\,

these are called succesive planes.

S
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.»5 Distance between planee

The perpendicular dlatancé. rrom‘ the origin to the plane
fl+gm+bn~1=0

may be expressed as the quotient Yolume of‘//pipedog 9. 8585
Area of /;gm 8 8,
Se, e, €
208, 85 €,
= TVe, o,

= Slu,a+vibiw o) (u,e+v brwee) (U A+v, bew c)
Tbiu‘aw,b+\v,chu._a+v,_h+w‘cs
u, v, w, |Sabe
u, v wtl
U, Vv, W,
Velv, W, -v, W}Vbo

Yow /u, can always be chosen so that lu, v, w,) =»1
also (vw, -v ¥)= f eto. We have therefore
Perpendicular distance Do Sabgo
T{fVbc+gVoa+nVab]
This expression may of gcourse be derived directly from the
equation of the Plane and is true for sll real values of f,g,h,J

In {ts most general‘ form it is

4 -
D Sabe

) =TlfVSc+gica+h.’aS§
This eguetis~ expression though simple 18 not convenient for

numericel oaloulation as it involves sums ani products of vectors

It can easily be transformed however into one that is,

S
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s .
«51 We make use of the formula -(Sabc) = S.VboVcaVab {see Joly

"lManuel of Juaternions™ Art. 25, Ex, 4 )
-(sabe )’ = S.VbeVeaVab
= 3(be-Sbc }(oa-Soa) (ab-Sab)
=3 bcéaab-tSbc.caab+(§bc$oa.ah-SboScaSab
=abc'+Zd(3be ) ~35beScasab+SheScasSab
‘mabo+d(sbe)+b(Sca)+d(Sab)-25beSeasab
Also  f(fVbcsgVca+rhVab) =5£({Vbe)h2sehs, Veavad
=7 £ vbe)-28an(d5bc-50asab)

e have therefore

D= ;hB:fJ(Sbc)+EJbOScuSab
v & Tbc T=2¢gnlesbc~s0a5ab)

L3

liow 1f we put a for the scalar Ta, cos A for 3.UbUs; sinA for
TV.UbUc and sinilarly for b and ¢ ; 3 and ¢ the expression

tekes a form involving scalars ouly

D - Sv¢(1-cos*A-c0s*3-cos“C+2c08A008Ba0sC)
v TeTEESIn A -zzﬁ?h(eo?Aq'oos 3cosCT

PFinally we obteiu the fuaniliar formla

‘.

%

1-%cos5%a+200s .¢os_Beos
:D, = /ja¥sin*i-28(gh/bc){cos A-cos 3cos CJ

This formuls loses much of

ts complexity when esrplied to
symnetrical lattlces. It is given for esch of the 14 Jattices
in the tadle ou p ¥4,
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.corresponding lattice of formula /la+mb+nc ) then dél‘ &‘Dfr{

88

So far we have only considered lattices whose formula is
"_‘ritton /la+mb+ne . It is not always convenient to use such a
formula, For 2811 lattices except , ,72, ,T,'* » o the formuls may
be written /(<1+@m+yu)/z+(d14q L:+yn)b/2+(41+Qm+yN)o/2
(eor L, T, 0.0, 472,0,% 8y =2 and d; +3 L2 )

The equation of the plane becomes

f(*lo@mwn)/ *g(& 1+Qm+yn)/2+h(.‘1+(3m+yn)/2+j-0
f,g,h may be such that ooeh of the first three terms is an integer
for all values of l,o,n,
In this case ] is an integer and sucocesive planes are at the
same distsance as in the corresponding lattice /la+mb+no
Itt'b:;; dtﬁze first three termw do not reduce to integers J must be
of the form k/2 when k 18 an integer and encessive planes are
half as far spart as in the corresponding lattioce.
It d"kstands for the ~diste.mcxa between succesive planes ‘parallal

to fp+gg+hr=0 1in any lattioe/und Df)‘\ for the distance in a

where S“dependa both on the lattice and on f,g,h and is slways
1,% or in the case of ’:(1/3. The value of §, ,for all lattices 1
and values of f,g,h 1is given in the table on p 94 .
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The ocase of f; and l'( must be dealt with sevarately; in this
case four reference vectors are used and the equation of the
plane becomes  Lp+gq+hr+is+) =0 where ghi arc connected by the

relation g+h+i =0.
fp+gq+hr+y =0 1is the equation of the same plane referred

to the three vectors a&,b,c Now applyinz the formula for D

we have Dx bl since 008 A= -%
A A NONE,

= l/ﬁ‘/ af'%ig‘#hi(hd)(gd)}/b‘ since g+h+i =0

cosB=cosC =0

= 1//f7 a‘&% (gﬁh‘q‘;hiquh)/y
1/'/?}?7%@@ since ghb+ihi+ig+eh
b L. et
= Hg+het )+ 2 (g5041)
The formula of T‘,‘ is = }einih
/la+{2m-n-0)b/3+(-m+2n-o)c; 3+ (~m-n+20)d/3
g{2m-n-0)/3+h!-m+2n-0)/3+1(-m-n+20)/3 1is mn integer when
m({2g-h-1}/3+n(-g+2h-1)/C4d(-g-n+21)/3 {s an Interer
t}mt is 2g-h-} is divisible by 3. In-thie—08606———IL-—8REAR—81D
sther—cases—343 But 2g-h-1=3g and is thcrefore always
divisible by § so that for this latticed=1
The formula of I‘\{is
/(L+men)a;3+(m-n)b/3+(n-1)e/3+(1-m)d/3
by simila; ressoning we oan show thet if f-h+i is e maltiple of 3

§=1 and 1f not § = 1/3
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.¢ Forms
We mow return to the most seneral point system.
The plane parsllel to fl+gm+hn=0 through the point A [ 4
is Zfp+gq+hr+) = 0 where J§ (no longer necessarily an integer)
is given by ﬂ+g,¢ +hy +§=0

If three points/\,‘,v L p, 1ie in the plane f,g,h, 3

Jf')J'
the three points connected with them by the rotation ¥= (I{A""XA
)“u,;,':&,e'(: :r!’/s: WILL lie in the plane t.g.h,J where f,g, N, ;"
are given by the relations
’ 4 1] 1
£ =11+ Gl h ,
’ ‘ ‘ ¢ CREES
g=n f+m g+n, h
h'= n fm g+n, 'h
; 7
where 1' 1,1,eto are the minors of 1 1 1 in th matrix (1 m n)
of the rotation., In other worda ( 1 m n; '} 1s the matrix of the
inverse rotation Y=(1)A XA « For substituting for/A and /f in
terms of /A and /f we have
glmhszzm;\ +20tind +§ =0
-J(zl +2m,m‘ 4{n,n‘) £8vi(1t1'+m"m,~n:n,)
- £bps(1 1) +mom 4n n')) -&9 a0
This 1s the case only if g 1‘ 1:=1 and £ 1:_1)=0 and since
4
(1' m‘n,) =1 l-mn -mn,

The plénes gg'h,j and f,g,h,J are said to be equivalent planes,
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v -k
If the symmetry relation is of the typs Ya(1}A XA +um+vb+we
1 r !
the plane equivalent to £,2,h,3 18 f£,g,h,J, where f,g,h are
f
as ¥ before but J=fu+gvshw+]
*61 All the plenes squivalent to a given plane are said to
in general
aonstitute a form. A form hasAthe same number of planes as the
number in the full set of equivaleni points of the system.
For certaln values of f,g,h however k planes of the form ooinoidel
and & sub form results each of whose plenes contains k equivalent
peints, unless these points themselves form & sub set. {planes
Such planes must be perpendicular to rotation axes or reflection

The same considerations that applied to the limigation of A

points in component sets apply to forms also, except that in

this case } alone has to be limited.

62 1f the system contains no screw axe#ér glide planes to which
there are no parallel rotation axes or reflection planes, the
form is ocalled an infinite form; otherwise it is a finite form.
Infinite forms may in certain casc¢s contain up to 6 parallel

the cnase of a
planes. Consider £or—ezanple—the g‘plane 1,079,0 perpendicular
to the sorew axis Y= ailé;la/k . The planes contained in the
form are 1,0,0,0 ;1,0,0,1/k;1,0,0,2/k; vess1,0,0,(k-1)/X
all of which are parallel,
By thesymmetry of tre system 0ll the plenes of & rTorm must

be congruent.



.7

‘71

I£

73

g9

Densities of systems and planes

The polnt density of a system 1s defined as the number of
points per unit volume of the system;aor alternately as

Number of points in unit cell
Volume of unit cell

The number of points in a unit cell is simply the number N of
points in a component set; the volume.of a unit cell is Sade
when a,b,0c are primitive vectors, in general however it is
bL‘Sabc where A=]1,1,1,] end /'1' are the ooordinates of a,b,0
ln;::ni in terms of primitive vectors.
The values of A for each of the 14 lattices is given in the table
on p 74 « We hava there fore as an expression for the point

density All
Sabo

The point density of a plane may be defined as

Number of points in the plane per unit cell
Area of unit cell

If n {s the number of points of a component set that lie in the

plane and 8 and Ahave the same nieaning a8 in the preceeding
ssctions; Point density ‘2 ‘
See,
- 3An
= T{fVbc+gVearhvab)

Weirhted densities

In 'a multiple system we may attribute to each point a
weight faotor m, ; m being the same for all equivalent and =E

corresponding points
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The weighted denoity-of a system or plane is the weight por unit
srocvolume and per unit srea rospectively. If N and n.are the
pumber of poimts of the same kind in n component set of the system

and the plane respectively , the weighted densities are

AZN.m,
Sabo

and $4A%n. m,
- F(fVoc+gVca+hVab)

In the following table sre given a number of important constants
and expressions for each of the 14 lattices. From these by the
use of the formulse reproduced below we cen calculate the
perpendicular distance between sucessive parallel planes and

the densities of systems end planes.

Di{stence from origin to a plane fp+gq+hr+§=0

- 13abe
T{ITbc+gVoa+hVab)

Distance between sucessive planes parallel o fl+gm+hn=0
- §3abe
TIVhc+pgvoa+hvab)

Volume of unit cell n‘%;sabo

Density of points in a system « AN
. Sabe

Density of points in a plane

- §4n
T{fVbc+gVca+hVab)
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¥ L

1]
1 : abc sin A

1 £+g even : "

3 f+g 0dd
1

L
t
1
(
]
1
1l g+h even '
L]
$+ g+h odd :
"..l‘..
1l £f,2.5b all odd
} otherwise
1 two of f,g,h
even,one odd
otherwlise

'
1

even, ons 0dd
otherwise

1 £,g,k all odd
3 otherwise
1 two of f,g,h

even, one odd

.
1
1
)
]
)
1
1]
1
1
)
1
’
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1
]
)
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1]
1
T
1
t
1
1
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T(fVbo+gVoa+hVab)
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Isttice Sabo T¢1Vba+gVoaskvan)
s 9 |
¥ ¥ [} 38 vy ¥ 3 -
A 1 '1 fBabe/2 [

Tf '3 '1fned atviettle ° . 7
by 3

otherwise

€53 st

<8l e may oonsider’;to be expressed in terms of the three primitive
veotors 1/3.0,1/3.-1/3 ;1/3,-1/3.0,1/3; 1/3,1/3,-1/3,0
1 which case its formula becomes /la+mb+no} A= Se1
Sabe == a§1mm since here & =t =g
. A=B=C
T(¥¥be+gVea+hVab b a."/(,fig%ﬁ)sin‘f‘s, < r2(ghehfrfz) (0osiAucos )
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CHAPTER 11X

X-Ray analysis of Crystals

- - - = - D - - -

{Elementary)

0 We may consider a crystal as in general a multiple
.point system in which the place of the points is taken by
atoms of the differont elements.

A crystal is always finite end is in general bounded
by planes, but the number of atoms in even the smallest
orystal 18 so great thet these limitations need not be taken
eccount of in considerations of internal structure.

The external symmetry of the forms of & crystal are
often sufficient to determine which of the thirty-two classes
of symmetry it belongs to, but camnot possibly reveal, except
in Class Q,which skeletal lattice and point system is the

basis of their siructure.

.1 Defraction of i-rays by orystala.

Thy distance between the atoms cf a orystal is com-
parable to the wave length of X-rays which are diffracted by
a orystal as from & three-dimensional grating.

Bragg has considered the effeot as that of reflection )
from successive, equally-spaced, congruent planes of the

erystal and obtains the simple grating formula
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o

n% = 24 Bine
for maximum reflection where
4 1s the distance between successive planes

@ is the angle which the incident and reflected rays
* make with the plane

) 1s the wave-length of the X.ray, and
n is en integer f£ixing the order of the reflection.

1f we keep )\constzmt and vary 0 we obtain maxima of

reflection when #= 6, .--.§ .. given by :
nA
sin 0, - 2/0‘-

sin@._-z.’;.‘(l
...‘.'l’."."'

b TP

On the other hand if we%keep 6 constent and vary)\ , or

what is the same thing, use "white" light, we have reflected
&t an sngle f rays of wave-length A % --- -}
. 1 & r
glven by :
N =za sinf

14
>\L= : sinf

>\,_= 2—“~/sin9
r
These two oases ars.the basis of the Bragg and Laue methods

respectively.
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Distribution of Energy emong orders of Reflection.

’ In general, however, the series of planes parallel to
& given plane are not all songruent but consist of asets of
different planes which are rerested regularly. Bragg heas
shown that the affect of this is analogous to that of the
form of grating lines and leads to a different distridbution
of intensifty among the ordersof reflections than that which
would result from 8 series of congruent, equally-spasced
plenes.

Iﬁ the latter case the intensity of the first, second,
etc. orders falls off approximately as the liiverse sguare of
their order, i.e. in the ratiop 1, %, +.---

Thé intensity of a reflection of order n, due to & distribu-
tion of planes at distances d‘ dz ceesae d;ufrom an initiel
plane, the whole being repeated at a distance 4 ia given

by

(m, sin 2o7d/d + m ein’ 207a/a + )
where m‘mlmlrepresent&he reflecting powers of the succeéssive
planes. m _1is roughly proportional to the electronic density
of the plane, i.e. to the weighted density, if to each atom
of the plane we attribute the number of eleckrons associsted
with 1t, Ll.e. its atomic number. As the factor k is unknown

we require relative and not absoute electron desities.

k A / . 110 i*
I, = 7 (m,+ m co8 2nWg/d + szOBUEHWQ/d*--’ 4
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The Prage X-ray Spectrometer lethod.

In the Bragg method the orystal is mounted on &
goniometer and 8 very fine beam of monochromatiw X-rays
directed on to one face. The intensity of the refleoted beam
js measured by an ionisation chanber and a sensitive electro-
8COP6. The.crystal and the ionisation chamber are SO placed

that the latter is always at twice the angular distance from

and the intensities of the first few order reflections from
the face are measured.

Deterzination of skeletal lattioce

Such measurements for three faces of known indices suf-
fice, fx if X is known, to determine absolutely the skeletal
1lattice of the system, 1.e. to give both the nature of the

1sttice and the lengths and mutual angles of 1ts reference

vectors.

n A

For by the formula given above We have 24 = ;I;E
_ $ Sabe
also 4 - T{fVbo + gvoa + nvab)
sq 1 - 1 - Scos A + é;;aAo;_sE:QF ____
J s fiatsinLA +15ghjab(cos A-coa B co0s c)

Now we know A and sirxﬁ ; also from crystallographic

data we xnow A B C and £ g h.

eali L .

e D L B

a

the incident beam as the crystal face. The angles of reflection

L, S

il
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Benoce we have three equations of the type

«311

ax'+ by'+o,s'+2ys +gax+hxy+ 4, =0

a,x + by o8+ 2,y + gfx +hxy+d4, =0

ax+ by + 0,8 ¢+ f)ys +gsx +hay+ d’ s 0 .
These ars alwayﬁ,soluble {in the most general case only by
eliptic functions). Thus & b o can Alwaya be found.

In practice, however, it is found that only the planes
with simple indices give pood ref¥ections and these are.gener—
8lly used. In this oase the equations above reduce to one
or two terms each and ths solution is correspondingly sasy.

For the factor § (ses 8:£2 ) whioh depends upon the
lattloe and upon the values of £ g h, the latter are so
chosen as to afford & eriterion of the particular lattice.

This may riecessitate messurements from more fhan three planes,

-Examples of planes which can be used for this criterion
in the various orystsl systems are given in the following
table. For each lattice in a given system there will exist
& ratio connecting the 4's of the various planes. A sufficient
number of planes are chosen so that no two lattioces of the

seme system have the same ratios of their d's.
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+311 T_r_,i_o_l__in__io' 4 100 d". dno.
lattice JI-Zoost K+2 cos Aoos Booa T 3 /- '
T sin A smc
flonoclInis ~ &, 4, T, - a,,
a b sin be sin A
A c sin 4 Jt_)'-zbc cos As+c*
be sir A
+a 3b sin A ¢ 8in A 3 ST T
Orthorbombio & %, 4, L 191 A
Ky / =< ’T 1 _1;
a8 b o bo/}bm ca/[T8a" 1/, 3¢ B T
a #b e bao/ V;‘m' oa/2F+a "
s b %o bo/z\/b‘ui“ ca/?.vcm "
$a 3b 2o bo/ fote ca/(’:a‘*'é" + "
Tetragonal a,, o0 &y
a b b2
T S | DU F LI
'
Cudbic 4,0 d,, a .,
a8 8/ [2 a/fg
ta e/2/2 a/ ﬁb.
SR - S a/{% 8/2/3 _ ° . _ -
Rhombohedral 4,0, L A,
a Bo/2 )
a/3 Bv/s L1
Hexagonal LI 8344
a b
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Thus in the case of rock salt NaCl s cubic erystal
a,, 4, :4,, = 1:1/F :2/f7
The skeletal lattice 1s therefore Z:%nd a=2d |
It should be remembered in this comnection that except in
the cubic system tieed the indices assigned to faces by
erystallographers are not necessarily the same as those which

are derived from the actual lattice of the crystal. As the

. fTormer indices must necesserily Le known first a lattioce may

be deduced which is: not one of the 141 types. In such & case

1t is always possibdle to ehanse the systexm af indices so as to

" reduce the lattice to a recognisad form, This 18 well illustrate:

*313

by the case of calcite}a erystal of class %ufor which Brage four
& face centered rhombohedral lattice with faces parnllel to the
form 101-1 . If the lattice is taken as l}the indices of this
form become 12-1.1. .
Schew axes
If the reflections frem planes perpendicular to screw axes

arz measured the value of 4 will be B/k its normal value where
h/k is the pitch of the screw. Since sorew axes can only exist
peppendicular to certain xxesx planes it ie always possible by
chocsing suitable plenes to avoid any error on this score, and af
the same time to determine the position and nature of all acrew
that exist,

Thus in the case of the diamond a cubio orystal containing
only carbon atoms, 4 14, 39, 8 &q&:zjfi' a ratio not charac.

(24

teristioc of any lattice and indioating a sorew axis a.
The real ratio should be 134;2,/3 characteristic of T



103

i
AL

32 Kurber ef point in a component set
Heving determined the lattics absolutely we ocan prooeed to

£ind the number of points in each component set by domparing the il
"density of the crystal on the assumtion that there &re N molecules
per unit cell, with the observed density of the ocrystal.

The weight of each molecule is Mm whera M is its molecular weight

and m the waiéht of a hydrogen atog. We have therefore, - i

ANMm - op g gsabe
~ Sabo Allm

_ Density. =

The formula of a molecule is in genersl written X, Y’ Z, oo
whare x,¥,% .. represent the pumbers of atoms of X,Y,% respectively
in the molecule. ’.I'hp number of atoms of each kind per unit cell
is accordingly Nx, Ny,Nz ... The number Kx when x is the least

0f X,¥,8, ++. i8 of the greatest importance in the eleucidation

of crystel structure, It at once limits the number of olasses

and systems that the orystel mey belong to. The orystal can belong
to no system whose least subset has more points per unit cell t
than Nx » 1
Thus in the case of quarisz Si0, a crystal of the class DS ?
Measurements show thath the lattice 16 | with a=5,28 510" eme ;

We have therefore feor N b=4,89x 10" e
[ S
LY , M =0,99 107 ™
2i'm N
=2.968 3 E

From measurements of dwn we have tlm- e/3 and therefore there
must be & screw axis. The basic systen of quartz must theréfors

y 4 5 & . a
be one of D3 D; oy by with the 31 stoms o8 & 3pcint sud group,
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Determination of oclass ‘ -

" The class of a orystal oan ususlly be determined by
orystallographic methods. In oases of crystals which only E
develop very simple forms the ;nformation these afford has to
be supplemented by opticel , electrical or other methodg.

By tne Bragg method it is possible to detect direotly ell :
syumetry relations except those that involve & centre of symmctry.¥
If the olass of the crystal is merohedral the orders of reflection
f#rom faces which belong to the same holohedral but not to the :
same merohedral forms will in general give different intensity é'

distributions. The method fails when theﬁwo faces considered

belong to forms whose fmces are parallel to each other. For in
this case the spacing of plenes differ only in the two faces

in thet the sequence is inverse and as can be seen from the form-

uls ax9-X/ chenging the signs of 4, 4, d_... does not affect the

reflection intensities,

Thu s in the osse of sinc blende Zn3 which is known to belon
to class Td there is no difference in the reflections from faces
of the aifferent forms 1,1,1 and -1,-1,-1, while for pyrites FeS,
which belongs to class Th the reflections from the faces 210 and
120 are totally distinct, ‘ .

For the final determination of class in these doubtful cases

we must have recourse to the methods of the next section,.
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»z4 Determineticor of etemic pecitions
L

*341

We may writc the formule of the whitle orystel en
[ ~ [
- : { ,
/ lli'/:. {“‘m’f e‘*{”‘;/n (,/fxﬁ} b*{‘“(:;({'u’}c
whorenﬁm}hxpre tho coordinstes of en cton of X
/“ K,V 8T tho coordinstes of ell equivalent etemd of X
LU Ly ¢4

/ ’({‘An'rx: ,,l:)'zre the coordinates of 81l the stoms in & component set
vz [

I there oo N otome

There are Nix atoms in & component set we have sfter determining
the lattice,dNEx unimowns to find,bofero the whole crystsl is
absolutely determined. We may have slready found however,a number
of relations connecting these coordinates. If we know the symmetry
class ,the number of unknowns is reduced to 3Nsx/k where k is the
number oi equivalent points in the class. If there is & subd set
some of the unknowns mey be exnotly determined. We know what screw
axes exist and from fhis and the information of the sub sets we
may be able to limit the numbor of possible systegg 2;;;kthe erystal
may belong,to & very fey. In this case'for each possitle systenm
the number &f unknowns reduces to3%x and mey aven from counsider-
ations of sub sets reduce to U im wiich case the crystal is -
completely determined. wWhether such reduciions éay be effected
or not the fcllowing method is arplicveble.

Consider the series of plenes perellel to fl:om+«hn =0, one

each of ,

rassing throughhthe points /

X¢
are all equal to the dentity of points in the corrssponiing net

o
‘({)'xv’ﬁ.'{u Their point Qensities

of the ekeletal lhttioe, while thelr electron densities are

sinply propdrtional to the atomic numbers of X,Y,2,....
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We have therefore for the value of the m of the formula 9-2f

.. d8n
B, TTfVoc+gVca+nvab] whre n,is the stomioc number

of an elsment X
The spacing of the planes is given by
a, /a= 5 /8 where 3 = f/\“+gt4"+h v,
Substituting in the formuls

[ - dak [ an'/}‘ ‘o 2m .}‘
m I—I‘I"(beugVoaq-hVab)L{zn'éos ﬂ'dn 8 +{%£e n. .1"/8
If e are able to measure reflections from P planes and can
oﬁtaiu piorders of reflaction from ggeh the r tk plane we have
iipy_equations of this type. However as the equations are
trancendental in/G“we cannot tell how many would be needed

to f£ind the 3Ngx unknowns., The solution of a number of such
equations is except in some simple oases extremely difficult
and leborious. It shauld not prove difficult to construct &
machine somewhat similar t§ 8 harmonic analyser, whigh would
makeléanh@pass through all their possible values and select
those which led to the observed values of &g rseflection
intensities. In view of the doubtful validity of the formula
and the difficulties of exact measurements of intemsitiea

it is doubtful whether such & machine would Jjustify itself

at preseht. The method most used in practice is to reduce by
means of the considerations of the last section the possible
struotures to a very few)and beginning with the simplest &nd to
compare the intensities calculated from them with those observed

In this tentative method, anslogies drawn from already eleucidated



oryntalc erc invalucblec. I thic wey,proccading step by step
Bregs wos eble to snalyse rock eelt,sjlvine, blends, &lamond,
fluorite &nd pyriyes; &ll oublc erystals but of sucessively

incressing complexity.

fb‘
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The Lenc methold
In this msthod ® beam of "white” i.e. heteroginccus X-r&ays

are ellowsd to. fell on & properly orientecd orystal enl the rays
reflected from the verious plenss are registercd on a photographio
plate placed behind the orystal. '
The reflected rays are no longer ﬁhito. but consist a8 was Bhow
in 9.12 of radistion made up of & series of wave lenghhs of

4ifferont intensities.
The position of the spots on the photographic plete indioate

merely the indfces &f the planes producing them, but &8 planes
of ths same form give spoys of the samd 1ntensitg,the naturo
of the symmotry of the crystal can bo soen. The olzss however
cannot in general be dotermined unsmbiguously, as for the récs-
ons explained in 9.331 it is impossible to detect the ebscnae
of a centre of symmetry.

Thq intensities &2 tho'cpote is an average cffa ot depend-
ing pertly on the spacing and densities of the plenes produce-
ing them, partly on the wave length intensity distribution in
the incident beam. This renders interpreotstion very difficult,
but whon the intensity distribution in the inoclident beam
contains only one maximum, it is poasible to analyse some simple
crystals, ‘ .

If the orystal is a lattice the spacing for all plenes is
even and the reflection for that plane which best reflects
wave lengths near the maximum will be the most intense. The

intensities of refleoctions from other planes will fall off
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re
razsuiarly'with tho ohezngc ef thoir irl2fcec. It ths e22o ¢i o
oryital which ic not & lattice kewever, tho cupprecsion ¥
reflestions by cericin of the plenes will czuso the intensitices
to vary irrcgulerly with their indlees end theso irreguleritics
mey be ueed to &iscover their sfructura. Even in thc eirmplect
crystale thic cen oxly bo lono by trying vericue eiructurcs
end ocomparing tho spot intencitles dcluccl gégi thsca obc.rv»«.
In spite of thooo epporent limitetions cf ths Love mothod
Ewald, Wycofi end others kove devicel 1mpro€cmcnta toth ¢cn tL>
experimental end tksoretic sides bty moans of which rcmsrhuu¢o
results have been obtainel,
4 mothod which has occurrad to mo but which Lo not ec fuo
¢ ceries o
a8 I know boon tried, would bta to taﬁoA;auo thotegropho
with & sourso of mzzzz homogensous X reys of regulorly vcrying
wave length such as could de obtained for instence froo &
. Dotating rook salt orystel flluminated by wiite reys. I2 tho 1
1light were striotly homogencoua,tho photegrephs ﬁoul& chow no
spots but the ceontrcl ono)for 2ll but a certcin nuzmber of wave
lensBys for which tho_reflectionc for certcin plenss would flech
out , If such a method wore to provo practiceble oo full results
could be obtained from it es from tho Brags mathod, for in this
case the wave lengths beinh known, absolute measurcmonts of length
could dbe made ,tho ebaence of which 518 tho chict drawback of the
Lauo mothod.
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6 The Full method ' -
' xThe third important method is that developed independently
by Hull,and Debye and Scherrsr. In this methid not one but rls
largs number of orystals ers used {n the form of a metallic a~
aggregate or cosrse powder spread on a plate or in the form of

a thin oylinder. A beam of homogeneous X-rays is used. The Cry=-
etels being arrenged st random, there will always be & dertaiu
numbeér that present some plane of the form f,z,b at such an
angle to the incident beam that one of the orders of reflection
occur and such reflsoted beabs are detectsd oii a photographic
plate or by an ionisation chambar,
o51 The angle that Buck & reflected beam makes with the incidant
beam 1s £ hence if we can find n , df}h is absolutely deternmined,
It 18 often possible to pick out the orders of reflections dus
to the same Flane on account of the simple rslations between the
sines of half the deflection énglés, as
52 The great disadvantage 6f the Eull miethod & that we have
fio direct means of finding f,g,h . Thé intensitiss of & reflected
beam is now proportional to that 6f the corresponding plane in
the Bragg method multiplied ﬂy the number of faces in the form
or in the case of a orystsl not possessing a centre of symietr%
byAtwice this number; for it is obvious that the expectation
of a suitably inolined face belonging to any form is proportional
to the mumber of faoes in the form, and that the intemsity of

of reflection is proportional to this sxpectation,
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It cen ts sco= thot tho Eull msthea lesés to & similer but
more ccoplicalcl 6ot of eguaticgs ec the Bresg mcthoq and with
MLy EOore unlmowns. Theto eguations &re pradotiocally 1nsoluble,
and thé msthod ecoordingly ucsl in prectice is to choose the si
strongest of tho scxries of refisotiond &8s corresponding to tho
planes with simplest indioces end to check the structurs thus
errived at by ysing it to preiioct the positions of tho other 1
reflecicd beaxa, |
The Eull msthod is mcst uselul whel erplicd to,metels.
or t¢ substances which cza orly be obtocirncd in tha €0 ccllel

amofrhous condition or in em;l%&z: imperfoot eryetclc,

s
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Tebuletion of results
The recults obisined in an analysis of & orystsl, wﬁather or

not thsy are complets csn sll bs contained in the formule given
4n $.34 ,the vectors a,b,0 being elso supposed known both in
magnitude and in relative positions.

If however we assume the formmle and also the symmetiry
elemaents of the 230 point aystems as'glven in the tables in Ch VI
all the results of an sanslysis may bte given conoleely ae follows

(1} The symbol of the skeletal lattice _
(11) the sbsoluto dimensions both scslsr and anguler wgen neéessa
{111) the sywbol of the point system. { Strictly speakingAthis
includes the symbol of the lattice,)
{1v) the coordinates of one of each set of equivalent atoms
atipulatiﬁg the elemsnt .
Prom the set of of comsiants given under these heads ws ean
calculate by the mathods of Ch VII the position of ezeky atom
of each elemcnt in the orystsl, and by the methods of Ch VIII
the spacing and density of every set of parallel planes. _
The number N of molecules of the substance psr unit cell though
included in the above dessrves separate statement. »

In the following table these structural constants are given

for a number'of typicsl orystals which have been analyséd by

Bragg and others,
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Baxe . rarmﬁla ¥ Lt Sm Cqbrdinata- Renarks
Roock salt a1 1 TV Of N g 00 ! Othar 2lkaline halides have
v ot 00 similar structures
Zinc blends S L [ Ty fTm 000
8 3%
Diamond c s o ¢ooo
[
Fluorite cak, 1 T2 o ¢ca 000
A 1
F % . %
iron :
pyritas FeS, 1 ,' ™ Fo 000 X has besn variouely given
b3 dxxx as 1/5 and 2/9 ‘
Cuprite Cys 1 54 0: g g S 0
tu 11 g
TIN sn s 0 U
i ¢ Q D“l s:}: g % 0
Rhombic .
alkaline sulfgso, 1 [ Q% s 000"
sulphatas A
Caleite  CaCO, 1 Ty Dj Ca 0000 Positions of atoms
' c i 0V 0 not given

v 0, % 2x/ -x/3 -x/3

srts . s10, 3 [ of sty 0 2%/ -x/3 -x/3

s Mpw gV VA N-p

In this tabls no lattice constants ars given.



Appendix

Y

A Suggestion for a natural, numerical denotation of Crystal
Systems, Classes, lattices and Point Systems.

There sre many systems of denotation in use. Of these
the most commonly known is that of Schoenflies which is used
almost exclusively for internal structure. It is essentially
a literal system and in it the letters correspond to various
words used to describe the systems eta. This makes 1t easy
to learn, but it suffers from several disadvantages.

The basis of the system is the 32 Classggiahgih are lﬁdi-
cated by a-capital letter with a suffix formed in general of
a number and & letter. To denote 32 Classes by a triliteral
symbol is unnecessary. The 14 lattices are all denoted by
the letter r'with suffixes and dashes: here arain we have a
triliteral system but this one has not even the sdvantages
of the Class notatinn,as the manifest analogies between the

different lattices are not shown by it. In the notation for

point systems the method followed is to add to the Class sykbol

an index consisting of a serisl number indicating the order of
derivation of the system in the particulaer Class by Schoenflies®
method. This order cannot claim to be a natural order, and
moreover the index gives no indication either of the sekseletal

lattice of the system or of its affinities to similar systems
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in other Classes., It is practically impossible to remember

the nature of any system denoted by its Schoenflies symbol,

and references to the originsl derivation have constantly to
be made. ‘

The system suggested is frée from these dissdvantages.

It 1s entirely numerical in character, making use of one other
symbol only, the decimal point,which is used to mark off the .
portion indicating the crystal system ani class from that indie
cating the lattice and point system.

The symbol of a point system in ifa most general form
oonsists of five numbers, two preceding the decimal point ana
three following. In holohedral systems, however, oniy one
figure precedes the point and in some Bystema the number of
figures after the decinml point often reduces to one or two.
The sigsnificance of the figures is ss follows;

' The first digit from the left indicates the crystal system,

The number denoting the 7 crystal systemsp are 88 follows:-

Triclinic

Yonoaelinie

Orthorhombic

Triponal (Rhombohedraﬂ
Tetragonal

Hexasronel .
Rerular (Cubic\

AL NDEHO

It will be seen that except for the Lonoclinic and Regular
eéystems the number stands for the highest order of axes which
the system possesses. We also have the convenient relation

that any. system i{s included as a special case by a system whoae
number is & factor of thet of the first,

3 o
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The second digit is used to distinguish the various Classes

in each orystal system, 8o that we uss s biliteral symbol for
a Class, .

The holohedrel Classes have O for their second digit which
csn be omitted without causing confusion, thus giving the
simplest symbol to the most commonly occurrine Classes. The
Holoaxial have 1 &nd so forth as sheen in the teble of Classes.
All Clssses containing only rotations of the first sort sre

designated by odd numbers; those with second sort rotations also
by even numbars.

The first figure after the decimal point in sonjunction
with the first figure of all denotes the sxeletal lsttice.
For normel lattices i{.e. lattices with points only et the corner
of rectangular parallelopipede, this number is O {in the hexegonal
and triclinal systems, &s this is the only lattice, the figzure
0 dan be dropped). For centred lattices i.e. for lattices
with points &t the centres of rect. par. the number is 1. PFor
face~-centred lattices the number is 2. For the Orthorhoxbio
lattice which has points at the centres of only one pair of
faces of the rect. par. the number is 3. But besides these
lattices,we may dften consider lattices that are not distinect
from those,alrea y. denoted. These are Tg for which the number
is 4 and L} and ] which are denoted by 4°2 and 4°3 respectively,

In the order of lattices «0, .1, .2, 1t is easily remem-
bered that each has twice the number of points per unit rer
rect. par. as the one before it (except in the trizonal system).

The hexagonal lattice may be denoted either as 3.0 or
6.0 according as 1t occurs in trigonal or hexeronal systems.
The notation for lattices is given in toe table.

The second figure after the deocimal point sxampkxtnxfbrsxxt
15 used to distinguish between different systems of
the same Class and lattice. The number is chosen on the genersl
idea that it is higher in systems of gresater corrlexity. ulen
it is O for instence,all the axes are rotetion axes. In 4, 3
and 6. this number is’the piteh of the screw axes: in 2.ani 8
it represents the number of perpendicular axes. R¥xxzExrswzi
axxkakakedxxt Systems belonging to some Classes such as H0l0w
hedral and Psragphax Paramorphic which are derived from systerms
in other Classes are identically:the same but for an aiditional
digit. This derivative brocess is generally an inversion and
the last ‘digit denotes tlre position of the centre of inversion.

e i e



As far as possible the notaticm <f the systems is arranged
80 that the numbers after the 3s2imal point are the sare in
. analogous systems, thus indicatinrg in a large nunber c¢f cases
the sub-groupsof any system.

The notation for the 230 point systems is given in full
with the corrssponding Schoenflies symbols in the table below,
It can be seen tnat in this metkod of denotation esch symbol
contains & consiierasble emount of information, While at-the
most employing five numbers (and in this not exceeding Schoenflies)
i1t indicates all that the Schoenflies symbols indicaste and more.
Loreover, it is comparatively easy to leern end with a little
practice it is poasible yo obtain an idea of the actual con-
figuration of ell but the most complicated syetem by the mere

inspection of its symbol.



CLASSES
System How__________“ﬁgrghgdga_l_______.-_______
HEDRAL
v ' Holo- ' Hemi- ' Alter- ! Sphen- 'Tetarto-' Para.
' ! Bedrad ' morphic' nating ' oidal hedral morphio
1 4 mal 1 ] H 1 ] _"l
L e SR T T
e, 0 ' ¢ o1 ¢ ] 1 ] 1
(Oblique)' t t ! [} ] ] ' ]
1 y 1] 1 1 t 1
"*—-----——7----------r---------r-—-'---,----
1 ?
HOHOCLINIC: C,‘ 1 : VC,_ 11 : C‘ 12 . : : .
] ] L ] ! "'-l e
-BrfhE-_'----"'_-""'--"_7_---'--—-7_---’-_--
SiEz 0 Q2 ' Qo 21! ¢ e & ' !
rhombic ' ' ' ' ! ' '
v 1t 1] ? .l 1B} t ]
_____ .....__.,.._.._,-_-..,_‘.--. - e m - _-—— -
- ] ' ] t '
gg‘;:{a ? D“ 4 . D’ 41 . 04_,_ 42 . 0‘ 43 , q‘44 . c‘ 45 e C“ 46
. ' ' t ¥ ot ' t
!‘rl'gEnEl""'"'""""""'| ----.---:.----.——---
‘11}23?:?5 . D!J 3 , D, 31 , C"_ 1] . Cn 33 . . 05 35 .
t L | L] 1 1] 1] 1 ]

' ] ] 1 ] ] [
g;::l t} D“ 6 b, 61 . C" 62 03‘ 63 . D“ 64 . G, 65 , 6“ 66
'

Regular 'O, 8 ' 0 BL' T g2 ° ' T, 84 T g5 °

(Cubie) ' b : ' '

) L} 1 [} 1 ) 1 1
LATTICES

L}
Formal ‘T o,0 Qoo 2.0 407 a.o:q 2017 8.0

L] 1 1 1 ] . . [}

{ »n ¢ -l-‘- Tt Tem -
1 ] t 1 L [ ]
Centred s 11 2 e ' sa I 3.1 !
3 Fage~ = —~ == —==- e i L S
2 ]  § v ?
centred : ! £xg .7] 2.2 ! S % ,7:' 8.2 :
) t ' ! v ) d
cmtper 0 ___t___EESIL a2 asef na



Cp 1. 2
G 12.

P
G, 22.;1%.oo§ 2
RO ,10122
16 '20i19
11 .30/12

]

g

!
_H.i_ﬂ,,
~=t-

“1 .00

{1 .000
| 4 .001

POINT ~ SYSTEMS

i oy, e+ e oo

oK B o

<01
01 10

.010
.011

+100
«101

(208 o B .- B ]

i
|
1§
i

|
01f 3 .02
J1i21 .12 .
.21 f
+31013

«32

5.03' 4 .04

57

14 .40{15 .41
- i 4 - ;

Q 21,
:
f‘
]

RECEERFREE.~. She e

GO O3

.« 00 : 2
‘010
«20
.30

000 1
«.001 |
002 1
. 003

(AT B L B

100
100
.200 |
203 |
300
.301
.302

17

«303

18

1o OL

«31

.010

011
013

«310

«313

‘16 .44
3

13
10
14
12

&

.05

«020

.022
023
.024
.025

1
[ .0659

15

16

27
28

3

07}8 .08 .10 .010

030
« 033

«130
<131

In the first of each double column is given the Schonfleis

serial index of the point system; in the second the decimal part of

the proposed notation, the whole numper part being given under the .

head of class,
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r " Class ; ! i |
[ i N
G 45, 11,00 2'.01 3 .08 4.03 [8,10 6l.11
i i
S E L SO I R 2 )
G, 46 ;' 1 .000 2 .020 5 .100 E
'3 .002 4,022 X 6,112
w42+ 1 .000 : 3 .020 9 .100 i ,
5,001 ! 7 .021 11,111
i 2,002 ; 4,022 10 .102
6 003 ! 8 .023 12,113
D, 4.0 1.000 | 3,000 5.020 | 7 .030 | 9 .100 i
©2.002 | ¢.012 | 6 .02z | & .032 10 .112
D 4efi 1:.0000{ 10 .0200 17 .1000 |
; ‘ 2 .000B} ! 9 .0201 18 ,1001 q
.|l 3 .0002) 12,0202 i
; 41,0003 11,0203 i |
5.2 Fc& 140020 14,0220 ; |
i b6 l.ou2l 13,0221 f :
.1t 70022} | 16 .0222 19,1102 ’
8100023 | 15,.0223 : 20 ,1103 |
ey B S | —— L .. N
D,44.. 1 .000 9,100 | 11{.200 | B .300] ! |
u £.002 110,102 | 1x!,202 { 6 .302 | | . ’
3 .020 i 7 .20 :
.4 022 | | 8 .322; i
s S s e rr o ST TN N [P I
T 85.{ 1 .00 4,03
i 3 .10 5 .13
! 2 .20
T Bz' 1 g I Sl Y e s it s et - . g
h 1 .000 6 030 }
2 .003
5,100 7' .130
2 .200 : :
- 4,203
T, 84 1,000 ;
t 4 -001 (
o 8 .100 6,131
| 2 ,200 ;
|f_ 3201 =
I | TSy B e e ~-J
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0 .81, 1 .000 ,
‘ 2! ,002 6 |.031
; 7,033
5. +100 8 4130
4 .202 ‘
L I S [ -
0, 8 1 40000 ;
2 .0003
3 .0020
4 .0023
9 .1000 10 | 41300
5 . 2000 : ;
6 .2001 %
7 42022
L 8 . .2023
oo S : v = "
g, 35, 1!.00 zl.o1 3! .02 4.0
G, 133, 1 .0 2.1
T e e -
¢, 32, 1 .00 3 .01 5 .10
L 2 .20 4.2 : &6 | .11
S T T : R
D, 3l. 2 | .00 4..01 6 .02 7 .10
T 1'.20 3:.21 5 .22 g
D, 3 1 .00 BN T
: 2 .01 6 .11
f 3 .20
i | 4 .21 !
b [URRUTUITN N SUN I S R et e - P O
C; 654 W02 12 L1 | &2 .3 5.4 | B|.5
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