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Series Preface 

The long term aim of the Commission on Crystallographic Teaching in 
establishing this pamphle t  p rogramme is to produce a large collection of 
short s tatements each dealing with a specific topic at a specific level. The  
emphasis is on a particular teaching approach and there may well, in time, 
be pamphlets  giving alternative teaching approaches to the same topic. It 
is not the function of the Commission to decide on the 'best '  approach 
but to make  all available so that teachers can make  their own selection. 
Similarly, in due course, we hope that the same topics will be covered at 
more  than one level. 

The  initial selection of ten pamphlets  published together  represents a 
sample of the various levels and approaches and it is hoped that it will 
stimulate many more  people to contribute to this scheme. It does not take 
very long to write a short pamphlet ,  but its value to someone  teaching a 
topic for the first .time can be very great. 

Each pamphle t  is prefaced by a statement of aims, level, necessary 
background, etc. 

C. A. Taylor  
Editor  for the Commission 

The financial assistance of UNESCO, ICSU and of the International Union of Crystallog- 
raphy in publishing the pamphlets is gratefully acknowledged. 



Teaching Aims 

To help students with no previous knowledge of X-ray diffraction to 
understand the general principles and to give some idea of what it can do. 

Level 

This approach could be used at almost any level from about age 16 
upwards. 

Background 

A general interest in science and an elementary knowledge of what can 
be done with a microscope and slide projectors is all that is needed. 

Practical Resources 

Use is made of the Atlas of Optical Transforms published as part of the 
Teaching Commission's Pilot Project (see reference at end). 

Time Required for Teaching 

This represents an introductory course of two or three lectures with 
time to study the Atlas. 



A Non-Mathemat ica l  Introduction to X-ray 
Diffraction 

C h a r l e s  A .  T a y l o r  

University College, Cardiff, U.K. 

1. Introduct ion 

In my view the basic problem in presenting X-ray diffraction to 
non-specialist audiences is to remove some of the a tmosphere  of 
mathematical  difficulty and mysticism and to show, first of all, that the 
processes involved are, in principle, identical with those of microscopy. 

My suggested approach to this problem is to use optical analogues at 
quite an early stage: the mathematics  can be filled in easily enough once 
the essential ideas have been g rasped- -o r  of course it may be that a 
non-specialist group will not need the mathematics  anyway. I shall 
illustrate this pamphlet  by referring to illustrations in the Atlas of Optical 
Transforms which was published in 1975 by Bell for the Unesco pilot 
project  of the Teaching Commission, which really initiated the idea of 
these pamphlets.  

I usually begin by drawing attention to the basic steps that occur in all 
processes of image formation: the first is scattering of the radiation and 
the second is recombination of the scattered beams. The  basic idea can be 
illustrated with an ordinary 2"x  2" slide projector.  If the lens is removed 
so that a diffuse patch of light is seen on the screen even though a slide is 
in place, it will be clear to an audience that all the information that is 
contained in the slide must be available in the patch of light on the screen 
although it is not readily decipherable. Clearly the lens cannot 'know'  
anything about  the slide and yet as soon as it is placed in the correct 
position the nature and detail of the slide are revealed. All that the lens 
can do is to rearrange the information so that it is immediately under-  
standable to the eye and brain. 

2. T h e  P r o b l e m  of Focus ing  

The operat ion which we call 'focusing' is a very sophisticated one which 
we take very much for granted. But how do we actually perform it? Even  
a very brief thought will make  it clear that what we really do is to m a k e  
the image look as we think the object  is meant  to look. We  assume, for 
example,  that if in one position of the lens all the junctions between black 
and white areas are sharply defined, then it is probably 'in focus'. The  
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assumption clearly is that the junctions really are sharp. If on the other 
hand the object on the slide already had diffuse junctions it would be 
correspondingly more difficult for the projectionist to focus the slide. In 
the event of real difficulty we may .focus on a hair, or on some specks of 
dust, which we assume should have 'sharp edges' and hope that when 
they look right the whole slide will be right. There are in fact, whether we 
like it or not, only two ways of focusing; one is to calculate the precise 
position of lens, slide, screen, etc., on the basis of geometrical optics and 
the other is to work on the basis of some preknowledge about the nature 
of the object. We shall return to the implications of this statement for 
X-ray diffraction at a later stage. 

With visible light we can usually solve the focusing problems fairly 
easily and images of extremely small objects may be produced in the 
optical microscope. One severe limitation however, is the wavelength of 
light and detail below this size cannot be imaged. One alternative is to use 
electrons whose wavelength is quite small enough, but the practical 
problems of lens designs for the electron microscope provide an experi- 
mental limit before the resolution of indiyidual atoms can be achieved. 

X-rays have a suitable wavelength and would provide a simple solution 
if they could be focused experimentally. Unfortunately this is not possible 
except with systems of curved mirrors which are capable of only very 
limited magnification. To achieve the full benefits of the small wavelength 
some alternative approach must be adopted. 

3. The Essence of X-ray Diffraction 

In principle one could say that the whole development of X-ray 
diffraction techniques really amounts to the development of alternatives 
to the focusing of X-ray images. The point is that the first stage of the 
imaging process, illustrated by the projector with no lens, can be per- 
formed but the crystallographer has no lens to put back in the projector 
and must try to make sense out of the diffuse patch in some other way. 

If the problem were strictly analogous to this it is unlikely that any 
structures would ever have been solved. Fortunately there are two 
significant ways in which the X-ray crystallographer's case differs from 
that of the projectionist with no lens for his projector. First of all the 
projector uses white light with a broad frequency band which is also 
spatially incoherent and is produced from a large source. In the X-ray 
case it is usual (except under the special circumstances of Laue photo- 
graphs with which we are not concerned here) to use monochromatic 
radiation which, as a result of travelling through a long, fine hole or slit 
has quite a high degree of spatial coherence. The second point is that the 
object usually exhibits some degree of regularity or crystallinity. 
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These two facts lead to the production of patterns which consist not of 
a diffuse patch but rather of a series of discrete spots (though there may 
well be diffuse spots and patches if the object is not sufficiently regular). 

The parallel with the projector which most nearly matches the X-ray 
case would be a gas-phase laser beam falling on a regular grating (e.g. a 
finely woven handkerchief or a piece of gauze); the beam is scattered or 
diffracted into a number of well defined beams or spots arranged in a 
regular way. The optical diffractometer used in the preparation of the 
plates in the Atlas is merely a sophisticated development from this simple 
experiment. 

The difference in the patterns of regular and irregular objects, all 
illuminated by monochromatic coherent radiation is illustrated in Plates 
16 and 17 of the Atlas. 

The process carried out by the lens of the projector or by the objective 
of the microscope and which needs to be carried out artificially by the 
X-ray crystallographer involves the mathematical operation of Fourier 
Synthesis. We shall however attempt to illustrate the process without 
resort to mathematics. 

If the scattering (or diffraction pattern as it tends to be called if it 
consists of regular spots) is completely determined then it should, in 
principle, be possible to transform the beam into an image by the purely 
mathematical process of Fourier Synthesis. Unfortunately, however, it has 
so far proved quite impossible to record the relative phases: this im- 
mediately invalidates the direct mathematical process. The reason why 
the phase cannot be recorded becomes clear if one calculates the fre- 
quency of X-rays; determination of phase would, in effect, involve time 
measurements corresponding to a fraction of one period. If we assume 
X-rays of wavelength 1.5/~ (1.5 x 10 -1° m) the frequency is about 2 x 
10 TM and hence to measure a phase difference of (say) ½th of a cycle would 
involve a time measurement of about 10-~gs which is certainly beyond 
our present resources. Perhaps one day a means of adding a coherent 
beam, as in optical-laser holography may become available and then the 
whole situation would changel 

Let us first of all consider in a little more detail the relationships 
between an object and its scattering or diffraction pattern--regardless, for 
the moment, of whether we are dealing with light or with X-rays. Suppose 
that the object consists of two points only. Plate 1 of the Atlas shows that 
the result is a set of fringes whose spacing varies inversely with that of the 
points. These are the well known 'Young's' or 'Double-slit' fringes and 
can be shown to vary cosinusoidally in amplitude with alternate fringes ~r 
out of phase with the rest. For the moment we will ignore the effects of 
the size of the scattering points and assume that they are mathematically 
small. The fringes will then, in principle, be of infinite extent and without 



the ring patterns superimposed as,in Plate 1 ; the centre region will be tile 
only one of interest. If we n o w  add further pairs of points i n  different 
orientations, fringes of different orientation and spacingwill be added and 
the resultant pattern becomes .more complex (Plate 2). I f  the basic 
arrangement o f  points forming the object is repeated .in any kind o f .  
regular way, f u r t h e r  fringes are introduced and .a two-dimensional- " 
'crystal' produces a pattern of regular spots (Plate 11.): It will be c lear  
from a study of plates 1,  2 and: 11 t h a t w e  can now separate, two quite 
distinct variables. First the size and shape  :of the lattice (strictly the 
reciprocal lattice) in which the spots of the diffraction pattern are. ar- 
ranged depends solely on the size and shape of the lattice on which the 
groups of  scatterers:are arranged.. And secondly the relative intensity of 
the spots depends on the arrangement of scatterers in each individual. 
group. I n  tlie crystalline.case the 'individual group'  is the unit cell 
contents.  • " 

4. The Fundamental Problem of Reconstructing 
i ~ . . .  an X-ray Image 

In the terms of this pamphlet we are now faced  with the prob lem of 
deriving the arrangements shown on the l e f thand  page of Plate l I ,  given 
the scattering patterns on the right hand  of. Plate 11. 

Now let us consider the nature Of the problem of recombining the 
scattered information to produce  an image and we will start  by once more 
considering thecase  of two poin t  scatterers only. As-we have seen, t h e  
diffraction or scattering pat tern  is a set of cosinusoidal fringes whose 
spacing is inversely related to that of the point. This looks very l i k e a  
diffraction grating which if :itself placed .in a coherent monochromatic 
beam of light will give: orders o f  diffraction. A good exper iment  at this  
point is to provide a few coarse diffraction gratings which can be placed in ' 
a laser beam and give a single r o w o f  regularly spaced sharp spots and it is 
easy to demonstrate the reciprocal relationship between the slit spacing of 
the grating and the space between the orders. If we now substitute for the " 
ordinary diffraction grating (which has sharp transparent and opaque slits, 
i.e, has a Square wave function) one with a cosinusoidal function deter- 
mining its transparency variation we shall find only three orders: a bright '  
centre one: and a single weaker one on each s ide.Of course our grating really 
has a transparency distribution of (1 + cos 0) since w e  h a v e  not" 
provided for negative. :transmission. If, using phase changing tricks w i t h  
polarised light, and mica, the details of which need not concern us he re ,  
we make a true representation of the cosine distribution With alternative. 
strips in opposite phase, We arrive at a: diffraction pattern wi th jus t  t w o  
orders, one on either' side of the original .line of the beaml A logical 



deve lopmen t  of this train of thought  then is to see tha t f f  we were to place 
the pa t t e rn s  of (say). the •right hand s ide  of Plate 2 in a coherent  
monochromatic  b e a m  of light, then we should produce an image like t he  
left hand page: In  other words we can achieve• the recombination trick 
merely by us ing  a representation of the  diffraction pattern itself as 
another diffracting object. The problem of representing the phase remains 
however and needs special  considerat ion, .  • 

• This reverse process is illustrated in Plate 29. O n t h e  left we have a 
series of pairs of  points which build up in 29;8 Left to a representat ion of the 
complete  scattering .pattern: in two dimensions of  a c r y s t a l - o f  
Rhodium phthalocyanine derived using X-rays. The  relative intensities of 
the spots are represented by Varying the size of the holes. T h e  diffraction 
pattern of this, :29.8 Right, is a reasonable reconstruction of an image of a 
Rhodium phthalocyanine molecule and one can s e e i n  the earlier figures 
on this page how the successive pairs of holes add further fringes to build 
up the pattern. This, as one might guess, is a very special case in which it 
just happens that the Rhodium atom at the centre is justl sufficient to 
scatter enough coheren t  background over  the whole pattern to bring the 
maximum negative, reg ions  to zero, and make corresponding enhance- 
ments of the positive region_s (this principle.is further explored in Plate 5). 
In this case. therefore the phase problem does not cause difficulties. Such 
examples are, however, rare. • • . 

Following this line of argument with further examples we  should be 
able to. establish experimentally that. the process of recombination is 
identical with that of scat ter ingand that, under certain circumstances, the 
diffraction pattern of the diffraction pattern is-an image of .the object 
again. The mathematics could be introduced a t  this stage if it is desired 
but is:not essential  for n o n - s p e c i a l i s t s . .  . . . .  " -: .... 
: .  • . ; ,  . . . 

" " ' 5. S o m e  Practical  Ques t ions  .. 

" " We now need to try to answer a series of questions that should arise. 

(a) What-happens in the general case if we ignore the phase.andtry.to 
recombine with just the intensities? 

In order to answer this quest ion-we need to think back once m o r e t o  
the object consisting of two points a n d  its diffraction pattern which is a 
cosinusoidally varying fringe pattern. Suppose now that the object is 
translated in its own plane (which is assumed perpendicular to the light 
beam). It is well known that the fringes will not move laterally. (This can 
be demonstrated easily if a distant street lamp is viewed through a piece 
of fabric such as a handkerchief or an umbrella: the diffraction pattern 
does not move on the retina when the fabric is translated.) It  is clear 



however that some representation of the translation must be encoded in 
the diffraction pattern, since, if we allowed the fringes to fall on a lens 
and be recombined to form an image, the translation of the object would 
immediately become apparent. It can be shown that the relative phases of 
the light arriving at various points of the pattern change but since we 
cannot see or record phase we are not aware of the change. It follows 
logically then that if we re-combine the intensities of the diffraction 
pattern ignoring the phases, the information about lateral position would 
be missing. The pairs of points which make up the object will all be 
reproduced with the right separation from each other and in the right 
orientation but they will all be symmetrically disposed about the centre of 
the pattern instead of being properly distributed. In other words the 
resulting distribution will contain information about all the vector dis- 
tances that are present between the various pairs of scattering points in 
the object but all will be translated so that one end of every vector is the 
origin. 

Since it is perfectly possible to record all the intensities in an X-ray 
photograph and to perform this recombination mathematically using a 
digital computer it should not be surprising to find that such a reconstruc- 
tion is one of the standard methods of trying to decipher X-ray patterns. 
The process is known as the calculation of a Patterson function, after 
A. L. Patterson of Pennsylvania, U.S.A. who first suggested the technique. 
The problem is how to interpret the resulting map. 

Figure 1 shows a simple object consisting of three points and Fig. 2 
shows an Idealised Patterson map showing how the six possible vectors 
ab, ha, be, eb, ae and ea appear. The relationship between the map and 
the object is not difficult to see. The difficulty increases very rapidly, 
however, if the numbers of scattering points increases. 10 scattering 
points would give rise to 90 peaks (though many would overlap) and 100 
would give 9900 peaks. To see how the complexity increases even with 
simple structures we will consider an actual example. Figure 3 is a typical 
map and Fig. 4 is one of the symmetrically related molecules in the crystal 
giving rise to this distribution. A peak marked a in Fig. 1 would 
correspond to vectors such as 6-4, 1-3, 7-2 or 9-8 and a peak such as b 
would correspond to 7-6, 1-5, 2-4, and 8-2. Even though this is quite a 
simple arrangement the interpretation of the Patterson map without some 
knowledge of the molecule would be very difficult if not impossible. 

Fig, 1. 
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(b) How can we by-pass or otherwise solve the problem of the phases 
that cannot be measured? 

The whole art of the crystallographer is really contained in the answer 
to this question. The possibilities are numerous and we shall select only 
four by way of illustration. 

(i) We may know enough about the chemistry and stereo-chemistry to 
make an intelligent guess at the configuration. We may then use 
this to calculate the diffraction pattern that would result and our 
calculation will give both amplitudes and phases. If the amplitudes 
compare  reasonably well with those observed we may then com- 
bine our obserued amplitudes with the calculated phases and do a 
computed Fourier synthesis--or  image recombina t ion- - tha t  will be 
a fair representation of the required structure. This is the so-called 
trial and error method.  

(ii) We may use the Patterson map technique already described in (a) 
above. 

(iii) We may have available, or be able to create a series of related 
crystals with very similar structures but with one atom different in 
scattering power. For example, a material containing a chlorine 
atom may also exist in a very similar form with bromine replacing 
chlorine. A careful observation of the effect this has on the relative 
intensities of the diffracted beams (cf. Plate 5 of the Atlas) can lead 
to the determination of the relative phases necessary to reproduce 
this heavy atom and it can then be assumed that the same phases 
will not be far wrong for the whole structure. 

(iv) The application of various mathematical  and statistical relation- 
ships ( 'direct methods')  between the amplitudes can lead to the 
direct determination of the phases of a proport ion of the beams 
and then, by a process of successive approximations, the complete 
image can be built up. 

(c) How can the statements made in section 2 about focusing be 
reconciled with the solutions of the phase problem which we have 
just listed and described under (b)?. 

The four techniques agree very well with the statements about focusing 
made in section 2. In (i) we clearly have to know a good deal about the 
object in order to focus. In (ii) (as was pointed out in the discussions of 5(a) 
above) we can only interpret a Patterson map if we know something 
about the object even i f -- in  the simplest possible case - -our  only know- 
ledge is that the object consists of discrete atoms rather  than of a 
continuous distribution of electron density. In (iii) our heavy atom is 
analogous with the hair or speck of dust that we know is there: if we focus 
on it we can assume that the rest will be in focus. In (iv) the mathematical  



relationships used are all found to depend on specific assumptions about 
the object--usually that the scattering is everywhere real and positive and 
that discrete spherical atoms make up the object. 

(d) What determines tile accuracy of reproduction of the image? 

Just as in optical microscopy the limits of accuracy are set fundamen- 
tally by the wavelength of the X-rays used and experimentally by the 
'aperture '  of the system. In the X-ray case the 'aperture '  means the 
number of terms included in the Fourier synthesis. Plate 32 of the Atlas 
illustrates this with an optical analogue. 32.1 on the right is an object 
consisting of a small square cristallite of molecules of bishydroxy-duryl 
methane. (32.1) on the left is its diffraction pattern. If we used the whole 
of 32.1 on the left we could, in theory, produce--assuming that we knew 
both amplitudes and phases--an exact replica of 32.1 on the right. If we 
restrict the terms included in our calculation to those shown in 32.2 on the 
left the resulting deterioration of the image is shown in 32.2 on the right. 
The remainder of the plate pursues this theme in various ways and it is 
significant to note that in 32.6 we come back full-circle to the point that, 
if we only include one order of diffraction on either side of the centre 
(32.6 on the left) the result (32.6 on the right) is one set of sinusoidally 
varying fringes. 

(e) What complications are introduced by the fact that crystals are 
three dimensional? 

This is a difficult question to answer systematically without drawing on 
a fairly full knowledge of crystallography. In practice however it can be 
said that the complications in the principles involved are relatively few: 
the computation becomes necessarily greatly increased. 

The important point to realise is that the relative scale of wavelength- 
to-object-size is quite different for light and for X-rays. For  most of the 
objects illustrated in the Atlas the significant dimensions are a few 
thousand wavelengths of light. In the X-ray case however typical dimen- 
sions (e.g. a carbon-carbon bond of ] .4× 10 '1° m) are comparable with 
the wavelength (1.54x 10-~°m for Cu Ka  radiation). Thus in optics all 
the significant scattered information is contained within very small angles, 
whereas in X-ray diffraction we need to take in scattering angles of up to 
180 ° in order to extract the maximum information. The complications 
therefore turn out to be experimental rather than theoretical and will be 
dealt with in later pamphlets in the series dealing with other aspects of 
the subject. At the moment it will suffice to say that there is no difference 
in principle that need concern us, though experimentally and computa- 
tionally there are significant increases in complexity on moving from two 
to three dimensions. 
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