

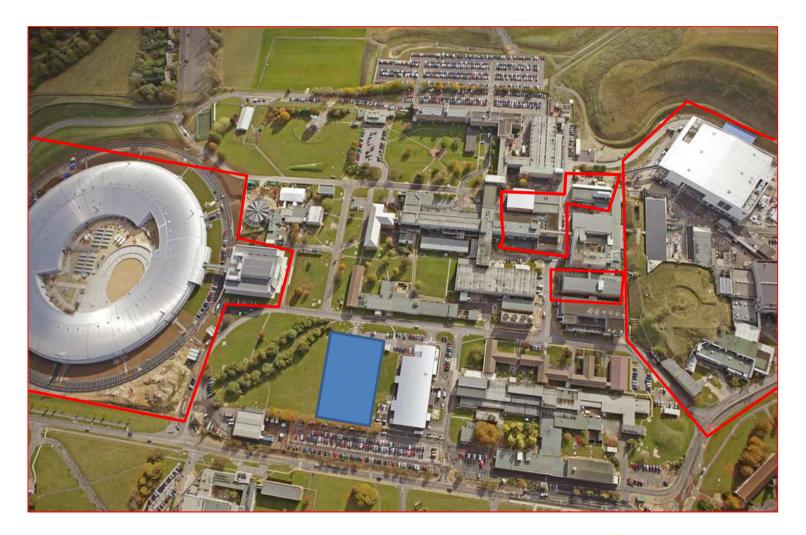
Linking raw data with scientific workflow and software repository: some early experience in PanData-ODI

Erica Yang, Brian Matthews

Scientific Computing Department (SCD)

Rutherford Appleton Laboratory (RAL) Science and Technology Facilities Council (STFC), U. K.

erica.yang@stfc.ac.uk



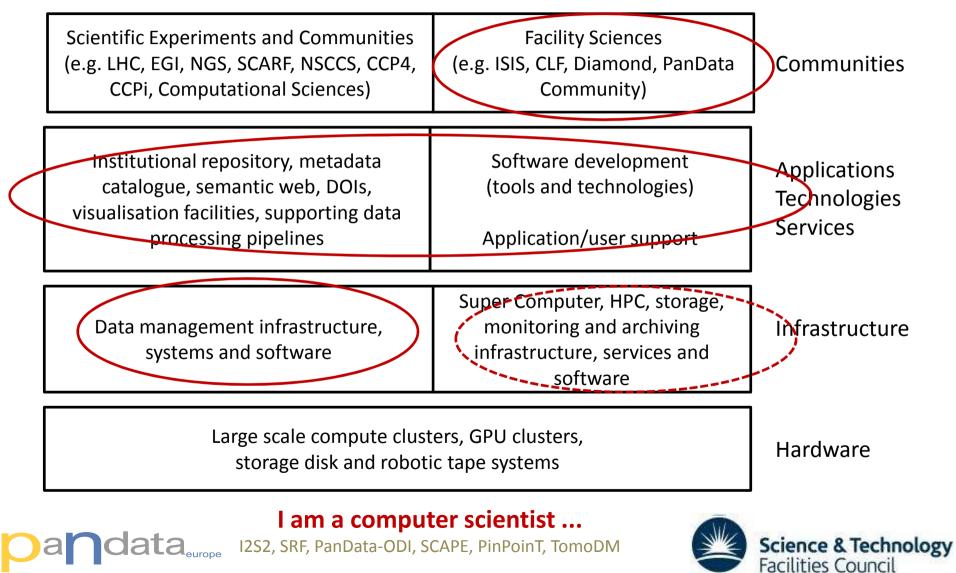
BACKGROUND

STFC Rutherford Appleton Laboratory

STFC RAL: CLF, Diamond, ISIS, SCD

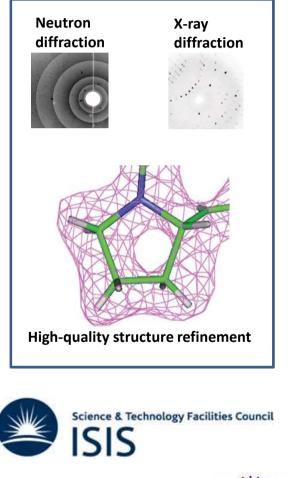
What we do

Scientific Computing Department ...


Scientific Experiments and Communities (e.g. LHC, EGI, NGS, SCARF, NSCCS, CCP4, CCPi, Computational Sciences)	Facility Sciences (e.g. ISIS, CLF, Diamond, PanData Community)	Communities
Institutional repository, metadata catalogue, semantic web, DOIs, visualisation facilities, supporting data processing pipelines	Software development (tools and technologies) Application/user support	Applications Technologies Services
Data management infrastructure, systems and software	Super Computer, HPC, storage, monitoring and archiving infrastructure, services and software	Infrastructure
Large scale compute clust storage disk and robot	Hardware	

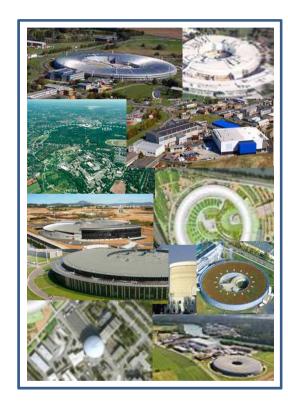
What we do

Scientific Computing Department ...


PANDATA-ODI

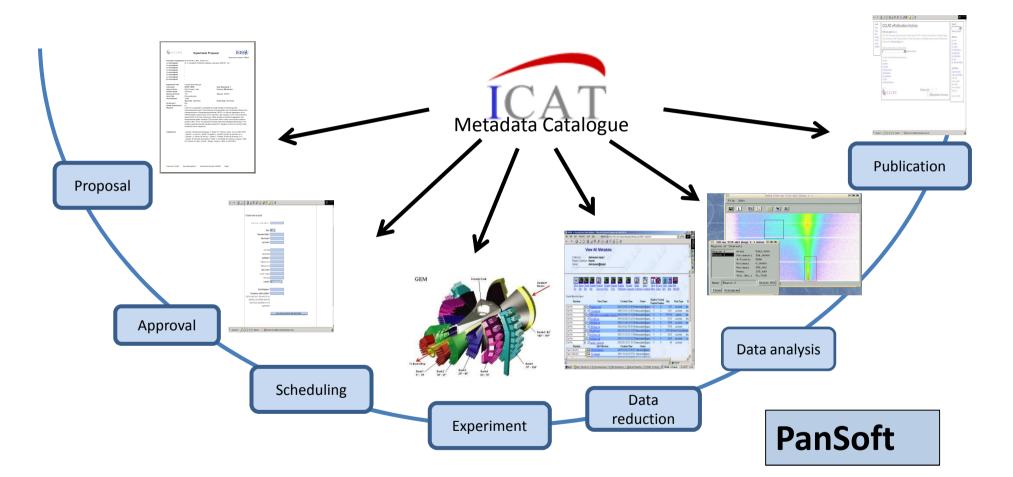
PaN-data ODI– an Open Data Infrastructure for European Photon and Neutron laboratories

Federated data catalogues supporting cross-facility, cross-discipline interaction at the scale of atoms and molecules



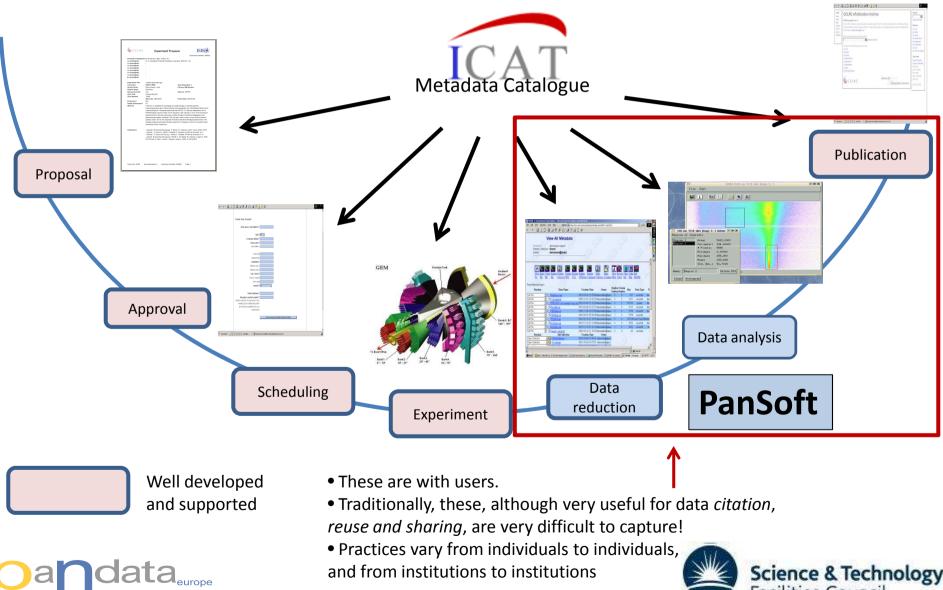
- Shared protocols for exchange of user information
- Common scientific data formats
- Interoperation of data analysis software
- Data Provenance WP: Linking Data and Publications
- Digital Preservation: supporting the long-term preservation of the research outputs

PAUL SCHERRER INSTITUT

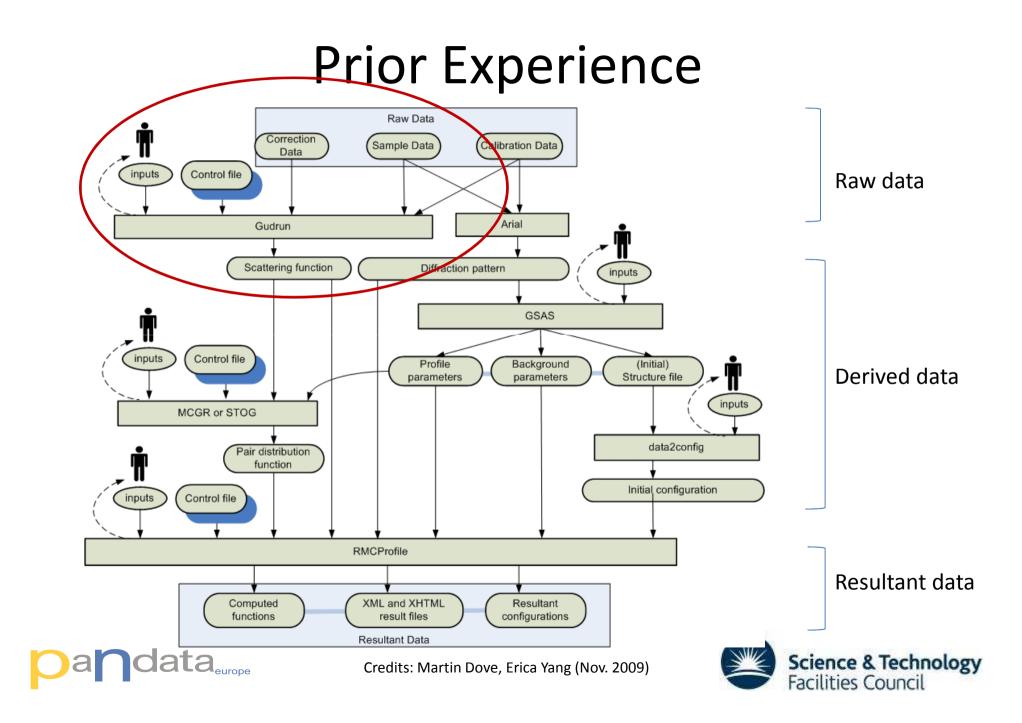

diamond

IS COUL

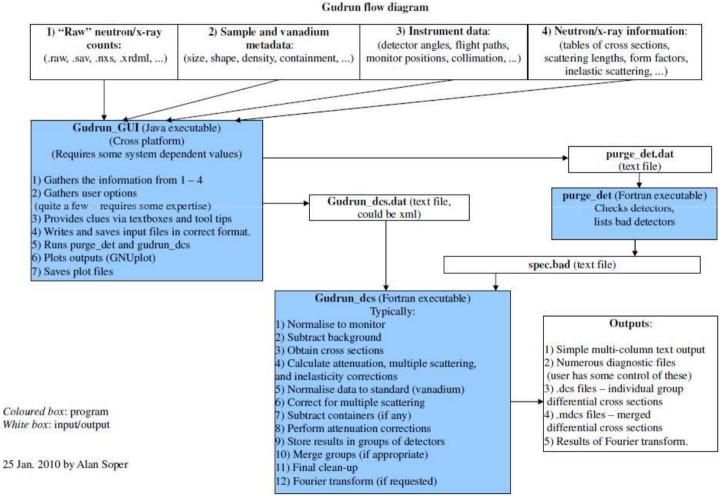
(Facility) Data Continuum



Services on top of ICAT: DOI, TopCAT, Eclipse ICAT Explorer ...



Data Continuum



and from institutions to institutions

Can be difficult to capture ...

data

Credits: Alan Soper (Jan. 2010)

Data Provenance: Case Studies (so far)

	Description	Facility	Likely stages of continuum
1.	Automated SANS2D reduction	ISIS	- Experiment/Sample preparation
	and analysis		- Raw data collection
			- Data reduction
			- Data Analysis
2.	Tomography reconstruction and	Manchester Uni./DLS	- Raw data
	analysis		- Reconstructed data
			- Analysed data
3.	EXPRESS Services	ISIS	- Experiment preparation
			- Raw data collection
			- Data Analysis to standard final data product
4.	Recording publications arising	ISIS	- Proposal system
	from proposal		- Raw Data collection
			- Publication recording
5.	DAWN + iSpyB	DLS, ESRF	- Experiment preparation
			- Data analysis steps

These case studies have given us unique insights into today's facilities ...

Looking for more case studies ...

TODAY'S FACILITIES – FACTS

Diamond and ISIS (the story so far ...)

- Diamond:
 - ~ 290TB and 120 million files [1]
 - In SCD data archive
 - Largest file: ~120GB Tomography beamlines [3]
- ISIS [2]:
 - ~16TB and 11 million files
 - In ISIS data archive & SCD data archive (on going)
 - Largest file: ~16GB the WISH instrument

Diamond Tomography

- Up to 120 GBs/file every 30 minutes
- 6,000 TIFF images/file
- Up to 200 GBs/hr
- ~5 TBs/day
- 1-3 days/experiment

How many images are there for each experiment?

ISIS

- Peak data copy rate (off instrument) 100MB/S
 Expecting to reach 500MB-1GB/S (but not soon).
- Expect to grow to 10TB/cycle in 3-5 years
- Become interested in centrally hosted services (WISH)

WHAT DOES IT MEAN?

It means ...

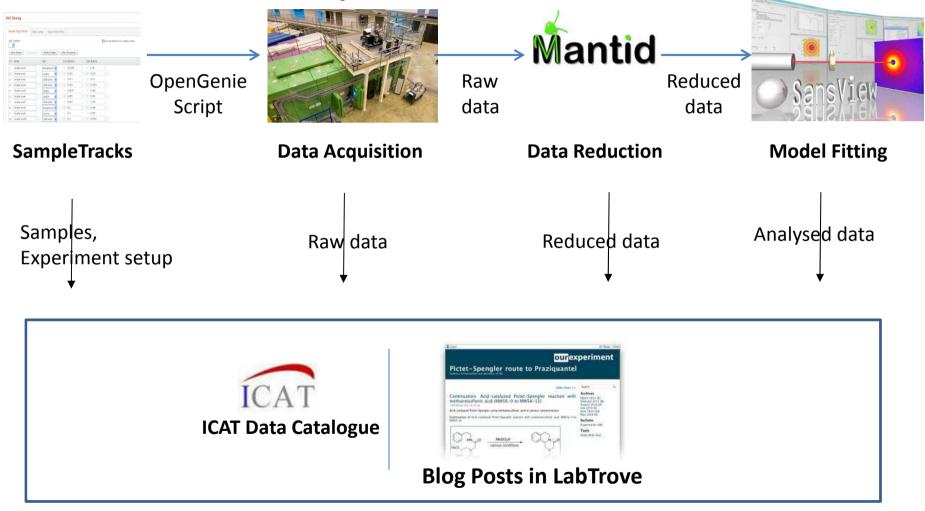
- Due to the volume, it is not cost effective to transfer the (raw + reconstructed) data back to the home institutions or elsewhere to process
 - The network bandwidth to universities mean that it will take a long time to transfer ...
 - So, users have to physically take data back home on storage drive ...
- It is impossible for users to do the reconstruction or analysis on their own computer/laptop.
 - How much RAM do you have on your laptop? And how big is the file from WISH? The Mantid story ...
- It is expensive to re-do the analysis back to the home institutions because of
 - Lack of hardware resources
 - Lack of metadata (a large number of files often mean that there is not much useful metadata)
 - Lack of expertise (e.g. parallel processing, GPU programming)
 - (Assuming software is open source ...)
- Facilities become interested, again, in centralised computing services, right next to the data
 - The ISIS WISH story ...
 - Diamond GPU cluster vs. SCD GPU cluster (directly linked to the data archive)

Users now ask for remote services

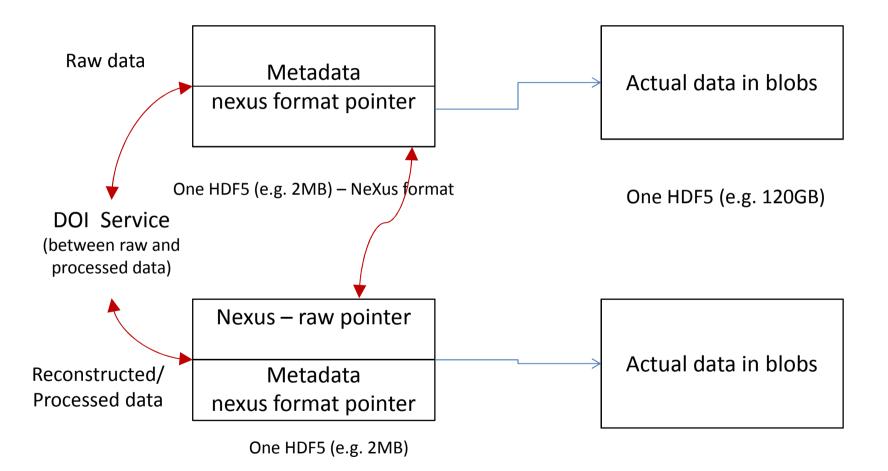
- Users are interested in remote data analysis services
 - "... Of course this would mean a step change in the facilities provided and the time users spend at the facility. ..."
 - In response, we are developing: "TomoDM" ...

• Then, what benefits can remote services bring?

- Systematic recording of data continuum, thus allowing the recording of scientific workflows, software, and data provenance (the first four categories data as defined in the "Living Publication" [4])
- Drive data processing (reduction & analysis) with data provenance
- It is not only possible to create bi-directional links between raw data and publications, it is also possible to systematically create pair-wise bi-directional links between raw, derived, resultant data and publications.



TWO EXAMPLES


SRF – Automated Data Processing Pipeline for ISIS

Links between metadata and files

But ...

- If we can capture all types of data
 - Samples
 - Raw data
 - Reduced data
 - Analysed data
 - Software
 - Data provenance (i.e. Relationships between datasets)
- Facilities operators do not normally
 - Perform validation and fixity checking of data files (volume vs. cost)
 - Actually MUCH cheaper to simply back up all images without regard for quality, relevance or even duplication, than it is to build an infrastructure for automatically analyzing millions of image files to determine which are "worth keeping". [1]
 - But lifetime of data on tape vs. Lifetime of tape
- Will DOIs good enough for data citation?

STFC EXPERIENCE OF USING DATACITE DOIS

STFC DOI landing page

es Engaging the public
TO exchange bias system.
DOWNLOAD
download the dataset

Behind the landing page

File Name	File Location	File Size	20/02/2009 16:03
ataset Name: Default (20	Items)		20/02/2009 16:03
CSP80476_He_Level.txt	\\isis\inst\$\Instruments\$\N	0.001 MB	20/02/2009 16:03
CSP80476_height.txt	\\isis\inst\$\Instruments\$\N	0.003 MB	20/02/2009 16:03
CSP80476_ICPdebug.txt	\\isis\inst\$\Instruments\$\N	0.091 MB	
CSP80476_ICPevent.txt	\\isis\inst\$\Instruments\$\N	0.012 MB	20/02/2009 16:34
CSP80476_ITC_Set_Point.txt	\\isis\inst\$\Instruments\$\N	0 MB	20/02/2009 16:05
CSP80476_ITC_Temperat	\\isis\inst\$\Instruments\$\N	0.006 MB	20/02/2000 10:00
CSP80476_Linear_Det_He	\\isis\inst\$\Instruments\$\N	0 MB	20/02/2009 16:14
CSP80476_Moderator_Te	\\isis\inst\$\Instruments\$\N	0.001 MB	20/02/2009 16:43
CSP80476_phi.txt	\\isis\inst\$\Instruments\$\N	0.001 MB	20/02/2009 10:45
CSP80476_psi.txt	\\isis\inst\$\Instruments\$\N	0.001 MB	20/02/2009 16:03
CSP80476_res.txt	\\isis\inst\$\Instruments\$\N	0.002 MB	20/02/2009 16:14
CSP80476_s1.txt	\\isis\inst\$\Instruments\$\N	0 MB	20/02/2009 10:14
CSP80476_s2.txt	\\isis\inst\$\Instruments\$\N	0 MB	20/02/2009 16:14
CSP60476_s3.ta	\\isis\inst\$\Instruments\$\N	0.005 MB	20/02/2000 46:02
CSP80476_s4.txt	\\isis\inst\$\Instruments\$\N	0 MB	20/02/2009 16:03
CSP80476 sample tyt	\\isis\inst\$\Instruments\$\N	0 MB	20/02/2009 18:12

Displaying 1 - 20 of 1995

Science & Technology Facilities Council

Citation Issues

- At what granularity should data be made citable?
 - If single datasets are given identifiers, what about collections of datasets, or subsets of data?
 - What are we citing? Datasets or an aggregation of datasets
- STFC link DOI to experiments on large facilities which contain many data files
- Other organisations DOI usage policies use different granularities.
- Can there be a common, or discipline common DOI usage policy for data?
- Citation of different types of object: software, processes, workflows ...
- Private vs. Public datasets/DOIs

Summary

- Infrastructure services
 - Compute
 - Storage
 - Archiving + preservation (validation, integrity)
 - Remote data processing
 - DOIs
- It is already happening
 - DLS is already collecting processed data (e.g. iSpyB)
 - But, interesting issues remind to be resolved when lots of data become available ...

Acknowledgements

Project (s)	Institution(s)	People	
PanData-ODI (case study)	Diamond, U.K.	Mark Basham, Kaz Wanelik	
PanData-ODI: (case study)	Manchester University, U.K. Harwell Research Complex, RAL Diamond, U.K.	Prof. Philip Withers, Prof. Peter Lee	
SCAPE, SRF, PanData-ODI	Scientific Computing Department, STFC	David Corney, Shaun De Witt, Chris Kruk, Michael, Wilson	
I2S2, SRF Chemistry, Southampton University, UK		Prof. Jeremy Frey, Dr. Simon Coles	
1252	Cambridge University, UK	Prof. Martin Dove	
I2S2, PanData-ODI, SRF, SCAPE	ISIS, STFC	Tom Griffin, Chris Morton-Smith, Alan Soper, Silvia Imberti, Cameron Neylon, Ann Terry, Matt Tucker	

I2S2, SRF are funded by JISC, UK PanData-ODI, SCAPE are funded by EC

References

- 1. Colin Nave (Diamond), "Survey of Future Data Archiving Policies for Macromolecular Crystallography at Synchrotrons", distributed via "dddwg-bounces@iucr.org", July 2012.
- 2. Chris Morton-Smith (ISIS), "ISIS Data rates and sizes up to March 2012", May 2012.
- 3. Mark Basham (Diamond), "HDF5 Parallel Reading and Tomography Processing at DLS", PanData-ODI DESY meeting, Hamburg, Germany, Feb. 2012.
- 4. John R Helliwell, Thomas C. Terwilliger, Brian McMahon, "The Living Publication", April 2012.

Questions

