

25 - 29

Data quality and the value of structural databases

Colin Groom

Crystallographic Information and Data Management A Satellite Symposium to the 28th European Crystallographic Meeting IV. Towards ever better science

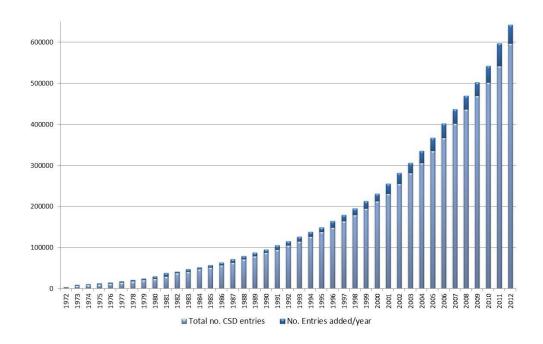
Sunday, August 25, 2013

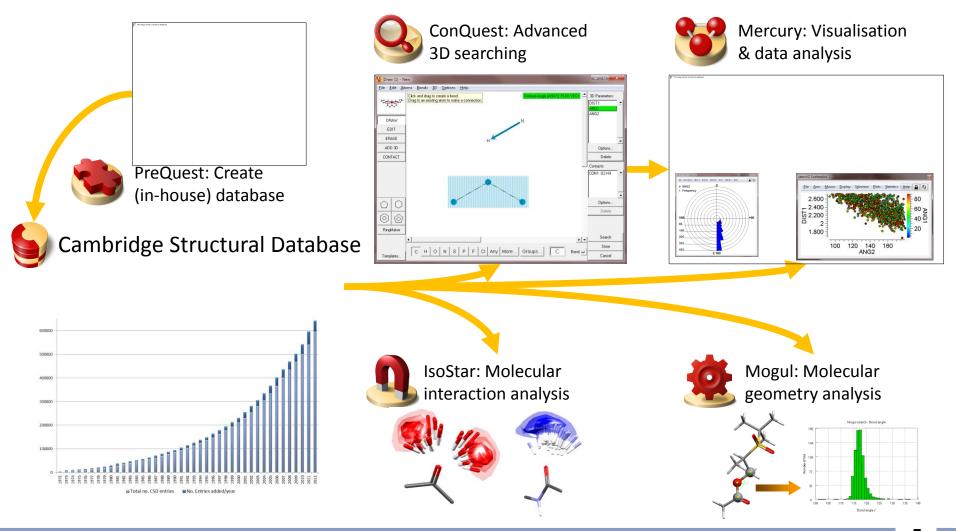
Contents

- The CCDC
- The CSD
- Creating the CSD
- Curating the CSD
- Current challenges
 - Beyond structural chemists
 - Structure publishing
 - Non-sematic data
- Unanswered questions

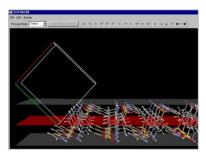
The Cambridge Crystallographic Data Centre

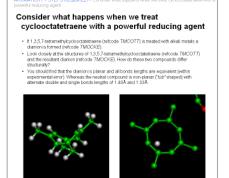
- A not-for-profit, charitable institution, established 1965
- Self-financing and self-administering
 - Funded by contributions from user community
- A University of Cambridge Partner Institute
- A UK Government Independent Research Organisation
- Around 50 members of staff
 - Scientists, software developers, IT, finance and user services


"advancement and promotion of the science of chemistry and crystallography for the public benefit"


The Cambridge Structural Database

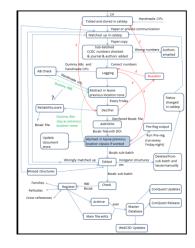
- All published small molecule crystal structures
 - Currently 658,047
 - Comprehensive
- All curated
 - Corrected
 - Standardised
 - Enriched
- All searchable
 - 'Chemistry' added
 - Sophisticated tools

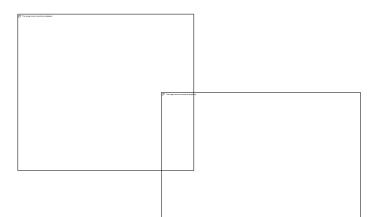

The Cambridge Structural Database System



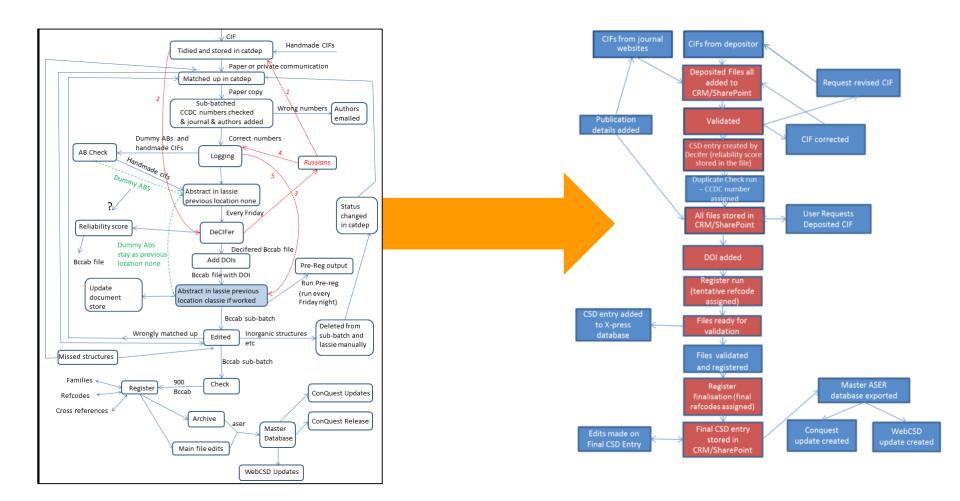
Services provided

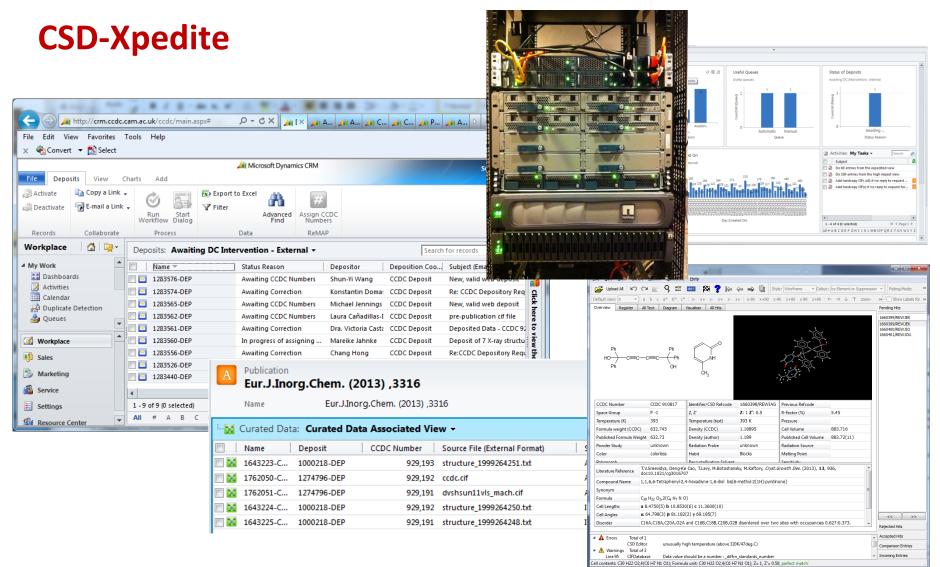
- Access to original deposited data
 - Individual data sets available to anyone
 - No cost archiving and dissemination of crystallographers output
 - c.f. Publication APCs
- Software tools
 - enCIFer (validation of CIFs)
 - Mercury (crystal structure visualisation)
 - Ligand dictionaries
- Targeted subsets of curated data
 - Teaching subsets
 - PDB subset
- CSD System



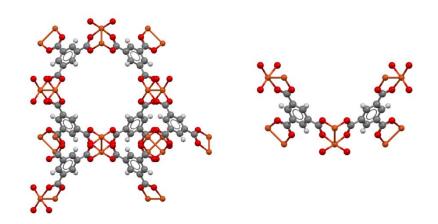

left: "tub" shape of 1,3,5,74etramethylcycloactatetraene (refcode TMCOTT); right: the resulting planar dianion (refcode TMOCKE)

Creating the Cambridge Structural Database

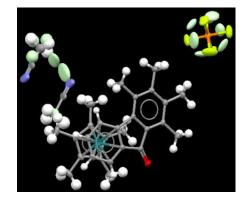

- Structures from depositors and journals
 - Referees, embargoes, revision
- Curation
 - Coordinates to 'chemistry'
 - Duplication
 - Enrichment
- Distribution and access
 - Searching, analysis, application



CSD-Xpedite


CSD-Xpedite

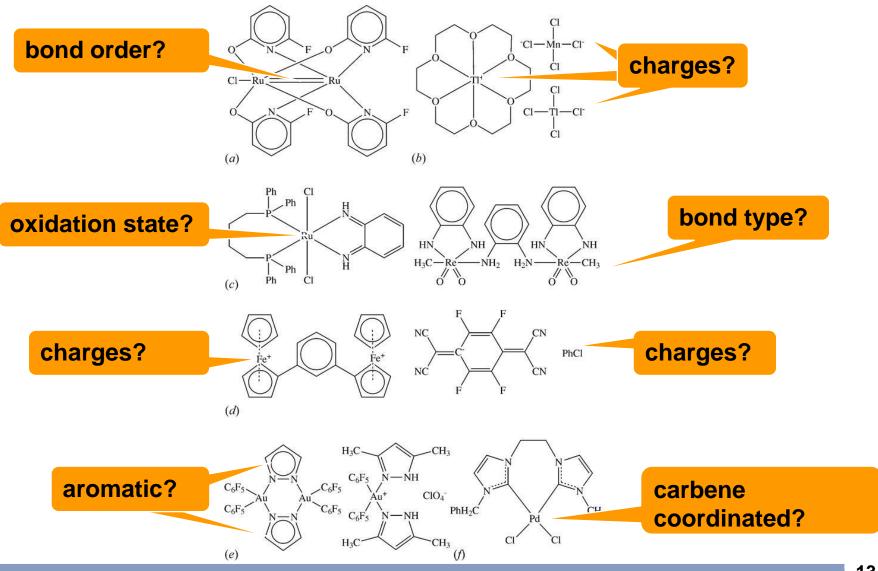
- CSD-Xpedite removes internal processing restrictions
 - Large structures
 - Structure Factors
 - Time to mandate?
- Easier access to deposited data
 - Just CCDC number or publication DOI needed
 - Immediate access
- Better structure comparison and duplicate checking
- Persistent identifiers and links from/to other resources
 - Automatic DOI population
- Faster 'publication'
 - 10-25 days, down to <10 minutes
- Will allow community curation



Scientific benefits

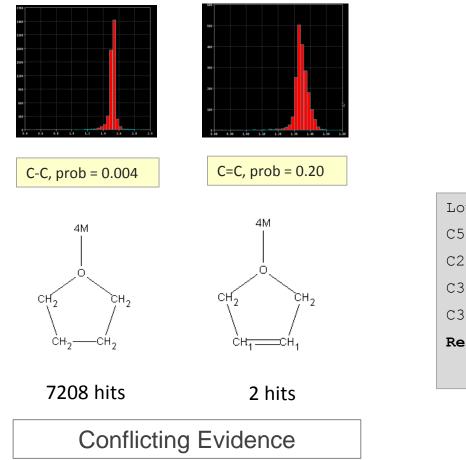
• Better polymer representation

- ADPs and occupancy factors more visible
- Consistent interpretations



Curating The Cambridge Structural Database

- Curation
 - Coordinates to 'chemistry'
 - Duplication
 - Families
 - Enrichment
- Distribution and access
 - Searching
 - Analysis
 - Application

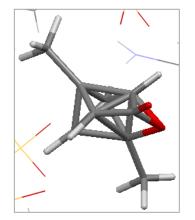

Chemical structure from atomic coordinates

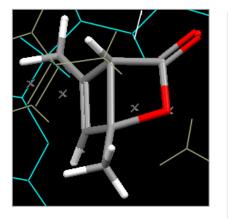
www.ccdc.cam.ac.uk

DeCIFer: Automatic Assignment of Chemistry

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}.$$

Bayes' Theorem


Low probability bond lengths:				
C5-C6	1.405,	av(CSD)	= 1.505,	prob = 0.001
C2-C3	1.345,	av(CSD)	= 1.514,	prob = 0.001
C3-C4	1.338,	av(CSD)	= 1.514,	prob = 0.001
C3-C6	1.798,	av(CSD)	= 1.546,	prob = 0.001
Reliability level: 2				


Chemical Assignment + Reliability Report

DeCIFer also attempts to automate resolving of disorder and generating diagrams and names

Avoiding duplication of effort

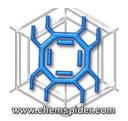
Under UV radiation the clathrated pyrone molecule converts to a disordered mixture of square-planar 1, 3-dimethylcyclobutadiene and rectangular-bent 1, 3-dimethylcyclobutadiene in van der Waals contact with a carbon dioxide molecule. The ratio of the square-planar to rectangular-bent 1, 3-dimethylcyclobutadiene clathrate is modelled with occupancies 0.6292:0.3708.

Unresolved disorder

Resolved disorder with editorial comment

Current challenges

- Increase 'discoverability' of crystal structure data
 - More links databases, aggregators and publications
 - Improved access to deposited data
- More depositions
- Enriched depositions
 - Diagrams, structure factors
- Community curation



Improve access to deposited data sets

- The CSD and CSD System are ubiquitous in structural chemistry
- Anyone can access individual deposited data sets
- Access to these data sets must be embedded in other resources
 - Priority to remove technical barriers
 - Establish conditions of use consistent with modern age and desires of rights holders
 - By building on existing services that make data freely available to the community

$\mathbf{()}$

Adoption outside small molecule communities

Drug for an 'undruggable' protein

Scientists have long aimed to develop drugs against the cancer-associated protein KRAS, but without success. An approach that targets the oncoprotein's cellular localization reignites lost enthusiasm. SEE LETTER p638

NICOLE M. BAKER & CHANNING J. DER

 $\label{eq:starseq} \begin{array}{l} \text{uman}\,RAS\,\text{genes}\,\text{have two claims to}\\ \text{notoriety.} First, they make up the most \\ \text{in human}\,\text{cancer,}\,\text{having}\,\text{a}\,\text{prevalence}\,\text{ofone in}\\ \text{every}\,\text{three}\,\text{cases}^1,\text{Second,}\,\text{despite}\,\text{more}\,\text{than}\\ \text{three}\,\text{decades}\,\text{of intensive effort, no effective}\\ \text{pharmacological inhibitor of the RAS onco-}\\ \text{protein}\,\text{has}\,\text{reached}\,\text{the clinic}.\,\text{So}\,\text{it}\,\text{is}\,\text{exciting}\\ \text{that},\,\text{on}\,\text{page}\,\text{c38}\,\text{of}\,\text{this}\,\text{issue},\,\text{Zimmermann}\\ et\,al^2\,\text{report}^*\,\text{the identification}\,\text{and}\,\text{characteri-}\\ \text{zation}\,\text{of}\,\text{a}\,\text{small-molecule inhibitor}\,\text{that}\,\text{inter-}\\ \text{feres with}\,\text{the localization}\,\text{of}\,\text{KRAS}\,-\,\text{the}\,\text{RAS}\\ \text{isoform}\,\text{most}\,\text{commonly}\,\text{mutated}\,\text{in}\,\text{human}\\ \text{cancers}\,-\,\text{to}\,\text{th}\,\text{plasma}\,\text{membrane}\,\text{surround}\\ \text{ing}\,\text{cells}^3. \end{array}\right.$

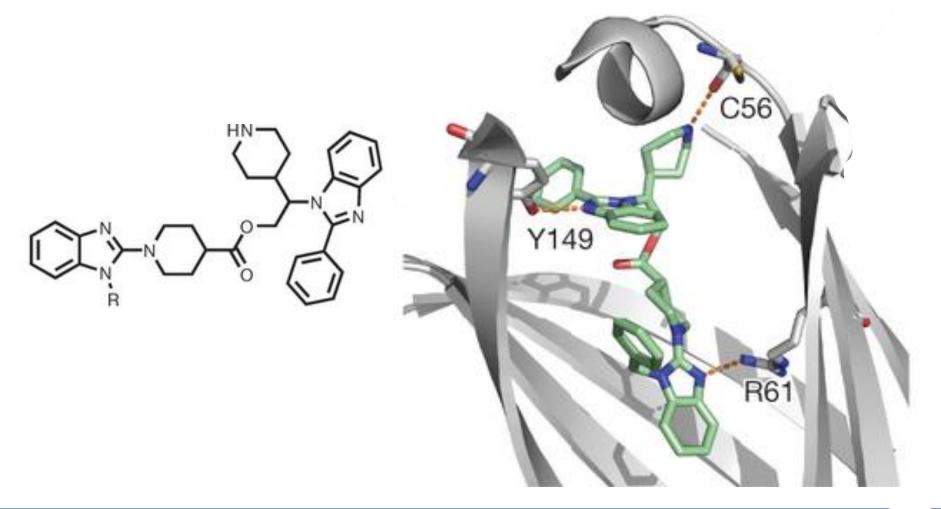
Following their synthesis in the cytoplasm, *This article and the paper under discussion² were published online on 22 May 2013. RAS proteins are initially inactive⁴. They then undergo a series of rapid post-translational modifications that ensure their association with the inner leaflet of the plasma membrane, where these proteins exert their normal, as well as their cancer-associated, signalling activity. Therefore, most efforts aimed at anti-RAS drug discovery have involved indirect approaches to block the activities of proteins that either promote plasma-membrane association of RAS or are components of its downstream signalling pathway.

The key post-translational modification of RAS involves the addition of a 15-carbon farnesyl lipid tail in a reaction catalysed by the farnesyltransferase enzyme. This modification facilitates RAS association with membranes and is essential for proper RAS localization and activity, having prompted intensive efforts in the 1990s to develop

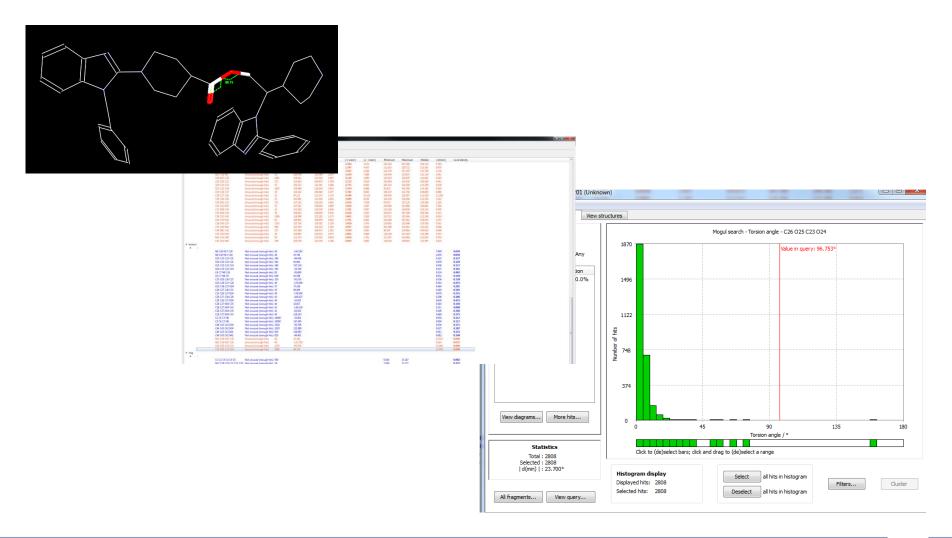
© 2013 Macmillan Publishers Limited. All rights reserved

farnesyltransferase inhibitors (FTIs). Despite promising results in preclinical studies, however, the results of clinical trials with FTIs were disappointing. The inhibitors blocked membrane association of the HRAS isoform, but lacked antitumour activity in cancers involving mutated KRAS (and NRAS). KRAS could still associate with the plasma membrane through an unexpected compensatory activity of the farnesyltransferase-related enzyme geranylgeranyltransferase-1, which modifies RAS with a geranylgeranyl, rather than a farnesyl, group. This discouraging outcome greatly dampened interest in targeting RAS - and, in particular, its membrane association - for cancer treatment. Instead, ongoing efforts have mainly focused on inhibitors of the RAF-MEK-ERK and the PI3K-AKT signalling cascades downstream of RAS.

Zimmermann et al. describe at approach aimed at disrupting KRAS membrane association that warrants reassessment of the current strategies. The authors identify and characterize a small-molecule inhibitor of PDE6, a protein that can bind to and regulate the trafficking of RAS and RAS-related proteins to membrane compartments⁵⁻⁸ (Box 1). Specifically, PDE6 contains a deep, hydrophobic pocket capable of binding the lipit moiety of farnesylated proteins, in particular RAS.


An earlier study⁸ found that suppression of PDEδ levels disrupts RAS association with the plasma membrane and impairs the growth of RAS-mutant cancer cells. This finding

30 MAY 2013 | VOL 497 | NATURE | 577

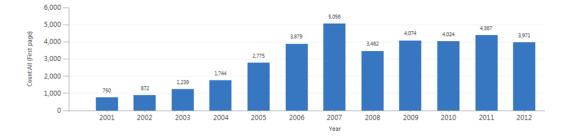


Adoption outside small molecule communities

Adoption outside small molecule communities

Adoption outside small molecule communities

- Structural biology community still struggling with chemistry
- A failure by the small molecule community, including the CCDC to communicate value
 - Some success through collaboration
 - PDB
 - Global Phasing
 - COOT
 - CCP4
- Do current business models contribute to this 'bad science'?
 - The need for academic contributions restricts sharing
 - Lack of clarity of 'permissions'


Current challenges

- Increase 'discoverability' of crystal structure data
 - More links databases, aggregators and publications
 - Improved access to deposited data
- More depositions
- Enriched depositions
 - Diagrams, structure factors
- Community curation

Structure publishing

- Pre 2000 CCDC and IUCr recognised many valuable structures were never published
 - IUCr launched Acta Crystallographica Section E Structure Reports Online
 - 350 (extra?) structures per month

- Recent reduction in structures from Acta E
 - No sign yet that they are going elsewhere
- CCDC will assign DOIs to entries
- CSD to be listed in Thomson Reuters Data Citation Index
- What else should we do to encourage 'publication'

Current challenges

- Increase 'discoverability' of crystal structure data
 - More links databases, aggregators and publications
 - Improved access to deposited data
- More depositions
- Enriched depositions
 - Diagrams, structure factors
- Community curation

Difficulties with non-semantic data

- CSD Editors still extract data from PDFs
 - Some automatic, some manual
- Utterly stupid way of working
 - Semantic data -> non-semantic, obfuscated data -> semantic data
- Heroic efforts to extract data from PDFs
 - Is this the right place to expend effort?
 - All data could be semantic, especially as supplementary

Current challenges

- Increase 'discoverability' of crystal structure data
 - More links databases, aggregators and publications
 - Improved access to deposited data
- More depositions
- Enriched depositions
 - Diagrams, structure factors
- Community curation

$\mathbf{(\mathbf{0})}$

Unanswered Questions

- Time to mandate processed data deposition?
 - Who decides?
- Is free access to individual CIFs enough?
- Should the community continue to fund the CSD at point of use
 - Consumer pays
 - This requires access and sharing restrictions
- Should research councils 'pay'
 - Currently the model for many countries
 - Eases move to Open Data, raises questions of sustainability
 - Desperately confused situation in the UK
- Could the entire crystallography community adopt a single *modus operandi*
 - Only Open Access publishing
 - All (processed) data available (semantic form)
 - APCs for papers
 - APCs for data

Acknowledgements

- Ian Bruno Strategic Relationships Manager
- Suzanna Ward CSD Group Manager
- Matthew Lightfoot Editor in Chief of the CSD
- CCDC staff
- The 253,000 authors of structure containing publications