
CHAPTER 3 

Crystallography 

3.1. Descriptive C~stallogra~~~ 

Quantitative crystallography began with Carangeot’s invention of 
the contact goniometer (1780), an instrument with which the angles 
between the faces of a crystal could be crudely measured. The accu- 
racy of this angular measurement was greatly increased, and extended 
to smaller crystals, by W. H. Wollaston’s construction of an optical 
goniometer (1809). In this instrument light made parallel after passing 
through a slit in the focal plane of a collimating telescope is reflected 
by a crystal face, and focussed by a second telescope, so that the ob- 
server sees an image of the slit. The crystal is mounted in soft wax on 
an axis at right angles to the plane of the light path so that a ‘zone 
axis,’ i.e. the edge direction which is common to two or more crystal 
faces, coincides with the axis of rotation. If the crystal is rotated until 
a second face reflects into the telescope, then the angle of rotation, which 
can be read accurately on a graduated circle, is the angle formed by 
the normals of the two planes. With one setting of the crystal, only 
the normals of one ‘zone,’ which all lie in the plane at right angles to 
the zone axis, can be obtained. In order to measure the other angles 
the crystal has either to be re-set with a different zone axis coinciding 
with the axis of rotation, or a two-circle goniometer has to be used 
where this adjustment can be made without resetting. 

The goniometer led to the discovery of the three fundamental laws 
of descriptive or morphological crystallography: 
(i) Crystals grow naturally with plane faces. 
(ii) Whereas the size of the crystal, the relative sizes of its faces, and 

thence the overall shape or ‘habit’ of a particular kind of crystal 
may vary widely according to the circumstances of its formation, 
the angles between the faces are characteristic for the chemical 
composition. It is true that the same angles occur in all crystals 
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belonging to the so-called cubic system (see below), but apart from 
these crystals, angular measurements may be used to identify each 
kind of crystal. If the same chemical compound occurs in several 
crystalline forms (as in the case of SiOs which forms a- and p- 
Quartz, Cristobalite, Tridymite) these are distinct thermodynami- 
cal phases and the substance is called polymorphic. 

(iii) Taking as axes any three edges of a crystal which do not lie in 
one plane, suitable unit lengths may be determined on these so that 
all observed faces of the crystal have rational positions. By this is 
meant that their intercepts on the three edges, measured each in 
the appropriate unit of length, stand in the ratio of three small 
integral numbers (Law of Rational Positions). . The directions of 
the edges together with their unit lengths are called the crystal axes 
and are given the symbols a, b, c, or al, as, as. A change of scale 
common to the three unit lengths would clearly shift all planes 
parallel to themselves and leave the angles between them unaffected. 
It follows that in descriptive crystallography only the ratio of the 
axial lengths can be determined. It is only in X-ray crystallography 
that the absolute value of these lengths (in cm or in A) makes 
sense. It also follows from the law of rationality that if axes are chosen 
along three other edges occurring on the same crystal then, by a 
suitable transformation of the unit lengths, the rational planes of the 
old axial system are again rational in the new system. The axial 
system is thus not uniquely determined; usually that axial system 
is adopted in which the principal observed faces can be described 
by the lowest integers-but there may be reasons for deviating 
from this. 
Bravais (1850) introduced a dual expression of the Law of Rational 

Positions which can be shown to be mathematically equivalent to the 
previous one and which has the advantage of dealing directly with the 
directions of the face normals as obtained on the goniometer. The 
law is then stated as follows: Take any three non-coplanar directions 
of face normals; to each of these a unit length may be ascribed such 
that the direction of any other observed face normal is obtained by 
geometrical composition (vector addition) of small integer lengths 
along these directions. The axial system in the directions of the three 
chosen normals together with the unit length in each direction forms 
what Bravais called the Polar Axes; we denote them by a*, b*, c* or by 
bl, bs, bs. Again, since we are dealing only with directions, the abso- 
lute scale of the units on the polar axes remains arbitrary. Only in 
X-ray crystallography will the scale obtain a meaning, and, including 



CRYSTALLOGRAPHY 19 

this, the axes are usually called the Reciprocal Axes to those of the 
crystal. 

3.2. Symmetg 

Potters and architects used symmetry and periodicity for creating 
artistic values even in prehistoric times. All the great civilizations of 
the past offer examples of the intricate beauty and the refined com- 
plexity of their application. But essentially these examples are limited 
to two dimensions. Crystallographers extended the notion to three 
dimensions, and it took them the greater part of a century to formu- 
late a correct and complete geometrical theory of symmetry in space. 

By Symmetry of an object we understand the equivalence of di- 
rections within the object. To a chosen direction there exist one or 
more different ones which show the same geometrical relations to 
all other directions defined in relations to the geometry of the object. 
It is therefore not possible to define in general a direction uniquely 
within the geometry of the object. A vase produced on a potter’s 
wheel has ‘cylindrical’ or ‘axial’ symmetry. Except for the axis of 
rotation itself, it is not possible to define a direction uniquely by the 
geometry of the vase; for to any direction making an angle u with 
the axis there exists an infinite number of equivalent directions, 
forming a cone of opening cx around the rotation axis; these are indis- 
tinguishable from one another by their properties with respect to 
the object. The axis of rotation is called a symmetry axis of infinite 
order. 

Take the centre line of the lead in a six-sided pencil. This is a sym- 
metry (or rotation) axis of the sixth order because to every direction 
(except along the axis) there are five equivalent ones, which, neglecting 
the imprint on the pencil, are indistinguishable. 

Or take a match-box (again neglecting the print). The normal 
directions to its faces, taken at the centres of the faces, are two-fold 
axes because after one half full rotation about these directions the 
object is in a ‘covering position’. Besides, there are ‘mirror planes’ 
each of which passes through the mid-points of one of the three sets 
of four parallel edges of the box. Reflection on a mirror plane brings 
the box to a covering position, and reflecting twice across the same 
mirror plane restores the original position. For this reason a mirror 
plane is called a symmetry element of the second order. 

Finally, as an example, consider a cube and an octahedron; the 
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latter is the figure obtained by cutting away the eight corners of the 
cube until the former cube faces are reduced to their mid-points which 
form the corners of the octahedron. Both figures have the same 
symmetry, comprising the following symmetry elements : 

3 fourfold axes (through opposite corners of the octahedron) 
6 twofold axes (through the mid-points of opposite edges of the cube) 
4 threefold axes (through opposite corners of the cube, or normal 

to the faces of the octahedron) 
9 mirror planes (three midway between parallel faces of the cube 

and six through opposite parallel edges of the cube). 

Fig. 3-2 (1). Cube and octahedron with some of their symmetry elements. 

Besides, we may distinguish a centre of inversion at the centre of 
the figure, that is, a.symmetry element of order two which transforms 
any direction into the opposite one without change of length. 

Not all symmetry elements are independent of one another. A four- 
fold axis always contains a twofold parallel one which results from the 
twofold application of the quarter-rotation. Two mirror planes inter- 
secting at right angles always produce a twofold axis along their 
intersection. On the other hand symmetry elements may be incom- 
patible with one another, such as a four-fold and a three-fold axis 
intersecting at right angles. For if this were the case, repeated appli- 
cation of the symmetry operations would show that euery direction of 
space contains axes of both kinds-which is true for isotropy, but not 
compatible with crystallinity. 

* * * 

In the first half of the 19th Century the paramount symmetry problem 
was that of Point Symmetry: to enumerate all possible combinations 
of crystallographic symmetry elements which pass through a common 
point, the origin, and therefore leave this point single. The crystallo- 
graphic symmetry elements were observed to be exclusively 2, 3,4 and 
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&fold axes, mirror planes, and centres of inversion. Fivefold axes, 
common in botany (flower petals) and zoology (starfish) do not occur 
in crystals; nor are there axes of 7th or higher order. 

It was finally shown by Hessel in 1830 that geometrically there 
exist only 32 combinations of crystallographic symmetry elements, 
called the symmetry classes, and examples of substances were found 
for nearly all classes. For assigning a crystal to a class not only the 
geometrical symmetry of its faces is indicative but also the physical 
symmetry of the bulk crystal, namely of its dielectric and optical 
behaviour, its conductivity for electricity and heat, its elastic proper- 
ties etc. The lowest common symmetry of the geometrical and physical 
behaviour is that proper to the crystal, namely that part of the symme- 
try of the physical observations which can not be accounted for by 
the inherent symmetry of the physical process itself. As an illustration 
take the optical property, the refractive index. Since the velocity of 
light is always the same in a direction and its opposite, the optical 
behavior always adds a centre of symmetry, whether the crystal 
possesses it or not. Therefore optical refraction alone does not allow 
distinction between those classes which differ only by the presence or 
absence of a centre of symmetry. 

A cruder, and more easily effected assignment ,of a crystal than to 
one of the 32 symmetry classes is to one of the 7 crystal systems into 
which the classes can be divided according to the axial systems suita- 
ble for expressing their symmetry. There are, for instance, five classes 
which are all referred to a cubic (Cartesian) system of axes, i.e. three 
mutually orthogonal axes of equal length. Similarly, there are three 
classes referred to orthogonal axes of three different lengths, and these 
form the orthorhombic system. The seven systems are the cubic, tetra- 
gonal, orthorhombic, hexagonal, trigonal, monoclinic and triclinic. 
The face development and the optical properties are usually sufficient 
for assigning a crystal to one of the systems. 

The establishment of the 32 classes provided an infallible frame- 
work by which the ever increasing data of observations on minerals 
and on other chemical compounds could be classified. Before the 
end of the nineteenth century, crystallography was mainly the domain 
of the mineralogists, but in the last two decades chemists took an in- 
creasing interest in the crystalline properties of the many new sub- 
stances they isolated or synthesized, both organic and inorganic. 
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3.3. Theories of Crystal Structure 

a. General physical considerations. Even before the laws of descriptive 
crystallography were fully explored, speculations were rife as to the 
peculiar nature of the crystalline state. They were prompted by the 
cleavage properties which were first noted about 1720 by metallurgists 
on the brittle fractures of metals, and then studied on rock salt and 
calcite (Iceland spar) by others. The father of crystallography, the 
Abbe RenC Just Haiiy (1743-1826) concluded that a shape similar 
to the one that could be obtained by splitting must be preformed in 
the inner structure of the crystal. The cleavage planes, be they promi- 
nent in the usual development of the habit of the crystal or not, must 
exist in the crystal like the mortar joints in a brick wall. The crystal 
then is built up of ultimate crystal molecules or particles of the shape 
obtained by cleavage, and in cleaving, the surface common to such 
block-shaped elements of crystal structure is laid bare. If faces other 
than the cleavage faces occur on a naturally grown crystal, Haiiy 
explained them as resulting from a stepwise growth on a sub-micro- 
scopic scale similar to the average inclination of stairs being formed 
by the off-setting of equal bricks. If this off-setting is by whole bricks 
only, in the ratio of step width to height of 1 : 1 or 2 : 1 or 3 : 2, 
etc., it accounts for the rational positions of the observable planes. 
Haiiy did not hesitate to generalize this ‘Theory of Decrescence’ also 
to crystals which show no splitting because it offers such an easy ex- 
planation of the law of rational plane positions. 

According to this view, then, the distinctive property of the crystal- 
line state is its ultimate internal period&y. Haiiy could not decide 
what was the nature of the ultimate particles forming the repeat unit. 
This unit could clearly not be smaller than a molecule, but it could 
well consist of a whole cluster of molecules, that is, a multiple of the 
chemical formula. Hatiy chose therefore for the repeat unit the name 
‘molCcule inttgrante’. This matter was settled by the first actual 
crystal structure determination, but that was not until 1913. 

Meanwhile the assumption of a periodic internal structure of 
crystals came up in a long discussion between the founders of the 
Theory of Elasticity, notably Navier, Cauchy and Poisson, from 1821 
onwards. In this year, Navier presented to the Paris Academy a paper 
(published in 1827) in which one of the pressing problems of the time 
received an answer, namely the establishment of equations governing 
the motion of an elastic deformation in a solid body, for instance the 
deformation of a struck plate or bell. In order to derive these equations, 
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Navier assumed the body to consist of randomly arranged molecules 
which exert central forces on one another. If the body is deformed, 
the distances and forces between the molecules are changed, and 
the change of the latter constitute the stress associated with the defor- 
mation. Objections were voiced against Navier’s method of replacing 
sums of forces from individual molecules in random positions by inte- 
grals. Cauchy, who belonged to the referees of the paper, took up 
the matter in an independent and more formal way by replacing the 
use of a physical model of the solid by the mathematical assumption 
that deformations (strains) and forces (stresses) were proportional to 
one another-a generalization of Hooke’s Law. For an isotropic medi- 
um Cauchy arrived at equations similar to Navier’s, except for the 
fact that they contained two elastic constants (i.e. proportionality 
factors), whereas Navier’s equations contained only one. 

Was this discrepancy a consequence of the different physical as- 
sumptions, or was it introduced only by the approximations that had 
been made, in particular Navier’s replacement of the sum by an inte- 
gral? In order to decide this point, Cauchy adopted Navier’s model 
of molecular force centres and made the model a fully determined one 
by assuming the molecules to lie at the nodal points of a lattice. This 
also enabled him to deal with the case of an anisotropic medium by 
assuming the lattice to be of low symmetry. The result of this second 
paper of Cauchy’s was a system of equations of motion for the com- 
ponents of the deformation in which, for the general triclinic case, 
15 elastic constants appear expressing the relations between the six 
components of strain and stress, respectively. The most general 
proportionality-assumption between two sets of six quantities requires 
6 x 6 coefficients; in the case of central forces (or, more generally 
because of conservation of energy) this number is reduced from 36 
to 2 1 in the triclinic, and to 2 in the isotropic medium. Cauchy obtained 
further 6 relations in the triclinic, and one in the isotropic case, by 
expressing the condition that the undeformed state of the medium 
is without stress. The equations for the isotropic medium are then the 
same as Navier’s. 

The assumption underlying the Cauchy relations seemed incon- 
testible from the physical point of view,-but the reduction in the 
number of independent elastic coeffcients was not borne out by the 
measurements. The application of the experimental results of Wert- 
heim (1848) was not immediate .because of the two substances he 
used, brass is polycrystalline, and glass, with its strong elastic after- 
effects is not a representative of a body fulfilling Hooke’s Law. Not 
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until 1887 was the non-validity of Cauchy’s relations convincingly 
demonstrated by Woldemar Voigt’s measurement of elastic defor- 
mations of anisotropic crystals. Yet, long before the convincing proof, 
it seemed probable that the Cauchy relations did not hold, and this 
opinion discredited the model from which the relations sprang, namely 
that in the natural state of a crystal its molecules are arrayed in a 
three-dimensional lattice. 

Thus it came about that the concept of internal regularity and 
periodicity as a characteristic for crystalline matter, after having 
emerged in a very promising way, lay dormant for more than seventy 
years as a brilliant, but unfortunately not acceptable speculation which 
neither physicists nor crystallographers dared to use seriously. 

Once Laue’s discovery of 1912 had brought the irrefutable proof 
of the crystal’s inner periodicity, it became the most urgent task to 
find where Cauchy’s argument failed that had misled not only him, 
but all the other great mathematicians who had tried to escape his 
conclusion. It was Max Born’s great achievement in 1913 to detect 
the flaw. Cauchy had assumed the molecules, that is, the force centres, 
to form a simple lattice. In this, each molecule is at a centre of sym- 
metry of the entire (unlimited) system, and remains so in the case 
of a homogeneous deformation of the body. The forces exerted on a 
particular molecule by all others therefore balance, whatever the 
deformation may be. Born considered, instead, the more general case 
where each cell contains more than one molecule. A homogeneous 
deformation then consists of a change in the shape of the cell-which 
leads to the observable macroscopic strain-and a rearrangement of 
the molecules inside the cell, an ‘inner displacement’, which is not 
observable, except in some cases such as piezoelectric crystals where 
it leads to a change of the electric moment of each cell. The greater 
freedom gained by the crystal capable of inner displacements elimi- 
nates the interdependence of the elastic constants which is expressed 
in the Cauchy relations.-Only after having thus shown that Cauchy’s 
results should not be applied to crystals of a sufficiently general 
structure was the way open for Born to develop his Dynamik der Kristall- 
gitter (1914), the fundamental book on classical crystal dynamics. 

b. Space Group Theory. The gist of Haiiy’s view was that a crystal 
is a periodic arrangement of equal particles, the ‘molCcules indgran- 
tes’, whatever these may be physically. The observation of symmetry 
puts certain restrictions on the arrangement and leads to the general, 
purely geometrical problem of finding all the types of symmetry that 
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can be obtained by suitably arranging equal particles in space. In 
any such arrangement the particles have to remain equal, i.e. indis- 
tinguishable one from the other by any internal geometrical criterion. 
A medium of this kind has been called by P. Niggli (1919) a Homo- 
geneous Discontinuum; it must, of course, be continued indefinitely 
filling all space, because otherwise the particles on or near to a bounda- 
ry would be differently surrounded from those deep in the medium. 
The concept of a homogeneous discontinuum implies the periodicity 
of the internal structure, and therefore applies only to the crystalline 
state. If the demand of indistinguishability of the particles is restricted 
to average values, periodicity ceases to be required, and the resulting 
‘statistically homogeneous d&continuum’ covers liquids and gases 
which are quite unordered, and fibres, high-polymers, and meso- 
morphic phases* which are partially ordered. 

The problem of finding all symmetry types of homogeneous discon- 
tinua was solved in three steps, attached to the names of A. Bravais 
(1848), I.,. Sohncke (1867), and A. Schoenflies and E. von Fedorov 
(both 1891). C ommon to all of them are the following features: 

(1) Symmetry axes of order 5,7 or higher are geometrically not com- 
patible with a periodic structure; this is in accordance with the laws 
deduced from the morphology of crystals. 

(2) Any periodic arrangement of particles is based on the repetition 
of a ‘ceZE’, i.e. a parallelopipedon containing one or more particles; 
its shape and volume vrt is determined by three edges al, as, as meeting 
in a corner point. The edges are called the translations, because by 
shifting the cell and its contents parallel to itself by integer multiples 
of the edges the entire structure is obtained from an original cell. The 
edges or translations may also be taken as the axial system of vectors 
al, as, as by which to describe the whole array of particles. Ifthe cell 
contain n particles at positions given by vectors xk (k = 1. . . n), these 
form the ‘base’ within the cell. If then xz = lrar + lsas + lsas (li inte- 
gers) denotes the position of the origin of the lth cell (1 standing for 
the three integers li), then the position of the kth particle of the lth 
cell is 

Xlk = xz + XL, 

i.e. the particle is reached from the origin by first finding the vector 
leading to the origin of the lth cell and then adding to it the base vector 
of the kth kind of particle. 

(3) The description of a homogeneous discontinum by means of a 

* These are also known under the name of liquid crystals. 
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particular cell, and its corresponding base and axes, is largely arbitrary 
and therefore void of physical consequence. For instance one of the 
axes, say al, might be doubled; then the cell volume and the number 
of base particles and base vectors would be doubled, but this is merely 
a different description of the same array of particles as before. Usually 
that cell is preferred which offers an easy visualization of the sym- 
metry and is the smallest and therefore contains the least number of 
base particles. 

(i) Brcwis fundamental contribution to structure theory is the 
proof that equal particles can be arranged in 14 types of ‘lattices’ 
differing by symmetry and geometry, such that each particle is trans- 
lationally equivalent to any other. This last condition means that the 
system of particles can be brought to a covering position by a mere 
translation from one particle to any other particle. Or, to put it other- 

Fig. 3-3( 1) a, b, c. The simple, body-centered and face-centered cubic Bravais lattices. 
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wise, if you were suddenly transported from one particle to any other, 
you would find the same view of the surroundings as before without 
turning your head. Fig. 3-3 (1) illustrates a few cells of each of the three 
cubic Bravais lattices on which the correctness of the statement can 
be checked, while also showing that the arrangements are fundamen- 
tally different. (Compare the number of nearest neighbours in the three 
lattices, which are 6, 8, and 12, respectively.) 

(ii) Sohncke saw the geometrical problem in greater generality. The 
condition of translational equivalence presents an unjustified re- 
striction. It implies an external means of orientation, such as a compass 
or an external panorama in order to judge whether, while being 
transported from one particle to another, you have changed your 
direction of view. This extraneous orientation is alien to the definition 
of symmetry as given on pg. 19. Demanding then that the view of the 
system be the same from every particle, but not necessarily a parallel 
one, Sohncke found 65 different spatial arrangements. This answer 
of the problem included the introduction of novel symmetry elements 
in which a rotation about an axis, or the reflection on a mirror plane 
is coupled with a translation of the system along the axis, or in the 
plane of reflection. The first combination gives a ‘screzpI axis’, the second 
a ‘glide mirrorfilane’. The translation contained in such glide symmetry 
elements is unnoticeable in an unbounded system of particles. As an 
example consider Fig. 3-3(Z) h w ere fourfold screw axes are arranged 
in a quadratic array. It is seen that a quarter full rotation of the system 
about one of the axes together with a translation along the axis of one 
quarter the pitch of the screw produces a-’ covering motion of the un- 

Pig. 3-3(2). A tetragonal Sohncke ‘point system’ with left-hand screw axes. 
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bounded system. It is also seen that no particle can be distinguished 
from any other by geometrical means, provided the aspects of the 
system may be compared after a suitable change of orientation. It is 
also easily seen that a similar arrangement might be shown using right- 
handed screws instead of the left-handed ones of the drawing. This 
second arrangement is the mirror image of the one shown, but it 
differs from it, since the two systems cannot be brought to coincidence 
-no more than a right-hand glove and a left-hand glove. 

(iii) Schoenzies, then a lecturer in mathematics in Gottingen, worked 
out 230 Space Groelps, that is, different periodic arrangements of symme- 
try elements in space, and showed that they formed within the con- 
ditions given, a complete system. He considered the problem as one of 
geometrical group theory, a counterpart of the algebraic and the 
abstract Theories of Groups which began to be, in 1880-90, a very 
topical part of mathematics. Given the space pervading frame work 
of rotation and screw axes and of ordinary and glide mirror planes, a 
particle of any shape inserted anywhere will be reproduced by the 
symmetry elements, like the beads in a kaleidoscope, until the system 
of equivalent particles extends throughout space. Any one of the 230 
arrangements, described either by the distribution of symmetry ele- 
ments or by the coordinates of equivalent points, is called a Space 
Group. Sohncke’s arrangements are Space Groups, but they formed 
only part of the complete system. The greater number obtained by 
Schoenflies is the result of abolishing yet another restriction, implicitly 
introduced in Sohncke’s derivation, which contains an extraneous 
criterion not expressible by the geometry of the system itself 

It comes as quite a shock even to many scientifically trained minds 
to realize for the first time that the distinction between right and left 
and thence between a right-hand and a left-hand screw, is not ex- 
pressible by purely geometrical relations. This follows from the fact 
that the change from right to left is produced by reflection on a mirror 
plane, which leaves all distances and angles unchanged. It is entirely 
a matter of convention to define the right-hand side, and every child 
has to be taught by long practise to distinguish it from the left-hand 
side. If we desired to convey to an intelligent being living on Mars 
which side we call right, we would have to appeal to a common obser- 
vation for demonstrating the meaning of ‘right’, for instance by stating 
that for a man standing on the planet so that he can observe Ursa 
minor the sun will rise to his right. Every attempt at a purely geometri- 
cal definition would sooner or later beg the issue. 
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For this reason Schoenflies, in defining the equivalence of the par- 
ticles, admitted that the view from one particle could change to its 
mirror image on transition to another particle. Of course the number 
of particles having a ‘right’ environment is equal to the number of 
those with a ‘left’ environment-otherwise there would be a distinctive 
feature between them. 

Fedorov, the great Russian crystallographer, obtained independent- 
ly and at the same time as Schoenflies the same system of 230 space 
groups. 

* * * 

In spite of the elaborately worked out theory the physical significance 
of these geometrical constructions remained obscure. What was the 
nature of the ‘particle’ inserted in, and multiplied by, the framework 
of symmetry elements ? It could be any type of ‘molecule indgrante’ 
of Hatiy’s. Only conjectures were possible. Following the suggestion 
expressed by Sohncke in 1888, the eminent mineralogist and chemist 
P. Groth stressed the possibility of placing atoms in equivalent positions 
of a space group,-the various kinds of atoms of the crystal occupying 
not necessarily points of the same space group, but the interpenetrating 
space groups to be based on the same cell. Groth points out as a 
consequence of this that the molecular concept, while having a defi- 
nite meaning in an amorphous body, loses this in the crystal since 
arbitrary atoms could be combined equally well to a ‘molecule’. 

With all this, the ideas about the size and contents of the cell re- 
mained rather vague. Also it was not possible to correlate an actual 
crystal with any space group, beyond choosing one of those which 
have the same point-symmetry (or class) as the crystal. Since there 
are 32 classes as against 230 space groups, this left many alternatives 
open. 

The author’s experience in 1911 may illustrate this statement. 
After having carried through in general terms a theory of double 
refraction caused by a simple orthorhombic arrangement of resonators 
he wanted to check it by a numerical calculation based on the axial 
ratio of some actual orthorhombic crystal. So he went to Professor 
Groth asking him what would be the most likely crystal to have its 
molecules arranged according to a simple orthorhombic Bravais lat- 
tice. Groth thought for a minute or two; then his face brightened and 
he said: ‘there is only one crystal I can think of where this is nearly 
certain to be the case. This is Anhydrite. And I will give you the reason : 



30 THE BEGINNINGS 

anhydrite shows excellent, good and fairly good cleavage on the three 
basic planes. I know of no other orthorhombic crystal having this 
property, and it means that it cannot be built according to any of 
the other three orthorhombic Bravais lattices.’ The structure of anhy- 
drite, determined in 1925, was found to be built according to a Bra- 
vais lattice in which one face is centered; there are four molecular 
units in the cell instead of one. 

* * * 

c. Packing Theory of Cptal Structure. A fundamentally different and 
much less systematic approach to crystal structure was made by the 
metallurgists, like Tammann in Gijttingen and the chemists Barlow 
and Pope in Cambridge in the case of very simple compounds. They 
visualized atoms as spheres of a characteristic diameter which are 
closely packed so as to touch one another. The packing of equal 
spheres might be considered in the case of elements, while spheres of 
two sizes are required for the arrangement of the atoms in binary 
compounds such as the alkali halides NaF, NaCl, KC1 etc. This 
theory, while offering by no means a complete geometrical-logical 
system of crystal structure, had certain features of physical reality 
which the other theory lacked. It was known to W. L. Bragg in 1912 
when he discussed the photographs obtained with zincblende, and it 
gave him the clue for explaining why certain spots were missing which 
one would have expected to see on the diagrams. Pope, like others, 
had predicted a simple structure for alkali halides, consisting in the 
case of rock salt, NaCl, of an alternating arrangement of Na and Cl 
along the three cubis axes. On Pope’s suggestion, W. L. Bragg took 
Laue photographs of these crystals and soon confirmed Pope’s con- 
jecture. This was the first full structure determination (published in 
Proc. Roy. Sot. June 1913). Since the wave-length of X-rays was at 
that time not yet known, the result could not have been obtained 
except by an inspired guess; by producing this, Pope’s theory proved 
more fertile than the rival structure theories. 
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