On Minimization Targets and Algorithms

Dale E. Tronrud
Howard Hughes Medical Institute
Institute of Molecular Biology
University of Oregon, USA
http://www.uoxray.uoregon.edu/dale/

Refinement and Rebuilding

- Refinement and model rebuilding cannot be considered separately. Each is useless without the other.
- “Refinement” is a process where continuous changes are made to the model with consideration given to the observations.
- “Rebuilding” requires consideration of the context of each portion of the model with an eye towards making large changes, e.g., rotomer changes, peptide flips, as well as adding and deleting atoms.
- Rebuilding is usually manually controlled, although some protocols, such as arp/warp, are automated.

What is Refinement?

- Refinement is the optimization of a function by changing the parameters of a model.
- What are the parameters?
 - Usually everyone agrees that the parameters are the position, B factor, and occupancy of each atom.
 - In most cases other parameters are added.
 - In some special cases different parameters are chosen.
- What is the function?
 - Maximum likelihood in REFMAC, CNS, BUSTER
 - Least squares in SHELX and TNT
 - Empirical energy in X-PLOR, CNS

What Parameters to Refine?

- What minimization method?
 - Choice depends upon the function and the model.
 - Usually a variety of methods will be used on the same problem.
 - A variety of methods are used; several being used in the same project.
 - Simulated Annealing
 - Conjugate Gradient
 - Preconditioned Conjugate Gradient
 - Sparse Matrix
 - Full Matrix
 - ...
Elaborate Parameterization

- If one holds to the traditional parameterization of position and isotropic B’s
 - High resolution and more precise lower resolution data will be wasted.
- The cost of elaboration is an increase in the total number of parameters.
 - Too many parameters leads to “overfitting” and poor refinement results.
 - Finding the right balance is difficult and will vary from case to case.
- The recent success stories are:
 - Torsion angle simulated annealing at low resolution
 - TLS anisotropic B’s at midrange resolution

Who’s Got What?

- All packages can refine positions and isotropic B’s and atomic occupancies.
- All packages can perform rigid body refinement.
- SHELX, REFMAC, and Restrain have individual anisotropic B’s.
- REFMAC has TLS anisotropic B’s built as a “tree”.
- CNS has a “torsion-angle” parameterization which greatly improves simulated annealing refinement.
- Each program has many options to vary parameterization. Check the documentation for the options available to you.

What Function to Optimize?

Maximum Likelihood

- Is a generalized statistical framework for optimizing models
 - Which means it is somewhat vague.
- The best set of parameters is the one for which the probability is the greatest that the experiment performed would result in the measured values.
- The character of the errors in your model are specifically built into the target function.
- If the errors in the experiment and the model obey certain assumptions Least Squares is the proper Maximum Likelihood method for the problem.
- Generally, the larger the errors the less applicable Least Squares becomes.

Maximum Likelihood (cont.)

- Least Squares assumes that \(\frac{|F_o| - |F_c|}{\sigma_o} \) for all reflections obeys a Normal distribution with a mean of zero and a standard deviation of one.
- Least Squares view of the world:
Difficulties in Maximum Likelihood

- What is the character of the uncorrected errors in the model?
 - Existing programs assume the errors behave like randomly, and Normally distributed displacements of atomic positions and B factors.
 - Buster offers the option of non-uniform distribution of errors
 - It has a two state error model, where one part is treated in the usual way, but another part is identified only by a region of space and an elemental composition.

- How does one estimate the quantity of error in the model?
 - All ML programs use the agreement of the model to the test set to calibrate the error level.

The Least-squares Function

- \(Q_i \) Observed quantity i
- \(\sigma^2_i \) Observed variance of quantity i
- \(\mathbf{p} \) Parameters of a model
- \(Q_i(\mathbf{p}) \) Corresponding quantity inferred from the current model

The best \(\mathbf{p} \) is that which minimizes

\[
f = \sum_i \frac{(Q_i - Q_i(\mathbf{p}))^2}{\sigma^2_i(i)}
\]

Different Classes of Observations

- This equation can easily handle observations of many different classes.

\[
f = \sum_i \frac{1}{\sigma^2_i(i)} (Q_i - Q_i(\mathbf{p}))^2 + \sum_i \frac{1}{\sigma^2_i(i)} (Q_i(\mathbf{p}) - Q_i(\mathbf{p}))^2 + \cdots
\]

- Examples of classes are:
 - Structure factor amplitudes
 - Bond length and angles
 - Torsion angles and planarity
 - Non-bonded contacts
 - Stereochemical B factor correlation
 - MIR Phases
 - Noncrystallographic symmetry

Major Limitation of this Equation

- The equation assumes that the observations are statistically independent. Often this is not the case.
 - Some programs use non-independent stereochemical restraint categories.
 - Many particular stereochemical targets are correlated.
 - The presence of noncrystallographic symmetry creates dependencies between some (many) reflections.

- This limitation also exists in all Maximum Likelihood implementations to date.

Energy Minimization

- The best model with the one with the lowest energy.
- How does one calculate the "energy" of a model?
- How does the diffraction data become "energy"?
- How does one reconcile the instantaneous nature of energy with the time averaged nature of the diffraction data?
- Why bother when a statistically based method has answers to all these questions?

How to Optimize the Function?
Methods of Minimization

- Methods using no function derivatives
 - Simulated Annealing, Monte Carlo, Simplex, Metropolis
- Methods using first derivatives
 - Steepest Descent, Conjugate Gradient
- Methods using first and second derivatives
 - Full matrix, Block diagonal, Diagonal, Preconditioned Conjugate Gradient (I, and Conjugate Gradient II)

Simulated Annealing

- If the function is not quadratic
 - more than one cycle is required to reach the minimum.
 - an initial guess for the parameters is required.
- The second derivative matrix is huge
 - very time consuming to calculate and invert.
- The power of convergence is great.
- The radius of convergence is very poor.
- It absolutely requires an overdetermined problem.

Approximations to Full Matrix

- Sparse Matrix
 - Only large matrix elements are used
- Block Diagonal
 - Assumes the parameters can be categorized
- Preconditioned Conjugate Gradient
 - Assumes all off diagonal elements are zero, but learns the truth from experience
- Gradient / Curvature
 - Assumes all off diagonal elements are zero, and is pig-headed about it.
- Conjugate Gradient
 - Assumes all diagonal elements are equal, but learns from experience
- Steepest Descent
 - Assumes all diagonal elements are equal

The Minimization Continuum

Increasing radius of convergence

Increasing rate of convergence

Increasing CPU time

Increasingly conservative
Who’s Got What?

- Full matrix refinement is available
 - SHELLX, REFMAC, and RESTRAIN.
 - Full matrix programs usually allow for the exclusion of subsets of off-diagonal elements.
 - They will also offer a selection of means to approximate the inverse of the Normal matrix.
- Ignoring all off-diagonal elements leads to the diagonal approximation and preconditioned conjugate gradient.
 - TNT and BUSTER
- Ignoring the diagonal elements leads to steepest descent and conjugate gradient.
 - X-PLOR and CNS

In Conclusion...

- This talk should help you to ask the right questions to find out how one refinement package differs from another.
- One must know the differences between the packages to make a rational decision about which to use in your project.
- One must also know the limitations of their package and what problems to watch for. No package is perfect.