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Abstract

Geometric topology and structural crystallography
concepts are combined to define a new area we call
Structural Crystallographic Topology, which may be of
interest to both crystallographers and mathematicians.

In this paper, we represent crystallographic symmetry
groups by orbifolds and crystal structures by Morse func-
tions. The Morse function uses mildly overlapping Gaus-
sian thermal-motion probability density functions cen-
tered on atomic sites to form a critical net with peak, pass,
pale, and pit critical points joined into a graph by density
gradient-flow separatrices. Critical net crystal structure
drawings can be made with the ORTEP-III graphics pro-
gram.

An orbifold consists of an underlying topological
space with an embedded singular set that represents the
Wyckoff sites of the crystallographic group. An orbifold
for a point group, plane group, or space group is derived
by gluing together equivalent edges or faces of a crystal-
lographic asymmetric unit.

The critical-net-on-orbifold model incorporates the
classical invariant lattice complexes of crystallography
and allows concise quotient-space topological illustra-
tions to be drawn without the repetition that is character-
istic of normal crystal structure drawings.

1. Introduction

For our purpose we will say that crystallography is
the study of atoms in crystals, topology is the study of
distortion-invariant properties of mathematical objects,
and crystallographic topology is an intersection of those

two disciplines. Since both topology and crystallography
have many subdisciplines, there are a number of quite
different intersection regions that can be called crystallo-
graphic topology; but we will confine this discussion to
one well delineated subarea.

The structural crystallography of interest involves the
group theory required to describe symmetric arrangements
of atoms in crystals and a classification of the simplest
arrangements as lattice complexes. The geometric topol-
ogy of interest is the topological properties of crystallo-
graphic groups, represented as orbifolds, and the Morse
theory global analysis of critical points in symmetric
functions. Here we are taking the liberty of calling global
analysis part of topology.

Our basic approach is that of geometric crystallogra-
phers who find the pictorial reasoning of geometric topol-
ogy intriguing. From a mathematical perspective, one can
reformulate the subject using algebraic topology concepts
such as cohomology, which we seldom mention in this
paper.

The International Tables for Crystallography (ITCr),
Volume A: Space-Group Symmetry1 is the chief source
for the crystallographic material in the following discus-
sion. It is our hope that the discipline of “Crystallographic
Topology” will mature in completeness and usefulness to
justify the addition of this subject to the ITCr series at
some future time.

There are a number of crystallographic and topologi-
cal concepts that lead to the following mappings of struc-
tural crystallography onto geometric topology. Only the
first two of the three mapping series are discussed here.

Crystallographic Groups → Spherical and Euclidean Orbi-
folds
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Crystal Structures → Morse Functions → Critical Nets →
Critical Nets on Orbifolds → Lattice Complexes on Criti-
cal Nets on Orbifolds

Crystal Chemistry → Convolution of Chemical Motif
Critical Nets onto Orbifold Singular Sets

1.1 Organization

Sect. 1 provides an overview and illustrates a simple
critical net, orbifold, and critical net on orbifold based on
the sodium chloride crystal structure. Following a review
of relevant orbifold references, Sect. 2 continues to illus-
trate and classify the 32 spherical 2-orbifolds derived from
the crystallographic point groups and shows how spherical
2-orbifolds can be used as construction elements to build
the singular sets of Euclidean 3-orbifolds. Sect. 2 also
illustrates basic topology surfaces, derivation of all 17
Euclidean 2-orbifolds from crystallographic drawings of
the plane groups, and example derivations of Euclidean 3-
orbifolds by lifting base Euclidean 2-orbifolds. Some of
the singular sets of the polar space group orbifolds are
illustrated since polar space groups are the ones of chief
interest to biological crystallographers.

Sect. 3 describes the Morse functions used and shows
additional critical net examples, using ORTEP illustra-
tions, and summarizes their characteristics. Sect. 4 illus-
trates the derivation of critical nets on orbifolds, their
presentation in linearized form, and the derivation of a
symmetry-breaking family of cubic lattice complexes on
orbifolds. The crystallographic lattice complex model as
modified for critical nets on orbifolds is discussed in Sect.
5. Sect. 6 summarizes the current status of crystallo-
graphic topology and the future developments required to
make it a productive subfield of contemporary crystallog-
raphy. The Appendix shows a group/subgroup graph for
the cubic space groups.

A Crystallographic Orbifold Atlas (in preparation)
will eventually provide a full tabulation of those topologi-
cal properties of crystallographic orbifolds that seem po-
tentially useful to crystallographers. We have basic results
covering most of the space groups, but at present we have
not developed an optimal format or adequate graphics
automation for their presentation.

1.2 Critical Nets

Critical nets are based on the concepts of Morse
functions and Morse theory2,3,4,5 (i.e., critical point analy-
sis), which are classic topics in the mathematical topology
and global analysis literature.

Our recently released ORTEP-III computer program6

can produce “critical net” illustrations that depict some
canonical topological characteristics of the ensemble of
overlapping atomic-thermal-motion Gaussian density
functions in a crystal. Only non-degenerate critical points
are considered here since a degenerate critical point can
always be distorted into a set of non-degenerate ones

through small perturbations.7,8 We have so far not found a
true degenerate critical point in a valid crystal structure
and have a working hypothesis that all crystal structures
are Morse functions, which are named after Marston
Morse2 and have no degenerate critical points.

Critical points occur where the first derivative of the
global density is zero. The second derivative at that point
is a 3 × 3 symmetric matrix, which has a non-zero deter-
minant only if the critical point is non-degenerate. The
signs of the three eigenvalues of the second derivative
matrix specify the types of critical points, which we term
peak (-,-,-), pass (+,-,-), pale (+,+,-) and pit (+,+,+). A
degenerate critical point will have a singular second de-
rivative matrix with one or more zero or nearly zero ei-
genvalues.

The critical points are best described as representing
0-, 1-, 2-, and 3-dimensional cells in a topological Morse
function CW complex (i.e., C for closure finite, W for
weak topology). We use a “critical net” representation that
has unique topological “separatrices” joining the critical
point nodes into a graph. We denote the peak, pass, pale,
and pit critical points with the numbers 0, 1, 2, and 3, re-
spectively. The most gradual down-density paths from a
peak to a pit follow the sequence peak → pass → pale →
pit. These paths, shown by the separatrices (i.e.,
“connection links”) in Figs. 1.1 and 1.2, are topologically
unique. This uniqueness arises because: (a) the pass and
pale critical points each have one unique eigenvector con-
necting to the separatrices going to one peak and one pit,
respectively, and (b) there are two-dimensional hyper-
planes connecting to the two remaining eigenvectors of
each pass and pale and these non-parallel hyperplanes
intersect each other locally to form the pass-pale separa-
trices.

We postulate that there are no bifurcated (forked)
separatrices or degenerate critical points in the crystallo-
graphic critical nets of interest here. In experimentally
derived crystallographic macromolecule electron-density
functions, this will not be the case because of critical point
merging caused by inadequate resolution experimental
data and lattice-averaged static disorder. Theoretical
quantum chemistry and high precision x-ray structure re-
sults may also lead to exceptions because of added quan-
tum chemistry topological features.9

1.3 Critical Net for NaCl

Fig. 1.1 is an ORTEP-III critical net illustration for
one octant of the NaCl unit cell contents with the larger
corner spheres representing Cl peaks; the smaller corner
spheres, Na peaks; the cigar-shaped ellipsoids, passes; the
pancake-shaped ellipsoids, pales; and the smallest sphere
in the center, a pit. The reason for this choice of shapes for
the pass and pale saddle points is that in the simplest ex-
amples the passes and pales represent edges and faces,
respectively, for convex polyhedra in special cases such as
NaCl. Non-polyhedral counterexamples are discussed in
Sect. 3.
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Figure 1.1. ORTEP critical net illustration of NaCl.

Fig. 1.2 shows the critical point (0=peak, 1=pass,
etc.) locations in one octant of the unit cell for NaCl. A
sodium ion is on the peak site in the lower right front, and
a chloride ion is on the peak site in the lower right rear.
The vectors in Fig. 1.2 point downhill, in a density sense,
along the topologically unique paths of the critical net.
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Figure 1.2. NaCl critical point network in one
octant of the unit cell (left) and in an

asymmetric unit of the unit cell (right).

NaCl crystals have the internal symmetry of space
group Fm 3m, which is #225 in the ITCr.1 The general po-
sition multiplicity within the unit cell is 192, which is the
largest multiplicity possible in the space groups. Points on
symmetry elements have smaller total unit cell occupancy,
called the Wyckoff site multiplicity. Thus, there are 4 Na
+ 4 Cl peaks, 24 passes, 24 pales, and 8 pits in the unit
cell. The shaded tetrahedron in Fig. 1.2 is an asymmetric
unit (fundamental domain) of the unit cell, which occupies
1/24 of the volume shown and 1/192 of the unit cell vol-
ume.

1.4 Orbifolds

As Walt Kelly’s philosophical comic-strip character
Pogo might have said, “The trouble with symmetry is that
it’s too repetitious.” Orbifolds remove all repetition; thus
all space-group orbifolds will have roughly the same size
and complexity (see Sect. 2.9), a situation that contrasts
sharply with traditional crystallographic geometric draw-
ings of space group symmetry as given in the ITCr.1

A crystallographic orbifold, Q, may be formally de-
fined as the quotient space of a sphere, S, or Euclidean, E,
space modulo a discrete crystallographic symmetry group,
G (i.e., Q=K/G where K=S or E). G is one of the ordinary
32 2-D point groups if K is a 2-sphere, one of the 17 2-D
plane groups if K is 2-Euclidean, or one of the 230 3-D
space groups if K is 3-Euclidean. In the present discus-
sion, we have no need to generalize into dimensions
higher than three or to utilize hyperbolic orbifolds.

Another viewpoint is that an orbifold is a compact
closed quotient space that results when all equivalent
points are overlaid onto one parent point. In contrast to the
orbifold’s closed space, the crystal space is an open (infi-
nite) Euclidean 3-space.

1.5 Orbifold for Space Group Fm 3m

Fig. 1.3-left shows the 3- and 4-fold rotational sym-
metry axes within an octant of the unit cell for Fm 3m, and
Fig. 1.3-right shows the orbifold and its singular set using
the orbifold nomenclature discussed in detail in Sect. 2.
Briefly, the corner Wyckoff site (a), which has orbifold
notation, 4'3'2', lies on 4-, 3-, and 2-fold axes running
along its adjacent edges. All four faces contain mirrors, as
denoted by the primes on the numbers and double lines in
the drawing.
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Figure 1.3. Euclidean 3-orbifold for
space group Fm 3m.

The topological information for the tetrahedral
Euclidean 3-orbifold of NaCl is expressed more economi-
cally in the skeletal drawing shown in Fig. 1.4-left, in
which the viewpoint is directly above an apex of the tetra-
hedron. The mirror locations are indicated by the symbol
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1' with the mirror for the bottom hidden face indicated by
the cornered 1' over the tetrahedron. Every axis marked
with a prime, such as 4', has to have two adjacent mirror
planes and every corner point, such as 2'2'2' (inferred from
the axes’ intersections), has to have three adjacent mirror
planes. Thus, we can interpret the skeletal tetrahedron
details almost as easily as the double line mirror symbol
drawing in Fig. 1.3.

1' 1'

1'

1'

2'2'

2'3' 3'

4'

4'

J

P

J3' 3'
1'

4'

2' 2'

2'

F F

2

2

2

1

NaCl

1'

1'

2'

4'

3' 3'

2'2'

Figure 1.4. Fm 3m orbifold and NaCl
critical-net-on-orbifold representations.

1.6 The Rubber Sheet World of Topology

An artist can exercise artistic liberties to emphasize
desired features in a picture, but a topologist can and does
exercise even more liberties in his rubber sheet world
where any deformation is perfectly acceptable as long as
you do not tear anything.10 When topologists read the old
warning label on computer punched cards, “do not fold,
mutilate, or spindle,” they probably only took the third
item seriously. (The dictionary definition of spindle is to
impale, thrust, or perforate on the spike of a spindle file.)
Fig. 2.5 shows several examples of how a rectangle can be
deformed in space and glued to itself to form a surface. In
that spirit, it is perfectly acceptable to deform the tetrahe-
dron into a sphere, as shown in the middle drawing of Fig.
1.4, and put the 3'3'2' dihedral corner and its attached 3'
and 2' axes in the upper hemisphere. This makes the un-
derlying topological space, a 3-ball, more readily appar-
ent.

The Wyckoff site list for Fm 3m in the ITCr1 tells us
there are two mirrors, three 2' axes, one 3' axis, and one 4'
axis. Yet in Fig. 1.4-middle, it appears these numbers
should be 4, 3, 2, and 1, respectively. So what is going
on? The answer is that a 3-fold axis can do strange and
wondrous things simply because it is an odd-order axis,
the only one in crystallography.

For example, in Fig. 1.3-left a single straight body-
diagonal axis from a to b through c has two nonequivalent
parts, ac and bc, while all even-ordered axis segments
repeat themselves about an intersection of axes. Thus,
what at first appears to be two different axes along the top
edges of the asymmetric unit is in fact a single bent axis.
A 3-fold axis can also bend a mirror around itself without
breaking it. Thus in Fig. 1.4-middle, the three mirror seg-

ments in the upper hemisphere that are in contact with the
3-fold axis are simply different parts of the same mirror.
All orbifold mirrors start and stop only at even ordered
axes.

1.7 Linearized Critical Net for NaCl

By superimposing Fig. 1.2-right onto Fig. 1.3-right,
we obtain a critical-net-on-orbifold representation, which
is one of the main topics of our presentation. Again taking
a few topological liberties, we can deform the whole criti-
cal-net-on-orbifold silvered 3-ball to arrange the peaks,
passes, pales, and pits in sequence vertically down the
page as shown in the right-hand drawing of Fig. 1.4. Thus,
density decreases as you go down the page and we have
literally mapped Euclidean 3-space to Euclidean 1-space,
which is characteristic of Morse theory. This linearized
critical-net-on-orbifold drawing still accurately portrays
the Euclidean 3-orbifold and NaCl critical net information
and is topologically correct. The symbols within the cir-
cles are lattice complex symbols discussed in Sect. 5.

This critical-net-on-orbifold drawing with the lattice
complex information for each critical point site added
provides an excellent summary of the structure’s local and
global topology, particularly if the Wyckoff site multi-
plicities are also recorded on the same drawing as shown
in Sect. 4. The advantage that orbifolds and critical nets
on orbifolds provide is a concise closed-space portrait of
the topology for crystallographic groups and simple crys-
tal structures, respectively.

2. Introduction to Orbifolds

Some elementary textbooks on geometric topology
that we find useful include Barr,10 McCarty,11 Rolfsen,12

and Kinsey13 with Kinsey13 the recommended introductory
text. For more general mathematical topics, we use Ito.14

The V-manifold of Satake15 provided the first formal defi-
nition of what was later renamed orbifold and popularized
widely by William Thurston. This concept was developed
by Thurston into a major geometric topology discipline.
Thurston’s unpublished Princeton class notes of 1978 en-
titled “Three Dimensional Geometry and Topology,”
which is being expanded into a book manuscript of the
same title,16 and an article by Scott17 constitute the main
general references on orbifolds.

The first systematic study of crystallographic orbi-
folds was done by W. D. Dunbar18 in his 1981 Princeton
dissertation, carried out under Thurston, and in which he
derived and illustrated the singular sets for the 65 polar
space groups using oriented orbifolds. The parts of his
dissertation related to the underlying hypersphere space S3

were published in 1988.19 The second major contribution
to crystallographic orbifolds is the systematic develop-
ment of orbifolds (both oriented and nonoriented) in Seif-
ert fibered space in Bonahon and Siebenmann’s unpub-
lished manuscript.20 Part of that manuscript related to
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Euclidean 3-orbifolds, but omitting direct discussion of
crystallography, was published in 1985.21 A book on
“Classical Tesselations and Three-Manifolds” by Mon-
tesinos22 covers and expands certain aspects of Bonahon
and Siebenmann’s work.

A nomenclature system for 2-orbifolds was published
by John H. Conway23 of Princeton. Conway and Thurston
have a nomenclature system24 for noncubic Euclidean 3-
orbifolds based on the lifting of 2-Euclidean orbifolds to
form Seifert fibered spaces.

2.1 Types of Crystallographic Orbifolds

Three types of groups are at the foundation of general
crystallography: point groups, plane groups, and space
groups. Their respective orbifolds are spherical 2-
orbifolds, Euclidean 2-orbifolds, and Euclidean 3-
orbifolds. Sect. 2 is concerned with the first two types,
and how they relate to the third.

Our main application of the spherical 2-orbifolds is
relative to the Wyckoff sites and their symmetries which,
in the case of a space group orbifold, become the compo-
nents of its singular set. The singular set of an orbifold is
the union of all the special Wyckoff sites in an asymmet-
ric unit (fundamental domain) of the space group’s unit
cell. The symmetry of each Wyckoff site is called the
isometry of that site (i.e., the part of the symmetry group
which returns a point on that site to itself). The multiplic-
ity for a Wyckoff site is the number of sites with that spe-
cific isometry within the unit cell and is the ratio of the
isometry of the site to the order of the space group modulo
the unit cell translations. The order of a space group itself
is infinite.

2.2 Orbifolding Mechanics

Point groups are simply discrete symmetries about a
point, limited crystallographically to the 2-, 3-, 4-, and 6-
fold symmetries of cyclic, dihedral, tetrahedral, and octa-
hedral groups. The 2-fold symmetries include mirror
symmetry. Since it impossible to draw things on a point, a
sphere about the point is used instead, and the intersec-
tions of the rotation axes and mirrors with the sphere are
indicated in the point group drawings. There are also three
kinds of mirror-free inversion centers symbolized 1, 4,
and 3, with the latter two having 2- and 3-fold rotation
axis subgroups, respectively.

Orbifold cone points are derived from a rotation axis
that does not lie in a mirror, as illustrated in the top row of
Fig 2.1. Orbifold corner points are derived from rotation
axes that do lie in mirrors, as shown in the bottom half of
Fig. 2.1. Orbifolding is simply the operation of wrapping,
or folding in the case of mirrors, to superimpose all
equivalent points. There are times when the orbifolding
process itself is important since we may need to unfold the
orbifold partially to obtain some other (covering) orbifold
or to unfold it fully to obtain the original space (i.e., the
universal cover). Covering orbifolds are related to the

original orbifold as subgroups are related to groups (see
Appendix). The universal cover25 of all Euclidean n-
orbifolds is Euclidean n-space and that for spherical n-
orbifolds is the n-sphere.

Two topological surfaces, the 2-sphere and the 2-disk,
are of fundamental importance and can be made by gluing
cones or silvered edge disk fragments, respectively. A
sphere may be constructed by gluing the non-silvered
edges of two or more cones together, and a disk by gluing
together the bases of two or more of the silvered edge disk
fragments such as shown in Fig 2.1. We can also cut a
hole out of the interior of a disk (i.e., the part away from
the silvered edge) and glue in a cone base. Often it is ad-
vantageous to simply cut out an entire fundamental do-
main (the asymmetric unit of crystallography) and fold it
up to match all edges (2-D case) or faces (3-D case).
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Figure 2.1. Formation of a cone and a disk
fragment from 4-fold cyclic and 4-fold

dihedral symmetries, respectively.

2.3 Deriving Point Group Orbifolds

There are seven main types of spherical 2-orbifolds,
one for each column in Fig. 2.3, and we derive one orbi-
fold of each type in Fig. 2.2, which has a stereographic
projection of the point group in the top of each box and
the corresponding orbifold in the bottom. We can drop the
leading letters (i.e., S, D, and RP) of the orbifold symbol,
as shown at the bottom of each box, without ambiguity.
Fundamental domains for the point groups are shaded in
Fig. 2.2. The thick solid lines denote mirrors; thin lines
the edges of various regions; solid black diads and
squares, 2- and 4-fold axes, respectively; a diad within an
open square, a 4 inversion axis with the inversion point in
the center of the sphere; and the thick dashed circle, an
antipodal edge that is to be self-glued by a 180° rotation.

The orbifolds that contain a silvered-edge disk
(symbol starts with D) with no cone points are simple to
derive in that all we need to do is cut along the mirrors
bounding the shaded area.

For other orbifolds, it is expedient to simply cut out
the appropriate region of the sphere on which the point
group acts and to glue the matching edges of the region
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together to form a smaller surface. If the surface is a
sphere, the symbol S is used. The gluing is fairly obvious
for S44 where we are just forming a football, but S422
requires some explanation. Since each n-fold cone point
divides the local environment into n parts, we must cut
along great circles through 2-fold axes and along mutually
normal great circles at the 4-fold axes. It does not matter
how we choose the cut lines as long as they enclose a fun-
damental domain. Points along the cut edges leading away
from the axes will be equivalent (by the symmetry of the
axis) and are to be glued together. This creates some con-
venient envelope-type flaps, which we then bring together
to form the 3-pointed pillow orbifold S422.

4

S44 = 44

4mm

D4'4'  = 4'4'

422

S422 = 422

4/m

D41'  = 41'

42m

D22'  = 22'

x
x

o

o

4

RP20 = 20

4/mmm

D4'2'2'  = 4'2'2'

Figure 2.2. Derivation of spherical 2-orbifolds
involving four-fold symmetry operations.

For the left-hand figure of the second row of Fig. 2.2,
we first use the in-page mirror at the equator to bisect the
sphere and form a hemisphere-shaped disk with silvered
edge. We then mate the edges of the shaded 4-fold axis
sector region and flatten the hemisphere to form a silvered
edge disk, D41', with a 4-fold axis cone point.

In the middle figure of the second row, we are look-
ing down a 4 axis which transforms point o → x → o →
x → o with the o’s on the upper hemisphere and the x’s
90° away at the same latitude of the lower hemisphere.
First we cut the sphere in half along the edge of the
shaded area and close up the edges to form a new sphere
with two cone points just as we would do for S22, which
is not shown but which is analogous to S44. This new
sphere has an inversion center that equates diametrically
opposite points which we must now eliminate. We can cut
along any great circle and discard one hemisphere to fac-

tor out this spherical inversion. The new cut edge has an
antipodal relationship with equivalent points 180° apart.
The cone point can be anywhere within or upon the
boundary; but, of course, if it is on the boundary, it ap-
pears twice, 180° apart. In Fig. 2.2 it is shown centered
within the boundary, but this is not a requirement as it was
for D41', which has no antipodal edges. In the descriptive
name RP20 for this orbifold, RP refers to the underlying
surface, a real projective plane; 0 stands for the antipodal
gluing on the disk; and 2 denotes the 2-fold cone point.

For the right-hand figure of the second row, we first
cut the sphere in half vertically through the 2-fold axes
and then cut along the mirrors to obtain the shaded area.
We then have to fold around the vertical 2-fold axis on the
left edge of the cut area to join the two mirror boundary
components into a single continuous mirror boundary.
Only the 2-fold axis of the 4 remains. In algebraic terms,
the 4 of the point group is generated by one of the mirrors
and a 180° rotation that doesn’t intersect the mirror (i.e.,
by the 1' and the 2).

2.4 The 32 Point Group Orbifolds

Our proposed graphical representations illustrating
the spherical 2-orbifolds for the 32 crystallographic point
groups are shown in Fig. 2.3 arranged as 7 columns of
topological families and 7 rows of crystallographic fami-
lies. The columns are further partitioned into 15 group
types designated by the symbols a,b,c for low cyclic; d,e,f
for cyclic; g,h,i,j for dihedral; k,l,m for tetrahedral; and
n,o for octahedral. This classification is patterned after
that used by Bonahon and Siebenmann.20 A tabulation of
other names and notations for the series d-o is given by
Conway.23 Our “low cyclic” set a,b,c is not distinguished
in the classification systems of others, and that row is not
the usual one used in the crystallographic family tree; but
these starter members in their series have special proper-
ties that become apparent when one constructs subgroup
graphs (see Appendix) and crystallographic color
groups.26 We omit the icosahedral rotation groups since
their 5-fold rotation axes are not crystallographic. The
leading letter(s) of the orbifold symbols may be omitted
without ambiguity.

Thick lines and circles in these spherical orbifold
drawings represent silvered topological disks while thin
lines and circles represent the apparent edges of 2-spheres.
Dihedral corners are denoted by diads, triangles, squares,
and hexagons lying in a thick line or circle. Cone points
are denoted by the same symbols in a thin line or circle, or
they are isolated within the drawing. These symbols are
used instead of numbers for consistency with standard
crystallographic symmetry drawings. The thick dashed
circle designates an unmated projective plane edge, which
has an antipodal gluing relationship (i.e. identical points
occur half way around the edge).

An orbifold symbol is listed under each orbifold
drawing with S, D, and RP denoting sphere, disk, and real
projective plane, respectively. Mirrors are denoted by a
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prime attached to a digit with 2', 3', 4', and 6' representing
dihedral corners lying in mirror intersections. Mirrors
without corners are denoted 1'. Cone points are given as 2,
3, 4, and 6.
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Figure 2.3. Spherical 2-orbifolds of the 32
crystallographic point groups.

The bottom symbol under each orbifold is the inter-
national short crystallographic notation for the point group
from which the orbifold is derived, with overbars and m’s
denoting inversion centers and mirrors, respectively, and
with 2, 3, 4, and 6 describing the order of rotation axes.
All crystallographic symbols are based on group genera-
tors in a standardized geometrical setting with respect to
coordinate system basis vectors and thus depend on which
crystallographic family (i.e., row) is involved. In the
Wyckoff site symmetry tables of the ITCr,1 permutation of
the symbol components may be encountered due to the
setting of the point-group coordinate-system basis vectors
relative to the unit-cell basis vectors (e.g., 6 2 m
and 6m2). (The symbol 6 is a historical oddity of crys-
tallographic notation and is algebraically identical to 3/m.)

2.5 Spherical 2-Orbifolds in Euclidean 3-
Orbifold Singular Sets

The tetrahedral Euclidean 3-orbifold for NaCl shown
in Fig. 1.3 is redrawn in Fig. 2.4 to portray how a me-

chanical draftsman might visualize the singular set of the
NaCl orbifold based on the physical shape of the Fm 3m
asymmetric unit in Fig. 1.3 and the topological details
given in Fig. 2.3 for the component spherical 2-orbifolds.

The construction of singular sets (for Euclidean 3-
orbifolds) from spherical 2-orbifolds might be considered
as a game of orbifold space dominoes. You can only posi-
tion a piece next to another piece with the same pattern on
it. The rules of the game say that any two touching ele-
ments have to have a group/subgroup relationship.

Just as a sphere is the set of points at an arbitrarily
small distance from an arbitrary point in 3-space, the 32
spherical 2-orbifolds described previously are models for
the set of points at a small distance from an arbitrary point
in a Euclidean 3-orbifold. There are 31 types of local sin-
gular environments and one type (S1) of nonsingular envi-
ronment.

D1'

D1'

D2'2'

D2'2' D2'2'

D3'3' D3'3'

D3'3'2'

D2'2'2'D4'3'2' D4'3'2'D4'4'

D1'

D1'
= Horizontal D1'

3'3'
3' 3'

3'
3'

3'
3'

4'4'4'4'

2'

2'
2'

2' 2'2'
2'2'

2'

2'
2'

2'

Figure 2.4. Fm 3m orbifold representation.

2.6 Surface Topology

Fig. 2.5 illustrates how rectangles when wrapped up
to superimpose identical edges give rise to five basic
topological surfaces present in the plane group orbifolds.
The other two surfaces needed are the 2-sphere and 2-disk
discussed in Sect. 2.2. The arrows on the edges of the
rectangles indicate directional specific patterns that are to
be superimposed and glued together. The projective plane
and Klein bottle surface constructions are illustrated in
two steps.

For the projective plane, the intermediate stage is a
sphere with a hole in it that has an antipodal relationship
along the gluing edge of the hole. The final step closes up
the hole by puckering two opposite points down while the
two other points 90° from the first pair are puckered up,
forming a pinched end called a crosscap. The intermediate
Klein bottle construction may be represented with an an-
tipodal gluing relation on the single edge of a Möbius
band, indicating that points half way along the single edge
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are to be glued together. The dashed curves on both of
these are related to glides as in Fig. 2.6.

The apparent self-intersection in the projective plane
and Klein bottle is just a limitation of illustration tech-
niques. The rules are that a manifold (or orbifold) can be
embedded in whatever dimension Euclidean space is re-
quired. The projective plane and Klein bottle can be
mapped into 4-dimensional Euclidean space with no self-
intersections. For graphical simplicity, we will always
draw the intermediate stage for these.

Real Projective
Plane

Torus

Annulus

Möbius
Band

Klein Bottle

Figure 2.5. Formation of 5 topological
surfaces from rectangles.

2.7 Plane Group Orbifolds

There are 17 plane groups defining the symmetry in
all patterns that repeat by 2-dimensional lattice transla-
tions in Euclidean 2-space. We will derive the 17 Euclid-
ean 2-orbifolds directly from standard crystallographic
plane group drawings. The graphic conventions of Sect.
2.4 are followed in this section also.

In Fig. 2.6. the heaviest lines indicate where folding
takes place, and the shaded lines are where cutting is
done. After cutting, symmetry equivalent edges are pasted
together to form the Euclidean 2-orbifolds at the bottom
of each box.

The notation under the crystallographic drawing is the
standard plane group name and that under the orbifold
drawing is our notation for the Euclidean 2-orbifold.
“Möbius” denotes a Möbius band with one silvered edge,
and “Annulus” denotes an annulus with two silvered

edges. S2222, S333, etc. are called pillow orbifolds and
have the constraint that for Sijk..., (i-1)/i + (j-1)/j + (k-1)/k
+ ... = 2. Heavy lines and circles indicate mirrors, and a
heavy dashed circle, arising from a glide, signifies a pro-
jective plane antipodal gluing edge. Primed numbers indi-
cate the corresponding rotation axis lies in a mirror form-
ing a dihedral corner, and unprimed numbers indicate
cone points.

   Klein                                    D22'2'                                    RP22                                      D33'

Annulus                                Möbius                                    D22                                        D42'

   pg                                         cmm                                         pgg                                      p3m

→

←

   p2                                          p3                                            p4                                           p6

  S2222                                    S333                                    S442                                      S632

  D2'2'2'2'                                D3'3'3'                                  D4'4'2'                                 D6'3'2'

 pmm                                      p3m1                                      p4mm                                      p6mm

   pm                                         cm                                           pmg                                        p4g

Figure 2.6. Derivation of the plane group
Euclidean 2-orbifolds.

Plane group p1, a torus, is not shown.

The orbifolds in the third row of boxes are derived by
using straight line cuts through 2-fold axes and appropri-
ate angular cuts at other axes to leave some flaps which
are then glued together to produce the 4- and 3-cornered
pillow spherical orbifolds. The orbifolds on row four sim-
ply require cutting along the heaviest lines in the plane
group drawings. The remaining orbifolds (rows one and
two) are derived by cutting along the heaviest lines and
along appropriate angles through the single axis pointed to
by vectors perpendicular to the ends of the heaviest lines,
then closing up the cut edges through the axis to form a
complete silvered boundary.
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The annulus and Möbius band in row one are derived
from plane groups pm and cm by first cutting out an
asymmetric unit bounded by those portions of the mirrors
denoted by heaviest lines and matching the ends together.
The p1 (torus) asymmetric unit requires the whole unit
cell, as is illustrated only in Fig. 2.5.

For the projective plane orbifold, RP22, 1/4 of the
unit cell is required for the asymmetric unit. At first we
choose an asymmetric unit with a 2-fold axis on each cor-
ner and fold up as indicated in Fig 2.5. This places all four
2-fold axes on the dashed circle where the antipodal rela-
tionship holds so that it looks pictorially like the D2'2'2'2'
symbol with the dashed boundary replacing the mirror
boundary. However, we then note that by moving the
asymmetric unit one quarter cell in either the x or y direc-
tion, there are now two 2-fold axes centered on opposite
sides of the asymmetric unit as shown in Fig. 2.6. Folding
about these 2-fold axes positions them in the interior of
the orbifold as shown in the RP22 orbifold figure and
there is still an antipodal relationship along the gluing
edge. Thus, we can push two nonequivalent pairs of
equivalent axes off the boundary to get two nonequivalent
axes in the interior of the projective plane orbifold, or
vice-versa, while still maintaining the antipodal gluing
edge relationship. Only the projective plane has this
amazing “sliding” gluing edge property. The Klein bottle
is related to the projective plane in that they both have an
antipodal gluing edge. However, the antipodal edge of the
Klein bottle is on a Möbius band while that of the projec-
tive plane is on a disk.

2.8 Lifting Plane Group Orbifolds to Space
Group Orbifolds

The ITCr1 lists the projection symmetry plane groups
along three special axes for each space group. Different
crystallographic families have different unique projection
axes. For example a cubic space groups has special pro-
jected symmetries along (001), (111), and (011) while the
orthorhombic special directions are (100), (010), and
(001). Space group nomenclature used by crystallogra-
phers also follows this trend by listing generators for each
unique axis with nontrivial projection symmetry.

Much of the orbifold topology literature (e.g., Bona-
hon and Siebenmann21) uses a Euclidean 2-orbifold as the
base orbifold, which is lifted into a Euclidean 3-orbifold
using the Seifert fibered space approach27 while keeping
track of how the fibers (or stratifications) flow in the lift-
ing process. This works only for the 194 non-cubic space
groups since the body-diagonal 3-fold symmetry axes of
the 36 cubic space group violate the Seifert fibered space
postulates. However, there are some work-around meth-
ods using 3-fold covers that let you derive the cubic
Euclidean 3-orbifolds from their corresponding ortho-
rhombic Euclidean 3-orbifold covers.

Many space groups have underlying space S3 (3-
sphere) and are relatively easy to draw. Fig. 2.7 illustrates
five different fibrations of Euclidean 3-orbifolds over the

2-orbifold D4'4'2', corresponding to space groups I422
(#97), P422 (#89), P4222 (#93), I4122 (#98) and P4122
(#91), which all originate from point group 422. The base
Euclidean 2-orbifold is in the middle of Fig. 2.7 and the
Euclidean 3-orbifolds are in the top halves of the boxes
with singular set drawings in the bottom half. The num-
bers of independent Wyckoff sets (i.e., spherical 2-
orbifolds) are shown in parentheses in the smaller boxes.

P422I422 P4 222

1/4

1/4

4
4 4

(9)  2 
(6)  222

(1)  4 
(5)  2 
(2)  422 
(2)  222

(2)  4 
(7)  2 
(4)  422 
(2)  222

P4 2222I41 1

1/4

1/81/8

(3)  2(4)  2 
(2)  222

p4mm

Figure 2.7. Space group orbifolds from
point group 422 and plane group p4mm.

Note the correspondence between the 3-orbifold
symbol and the singular set drawing. In P422 we are
looking down a trigonal prism fundamental domain with
vertical 4-fold axes along two edges and 2-fold axes along
the seven other edges and there are six trivalent intersec-
tions at the corners. In I4122 the two 4-fold axes become
4-fold screws, one right-handed and one left-handed, Also
note that the twisted pair of 2-fold axes in the orbifold has
the opposite handedness to that indicated by the symmetry
symbol. In P4222 the 42 axes become 2-fold screw axes
with 2-fold axis struts across the 2-screw loops since a 42

axis contains both a 2-fold axis and a 2-fold screw sub-
group. The P4122 singular set diagram is called a link
since there are no connections among the three 2-fold
axes.



10

It may be instructive to check the close correspon-
dence between the symbols in Fig. 2.7 and the ITCr1 space
group symmetry drawings. The fractions over certain
edges in Fig. 2.7 denote distance along the viewing direc-
tion. Thus, a 2-fold screw axis raises or lowers the in-
plane 2-fold axes by 1/4 and a 4-fold screw axis raises or
lowers them by 1/8, depending on the screw handedness.

We do not currently use this lifted 2-orbifold method
since we now prefer to construct orbifolds from the full 3-
dimensional fundamental domain, which provides a pro-
cedure valid for all space groups including the cubics.
However, most of the orbifold literature does use some
variety of the lifted base orbifold convention and the ex-
isting 3-orbifold nomenclature is based on it. The reason
is that the topological classification of 2-manifolds
(surfaces) is classical and well understood, but 3-manifold
classification is still incomplete.

2.9 Orbifolds from Polar Space Groups

There are 65 polar (i.e., orientable) space groups. The
65 orientable Euclidean 3-orbifolds are derived and illus-
trated in Dunbar’s dissertation.18 Of the 20 polar space
groups with cyclic point groups (1, 2, 3, 4, and 6), 12 have
orbifolds with underlying space S2×S1, 1 has underlying
space S1×S1×S1 (torus) and the remaining 7 are Euclidean
3-manifolds with empty singular sets which are flat Rie-
mannian manifolds.28 Of the 45 polar space groups with
other point groups (i.e., 222, 422, 312, 321, 32, 622, 23,
and 432), 4 have orbifolds with underlying spaces RP3, 1
with RP3#RP3 (# denotes a connected sum), 4 with lens
spaces,12 1 with a Euclidean manifold,28 and 35 with S3.

Fig. 2.8  shows the singular sets for all 35 Euclidean
3-orbifolds that have S3 as their underlying topological
space. The ten orbifolds in the bottom two rows have no
vertices in their singular sets and have from one to four
closed loops. The single-loop example in the last column
of the last row is a topological knot and the remaining
nine are links.12 The remaining 25 orbifolds in Fig. 2.8
have either planar graph (first four of the third row) or
knotted graph singular sets. There are 12 cubic orientable
orbifolds (the ten in the top two rows and one each in the
bottom two rows). The first three of the first row are tetra-
hedral orbifolds as the one in Fig. 2.4.

An interesting feature of Fig 2.8 is that all the orbi-
folds have roughly the same complexity, which is inde-
pendent of the parent crystallographic space group fami-
lies. This is true of all 230 crystallographic orbifolds.

3. Introduction to Critical Nets

3.1 Crystallographic Morse Function

Our model for the crystallographic Morse function is
based on concepts familiar to crystallographers who must
deal with crystallographic three-dimensional density func-
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F23
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3

3
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F41 32

211
I432

195
P23
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P3112

91
P4122

3

3

3

Figure 2.8. Singular sets for all 35 Euclidean
3-orbifolds that have S3 as their underlying

topological space.

tions on a frequent basis. The density may be electron
density or nucleus thermal motion density depending on
the type of Bragg diffraction intensities measured for the
crystal structure determination, x-ray or neutron.

In calculated crystallographic density maps, the ther-
mal motion smearing factor most often used for an indi-
vidual atom is the 3-dimensional normal probability den-
sity function, which is also called the Gaussian density
function. The density function for an individual atom may
be either isotropic with spherical equidensity contours or
anisotropic with ellipsoidal equidensity contours, de-
pending on the site symmetry29 for the atom within the
crystal. With neutron diffraction, there is no extra smear-
ing due to the electron orbitals within an atom since neu-
trons are primarily scattered by the point-like nucleus of
an atom and not by the electrons. For x-rays the situation
is reversed and an atomic form factor is required in addi-
tion to the thermal motion density function.
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The Gaussian density function has tails that extend to
infinity; hence if we assume all atoms are positive scatter-
ers and there is no experimental error or data truncation
(i.e., a calculated map without data truncation), the
summed density function within the crystal never goes to
zero. Thus, the tails of the thermal motion density func-
tions for all the atoms in the entire crystal overlap, but the
density between atoms is considerably less than the den-
sity at the atomic sites. This idealized global density func-
tion is the basic model on which we do critical point
analysis. We completely ignore all quantum chemistry
electron orbital effects. A topological interpretation of the
quantum chemistry effects is given in Bader.9

Mildly overlapping Gaussian density functions in a
space group provide a smooth function that is well suited
for Morse theory. The atom centroid (mean or first mo-
ment of the normal probability density function) is to a
first approximation at a mode (extremum) of the density;
thus peak positions correspond with atom positions. Our
working hypothesis is that all valid real stable crystal
structures are Morse functions, which by definition have
no degenerate critical points.

3.2 Morse Theory

The first application of Morse theory to crystal phys-
ics was by van Hove,30 who showed that certain singulari-
ties in lattice dynamics originate from crystallographic
symmetry. Morse theory has a nice qualitative treatment
in El’sgol’c.5 The standard mathematical reference for
Morse theory is Milnor;3 but our application, which in-
volves equivariant (i.e., group orbit compatible) topol-
ogy,31 seems to require the Morse theory treatment by
Goresky and MacPherson.4

Some formal results concerning Morse functions on
orbifolds are starting to appear in the mathematical pre-
print literature (e.g., Lerman and Tolman32), but these are
primarily based on symplectic rather than Euclidean ge-
ometry (cf., Kirwan33). In our case we know the Euclidean
space analogues of our Morse functions on orbifolds are
well behaved so we can always unfold back to Euclidean
3-space for detailed analysis when necessary.

3.3 D-Symbol Tiling Alternative

A technique related to our Morse function critical net
approach is the Delaney-Dress D-symbols method used by
Dress, Huson, and Molnár34 and Molnár.35 That method
uses topological space tiling, which is currently more
automated but perhaps less general in its crystallographic
applicability than ours. The space tiles are based on four
types of special positions interpretable as vertices, edges,
faces, and centers of polyhedra. The method produces a
decomposition of each polyhedron into component sim-
plex tetrahedra. The critical net and the D-symbol ap-
proaches lead to identical results in seven of the nine
families where their method applies.

Their “special rhombohedral”34 tiling example, which
is not a Morse function, is actually body-centered cubic
based on vertex (atom) positions as illustrated later in Fig.
3.4 and Fig. 4.2. Their “covered rhombohedron”34 is not a
Morse function either since there are not enough pales to
fill all the faces. As mentioned previously, our working
hypothesis is that all real crystal structures are Morse
functions (i.e., they have no degenerate critical points).
Degenerate critical points suggest structural instability,
which should be present only during dynamic processes
such as phase transitions.

The D-symbol computational method was also used
to derive orbifold singular set components and their graph
connectivity but not the full space group orbifolds.36 The
combinatorial graph connectivity distinguishes 175 of the
219 affine space group types. The remainder of the 219
may be distinguished using abelian invariants.

3.4 Chemical Faces and Cages

The following chemically-oriented nomenclature al-
lows structural chemistry intuition to be used more easily
in interpretation of critical net drawings. First, we note
that peaks always represent atoms and passes sometimes,
but not always, represent chemical bonds. We define a
“chemical face” in a critical net as a (generally nonplanar)
disk containing one pale bounded by a graph circuit con-
taining alternating peak and pass nodes with edges along
their interconnecting separatrices. A “chemical cage” is
defined as a configuration of chemical faces that encloses
one pit. A chemical cage is a convex polyhedron only in
the simplest cases such as the primitive cubic critical net.

A detailed list of our observed critical net properties
is given in Sect. 3.10, but in general, the universal geo-
metric pattern in critical nets is: (a) the three or more
passes attached to a pale will be approximately coplanar
with the pale, and the approximately plane-normal criti-
cal-net connection at the pale will go to two pits, one on
each side; and (b) the three or more pales attached to a
pass will be approximately coplanar with the pass, and the
approximately plane-normal critical-net connection at the
pass will go to two peaks, one on each side. It is advisable
to forgo all the distance and angle metric local detail so
characteristic of structural crystallography while doing
crystallographic topology.

3.5 Diamond Critical Net

Fig. 3.1 is a drawing of one chemical cage and the
neighboring pits for the diamond structure (space group
Fd 3m). It has non-planar chemical faces and thus the dia-
mond chemical cage is not a convex polyhedron. In dia-
mond, there is one unique tetrahedral chemical cage with
chair-shaped chemical faces.
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Figure 3.1. Critical net illustration of diamond.

3.6 Graphite Critical Net

The peak, pass, pale, and pit critical points for the
P63/mmc graphite structure, illustrated in Fig. 3.2, are at
Wyckoff sites b+c, a+h, d+g, and f (with z = -.03), re-
spectively. Two symmetry equivalent chemical cages are
shown in the graphite illustration to clarify the packing
arrangement. If one is conditioned by training to always
look for convex polyhedra with atoms at the vertices, the
single unique tetrahedral chemical cage with one planar
and three chair-shaped chemical faces might mistakenly
be interpreted as a hexagonal prism polyhedron with three
of the vertex atoms pinched together at one end of the
prism. The disturbing feature of the prism interpretation is
the existence of a pseudo face of zero area in the pinched
end of the prism. We call this the “graphite paradox.” All
the graphite chemical bonding is in the flat six-membered
chemical face of the tetrahedron.

Figure 3.2. Critical net illustration of graphite.

3.7 Hexagonal Diamond Critical Net

In addition to the cubic diamond and hexagonal
graphite structures shown above, there is a third simple
carbon structure called hexagonal diamond,37 which has
the same space group as graphite (P63/mmc). Its critical
net is illustrated in Fig. 3.3. This structure is not widely
known since the material is hard to find in natural sources
and is difficult to synthesize. It has both boat- and chair-
shaped six-membered rings and two different chemical
cages. The graphite and hexagonal diamond critical nets
may seem quite different, but they are topologically re-
lated through duality as shown in Sect. 5. and Fig. 5.4.

Figure 3.3. Critical net illustration
of hexagonal diamond.

3.8 Body-Centered Cubic (BCC) Critical Net

Using the bcc structure of space group Im 3m as a
template, binary compounds can also be fitted into the
same basic structure. For example, the Fd 3m space group
can accommodate two different atoms on the two 43m
sites as illustrated in Fig. 3.4, which shows five chemical
cages. The lattice complex splitting equation I2=D+D"
given in Sect. 5.3 tells us that two equal atoms on
Wyckoff sites a and b of Fd 3m are equivalent to one atom
on site a of Im 3m when the unit cell parameters of the
former are double those of the latter. This bcc derivative is
our Morse function alternative to the special rhombohe-
dron tiling of Dress, Huson and Molnár.34

Bcc is the ultimate example of warped chemical
faces. There are four puckered chemical faces, each con-
taining four peaks and four bonds in a chemical cage. The
pales in the four faces have a square planar arrangement
about the pit while the 6 peaks are octahedral about the pit
because of the vertex sharing arrangement.
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Figure 3.4. Critical net illustration
of body-centered cubic derivative.

3.9  Basic Beryllium Acetate Critical Net

The cubic organometallic compound basic beryllium
acetate [Be4O(CH3CO2)6, Fd 3, a=15.744 Å, Z=8] has eight
atoms in the asymmetric unit and orientationally disor-
dered methyl groups.38 A molecular compound such as
this can display a rather complex critical net that is diffi-
cult to solve using simple trial and error methods and the
disorder increases the complexity. Fig. 3.5 illustrates a
key portion of the network which has a pit on a 3 center
connecting six pales centered within hexagonal rings of
two neighboring molecules. The opposite sides of the
pales connect to symmetry equivalent 3 centers. The oxy-
gen atom spheres in Fig. 3.5 are slightly larger than those
for other atoms, and the beryllium atom spheres have a
shaded octant, For graphics clarity, hydrogen atoms have
been omitted from the methyl groups, and only half of
each molecule is shown.

Figure 3.5. Part of critical net
for basic beryllium acetate.

3.10 Critical Net Characteristics

Below are some definitive characteristics that are
useful for finding and analyzing critical nets for very sim-
ple structures. For more complex structures, critical point
positions and the canonical paths joining them can be de-
termined numerically from calculated global Gaussian
thermal motion density maps based only on given atomic
(i.e., peak) positions. The author’s ORCRIT program for
protein electron density map interpretation,39 originally
written in 1977, could be modified for that purpose. High
precision experimental electron density maps from x-ray
data and charge density maps calculated by ab initio
quantum chemistry programs are more complicated than
those considered here because of the possible addition of
new critical points caused by bonding electrons etc.

• Peaks are at atom positions.
• Pits are as far from all adjacent peaks as possible, but

there is always an ancillary steepest gradient path
leading directly from the peak to each adjacent pit.

• A pass lies between two adjacent peaks.
• A pale lies between two adjacent pits.
• A pale lies on or close to the plane perpendicular to

each adjacent pass’ unique axis (i.e., the symmetric
cross section of the cigar-shaped pass).

• A pass lies on or close to the plane perpendicular to
each adjacent pale’s unique axis (i.e., the plane of the
pancake-shaped pale).

• Each fixed point Wyckoff position of the space group
must contain a critical point of the crystal structure.

• Wyckoff positions with the cubic site symmetries for
tetrahedral (23, m 3 and 43m) and octahedral (432
and m 3m) point groups can only accommodate peaks
or pits, not passes nor pales, because of their body-
diagonal 3-fold axes. All of the other 32 - 5 = 27 pos-
sible point group site symmetries in a space group can
accommodate any of the four critical points.

• The critical net is composed of interconnected
“twisted Hs” with pairs of peaks and pits at the ends
of the two inclined non-parallel uprights and a pass
and a pale at the ends of the horizontal connector,
which is the shortest vector between the two non-
parallel uprights.

• The twisted-H torsion angle about the pass-pale vec-
tor ranges from about 45° (e.g., bcc) to 90° (e.g., sim-
ple cubic).

• Critical nets always maintain a peak-pass-pale-pit vs.
pit-pale-pass-peak duality, that is the naming of the
critical point sites can be reversed to produce a new
valid Morse function. For example, the body-centered
cubic structure with unit cell critical point counts of 2
peaks, 8 passes, 12 pales, and 6 pits, represented sim-
ply as (2,8,12,6) and which is the lattice complex “I”,
forms an “inverted” dual structure (6,12,8,2), lattice
complex “J*”, if atoms are removed from the bcc
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peak sites and new atoms positioned at the bcc pit
sites.

• The number of peaks, passes, pales, and pits in a unit
cell (i.e., in a 3-torus S1×S1×S1) obeys the Euler-
Poincare relationship for Euclidean space, i.e., peaks -
passes + pales - pits = 0, and the following Morse
inequalities:

 pits ≥ 1
 peaks ≥ 1
 pales - pits ≥ 2
 passes - peaks ≥ 2
 passes - pales + pits ≥ 1
 pales - passes + peaks ≥ 1

• The inequalities are too weak to be of much value in
practice; thus, there is a definite need for much
stronger inequalities that incorporate space group
specific invariants based on equivariant topology and
can be applied to the wrapped-up asymmetric unit
(i.e., orbifold) rather than the wrapped-up unit cell
(i.e., 3-torus cover).

• The total number of critical points of a given type
belonging to an asymmetric unit (fundamental do-
main) of a crystallographic unit cell can be calculated
by dividing the sum of Wyckoff site multiplicities for
all sites occupied by critical points of that type by the
Wyckoff site multiplicity for the general position site.
For simple high symmetry structures, this number is
often less than one.

• Since the Betti numbers for the 3-torus are 1,3,3,1,
the minimum number of critical points possible in a
crystallographic unit cell is 8, (i.e., 1,3,3,1 in P 1 with
critical points on the 8 inversion centers). Betti num-
bers are topological invariants used in the derivation
of the Morse inequalities.2,3,5

• The inequalities are still of little practical value; thus,
there is a definite need for much stronger inequalities
that incorporate space group specific invariants based
on equivariant topology and can be applied to the
wrapped-up asymmetric unit (i.e., orbifold) rather
than the wrapped-up unit cell (i.e., 3-torus).

4. Critical Nets on Orbifolds

In Sect 3. we saw that critical net drawings can be-
come rather complex even for very simple examples such
as the body-centered cubic (bcc) structure. In the present
section, we introduce critical nets on orbifolds, which re-
duce both the graphical and interpretation complexity as-
sociated with critical nets while including valuable space
group topology information as well.

4.1 Body-Centered Cubic Orbifold

The orbifold for Im 3m, the parent space group for bcc
structures, is derived from the fundamental domain shown
in the lower left of Fig. 4.1. The space group coordinates
for the vertices of the fundamental domain are given in

parentheses as fractions of the unit cell lengths. The ar-
rows denote the down density critical net paths leading
from the peak at (a) to the pit at (b). Wyckoff identifica-
tion letters (a-k) are shown on the asymmetric unit draw-
ing, and the ITCr1 information on most of those Wyckoff
sites is listed in the columns labeled “Wyckoff Set” in the
middle of the figure. The tetrahedral fundamental domain
has three sides bounded with the top (k) and bottom (j)
mirrors with (k) bridged over the 3-fold axis as described
in Sect. 1.6, but the fourth side is open (unbounded) with a
2-fold axis (i) extending from one corner of the open end
(c) to the center (d) of the opposite face, which contains
another 2-fold axis (g).
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Figure 4.1. Construction of Im 3m orbifold
from asymmetric unit and superimposition

of body-centered cubic lattice complex
to form linear critical graph.

Visualize the tetrahedral asymmetric unit as a single-
pole pup tent, covered by a silvered rubber reflective
sheet, with a support pole (i) in the entrance. A horizontal
“threshold” pole (g) with a hinge in the middle (d) lies
across the front of the tent floor with the hinge attached to
the bottom of the support pole. To close the tent, we grab
the two corners of the rubber sheets (j and k) at the two
ends (b) and (b') of the hinged threshold pole (g) and bring
them together stretching the extensible and flexible tent
floor poles (e) and (h) in the process. We then zipper the
edges of the sheet (k) together to form the bounded orbi-
fold shown in the lower right drawing of Fig. 4.1.

The underlying topological space of this 3-orbifold is
a 3-ball. Using the notation in Fig. 2.3, the orbifold has
two singular points of type j, 4'3'2' at (a) and 4'2'2' at (b),
and two singular points of type i, 23' at (c) and 22' at (d).
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4.2 Linearized Critical Nets on Orbifolds

Critical nets are actually Morse functions that are
defined in terms of a mathematical mapping from Euclid-
ean 3-space to Euclidean 1-space (i.e., a single valued 3-
dimensional function). Taking this requirement literally,
we deform the orbifold so that the Euclidean 1-space of
density is vertical in the page (i.e., peak height > pass
height > pale height > pit height). This adds a welcome
constraint to the drawing of orbifolds that in general have
no inherent topological constraints to guide the illustrator.
The topologist would probably tend to draw it as a solid
sphere, but we are not violating any topological principles
in forming the linearized critical net on orbifold (i.e., lin-
ear critical graph) shown at the top of Fig. 4.1.

The multiplicity for each Wyckoff site is given as a
column in the table and the preceding column shows the
integer ratios of the multiplicities in adjacent rows, which
are by design the adjacent elements in the critical net
graph. These ratios tell us the coordination numbers of
critical net components around other critical net compo-
nents, thus summarizing much of the structural topology
information you would obtain by examining ORTEP-III
critical net stereo drawings or calculating and evaluating
long tables of intercomponent distances and angles. Note
the abbreviated orbifold critical set notation in the linear
critical graph of Fig. 4.1 where 3'3' becomes 3', and sta-
tionary points such as 4'3'2' are denoted by the labels on
the lines intersecting at that point.

4.3 Resolution of the Critical Net Versus Tiling
Discrepancy

The coordination numbers also provide a method for
applying topological constraints in that there must be ex-
actly two peaks around a pass and two pits around a pale.
This particular combinatorial constraint holds for the til-
ing approach of Dress, Huson, and Molnár34 as well as for
our critical net Morse function approach. Fig. 4.2 shows
two solutions satisfying that constraint based on the orbi-
fold topology for space group Fd 3m with atoms (i.e., til-
ing vertices in the Dress approach, peaks in the critical net
approach) on the two 43m sites of Fd 3m. Fig. 4.2 com-
pares the two configurations assuming both are linearized
critical nets on the Fd 3m orbifold. The columns of num-
bers are sums of Wyckoff set multiplicities for each level
of the critical net and integer ratios of neighboring rows.
Only the connections between adjacent levels are
summed. An ORTEP drawing of the configuration labeled
bcc derivative is shown in Fig. 3.4. A similar drawing
cannot be made for the special rhombohedral tiling given
by the second configuration since the two pales are far
from collinear with the pit.

What’s going on here? First, we note that the left con-
figuration has seven nodes while the right has only six,
but the six in common are on the same Wyckoff sites and
point positions. We then note that on the orbifold drawing,

in the lower right of the figure, the h2 axis lies directly
between the (e) and (f) sites. Since a separatrix line can
never traverse more than one isometry zone (i.e. Wyckoff
site zone), there has to be another critical point at point
(h). According to the special rhombohedral indexing, this
point would have to be a degenerate critical point with a
cubic (triple point) algebraic dependence rather than quad-
ratic along the (e) to (f) vector since the density is heading
downhill along that vector. We can always decompose a
degenerate critical point into several nondegenerate criti-
cal points, but then we would be in trouble satisfying the
Euler-Poincare relationship described in Sect. 3.10. The
obviously related (c) and (d) Wyckoff sites must be as-
signed to the same Morse function levels, which then pro-
duces the correct configuration shown in the left-hand
drawing.

 In other situations, missed critical points may make
one of the critical points found appear to be degenerate. In
our experience to date, a critical net that is not a Morse
function has always been traceable to misindexing caused
by the omission of valid critical points. Once the peak
positions have been assigned by positioning atoms and
assigning their Gaussian thermal motion parameters, the
rest of the critical net is fixed; it is just a case of deter-
mining what it is. In the simple structures we are discuss-
ing in this treatment, the thermal motion probability den-
sity is either constrained by symmetry to be isotropic or
assumed to be isotropic and in any case has little effect on
critical net details. Thus we omit smearing functions from
the discussion other than to say they are isotropic, Gaus-
sian, and mildly overlapping.
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5. Lattice Complexes on Critical Nets on
Orbifolds

Critical nets on orbifolds, as presented in Sect. 4,
provide a wealth of local topology information about the
parent space group and simple structures on that space
group. The global topology information is also there, en-
coded in the macrodetails of the combined critical net
graph and orbifold, but sometimes we need a more spe-
cific summary of the global picture. A simple example
concerns the difference between face centered cubic (fcc)
and hexagonal closest packing (hcp) which have identical
substructures as indicated by the coordination vector as
shown in Figs. 5.2 and 5.4. Lattice complexes are con-
venient for the next step up past the coordination vector.
In fact, the fcc and hcp configurations have their own lat-
tice complex symbols F and E, respectively.

5.1 Lattice Complex Background

Lattice complexes have a 77 year history in crystal-
lography. We find much of the literature on lattice com-
plexes more complex than we need for our application,
but there is a well written paper40 that describes the basics
we use. Once those basics are understood, certain key
tabulations in Fischer, Burzlaff, Hellner, and Donnay;41

Koch;42 and Fischer and Koch43 become useful. The defi-
nition given in the most recent reference43 is that a lattice
complex is the set of all point configurations that may be
generated within one type of Wyckoff set. Hellner’s defi-
nition40 is that a lattice complex is an arrangement of
equivalent points (or equipoints) that are related by space
group symmetry operations, including lattice translations.
Example applications of lattice complexes are given by
Hellner, Koch, and Reinhardt.44

Lattice complexes are configurations of points that
recur at least once but usually repeatedly throughout the
family of all space groups. For example, the body-
centered lattice complex, which is given the symbol “I”,
has symmetry equivalent points at 0,0,0 and 1/2,1/2,1/2
within the unit cell. This occurs in 38 space groups with
orthorhombic or higher symmetry.

The “characteristic space-group type” of a lattice
complex is defined as the highest symmetry space group
that can generate the lattice complex. All other space
groups with the same lattice complex are subgroups of
that characteristic space group, but not all the subgroups
contain the lattice complex (i.e., being a subgroup is a
necessary but not sufficient condition). For lattice com-
plex I, the characteristic space-group type is Im 3m; and
the “characteristic space-group site” is m 3m at Wyckoff
position a in space group Im 3m, which is a fixed point
with zero degrees of freedom.

5.2 Invariant Lattice Complexes and Limiting
Complexes

Any lattice complex that has its characteristic space-
group site on a fixed point is called an invariant lattice
complex. Those with one degree of freedom are called
univariant lattice complexes, etc. There are 25 invariant
lattice complexes. Listed in order of the number of points
[n] per cell in a lattice complex, they are: [1] P; [2] C, E,
G, I; [3] J, N, +Q, R; [4] vD, F, +Y; [6] J*, W; [8] D, vT,
+Y*; [9] M; [12] S, +V, W*; [16] T, Y**; [24] S*, V*.
The lattice complex W* for example is called a twelve
pointer. Those equivalent to Bravais lattices are P, C, I, R,
and F.

Assigning all Wyckoff positions of all space groups
to lattice complexes produces a total of 402 lattice com-
plexes, which are tabulated in Fischer, Burzlaff, Hellner,
and Donnay41 and Fischer and Koch.43 Our main interest is
point configurations resulting from limiting lattice com-
plexes rather than the general lattice complexes as such. A
lattice complex such as the invariant “I” can be a subset of
a univariant (or divariant) lattice complex. For example,
the univariant Wyckoff position 16(c) of space group
I 43d (#220) produces “I” when the variable x in x,x,x
(i.e., on the body diagonal 3-fold axis) is set to zero, but it
also has a Y** site at x = 1/8.

These subset special positions are not identified in the
lattice complex tables,43 and it necessary to consult tabu-
lations such as Koch42 to find them. Unfortunately, only
the cubic space groups have been analyzed in this manner.
See Koch and Fischer45 for additional details about this
subject called the limiting complexes of lattice complexes.
The tabulation of cubic point configurations by Koch42

lists the locations of all point positions with fewer than
three degrees of freedom related to sphere packing and
Dirichlet partitions within the cubic space group family as
well. We use the Koch tabulation to identify those lattice
complexes of the critical net that are invariant.

5.3 Lattice Complex Splitting Equations

The lattice complexes used in Figs. 5.1, 5.2, 5.3, and
5.4 are P, I, F, T, D, J*, W*, E, and N denoting primitive,
body-centered, face-centered, tetrahedral, diamond, jack-
shaped (from the “pick up jacks” children’s game), non-
intersecting (German: windschief), hexagonal (Italian:
esagonale), and net, respectively. Symbols with a 2 sub-
script (e.g., P2) indicate doubling in all three directions to
give 8 times as many points. Similarly, Pc indicates a dou-
bling along the c-axis of the unit cell. A superscript num-
ber denotes the degree of positional freedom at that site.

The lattice-complex splitting equations40,41 for the
cubic lattice complexes interrelate the lattice complexes.
These include I=P+P", P2=F+F", P2=I+J*, J*=J+J^,
W*=W+W^, F=P+J, D=F+F', D"=F"+F"', and I2=D+D"
with ', ", and "' denoting translations along a body diago-
nal by (1/4,1/4,1/4), (1/2,1/2,1/2), and (3/4,3/4,3/4), re-
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spectively, and ^ denoting translation along a cell edge
such as (1/2,0,0). In our analysis of critical nets, these
equations relate a lattice complex in one net to a path be-
tween two lattice complexes in a net at a lower level. In
Fig. 5.1, for example, the P2 lattice complex in Im 3m is
related to the two F lattice complexes in Pn 3m and the 3-
fold path between them by P2=F+F". In general, equations
with " correspond to paths along 3-fold axes and those
with ^ to paths along even-order axes.

5.4 BCC Symmetry Breaking Family

In order to point out some additional properties about
orbifolds and critical nets on orbifolds, we examine a se-
ries of related cubic space group orbifolds that accommo-
date the body-centered cubic critical net. The series of
cubic space group orbifolds that are related by group/
subgroup relationships starting with Im 3m is shown in the
linearized critical nets of Fig. 5.1, which includes the ce-
sium chloride and body-centered cubic critical net crystal
structure types.
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Figure 5.1. Body-centered cubic and CsCl
critical nets superimposed onto

cubic space group orbifolds.

Notes on orbifold Figs. 5.1, 5.2, and 5.3:

• A straight arrow between graphs points toward a
normal subgroup, a straight arrow within a graph
points toward a site of “lower density”, an arrow be-
tween adjacent levels within a graph indicates a criti-
cal net Morse function separatrix, and an arrow be-
tween nonadjacent levels within a graph indicates a
symmetry axis of the space group orbifold that is not
embedded into the critical net Morse function.

• A number greater than 1 labeling a line of a graph
indicates a 2-, 3-, 4-, or 6-fold crystallographic rota-
tion axis while 1 indicates a path within a general po-
sition zone.

• A primed number indicates the path lies in a mirror.
• A thick circle indicates a projective plane suspension

point arising from an inversion point not in a mirror
(i.e., types b and e of Fig. 2.3).

• For a group/subgroup pair, each axis within the parent
graph is either split into two identical axes or reduced
in group order by one half (e.g., 4' → 4' + 4', 4' → 4,
or 4' → 2') in the subgroup graph.

• A superscript number on a lattice complex symbol
denotes the degree of positional freedom at that site.

• Mult, the sum of Wyckoff multiplicities for a row of
elements in a graph, is the same for all groups in the
illustration except Fd 3c (#228), which has 8 times
that number because of its multiple cell (e.g., I → I2)
lattice complexes.

• Integer ratios of adjacent multiplicities provide the
coordination vector.

• The odd-order 3-fold axis in an orbifold is the only
operator that can:
• Continue through a 332 or 3'3'2' junction
• Bridge a mirror over itself without breaking the

mirror if it is 3'3'
• Permit a 2-fold axis to continue through a 322 or

3'2'2' junction
In other words, separate edges of a graph can repre-
sent different segments of the same Wyckoff site if a
3-fold axis is present.

Notes specific to Fig. 5.1:

• By adding the shortest peak-to-pit path (4' for #229)
to the graph, we also obtain the number of peaks
around pits (2) and pits around peaks (6) as coordina-
tion numbers. The extended coordination vector [e.g.,
(6)(8,2,6,4,2,4)(2) for bcc] can be used as a local
topological description of critical net coordination to-
pology for simple critical nets.

• The underlying topological spaces for Fig. 5.1 are the
3-ball in #229, #221, #224, and #223; S3 in #211 and
#208; RP3 in #197; doubly suspended RP2 in #222,
#201, #218, and #228; and 3-ball plus singly sus-
pended RP2 in #204 and #217.
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5.5 Additional Cubic Space Group Examples

 The face-centered cubic and the diamond families are
shown in Figs. 5.2 and 5.3, respectively.
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Figure 5.2. Face-centered cubic critical net

superimposed onto cubic space group orbifolds.
 
See “Notes on orbifold Figs. 5.1, 5.2, and 5.3” following
Fig. 5.1.
 
Notes specific to Fig. 5.2:
 
• Graph nodes that are blank (i.e., without a lattice

complex descriptor) are still lattice complexes but do
not have a parent on an invariant fixed position and
thus do not have a standard crystallographic name.

• The 3' axis in orbifold #216 and the 3-fold axis in
#196 extend through all four F lattice complexes,
3'3'2' and 332, respectively, to form loops.

• A single mirror covers orbifold #216.

• The underlying topological spaces are the 3-ball in
#225, #216 and #202 and the 3-sphere in #209 and
#196.
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Note specific to Fig 5.3:

• The underlying topological spaces are the 3-ball in
#227 and #216, the 3-sphere in #210 and #196, and
the doubly suspended projective plane in #203.
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5.6 Hexagonal Space Group Examples

Fig. 5.4 shows the critical nets for graphite, hexago-
nal diamond, and hcp, which all crystallize in the same
hexagonal space group, P63/mmc. The Wyckoff set and
orbifold for that space group also are shown.

The nodes of the critical net graphs in Fig. 5.4 contain
the appropriate Wyckoff symbol rather than the lattice
complex symbols. The Wyckoff to lattice complex map-
ping is a,b → Pc; c,d → E; and g → N, where Pc stands
for primitive with doubling along the c axis.

The upper left drawing of Fig. 5.4 is the orbifold that
has a single 2' axis, h, extending around the upper edge of
the kitchen measuring-scoop shaped basin. There are three
3' axis intersections (b, c, & d) that h traverses to form a
complete loop. The leading end of the scoop has a single
3' axis half-loop, f, while the support spine along the back
of the scoop is a second 3' axis, e. The bottom point, a, at
the spine, e, gives rise to a 2 axis that goes through open
space from point a to point g in the forward end of the
scoop. Everything below the 2' axis, h, is covered by mir-
ror floor, k, while that above h has a mirror ceiling, j.

The hcp critical net in the upper right has the multi-
plicities shown for each critical net component and the
coordination vector (8)(12;2;4;3;2;8,4)(6,1), which is
identical to that for fcc in Fig. 5.2. The summed hcp mul-
tiplicities are all smaller than those for fcc by a factor of
two because of the supercell in fcc caused by repeating
after three layers in fcc versus two layers in hcp.
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Figure 5.4. Three different critical nets on the
hexagonal space group P63/mmc orbifold.

An interesting feature of critical nets is duality in
which the critical point set’s peaks, passes, pales, and pits
can be relabeled in inverse order to produce a dual critical
net. We note that the diamond structure critical nets
shown in Fig. 5.3 are self dual in that there is mirror
symmetry relating the top and bottom halves of the critical
nets. The face-centered cubic critical nets in Fig. 5.2 and
the body-centered cubic critical nets in Fig. 5.1 are not
self dual; consequently we can turn those critical nets up-
side down to produce different families of critical nets.

The bottom two critical-net drawings in Fig. 5.4 il-
lustrate the duality of graphite and hexagonal diamond.
Note that the coordination vector (4)(4,2,6,6,2,4)(4) is
identical to that for diamond in Fig. 5.3 while the summed
multiplicity vector (16)(4,16,8,48,8,16,4)(16) is half that
of diamond, which tells us there are more layers in real
diamond but the averaged local topology is identical.

The x and z values given under the critical net in Fig.
5.4 provide the variable position parameters for occupied
univariate and divariate Wyckoff sites. We felt it neces-
sary to make some slight adjustment in going from graph-
ite to hexagonal diamond based on empirical inspection of
stereoscopic ORTEP diagrams. We have not done any
analytical positioning of critical points based on the Gaus-
sian density Morse function calculations since for most
simple examples studied to date except basic beryllium
acetate, the space groups usually provide enough fixed
points to define the critical net details. That will not be the
case for more complex crystal structure problems where
many of the critical points are on general rather than spe-
cial positions.

5.7 Critical Nets Versus Dirichlet Partitioning

Dirichlet partitioning of 3-space around a lattice-
complex point is carried out by placing planes normal to
vectors between neighboring points of the complex at
midpoints of the vectors. This forms a convex polyhedron
around the origin site in which all points within the poly-
hedron are closer to the origin site than to any other site of
the complex. The vertices of a Dirichlet polyhedron are
sometimes called interstices, implying holes between
spherical atoms.

For the invariant lattice complex P, which represents
simple cubic packing, the center, face, edge, and vertex
barycenters (centroids) fall on the peak, pass, pale, and pit
critical points of the critical net, respectively, as expected.
For the body-centered lattice complex I, this correlation
does not hold since the bcc peaks, passes, pales, and pits
are on the center, 8 hexagonal faces, 24 vertices, and 6
square faces, respectively, rather than on the center, 14
faces, 36 edges, and 24 vertices of the bcc truncated octa-
hedron Dirichlet polyhedron.

Because of such discrepancies, we recommend that
critical nets be used in place of Dirichlet polyhedra tiling
when practical. The Dirichlet partitioning algorithm is not
based on Morse theory topology principles. Thus the bcc
rhombohedral dodecahedron coordination polyhedron (12
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faces, 24 edges, 14 vertices) is not dual to the bcc trun-
cated octahedron Dirichlet polyhedron,46 and it serves as a
classic counterexample to the postulated duality between
corresponding coordination and Dirichlet polyhedra,
which the unwary may assume to be present.

6. Where do we go from here?

Since there is little crystallographic background lit-
erature available to provide guidance for future research,
we present our list of research needs in crystallographic
topology. The current state of the art can only be charac-
terized as exploratory. As Walt Kelly’s comic strip char-
acter Pogo once said, “We are faced with insurmountable
opportunities.”

6.1 Interpretation of Macromolecule Electron
Density Maps

We first got into crystallographic topology in 1976
using critical point analysis as a representation method for
heuristic reasoning interpretation of protein electron den-
sity maps.39 The ORCRIT computer program we wrote at
that time was “decommissioned” for 15 years but has re-
cently been reactivated and used successfully in a series of
feasibility study by Janice Glasgow, Suzanne Fortier, and
their Queens’ University colleagues.47 The ORCRIT pro-
gram is more oriented toward numerical analysis (i.e., 3-D
linear blending interpolation and Newton iteration) and
graph theory (i.e., minimal spanning trees) than topology.
It uses only the peak and pass critical points to construct
what might be called ridge lines which tend to trace the
polymeric backbone and sidechains.

If we rewrite ORCRIT today, we would use Eric
Grosse’s spectral spline method48 to find the critical point
set, then numerically trace the separatrices. From the re-
sulting critical net we can determine volume, integrated
density, and topological shape descriptors for the chemical
cages for computational comparison with related archived
peptide and protein structure results. ORCRIT relied en-
tirely on distance, angle, and critical-point eigenvector
metric details, which are intrinsically less robust than in-
tegrated quantities and topological descriptors.

6.2 Critical Net Software Needs

We need to develop computer programs to determine
routine critical nets for small molecule crystal structures
such as basic beryllium acetate, shown in Fig. 3.5. We
present a “wish list” of what we would like to develop or
see developed by others. We need to:
• Write a modified ORCRIT program that, through

summation of crystal space Gaussian density func-
tions, can calculate density and its first two deriva-
tives at any point in an asymmetric unit. ORCRIT can
then do its pattern search for critical points without
storing or interpolating density maps on grids.

• Write a “twisted H” search function for ORTEP
based on the comments in Sect. 3.9 to assign critical
net indices and separatrices.

• Modify ORTEP-III to more automatically plot critical
net drawing given the critical points and separatrices.
The current features are minimal.

• Write a matroid49 program to resolve hierarchically
the orbifold singular set in one direction and the
crystal structure critical net in a second direction.
Such a program could provide a representation for
crystal structure classification, archiving, and query-
ing. This “dimatroid” could also serve as a
“blackboard representation” in heuristic programming
for stepwise conversions of Fd 3 (in Fig. 5.3) to the
full basic beryllium acetate critical graph, for exam-
ple.

6.3 Orbifold Atlas

The orbifold atlas we have mentioned several times is
needed for both pedagogical and research reference pur-
poses. For each space group the atlas might include two
identical orbifold singular sets drawings with Wyckoff
site symbols on one and lattice complex plus axis order
numbers symbols on the other. Perhaps the simplest pos-
sible linearized critical net graph(s) for that space group
might also be presented. There should also be a list of
coordinates for the fundamental domain (asymmetric unit)
vertices used based on the ITCr1 space group drawing se-
lected. A brief description of the underlying topological
space and the key orbifolding steps used to close the fun-
damental domain should also be included.

In addition to a sequential ordering of orbifolds based
on the standard space group numbers, subgroup/lattice-
complex trees of linearized critical net graphs such as
Figs. 5.1, 5.2, and 5.3 could be made for the various crys-
tal families. A nomenclature system based on such graphs
would be useful in crystal structure classification.

Graphics automation of singular set drawing would
certainly be welcome and perhaps essential since the ex-
isting computer-assisted drawing programs such as Adobe
Illustrator are very labor intensive when applied to this
task. One approach is to use a graphics techniques of knot
theory where Möbius energy functions based on Cou-
lomb’s law are applied to space curves, links, knotted
graphs, surfaces, and other submanifolds.50 Programs such
as Scharein’s KnotPlot, Brakke’s Surface Evolver and the
Geometry Center’s GeomView, which are all described on
the World Wide Web, might be adapted to this task.

6.4 Interactive Data Base for Space Groups and
Orbifolds

Existing commercial space group data base programs
have not been useful in our research. We would like to see
a noncommercial World Wide Web site that provides the
key information of the ITCr1 for any space group includ-
ing Wyckoff sites and subgroup family data. An interac-
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tive orbifold atlas could be implemented through addition
of database retrieval for topological orbifold data.

The computer algebra system GAP,51 which stands
for Groups, Algebra and Programming, was developed by
Joachim Neubueser and coworkers of Lehrstuhl D für
Mathematik, RWTH, Aachen, Germany. GAP now con-
tains a crystallographic library for two, three, and four
dimensional space groups based on the tables of Brown et
al.52 A WWW server might be feasible that would com-
bine orbifold data bases and the GAP system to provide
interactive answers to both standard and research level
inquiries about crystallographic groups and orbifolds.

6.5 Orbifold Covers Based on Color Groups

The bicolor Shubnikov space groups and other crys-
tallographic color groups26 have both symmetry and anti-
symmetry group elements with the symmetry elements
carrying out the normal positional transformation opera-
tions. The antisymmetry elements of an n-color group are
essentially the elements of a group that are deleted in go-
ing from a group to one of its index-n normal subgroups.
The color groups are often used in crystal physics appli-
cations such as the description of magnetic patterns in
crystal structures, but they can be used here to describe
the cover of an orbifold or to derive one Euclidean 3-
orbifold from another 3-orbifold when their parent space
groups have a group/n-index normal subgroup relation-
ship.

We have derived graphical representations for the 58
bicolor spherical 2-orbifolds to supplement Fig. 2.3 and it
would not be difficult to extend this to the bicolor plane
groups. Full bicolor illustrations of the 1191 nontrivial
Shubnikov space groups are given in Koptsik53 but the
complexity of those illustrations is quite overwhelming.
An atlas of Euclidean bicolor 3-orbifold drawings is per-
haps feasible but not a trivial project.

Using GAP, it should be possible to rederive the
Shubnikov space groups computationally and from them
derive the ordinary Euclidean 3-orbifolds in space group/
subgroup families starting from a small number of top
level orbifolds in each family derived with normal geo-
metric topology cut-and-paste methods.

6.6 Analytical Topology

Although there is a huge analytical topology literature
that should seemingly be applicable to crystallographic
topology problems, the only equation that we have found
really useful in practice is the Euler-Poincare equation,
which states that the alternating sum for the numbers of
the sequential critical point types is zero for Euclidean
manifolds of all dimensions. We need equivariant invari-
ants for characterization of orbifolds, underlying topologi-
cal spaces of orbifolds, and crystallographic Morse func-
tions on space groups and orbifolds. We anticipate that
such invariants probably involve cohomology.7,31,32,33

Thurston16,17,54 conjectures that each closed 3-manifold
can be decomposed (by connected sums and splitting
along incompressible tori) into pieces, each of which has a
geometric structure modeled on one of eight types of 3-
dimensional geometries—H3, Sol, S3, E3, S2×R, H2×R, Nil,
and (the universal cover of) SL(2,R). Structures on Seifert
manifolds account for the last six of the eight geometries.
Several of the underlying spaces for orientable 3-orbifolds
have S3 (for dihedral point groups) and S2×R (for cyclic
point groups) as underlying spaces, and the 10 Euclidean
manifolds have Seifert manifolds as underlying spaces.
Are there any formal theorems that give all the underlying
spaces for Euclidean 3-orbifolds in terms of specific
classes of geometries or manifolds?

At times we need to trace geodesic paths in orbifolds
corresponding to general straight lines in Euclidean crys-
tal space. For Euclidean and spherical 2-orbifolds, con-
formal mapping, using the Schwarz-Christoffel transfor-
mation from an arbitrary circle or half plane (orbifold) to
an n-gon (fundamental domain), and analytic continua-
tion, based on Schwartz’s principle of reflection, will
work assuming the reverse transformation also is avail-
able. However, our problems are mainly 3- rather than 2-
dimensional. The literature on Riemannian orbifolds (e.g.,
Riemannian geometry of orbifolds55) should be followed
for its relevance to this problem.

Appendix

The 36 cubic crystallographic space groups are dif-
ferent from the remaining 194 space groups in that they
each have body diagonal 3-fold axes arising from their
tetrahedral and octahedral point groups. These body di-
agonal 3-fold axes make their orbifolds a less understood
topology problem in that the Siefert fibered spaces ap-
proach of lifting from a base Euclidean 2-orbifold is inap-
plicable since fibration along the required orthogonal
projections become tangled together by the 3-fold axes.
On the other hand, many aspects of the cubic groups orbi-
folds are more straightforward than for the simpler space
groups that are based on cyclic and dihedral point groups.

The 36 Euclidean 3-orbifolds for the cubic space
groups (i.e., the cubic 3-orbifolds) are illustrated in Figs.
2.8 of Sect. 2 and A.1 of this Appendix. The 12 cubic 3-
orbifolds in Fig. 2.8 have S3 as their underlying topo-
logical space. For the 24 cubic orbifolds in Fig. A.1, the
first 11 have a 3-ball underlying space, the next two have
singly suspended projective 2-planes (RP2) with mirror
boundary, followed by 10 with doubly suspended projec-
tive 2-planes (RP2). The final cubic 3-orbifold in Fig. A.1
has a projective 3-plane (RP3) underlying space.

The small circles at the points of each projective
plane cone in Fig. A.1 denote projective plane suspension
points which arise from mirror-free inversion centers of
the space groups. The dashed lines around the circum-
ference denote the antipodal relationship for points half-
way around each circle on the cone surface. The dashed
line around the RP3 sphere denotes an antipodal gluing
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relationship for all points on any great circle of the RP3

spherical representation. Orbifolds having an RP2 or RP3

underlying space may be drawn in several different ways
because of the sliding antipodal gluing relationship for
projective planes discussed in Sect. 2. For the RP2 exam-
ples in Fig. A.1, drawings with the least possible number
of singular-set components on the antipodal surface are
shown. However, to visualize critical-net-on-orbifold
drawings such as those in Fig. 5.1, it is often necessary to
move certain axes onto the antipodal gluing surface since
this is one of the mechanisms for the singular set splitting
discussed in Sect. 5.
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Figure A.1. The 24 cubic 3-orbifolds that do not
have S3 as the underlying topological space.

Each cubic group has an index-4 rhombohedral based
trigonal subgroup and an index-3 orthorhombic or tetra-
gonal subgroup. There are only seven rhombohedral space
groups: R3 (3), R32 (32), R 3m and R 3c ( 3m), R3m and
R3c (3m), and R 3 ( 3) where the symbol in parentheses is
the corresponding trigonal point group. Thus it seemed a
reasonable approach to order the cubic groups in columns
according to their index-4 rhombohedral subgroups and in
rows according to their index-2 cubic subgroups. After
some additional partitioning of R 3m and R 3c columns we
arrived at the subgroup graph shown in Fig A.2. We thank
John H. Conway of Princeton for an e-mail exchange ex-
plaining his related “odd-subroutine” approach to the

group classification problem that he has applied to a num-
ber of group classification problems including the crys-
tallographic space groups.

Fig. A.2 uses the subgroup, group normalizer, and
lattice complex information given in the ITCr.1 Each box
contains the cubic space group symbol in the upper right
subbox, the index-3 orthorhombic or tetrahedral subgroup
in the middle, and their respective ITCr sequence numbers
on the bottom line. The upper left subbox contains the
simplest lattice complex of the cubic space group. Orbi-
folds for the index-3 subgroups of the cubic groups can be
used to derive the cubic orbifolds. Boldface type identifies
group normalizers, and group normalizer basins are identi-
fied by bold solid lines leading down from cubic (but not
orthorhombic) group normalizers.

The seven rhombohedral trigonal subgroups of the
cubic groups are shown in the bottom row of the figure
with their space group symbols and simplest lattice com-
plex in the top row of each box. The index-3 subgroups
(monoclinic/triclinic) of the rhombohedral groups are in-
dicated on the middle line and the respective ITCr num-
bers on the bottom line of each box. The divider strip be-
tween the cubic and rhombohedral groups gives the point
groups for all the space groups involved in each column,
with the cubic/orthorhombic (or tetragonal) to the left and
the rhombohedral/monoclinic (or triclinic) to the right.

Two boxes in a row that are not separated by a space
belong to a specific column. To minimize clutter in the
drawing we use the convention that whenever a subgroup
connection line goes to the midline separating adjacent
boxes, both boxes are involved in the subgroup relation. If
that line goes to another pair of adjoined boxes, the right
goes to the right and the left to the left except when there
is a loop in the subgroup relation line, which indicates a
right-left interchange. All solid lines join order-2 sub-
groups and pertain to the cubic, orthorhombic/tetragonal,
rhombohedral, and monoclinic/triclinic sets of groups in-
dividually. The orthorhombic space group set forms pairs
of duplicates.

The dashed lines leading to a dashed box two levels
further down is an index-4 subgroup relationship. Note
that each dashed box is a repeat of the regular box three
levels up in the same column, reflecting the Bravais lattice
repetition I, P, F, I, P which occurs in each column as de-
noted by the initial letters in the space group symbols.
This relationship only holds for the cubic space groups in
the figure and not for the orthorhombics/tetragonals. Since
Fig. A.2 is meant to be used mainly for orbifold applica-
tions, it does not include explicit information on how
many unit cells are required for each space group/sub-
group relationship.

Note that for order-2 subgroups, there are two inde-
pendent cubic space group families, one starting at Im 3m
and ending at F23, and the second starting at Ia 3d and
ending at P213. The ending space groups are the only two
cases of space groups without order-2 subgroups. The two
series are sometimes called the A and B cubic space group
families, respectively.
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