

CALGARY

EXAFS Spectroscopy: Its Applications in Chemical Speciation in Solution

Farideh Jalilehvand

Department of Chemistry University of Calgary

> IUCr 2014 XAFS Tutorial August 5th 2014

Earlier potentiometric and ¹³C-NMR studies have shown that at $H_2L / Hg(II) \ge 2$ and in alkaline pH, Hg(II) forms:

□ [Hg(Cys)₂]²⁻ and [Hg(Cys)₃]⁴⁻ with cysteine

□ [Hg(Pen)₂]²⁻ and [Hg(Pen)₃]⁴⁻ with penicillamine

No structural information was available!

Hg(II)- Hg L ₃ -edg	c <mark>yste</mark> i je EXA	ine co FS	C _{Hg(II)} ~ 0	formation 1 M pH = 11 UNMERSITY OF CALCARY	
H ₂ Cys / Hg(II) ratio) C.N.	Hg-S (Å	A) σ ² (Å ²)	H ₂ Cys / Hg(II) ratio	
Solid Hg(HCys) ₂	2 <mark>fix</mark>	2.34	0.0028		
Solutions $(S_0^2 = 0.9 \text{ fix})$ $\approx 4.3 \text{ VVVVV}$					
2.2	2.05	2.36	0.0037	S MM	
3.3	2.13	2.39	0.0069		
4.3	2.73	2.44	0.0089	10.1	
5.3	3.40	2.50	0.0087		
10.1	3.48	2.50	0.0084	2 4 6 8 10 12 14	
				<i>k</i> (Å ⁻¹)	

Mon	omeric Hg(I 2010 survey	distances	UNIVERSITY OF CALGARY	
	Range of Hg-S (Å) R _{ave Hg-S}			
	RS—Hg—SR	2.30 – 2.34	2.33 ± 0.01	
		2.33 – 2.36	2.35 ± 0.01	
	RS-Hg SR	2.40 – 2.51	<mark>2.44</mark> ± 0.04	
		2.49 – 2.58	2.54 ± 0.02	

Hg(II)- Hg L ₃ -edç	cysteine Je EXAFS	complex for C _{Hg(II)} ~ 0.1 M	pH = 11	Y OF RY
H ₂ Cys / Hg(I ratio	I) C. <i>N.</i> Hg-	<mark>S</mark> (Å) σ ² (Å ²)		
Solutions			Possibility of formation	
2.2	2.05 2.3	6 0.0037	of [Hq(Cys) ₄]6- when:	
3.3	2.13 2.3	9 0.0069	$[H_{\alpha}Cys] / [Hq^{2+1} > 5]$	
4.3	2.73 2.4	4 0.0089	$[1, 2^{2}, 3^{2}, 1] \sim (1, 1, 1)$	
5.3	3.40 2.5	0.0087	Frop [Cyrc ² -] > 0.1 M	
10.1	3.48 2.5	0 0.0084	and pH > 9	

Hg(II)- pe Hg L ₃ -edge	enicill e EXAF	amine S p	e comp H = 11	ex formation	UNIVERSITY OF CALGARY
H ₂ Pen / Hg(II)	C.N.	Hg-S (Å	Λ) σ ² (Å ²)		
Solid Hg(HPen) ₂ Solutions (S ₀	2 <mark>fix</mark> ² = 0.9 fi	2.35 ix)	0.0036		
1.9	2 fix	2.34	0.0037		
2.5	2 fix	2.36	0.0029		
3.6	2.3	2.38	0.0066		
4.9	2.6	2.41	0.0072		
6.2	2.7	2.42	0.0073		
8.0	2.9	2.44	0.0064		
10.0	3.0	2.44	0.0072		
15.4	3.0	2.44	0.0061		

UNIVERSITY OF CALGARY

Distribution in alkaline a	Distribution of $[Hg(Pen)_n]^{2-2n}$ ($n = 2, 3$) in alkaline aqueous solutions				
□ ¹⁹⁹ Hg NM	R	H₂Pen/ Hg [∥]	%[Hg(Pen) ₃]4-	[Pen] ²⁻ (mM)	
H Bop (Ha(II) r	tio	1.9	0		
1.0 -619	400	2.5	20	12	
2.5 1-57	'4	3.6	54	103	
3.6	3.6 1-496		85	192	
4.9	-425	6.2	89	301	
6.3		8.0	99	469	
8.0	-394	10.0	99	675	
10.0	-394	15.4	100	1007	
15.4	-391	%[Hg(Pen) ₂] ²⁻ = 100 - %[Hg(Pen) ₃] ⁴⁻			
-700 -600 - ¹⁹⁹ Hg NMR	500 -400 -300 Chemical Shift	$[{\sf Pen}]^{2\cdot} = C_{{\sf H2Pen}} - 2 \ C_{[{\sf Hg}({\sf Pen})2]2\cdot} - 3 \ C_{[{\sf Hg}({\sf Pen})3]4\cdot}$			

Mo(V) Species in Aqueous HCI Solution

