The need for metadata in archiving raw diffraction image data

Loes Kroon-Batenburg & John Helliwell Bijvoet Center for Biomolecular Research, Utrecht University, NL School of Chemistry, University of Manchester, UK

Reasons for archiving raw data

- Allow reproducibility of scientific data
- Safeguarding against error and fraud
- Allow further research based on the experimental data and comparative studies
- Allow future analysis with improved techniques, changed standards or new science
- Provide example materials for teaching

Processed data

- Crystallographic structure determination is based on integration of Bragg spots
- Structure refinement against I or F (i.e. derived data) and prior knowledge
- PDB stores/requires:
 - Final refined coordinates
 - Derived data (structure factors)
 - Associated publication
 - Allows systematic re-analysis of all structures in the PDB, e.g. PDB-REDO

Raw data

- Raw images contain additional information:
 - Detector non-uniformity, spatial distortion, background scattering, detector gain: allows error analysis
 - Symmetry (unmerged data could be stored in PDB)
 - Shape of the spots (crystal size; mosaicity; lattice): improve spot integration
 - Composite patterns
 - Scattering between the spots:
 - diffuse scattering: streaks for packing defects; variational for protein dynamics
 - satellites due to incommensurately modulated structure
 - Development of validation criteria

Raw data

- Raw diffraction data that did not lead to structure solution:
 - no associated publication....
 - but very useful for methods development (see Michael Wall)
 - Data lost for ever?....

What would be needed to run a project like PDB-REDO on raw data?

- Well documented data format, but not necessarily just one: CBF/imgCIF....
- Meta data: long term preservation sufficient meta data to allow
 - Discovery
 - Interpretation
 - Re-use

What is the current status?

DLS/ESRF and meta data

- Diamond Light Source and ESRF use data management system ISPyB
- Data analysis is automatically performed
- Scripts with meta data are provided for Mosflm, XDS..
- User is responsible for transfer and backup
- Long term preservation?

Experience with making diffraction image data available

- Initially data of 11 lysozyme crystals, on two different diffractometers, originally processed with the equipment's built-in software, which we wanted to reprocess with EVAL to rule out software effects
- Data were transferred from Manchester to Utrecht
- 35.3 Gb of uncompressed data. Transfer took 30 hours, spread over several days
- Data were compressed in Utrecht, using ncompress (lossless data compression with LZW algorithm) to 20 Gb, and can readily be read with EVAL software

Unwarping and data conversion

- Proteum Bruker images were in native u8format (.sfrm)
- Unwarped in Manchester using .p4p file containing the distortion table
- Written to "Mosflm" format (2 byte) using FrameUtility
- Could not be read into *EVAL* in Utrecht because end-of-header at end of line

rawdata.chem.uu.nl

1. Experience with exchange and archiving of raw data: comparison of data from two diffractometers and four software packages on a series of lysozyme crystals

Simon W. M. Tanley, Antoine M. M. Schreurs, John R. Helliwell and Loes M. J. Kroon-Batenburg Journal of Applied Crystallography, 2013, Volume 46, pages 108-119 reprint (PDF file, 1.8 Mb)

PDB	Sample Image	Snapshot	Nr of Scans	Nr of Images	Tarfile(s)	Size (Mb)	Expanded Size (Mb)	Diffractometer
	in original format	png			X.tar.gz unpacks into subdirectory X			
4DD0	4DD0_01_0001.osc	49	1	360	4DD0.tar.gz	1465	6191	Rigaku R_AXIS IV
4DD2	4DD2_01_0001.osc	0	1	360	4DD2.tar.gz	2657	6191	
4DD3	4DD3_01_0001.osc	•	1	360	4DD3.tar.gz	2293	6191	
4DD9	4DD9_01_0001.osc		1	360	4DD9.tar.gz	2716	6191	- 1 T
4DDA	4DDA_01_0001.osc	•	1	180	4DDA.tar.gz	1036	3096	
4DDB	4DDB_01_0001.osc		1	360	4DDB.tar.gz	2249	6191	
4DD1	4DD1_01_0001.sfrm		1	614	4DD1.tar.gz 4DD1unwarp.tar.gz	480 554	630 1236	Bruker PLATINUM ¹³⁵
4DD4	4DD4_01_0001.sfrm		5	777	4DD4.tar.gz 4DD4unwarp.tar.gz	591 624	792 1564	
4DD6	4DD6_01_0001.sfrm		2	1440	4DD6.tar.gz 4DD6unwarp.tar.gz	1067 1117	1464 2897	
4DD7	4DD7_01_0001.sfrm		4	1862	4DD7.tar.gz 4DD7unwarp.tar.gz	1464 1566	1913 3746	
4DDC	4DDC_01_0001.sfrm		2	1440	<u>4DDC.tar.gz</u> 4DDCunwarp.tar.gz	1149 1220	1480 2897	proteumnac.p4p

rawdata.chem.uu.nl

- Downloads by other groups: 150 GB was retrieved from rawdata.chem.uu.nl and some data were reprocessed
- Discussion with Kay Diederichs on Bruker Fixed CHI goniometer: see Acta Cryst. D70 (2014) 2520 supplemental
- We welcome the interest in cisplatin binding to histidine studies by Shabalin *et al.*, who reprocessed at least 1 data set

J. Appl. Cryst. link to raw data

Journal of Applied Crystallography

Volume 46, Part 1 (February 2013)

research papers

html pdf supplementary materials cited in open access

J. Appl. Cryst. (2013). 46, 108-119 [doi:10.1107/S0021889812044172]

Experience with exchange and archiving of raw data: comparison of data from two diffractometers and four software packages on a series of lysozyme crystals

S. W. M. Tanley, A. M. M. Schreurs, J. R. Helliwell and L. M. J. Kroon-Batenburg

Abstract: The International Union of Crystallography has for many years been advocating archiving of raw data to accompany structural papers. Recently, it initiated the formation of the Diffraction Data Deposition Working Group with the aim of developing standards for the representation of these data. A means of studying this issue is to submit exemplar publications with associated raw data and metadata. A recent study on the effects of dimethyl sulfoxide on the binding of cisplatin and carboplatin to histidine in 11 different lysozyme crystals from two diffractometers led to an investigation of the possible effects of the equipment and X-ray diffraction data processing software on the calculated occupancies and *B* factors of the bound Pt compounds. 35.3 Gb of data were transferred from Manchester to Utrecht to be processed with *EVAL*. A systematic comparison shows that the largest differences in the occupancies and *B* factors of the bound Pt compounds are due to the software, but the equipment also has a noticeable effect. A detailed description of and discussion on the availability of metadata is given. By making these raw diffraction data sets available *via* a local depository, it is possible for the diffraction community to make their own evaluation as they may wish.

Keywords: data exchange; data archiving; metadata.

The University of Manchester Library

University home

The University of Manchester

wish.

The University of Manchester Library	HEWL_cisplati	in_aq_glycerol: 4	dd0	Related resour	rces
Search resources	Tanley, Simon [Research data] version	46. 2013. The University of Ma	anchester.	Full-text held e: DOI: 10.15127/1 DOI: doi:10.110	
Manchester eScholar	Access to files			University rese	archer(s)
Search	cisplatin_aq_glycerol_			Academic depa	artment(s)
Browse by	cisplatin_aq_glycerol_ cisplatin_aq_glycerol				eering and Physical
 Metrics 	cisplatin aq glycerol cisplatin aq glycerol	211-280.zip (zip)			ciences' website
Help	cispidan aq qijeeror	201-000.21p (21p)		School of Chem	Istry's website
About	Abstract				
Contact us	Abstract	al Union of Crystallography ha	a for many years been		
FEEDBACK AND ENQUIRIES	initiated the formation of aim of developing standa studying this issue is to s and metadata. A recent cisplatin and carboplatin diffractometers led to an X-ray diffraction data pro factors of the bound Pt c Manchester to Utrecht to shows that the largest di Pt compounds are due to effect. A detailed descrip given. By making these	aw data to accompany structu the Diffraction Data Deposition ards for the representation of the submit exemplar publications we study on the effects of dimethy to histidine in 11 different lyso investigation of the possible en- ocessing software on the calcu- ompounds. 35.3 Gb of data we be processed with EVAL. A sub- fferences in the occupancies and the software, but the equipm stion of and discussion on the ar- raw diffraction data sets availa- tion community to make their of	n Working Group with the hese data. A means of with associated raw data I sulfoxide on the bindin zyme crystals from two ffects of the equipment lated occupancies and fere transferred from ystematic comparison and B factors of the bour ent also has a noticeable availability of metadata i ble via a local depositor	and B nd e s y, it	

J. Appl. Cryst. link to raw data

	display
LINK	Link
	Raw data: PDB code 4ddc; HEWL_cisplatin_NAG_7.5%_DMSO
	display
INK	Link
	Raw data: archive at Utrecht University containing images measured at Manchester University

Notes:

To open or display or play some files, you may need to set your browser up to use the appropriate software. See the full list of file types for an explanation of the different file types and their related mime types and, where available links to sites from where the appropriate software may be obtained.

The download button will force most browsers to prompt for a file name to store the data on your hard disk.

Where possible, images are represented by thumbnails.

download bibliographic record in BIBTeX ∨ format

Find refer	rence: J. Appl. Cryst.	~	Volume		Page	e	find
Search:		From	1948 🗸	to	2014 🗸	search	Advance

Copyright © International Union of Crystallography IUCr Webmaster

Tardis

Experiment

Experience with exchange and archiving of raw data: comparison of data from two diffractometers and four software packages on a series of lysozyme crystals

0 6th February 2013

Public

16 14262 51.3 GB

Simon W. M. Tanley, Antoine M. M. Schreurs, John R. Helliwell and Loes M. J. Kroon-Batenburg

rored from http://rawdata.chem.uu.nl/	▲ Download Selected
cription Metadata Sharing Transfer Datasets	Just start typing to filter datasets based on descriptions
Institution Utrecht University	4DD0
Licensing This experiment data is licensed under Creative Commons Attribution 3.0 Australia (CC BY 3.0).	
Iministrators Steve Androulakis	4DD1
Download All	
	4DD1 unwarp

General purpose repositories

- Has integrated submission for a growing list of journals (hundreds of journals already)
- Data have their own DOI but have to be associated with some sort of publication
- Max. 10 GB (otherwise additional costs)
- Data publishing charges:
 - -sometimes covered by the journal-80 \$ per data package

- Cloud based
- Unlimited storage space for publicly available data
 - Publish negative data
 - All data has a DOI
- Papers under CC-By
- Data under CC0
- Figshare for publishers: host data for online papers

General purpose repositories

zenodo

- EU-funded OpenAIRE project:
- Uses the cloud infrastructure of CERN Large Hadron Collider
- Uploaded data get DOI
- All research outputs welcome!
- Files up to 3 GB
- Searching for "diffraction data" gave
 15 hits of which 6 protein data sets

- A repository for research data that: takes care of long term preservation
- No DOI's
- Up to 1TB (max 2 GB per file)
- Works together with Dryad

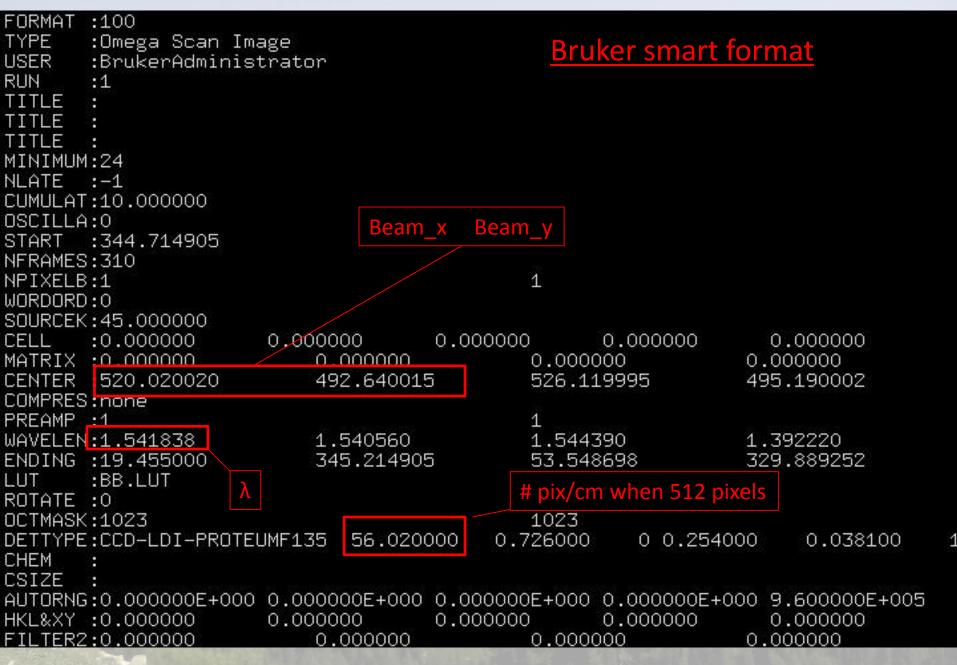
Diffraction data repositories

- DIMER: University of Queensland Diffraction Image Experiment Repository (37)
- JCSG: Joint Center for Structural Genomics (1720)
- TARDIS/Store.Synchrotron (31 public data)

Meta data

- Usually limited amount of listed meta data, e.g. DIMER repository:
- Publication
- PDB entry

Metadata


Collection date	07 Nov 2012
Exposure time	1.000 s
Oscillation range	1.000° to 2.000°
Two theta	-0.000°
Detector distance	330.010 mm
Beam centre	158.453 mm, 158.030 mm
X-ray wavelength	0.979 Å
Image size	3072 px, 3072 px
Pixel size	0.103 mm, 0.103 mm
Image format	SMV

Experience

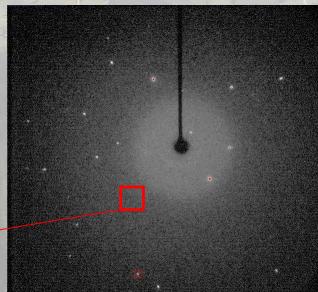
What is our experience with the level of meta data ?

s01f0001.osc.Z Opened finalfilename=s01f0001.osc.Z binary header a12cDate [2010-10-25] ==> ImhDateTime=2010-10-25 a20cOperatorname [Dr. R-AXIS IV++] **Raxis format** a4cTarget [Cu] ==> ImhTarget=Cu fWave 1.5418 ==> Target=Cu Alpha1=1.54056 Alpha2=1.54439 Ratio=2.0 fCamera 100.0 ==> ImhDxStart=100.0 fKv 40.0 ==> ImhHV=40 fMa 20.0 ==> ImhMA=20 a12cFocus [0.07000] a80cXraymemo [Multilayer] a4cSpindle [unk] a4cXray_axis [mk] a31Phi 0.0 0.0 1.0 ==> ImhPhiStart=0.0 ImhPhiRange=1.0 nOsc 1 fEx_time 6.5 ==> ImhIntegrationTime=6.5 a2fXray1 1500.700073 ==> beamx=1500.700073 a2fXray2 1500.899902 ==> beamy=1500.899902 a3fCircle 0.0 0.0 0.0 ==> ImhOmegaStart=0.0 ImhChiStart=0.0 ImhThetaStart=0.0 a2nPix_num 3000 3000 ==> ImhNx=3000 ImhNy=3000 ImhNBytes=6000 a2nPix_size 0.1 0.1 ==> ImhPixelXSize=100.0 ImhPixelYSize=100.0 a2nRecord 6000 3000 ==> Recordlength=6000 nRecord=3000 nRead start 0 nIP_num 1 fRatio 32.0 ==> ImhCompressionRatio=32.0 ImhDateTime=Mon 25-Oct-2010 16:21:52 DetectorId=raxis GoniostatId=raxis BeamX=1500.7 => ImhBeamHor=0.07 BeamY=1500.9 => ImhBeamVer=0.09 rotateframe=0 ImhCalibrationId=raxis TotalIntegrationTime=6.5 TotalExposureTime=6.5 ImageMotors: PhiInterval=1.0 SimultaneAxes=1 Header 1. ix1=1 ix2=3000 dx=1 iy1=1 iy2=3000 dy=1 nb=0 rotateframe=0 Frame 1. Closed.

Mostly manufacturers provide detailed description of the image format

VERSION:15				263
SITE :BRUKER9-SERV	ER			
SAMPLE :				
SAMPNUM:0				
TITLE :	20	ωφ	γ	
TITLE :	20	ψ	λ	
NCOUNTS:153271954		0		
MAXIMUM:4108				
FILENAM:\\bruker10-c	lient\frames\	guest.V usoPra	ct\lusoPract C	1 0001.sfrm
ELAPSDR:5.000000	5.000000			
NSTEPS :1				
INCREME TO . 500000		//		
ANGLES 19.455000	344.714	905 53	.548698	329.889252
NROWS .1024	0. U. ST		.010020	025.005202
LONGORD:0				
SURCEM . 60 000000				
CELL :0.000000				
LOWIEMP:1 -17314	-6000	TEMP: 298.00	4 0000 0	
DISTANC:7.000000			726000	
LINEAR :1.000000			000000	
CORRECT:00151_1024_1	208 £1	0.	000000	
MAXXY :790.000000	20811	67	0.000000	
DETPAR :0.000000	0.000000	0.000000	0.599500	0.502700
DISPLIM:0.000000	0.000000		.000000	0.302700
BITMASK:\$NULL		03	.000000	
ESDCELL:0.000000	0.000000	0.000000	0.000000	0.000000
INEXP :2	565		0.000000	
	303	32	<u>Q</u>	1
MORPH :				
DNSMET :	0.00000	0	000000	0000000
ZERDADJ:0.000000	0.00000		000000	0.000000
AXES2 :0.000000	0.00000	0 0.	000000	0.000000
LEPTOS :				

HDRBLKS 15				
MODEL D85 [09/12/2725] with	KAPPA [50.00]	396]		
SETNAME		C\$U\$3K1K(32)		
TITLE :				
TITLE :				
TITLE :				
NOVERFL:365	16532		0	
NONTIME:-2				
CREATED:02/13/14		16:36:08		
ELAPSDA:5.000000 5.000000)			
RANGE :0.500000				
NUMBER :1				
NOVER64:0	0		0	
NCOLS :1024				
TARGET :Cu				
FILTER :Mirrors, multilayer				
MATRIX :0.000000 0.000000	0.00000	0.0	00000	0.000000
ZOOM :0.000000	0.000000		1.0000	00
TRAILER:0				
PHD :0.000000		0.000000		
WARPFIL:00151_1024_120si×				
AXIS :2				
DETPAR :0.377300		gain =3.83	ADU/ph	
PROGRAM:BIS 2010, 1, 0, 0/11-3	Jan-2010			
OCTMASK:0 0	<u> </u>	1023	1023	2046
ESDCELL:0.000000				
CCDPARM:13.680000 10.13000	0 40.000	0.0 0.0	00000	960000.000000
CCOLOR :	on the second			
DARK :00151_01024_00010dk				
XTRANS :0.000000	0.000000		0.0000	00
	00000	0.000000		0.000000
CFR: HDR: IMG:				


^Z

Standard deviations of integrated reflection intensities

- Realistic standard deviations:
- $\sigma_c = K [\sigma_l^2 + (g < l >)^2]^{1/2}$ $\sigma_l = \sqrt{l}$ Poisson *K* and *g* determined from χ^2 typically: *K*≈1 and *g*≈0.02-0.04 if gain is correct

 $\sigma^2 / \langle I \rangle$

• Alternatively from: $\sigma_{int} = [\sum_{i} (I_i - \langle I \rangle)^2 / (N-1)]^{1/2}$

Pilatus 6M header

###CBF: VERSION 1.5, CBFlib v0.7.8 - SLS/DECTRIS PILATUS detectors

data_thaumatin1_collect_1_003

_array_data.header_convention "SLS_1.0" _array_data.header_contents

Detector: PILATUS 6M Prosport+, S/N 60-0100 Diamond 2010/Dec/06 16:53:40.416 Pixel_size 172e-6 m x 172e-6 m Silicon sensor, thickness 0.000320 m Exposure_time 0.097500 s Exposure_period 0.100000 s Tau = 199.1e-09 s Count_cutoff 244849 counts Threshold_setting 6340 eV N_excluded_pixels = 1128 Excluded_pixels: (nil) Flat_field: (nil) Trim_directory: p6m0100_T5p9_vrf_m0p2_090717 Wavelength 0.9778 A Energy_range (0, 0) eV Detector_distance 0.28930 m Detector_Voffset 0.00000 m Beam_xy (1262.93, 1290.58) pixels ← Origin? Filter_transmission 1.0000 —— What axis? Start_angle 110.0000 deg. 🚤 Angle_increment 1.0000 deg. Detector_2theta 0.0000 deg. Polarization 0.990 Which plane? Alpha 0.0000 deg. Kappa 0.0000 deg. Phi 0.0000 deg. Chi 0.0000 deg. Oscillation_axis X, CW N_oscillations 1 array_data.data -CIF-BINARY-FORMAT-SECTION--Content-Type: application/octet-stream; conversions="x-CBF_BYTE_OFFSET

CONVERSIONS= X-UBF_BITE_UFFSET Content-Transfer-Encoding: BINARY X-Binary-ID: 1 X-Binary-Element-Type: "signed 32-bit integer" X-Binary-Element-Byte-Order: LITTLE_ENDIAN Content-MD5: JbLt2HJ+eYksuL3SBy3rFw== X-Binary-Number-of-Elements: 6224001 X-Binary-Size-Fastest-Dimension: 2463 X-Binary-Size-Padding: 4095

^L^Z^D<D5>^D<FF>^B<FF>^@^A^B<FC>^B<FE>^C<FD>^@<FF>^A^D<F9>^D<FF><FD>^E^@<F

Knowledge is required about experimental setup

EVAL: horax goniometer

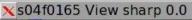
Meta data for raw diffraction data

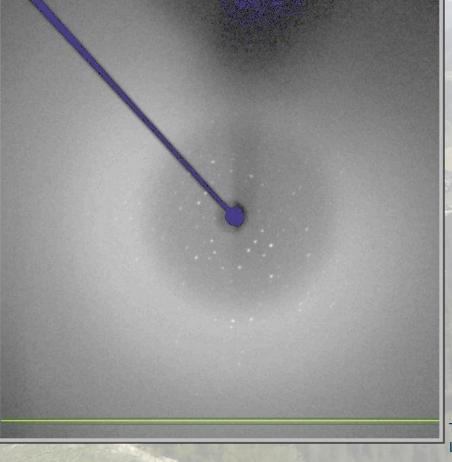
- Header contains usually limited information: only in the context of the equipment/beam line
- Goniometer set-up: axes orientations and rotation directions; zero positions; type of scan (continuous rotation, still, helical scan); oscillation range

axes: omega=z kappa=k phi=z swing=z x8 kappa rotationdirection -1 -1 -1 -1 values: omega kappa phi swing dist alpha x8c axes: omega=z chi=x phi=z swing=z euler rotationdirection 1111 values: omega chi phi swing dist horax axes: omega=y chi=x phi=z swing=y raxis rotationdirection 1111 values: omega chi phi swing dist dtb axes: omega=z chi=-x phi=z swing=y rotationdirection -1 -1 -1 1 values: omega chi phi swing dist

 x8 axes: omega=z chi=x phi=z swing=z direction 1 -1 -1 1
 values: omega+180 chi phi+90 swing
 x8c axes: omega=z chi=x phi=z swing=z direction 1 -1 -1 1
 values: omega+180 chi phi+90 swing
 raxis axes: omega=z chi=x phi=z swing=z direction -1 1 -1 1
 values: omega chi phi swing
 kappa180 axes: omega=z kappa=k phi=z swing=z direction: -1 -1 -1 -1
 values: omega+180 kappa phi swing

..continued..


- Detector:
 - Type and serial number
 - Data format: byte-storage architecture
 - Overflow handling; base line offset; gain
 - Swing axis; Distance
 - Fast, slow running pixel coordinates
 - Origin: LL, LR, UR, UL
 - Number of pixels, pixel size, binning
 - Corrections applied:
 - Dark curent
 - Distortion table: usually manufacturer applied
 - Non-uniformity: flood field


..continued..

- Beam properties: beam_x,y; divergence_x,y; polarization
- Photon flux, exposure time; number of repeats;dose; wavelength; date
- crystal shape/size; chemical composition; heavyatom derivatives; multiple wavelength experiments on one crystal;
- Sample mounting
- Sample name/characterization
- Type of diffraction: single crystal, twin, diffuse...

⊼ _ □ X

⊼ _ □ X

Distance=0.0 Distance=0.0 Chiefs.81 Phi=50.0

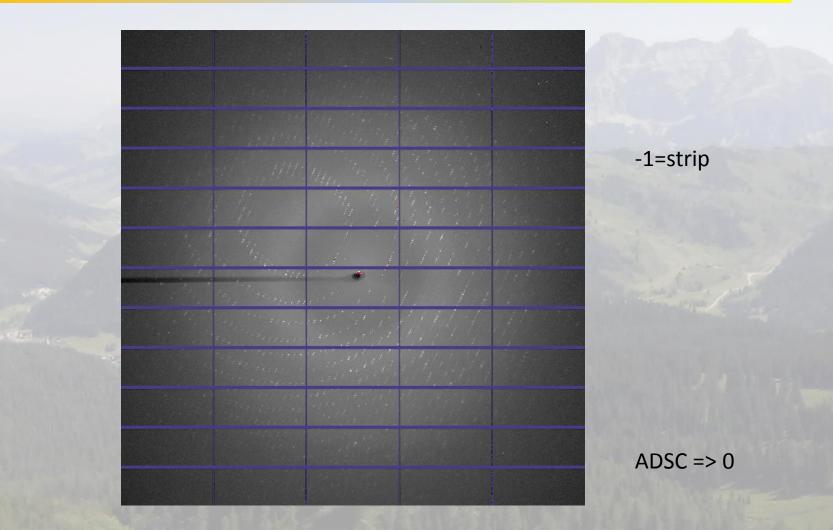
Crystal mounted in open capillary CuKα radiation Shadow and reflections sneaking through

Photo of set-up is useful

Tanley, Schreurs, Kroon-Batenburg, Helliwell, Acta. Cryst. F**68** (2012), 1300 Link to video

Meta data

- Machine and human readable
- In imgCIF format?
- In HDF5-Nexus trees?
- Photo of set-up is not useful for highthroughput

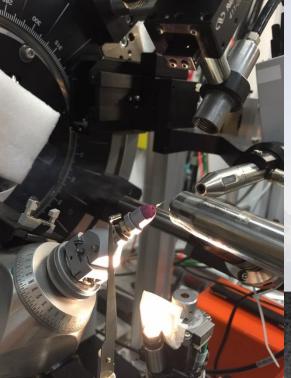

Comparison of .sfrm and .cbf

ELAPSDR:2:5609000 ELAPSDR:2:5609000 INCREME:-0.149994 NNTEPS:1 RANGE::0.150000 START:8.850000 INCREME:-0.149994 NUMBER:60 NERDMFS:100 ANGLES:0.000000 ANGLES:0.000000 ANGLES:0.000000 SURCEM:0.000000 FLITER:0.000000 FLITER:0.000000 FLITER:0.000000 FLITER:0.000000 FLITER:0.000000 FLITER:0.000000 FLITER:0.000000 CCLL::0.000000 FLITER:0.000000 CCLL::0.000000 FLITER:0.000000 CCLL::0.000000 FLITER:0.000000 CCLL::0.000000 FLITER:0.000000 CCLL::0.000000 FLITER:0.000000 CCLL::0.000000 FLITER:0.000000 FLITER:0.000000 CCLL::0.000000 FLITER:0.000000 CCLL::0.000000 FLITER:0.000000 CCLL::0.000000 FLITER:0.000000 CCLL::0.000000 FLITER:0.000000 CCLL::0.000000 FLITER:0.000000 CCLL::0.000000 FLITER:0.000000 CCLL::0.000000 FLITER:0.000000 CCLL::0.000000 CCLL::0.000000 FLITER:0.000000 CCLL::0.000000 FLITER:0.000000 CCLL::0.000000 CC					
LONGORD:0	OSCILLA:0 NSTEPS :1 RANGE :0.150000 START :-8.850000 INCREME:-0.149994 NUMBER :60 NERAMES:100 ANGLES :0.0000000 NOVERS4:0 NPIXELB:1 NROWS :1024 NCOLS :1024	351.149994 Ç			_diffrn_r _diffrn_r
DISTANC:5.000000 TRAILER:0 COMPRES:none LINEAR :1.0000000.000000 0.000000axis.offset[3] axis.offset[3] O DEGA . goniometer rotation 1 0 0 CHI DMEGA goniometer rotation 0 0 PHI CHI goniometer rotation 1 0 TWOTHETA . detector rotation 1 0 DX TWOTHETA detector translation MAXXY :339.000000MAXXY :339.000000 AXIS :2 []0.000000 370.0000000.000000 O O O O DX TWOTHETA detector rotation 0 0 PITCH YAW detector rotation 0 0 H ROLL detector translation 0 -1 V H detector translation -1 0 0	LONGORD:0 TARGET :CU SDURCEK:0.000000 SDURCEM:0.000000 FILTER :Osmic "greens CELL :1.000000 CELL :90.000000 MATRIX :1.000000 MATRIX :0.000000 LOWTEMP:0 ZODM :0.000000	1.000000 1.000 0.000000 0.000 0.000000 0 0 0.000000	000 90.000 000 0.0000 0.000000	000 -5474	_diffrn_r _diffrn_r loop_ _axis.id _axis.dep _axis.equ _axis.equ _axis.vec _axis.vec
	DISTANC:5.000000 TRAILER:0 COMPRES:none LINEAR :1.000000 PHD :0.000000 PREAMP :6 CORRECT:8000G6H500 WARPFIL:8000G6H500 WAVELEN:1.541840 MAXXY :339.000000 AXIS :2		0.000000 0.000000 0		_axis.off _axis.off _axis.off OMEGA . CHI OMEG PHI CHI TWOTHETA DX TWOTH YAW DX d PITCH YA ROLL PIT H ROLL d V H dete

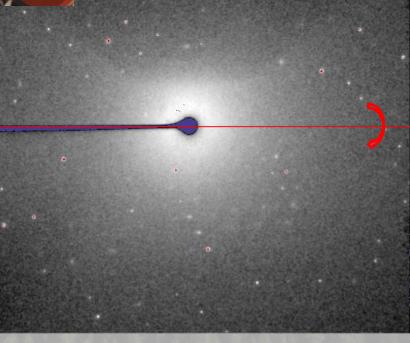
Comparison of .sfrm and .cbf

ELAPSDR:2.500000				
ELAPSDA:2.564948				
OSEILLA:0 NSTEPS :1				
RANGE :0.150000				
START :-8.850000				
INCREME:-0.149994				
NUMBER :60				
NERAMES 100				
ANGLES :0.00000	351.149994	0.000000	54	54.782002
NPIXELB:1		1		
NROWS :1024				TWOTHETA ? O
NCOLS :1024				OMEGA ? 351.149994
WORDORD:0				PHI 7 0
LONGORD:0				CHI 7 54.782002
TARGET :CU				H -0.223134594787576 ?
SOURCEK:0.000000				V 0.178507675830061 ? PITCH ? 0
SOURCEM:0.000000	1 0 04 40 C (He pund			ROLL ? O
	" Cu-24-48-6 (He purge 1.000000 1.00000		2000	YAW ? O
CELL :90.000000	1.000000	<i>10</i>	1000	
	0.00000 0.00000			loop_
MATRIX :0.000000	0.000000	0.000000	1 _	1_diffrn_scan_axis.axis_id
LOWTEMP:0	0		-5474 _	_diffrn_scan_axis.displacement_start
Z00M :0.000000	0.000000			0C_diffrn_scan_axis.displacement_increment
CENTER :509.500000	514.000000	0.000000		0_diffrn_scan_axis.displacement_range
DISTANC:5.000000 TRAILER:0				_diffrn_scan_axis.angle_start
COMPRES:none				_diffrn_scan_axis.angle_increment
LINEAR :1.000000		0.000000		_diffrn_scan_axis.angle_range DX 53 0 0 ? ? ?
PHD :0.000000		0.000000		TWDTHETA ? ? ? O O O
PREAMP :6		0		OMEGA ? ? ? 351.149994 -0.14999399999992 -0.14999399999999
CORRECT:8000G6H500				PHI ? ? ? 0 0 0
WARPFIL:8000G6H500				CHI ? ? ? 54.782002 0 0
WAVELEN:1.541840	0.000000	0.000000	U	⁰ H -0.223134594787576 0 0 ? ? ?
MAXXY :339.000000		370.000000		V 0.178507675830061 0 0 ? ? ?
AXIS :2				PITCH ? ? ? 0 0 0
				ROLL ? ? ? 0 0 0
				YAW ? ? ? 0 0 0
			1000	
				_diffrn_measurement.id GONIOMETER
				_diffrn_measurement.diffrn_id BRUKER

Pilatus image


Argonne National Laboratory Beamine 15ID-B

Synchrotron polarization: weak component in horizontal plane


Images were converted to standard Bruker Fixed CHI goniometer orientation

 $p = 1 - [I_{0_w} \cos^2 \gamma \sin^2 2\theta + I_{0_s} \sin^2 \gamma \sin^2 2\theta]$

Data: Jozef Kozisek

l₀□ strong

weak

Conclusions

- Long term data preservation and future use requires detailed and strict meta data policies
- Machine and human readable meta data format
- Meta data should be discoverable/searchable