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Series Preface 

The long-term aim of the Commission on Crystallographic Teachihg in 
establishing this pamphlet  programme is to produce a large collection of 
short statements each dealing with a specific topic at-a specific level. The 
emphasis is on a particular teaching approach and there may well, in time, 
be pamphlets giving alternative teaching approaches to the same topic. It 
is not the function of the Commission to decide on the 'best '  approach but 
to make all available so that teachers can make their own selection. Similarly, 
in due course, we hope that the same topics will be covered at more than 
one level. 

The first set of ten pamphlets,  published in 1981, and this second set of 
nine represent a sample of  the various levels and approaches and it is hoped 
that they will stimulate many more people to contribute to this scheme. It 
does not take very long to write a short pamphlet ,  but its value to someone 
teaching a topic for the first time can be very great. 

Each pamphlet  is prefaced by a s ta tement -of  aims, level, necessary 
background, etc. 

C. A. Taylor 
Editor for the Commission 

The financial assistance of UNESCO, ICSU and of the International Union of Crystallo- 
graphy in publishing the pamphlets is gratefully acknowledged. 



Teaching Aims 

To convey in non-mathematical language, elementary concepts of sym- 
metry in finite objects and repetitive patterns. 

Level 

This material would be suitable as an introduction for undergraduates 
with no previous knowledge of crystallography. 

Background 

General scientific knowledge combined with an interest in learning crys- 
tallography. 

Practical Resources 

Use is made of Volume I of International Tables for Crystallography 
(The specific examples used are from the 1965 edition). 

Time Required for Teaching 

This represents an introductory course of perhaps two lectures, plus time 
for the students to study and assimilate the material presented. 



Symmetry 

L. S. D e n t  G l a s ~ _ . e  .< 

~. a~mple ~ y r h ~ ~ e r ~ t i o n s  

The general idea of  symmetry is farrti~ar to almost everyone. Formally it 
can be defined in various ways. The Concise Oxford Dictionary says ' I .  
(Beauty resulting from) right proportion between the parts of the body or 
any whole, balance, harmony, keeping. 2. Such structure as allows of  an 
object 's being divided by a point or line or plane or radiating lines or planes 
into two or more parts exactly similar in size and shape and in position 
relative to the dividing point, etc., repetition of exactly similar parts facing 
each other or a cen t re , . . . ' .  

The second of the definitions is the one that relates most closely to 
crystallography and thus concerns us here, but I have also included the first 

Fig. 1. I. Pattern based on a fourteenth-century Persian tiling design. 
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Fig. 1.2. A teacup, showing its mirror plane of symmetry. (After L. S. Dent Glasser, 
Crystallography & its applications: Van Nostrand Reinhold, 197Z) 

because it seems to me to express just why the subject is both  satisfying 
and enjoyable. Symmetry  and art go hand  in hand,  as in Fig. 1.1. However ,  
the symmetry o f  Fig. 1.1 is much more compl ica ted  than appears  on first 
sight, so we will begin by considering something rather simpler. 

A teacup will do for a start (Fig. 1.2). This is an example o f  an object 
that can be divided into two parts bY a plane. Since the two parts are mirror 
images o f  one another,  this symmetry  element is called a mirror plane. 

Operat ion o f  this element on one half  o f  the teacup gefierates the other:  if 
a half  teacup is held with its sliced edge against a mirror, the appearance  
o f  the whole is regenerated. Teacdps  are rarely sliced in real life (a l though 
it was done in the car toon version o f  "Alice in Wonder land ' ) ,  but you could 
try it out with an apple or a pear. I f  the two similar parts p roduced  have 
no symmetry  remaining, as in the case of  the teacup,  they are called 
asymmetr ic  units. 

Biological objects such as flowers frequently show symmetry.  The per- 
son - -he rea f t e r  referred to as ' i t ' * - - s h o w n  in Fig. 1.3a also has a mirror  
plane, provided it stands straight and parts its hair  in the middle (and that 
we ignore its internal organs). Each half  o f  the figure is an asymmetr ic  unit. 
Moving an arm or leg destroys the symmetry  and  the whole figure can then 
be treated as an asymmetr ic  unit. We will use this little person, both with 

* Thus avoiding any sexist implications! 
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Fig. 1.3. Some o,mmeto, elements, represented by human figures. (a) Mirror plane, shown as 
dashed line, in elevation and plan. (b) Two-fold axis, lying along broken line in elet,ation, 
passing perpendicularly through clasped hands in plan. (c) Combination of two-fold axis with 
mirror planes: the position o.f the s3'rnnletrv elements given only in plan. (d) Three-fold axis, 
shown in plan only. (e) Centre of symmetry (in centre oJ'clasped hands). ( f )  Four-fiJld inversion 
axis, in elevation and plan, running along the dashed line and through the centre of  the clasped 
hands. (After L. S. Dent Glasser, Chapter I9, The Chemistry of Cements: Academic Press, 1964.) 

and without its mirror plane, to illustrate further symmetry elements, and 
to build more complicated groups. 

If the figure holds hands with its identical twin, as in Fig. 1.3b, the group 
formed no longer has a mirror plane. On the other hand rotating the group 
through 180 ° about an axis (indicated in the diagram) brings each figure 
into coincidence with its twin. This group has an ax i s  o f  ro tat ion,  two-fold 
in this case because the operation has to be performed twice before each. 
figure returns to its original position. Figure 1.3c shows how a different 
method of holding hands produces a group that combines mirror planes 
with a two-fold axis; in Fig. 1.3d identical triplets demonstrate a three-fold 
axis. (Can you identify a four-fold axis in Fig. 1.1 ? Does it have any two-fold 
axes or mirror symmetry?). 

Isolated objects or groups of objects may show any number of mirror 
planes and any kind of axis; the symmetry of an infinite array of identical 
groups, such as is found in a crystal, is limited by having to pack the units 
together in three dimensions. This limitation means that in crystallography 
only centres of symmetry (Fig. 1.3e), mirror planes, two-, three-, four- and 
six-fold and the corresponding inversion axes are encountered. An inversion 



axis involves rotat ion plus inversion through a point ;  Fig. 1.3f represents  
a four-fold inversion axis, rotat ion through one four th  o f  a revolut ion being 
fol lowed by inversion through a point  in the middle  of  the c lasped hands.  
A one-fold  inversion axis is equivalent  to a centre of  symmet ry  (Fig. 1.3e) 
and a two-fold inversion axis to a mirror  plane.  (This last equivalence  is 
impor tan t  in other  contexts  because  it es tabl ished a mirror  plane as a 
two-fold symmet ry  operator) .  

It is not very convenient  to illustrate symmet ry  e lements  in the way that  
we have just  used: ra ther  than  drawing little people  we use circles to represent  
asymmetr ic  units: convent ional ly  an open circle represents  a r igh t -handed  
unit and a circle with a c o m m a  in it its mirror  image or enantiomorph (i.e. 
a lef t -handed unit). Figure 1.4 shows the same groups  as Fig. 1.3, represented  
in this formal,  shor thand  way. 

Even this is inconvenient  in written text, in which mirror  planes  are given 
the symbol  m, while axes and the cor responding  inversion axes are referred 
to as 1, T; 2, _.5 ( - m ) ;  3, 3; 4, ~,; 6, 6. The  symbol  l ! ( for  a one-fo ld  axis) 
means  no symmet ry  at all, while the c o r r e s p o n d i n g  inversion axis (T) is 
equivalent ,  as a l ready remarked ,  to a centre of  symmetry .  
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Fig. 1.4. The arrangernents in figure 1.3 redrawn using conventional symbols. The right-hand 
group of  (a) is drawn here in a different orientation, and tl, e left-hand groups of  (e) and ( f )  are 
omitted. Symbols + and - represent equal distances above and below the plane of  the paper; 
open circles represent asymmetric units of  one band, and circles with commas their enantiomorphs. 
(a) Mirror plane (m), perpendicular to (left) and in the plane o f  the paper. (b) Two-fold axis (2) 
in the plane of  the paper (left) and perpendicular to it (right). (c) Combination o f  two-fold axes 
and mirror planes. Note that the presence of  any two o f  these elements creates the third. (d) 

Three-fold axis (3). (e) Centre o f  symmetry (I).  (.f) Fouf-foId inversion axis (4). 



2. Combina t ion  of  S y m m e t r y  E lements  in Finite Groups  

The complete symmetry displayed by an isolated object or group of 
objects is its point group, there being always at least one point common to 
all the symmetry elements. We have already met such a co l lec t ion 'o f  
symmetry elements in Figs. 1.3c and 1.4c, comprising two mirror planes 
intersecting in a two-fold axis. Note that no single one of these elements 
can be left out of  the group, because the presence of  any two creates the 
third. This being so, two of the elements are sufficient to define the whole, 
and this particular point group is normally given the short symbol mm, 
rather than the full symbol 2ram or ram2. 

Similarly, three mirror planes meeting in a three-fold axis (Fig. 2.1a) are 
adequately represented by 3m. The full symbol 3mmm is not needed because 
two of the 'm's are redundant,  being created by the action of the three-fold 
axis on the other one. Figure 2.1b shows a mirror plane perpendicular  to 
a two-fold rotation axis; this is given the symbol 2/m, the ' / '  implying 
'perpendicular  to'. (Note that the combination produces a centre of  sym- 
metry at the point where the rotation axis intersects the mirror plane). 

This system of nomenclature,  which is the one most often used in crystal- 
lography is largely self-explanatory, and with very little practice one can 
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Fig. 2.1. Some combinations of symmetry elements with their point-group symbols. The equivalent 
Schonflies symbol is given in brackets. 



draw the appropriate collection of symmetry elements and asymmetric units 
for any symbol. There is also an older system in use which is not so 
convenient for our purposes;  in Fig. 2.1 examples of  this Schoenflies notation 
are given in brackets after the crystallographic (Hermann-Mauguin) nota- 
tion: a concordance between the two is given in Table 1. A major difference 
is that the operator that we have called an inversion axis ~ (= n-fold rotation 
plus inversion through a point) is replaced by an alternating axis S~ 
(= rotation plus reflection across a plane) in the Schoenflies notation. 
Moreover, as Fig. 2.1c shows, n may change: a three-fold inversion axis 
corresponds to a six-fold alternating axis. Inconvenient though this may 
be, it does illustrate that the distinction between three- and six-fold symmetry 
is sometimes a matter of  definition, and therefore arbitrary. 

There are thirty-two distinct combinations of  the crystallographic sym- 
metry operations that relate to finite groups, and th~isl there are thirty-two 
point groups or crystal classes ; crystals often reveal the class to which they 
belong through the symmetry of their external forms. These crystal classes 
are conveniently grouped into systems according to the restrictions placed 
on the shape of the unit cell (see next section) by the symmetry of its 
contents. This is summarised in Table 1. 

3. S y m m e t r y  Elements  in Ar rays  

If  you look back at Fig. 1.1, you will see that it combines elements of  
symmetry with a repeating pattern. We call such a repeating pattern of  
motifs an array ; the smallest convenient parallelogram that can be repeated 
without change of orientation to produce the pattern is called the unit cell 
A two-dimensional unit cell is outlined in Fig. 1.1; note that while the 
choice of  origin is somewhat  arbitrary the shape is not. (Check this by 
identifying other ways of defining the repeating unit.) 

In a three-dimensional array, such as a crystal, the unit cell is a 
parallelipeped defined by intercepts a, b, c on three axes (x, y, z) and the 
angles between them, a, /3, 7, as shown in Fig. 3.1. If  the contents have 
no symmetry or a centre of  symmetry only, the unit cell can have this quite 
general shape; more symmetrical cell contents restrict the values of  the 
interaxial angles and the relative sizes of  the edges in the manner  given in 
Table 1. Thus a single direction of two-fold symmetry (monoclinic system) 
makes two of the angles into right-angles but places no restrictions on the 
third or on the edge dimensions; at the other extreme, cubic symmetry 
produces a cell whose edges are all equal and whose angles are all 90 ° (i.e. 
a cube !). 

An array can have any of the symmetry elements that we have discussed 
already, including no symmetry at all (Fig. 3.2), and it can also have 
additional types of symmetry not possible in finite objects. Consider Fig. 
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Fig. 3.1. A generalised unit cell, showing the repeat distances a, b, c along the x, y, and z axes, 
and the interaxial angles ct, 13 and y. 

3.3, which shows an aerial view of  a boat rowed by eight crew; provided 
that they have been well-coached they present a symmetrical appearance,  
but it is not  one that can be exactly described by any of the symmetry 
elements introduced so far. It is obviously related to a mirror plane, but in 
Fig. 3.3 each rower is the mirror image of one rowing immediately in front 
or behind. Any figure is related to the next by moving one place along the 
boat and then reflecting across a mirror plane. A symmetry operation of 
this type is cal led--very descr ipt ively--a  glide plane. Because a glide plane 
combines the operation of  reflection with that of  translation it occurs only 
in extended arrays. 

An analogous operation combining rotation and translation is ca l l ed- -  
equally descript ively--a screw axis. As aft actual example of  an object 
possessing this type of symmetry,  a bolt is really better than a screw, since 
most screws taper to a point, but the action of driving a screw-or  using a 

Fig..3.2 An array o f  repeating motifs: neither the moti f  nor the array contains an), elements o f  
symmetry. 



Fig. 3.3. A stylised aerial t;iew of  a well-coached "eight', showing a translational symrnetr>. 
operation: each rower is related to the next by a combination o.f translation and reflection. 

corkscrew!--il lustrates very vividly the opei'ation of a screw axis. Other 
familiar objects having screw axes are spiral staircases, springs, and some 
climbing plants. Formal examples are shown in Fig. 3.4, together with a 
formal representation of a glide plane. 

The general symbol for a screw axis is N, ,  where N is the order (2, 3, 4 
or 6) of  the axis, and n / N  the translation distance expressed as a fraction 
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Fig. 3.4. Translational symmetry elements. ( a ) A two-fold screw axis, 21, shown perpendicular to 
the plane o f  the paper (left) and in the plane of  the paper (right). Each half revolution is 
accompanied by a translation through half the repeat distance. (b) A four-fold screw axis, 4 t. (c) 
A glide plane. Translation from left to right across the page is accompanied by reflection through 

the plane of  the paper. 



of the repeat unit. Thus 4~, shown in Fig. 3.4b, means that the asymmetric 
unit moves ~ of  a repeat unit along the axis for each ~ of a revolution about 
that axis. Glide planes are symboIised by a letter indicating the direction 
of the glide: the letters a, b and c mean that the direction of glide is parallel 
to the a, b and c axes respectively, while n and d refer to glide planes in 
which the direction of glide is diagonally across a face of the unit cell or 
along a body diagonal. 

A combination of parallel translational and non-translational symmetry 
elements produces an interesting effect on the way in which the pattern 
repeats. Consider Fig. 3.5. The pattern in 3.5a contains mirror planes: note 
that two mirror planes are associated with each repeat unit across the page. 
The pattern in 3.5b is based on a similar motif  related by glide planes (g); 
again two are associated with each repeat unit across the page. In 3.5c there 
are parallel mirror and glide planes, and as a result the grouping of motifs 
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Fig. 3.5. Non-translational and translational symmetry elements and their combination. ( a ) mirror 
planes. (b) glide planes. (c) parallel mirror and glide planes, producing a centred pattern. 77~e 

dashed lines outline a possible (but inconvenient) primitioe cell 
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at the centre of the rectangular cell is identical with that at the corners. 
Such a pattern is called centred, while those:of 3.5a and 3.5b are said to be 
primitive. It is always possible to define a smaller primitive cell for a centred 
pattern, such as the diamond-shaped cell outlined at the lower right of  3.5c. 
However, this is not normally done, partly because such a cell is a less 
convenient shape, but more importantly because its axes no longer bear the 
correct relationship to the symmetry elements of the pattern. 

4. Space Groups 

Just as the non-translational symmetry elements can be combined into 
point group symbols that describe the symmetry of  finite groups, so the 
symmetry of infinite arrays can be summarized and symbolized. The addition 
of translation greatly increases the possibilities, so that instead of the 32 
point groups 230 space groups are needed to describe the symmetries of 
infinite arrays. A complete list of  these, with descriptions, is given in 
International Tables for X,Ray Crystallography (see Section 5). All that 
will be at tempted here is to try to give some idea of what a space group 
symbol means and how to interpret it. 

Typical space group symbols are: PT, C2/m, lbca, R3, Fm3m, P2~2~2t. 
You will notice that they all begin with a capital letter. This gives the lattice 
type, which tells you whether the unit cell is primitive or centred. P means 
primitive, A, B, or C means centred on the face perpendicplar  to the a, b 
or c axis respectively, F means centred on all the faces, ! means body- 
centred--centred in the middle of  the cell (from the German,  innenzen- 
t r ier t ) - -and R means rhombohedral ,  which is a special type of centring 
unique to!the trigonal system. The group of symbols that follow give you 
the crystal class, and hence the system. Thus in PT, the symbol T tells you 
that the system is triclinic (see Table 1). Likewise C2/m belongs to class 
2/m, which you can see from Table 1 is monoclinic. R3 and Fm3m are 
equally easy to assign to the trigonal and cpbic systems respectively. Ibca 
presents slightly more of a problem: the symbols b, c and a refer to glide 
planes, as explained in the previous section. To lind the crystal class, simply 
replace any translational symmetry element by the equivalent non-transla- 
tional element: this rule holds for both glide planes and screw axes. Thus 
Ibca belongs to class mrnrn, and is or thorhombic;  the last example,  P2~2~2j, 
belongs to class 222 and is also orthorhombic.  The symbol also gives the 
positions of  the various symmetry elements. Just as mmm implies mirror 
planes perpendicular  to the three mutually perpendicular  axes of the 
or thorhombic system, so Ibca tells us that in the body-centred array there 
are b glide planes perpendicular  to the x-axis, c glides perpendicular  to y 
and a glides perpendicular  to z. 

The page of International Tables describing Prima is reproduced in Fig. 
5.1, from which it can be seen that the total collection of symmetry elements 
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0rthorhombic m m m P 2#n 2alto 2,/a No. 62 PHma 
D 6h 

- 0  

1"0 

-0  

Number of ~il iott , ,  
WTckoff notation. 

and point s~,mmctty 

8 d 1 

o- -o  t ~ ÷t ]~ 

0. . o  0 .  l~ d 

Origin at  I 

Co-ordinates of equivalent positions 

.~,~,~; ½-x,~+y,~+z; x,l-y,z; ½+x.y,~-z. 

Conditions limiting 
possible reflections 

General: 

hkl: No conditions 
0kl: k+l-2n 
h0l: No conditions 
hkff. h=2n 
hO0: (h=2n) 
0k0: ( k - 2 n )  
OOl: (1-2~) 

Special: as above, plus 

4 c m x,~,z; .'~d,-~; .~-x,],.~+..-; ~+x,~,t-z. noexUaconditions 

4 b T 0,0,~; 0,~.,~; ~,0,0; ~,1_,0. lhkl: f i+ l -2n ;  k-2n 
4 a I 0,0,0; 0,~,0; L03.; ~,.L_~. J 

(001)pgm; a': al2, b'-b 

Symmetry of special projections 

(tO0) cram; b'=b, c'-c (OlO) pgg; c'-c, a'-a 

Fig. 5.1. Page 151, Vol. I. reproduced from htternational Tables for  X-Ray  Crystallography, 1965 
edition (by kind permission of  the International Union of  Crystallography). 

includes many that are not  listed in the space group symbol.  Only  the 
essential elements are given in the symbol ;  r e d u n d a n t  ones are omitted, 
just  as they are from point  group symbols.  

5. International Tables  for X-Ray Crystal lography,  Volume I 

International Tables for X-Ray Crystallography contain a great deal of 
information concerning various aspects of crystallography, and the first 
volume deals with symmetry. Among other things, it introduces symmetry 
considerations in more detail and at a more advanced level than can be 
given here. It also lists information about all the space groups, and it is 
this that we will consider now. Figure 5.1 reproduces a typical page from 
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the space group listings, and we will use it to explain some of the important 
features. 

The space group s y m b o l - - P n m a - - i s  given in bold type at the top of the 
page, together with the equivalent Schoenflies symbol. Replacing ttae transla- 
tional elements n and a by the non-translational equivalent m gives crystal 
class mmm, system orthorhombic:  this information is also given at the top 
of the page. On this same line are: (1) the full symbol P2~/n2z /m2~/a  
(which includes redundant two-fold screw axes parallel to a, b and c created 
by the interaction of the mirror and glide planes) (2) the space group number,  
62. The space groups are listed in a logical sequence in increasing symmetry 
of their crystal classes, beginning with No. 1, P I ,  which has no symmetry 
at all, and ending with the highly symmetric cubic group la3d, No. 230. 

Immediately below this top line are two diagrams representing thd space 
group in terms of asymmetric units (on the left) and as a collection of 
symmetry elements (on the right). They are projected onto the page down 
the z-axis, with the y-axis running horizontally from left to right across the 
page and the x-axis downwards.  The space group symbol tells us that there 
is an n-glide plane perpendicular  to th& x-axis, a mirror plane perpendicular  
to the y-axis and an a-glide plane perpendicular  to the z-axis (i.e. parallel 
to the plane of the paper);  these appear  on the right-hand diagram as 

Ca) ..__].I_ (b) 

O* 

(c) 

(e) 

(d) 

I 0 -  

2 :  ....... t i-: . . . . . .  o .  

O -  
L I o - ' -  

o. ~-o 

o.  ~, 

Fig. 5.7... 771e equivalent groups generated by the operation o f  some o f  the symmetry elements in 
Pnma. (a) An a-glide plane parallel to the plane o f  the paper. The group is moved down the 
diagram by a / 2, and then reflected. ( b ) An n-glide perpendicular to a moves the same group b / 2 
to the right and c /2  vertically before reflection. (c), (d), (e) Screw axes move the group through 

a/2, b /2  and c /2  respectively while rotating it through 180 °. 
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dot-dash lines, heavy solid lines, and a right-angled line with an arrow 
respectively. (The arrow shows the direction of the g l ide--a long a ;  the 
small figure ¼ indicates that the glide plane is c / 4  above the plane of the 
diagram.) The redundant  two-fold screw axes also appear,  and a number  
of  centres of  symmetry are created. 

The effect of  these symmetry operations can be traced in the left hand 
diagram. The effect of  the mirror plane is particularly easy to see (refer 
back to Fig. 1.4). After you have found this, look for the effect of  the glide 
planes and screw axes; a key is given in Fig. 5.2. All the reflection planes 
occur in groups, separated by half a cell edge; here they are J and ~ of  the 
way along because the origin has been chosen at a centre of symmetry (this 
has computational advantages). 

The remaining feature of  the page that concerns us here is the list of  
co-ordinates of  equivalent positions. An asymmetric group placed at random 
in the cell (at x, y, z, for example,  a position represented by the open circle 
at ' + '  in the top left hand corner of  the left hand diagram) must be matched 
by seven other groups, a total of  eight in all. Applied to a crystal structure, 
this means that an atom that occurs in such a generalposi t ion must be one 
of a total of eight similar atoms in the unit cell; this can be very helpful in 
deciding chemical formulae. In the Tables, the coordinates corresponding 
to .this general position are listed first: 8 is the number  of  equivalent 
positions, d is simply a letter assigned as a convenient means of referring 
to the set, and 1 shows that the site has no symmetry. 

Suppose now that the group is moved from x, y, z to x, ¼, z - - t ha t  is, onto 
the mirror plane (Fig. 5.3). This brings it into coincidence with its mirror 
image, and reduces the number  of  groups to four. This situation is sum- 
marised in the line beginning 4 c . . .  ; the symmetry of the site is now m, 
and there are only four equivalent positions instead of  eight. The remaining 
two lines show the effect of  selecting a 'pos i t ion  on one or other of  the 
centres of  symmetry. We make no use here of  the rest of  the information 
on the page. 

Co) Cb) 
O* 

-O 

-O 

O-- .® 
O. 

Q. 0½. 

,3 1 0 -  

O- 

Fig. 5.3. Groups or atoms on special positions. (a) The effect of  mooing an asymmetric group 
onto a mirror plane; it no longer produces an equioalent group through the mirror, but must itself 
now possess a mirror plane of  symmetry. (b) I f  an atom is placed on the special position c in 
Pnma there must be three more similar atoms in the cell, arranged as shown (not seoen as in the 

general case). 
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This final paragraph gives a very brief illustration of one practical use of 
such symmetry information. Suppose that a metal sulphate, MS04, crystall- 
izes in this space group with four formula units per cell. The four M and 
S atoms must lie on one of the positions, a, b or c; the sulphur atom forms 
part of a sulphate group. S04 groups are tetrahedral, tetrahedra don' t  have 
centres of symmetry but do have mirror planes: therefore the sulphur atom 
must occupy position c, on the mirror planes (as also must two of the oxygen . 
atoms attached to it). Combining this information with a knowledge of 
bond lengths should enable a trial structure to be worked out. 
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