
PART III 

The Tools 



CHAPTER 6 

I The Principles of X-ray Brraction 

6.1. X-q ReJection according to W. L. Bragg 

Consider a set of Nf 1 equidistant atomic planes of spacing d, and a 
monochromatic plane X-wave falling on it at a glancing angle 0 
(Fig. 6-l(1)). It is assumed that each atomic plane reflects a very small 
fraction of the incident amplitude, small enough so that the weakening 
effect of this reflection on the incident amplitude may be neglected 
throughout the crystal. Under most angles of incidence, 8, the waves 
reflected from neighbouring planes will show a phase difference, and 
where all the reflected waves come together at great distance from the 
crystal, the superposition of these waves of systematically increasing 
phases will lead to a cancellation of amplitudes and to optical field 
zero. There exists, then, only the transmitted wave. If, however, the 
phases of all the reflected waves arrive within less than one half 
wave-length phase difference, then all reflected amplitudes will build 

Fig. 6-l(1). Bragg reflection on a set of N atomic planes. 

up together to an optical field in the direction of reflection, without 
any actual cancellations of contributions. Should all waves arrive in 
the same phase, then full re-inforcement of the waves takes place to 
an amplitude of N+ 1 times that of the single reflected wave. 
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Now the difference of optical path for the top and bottom wave 
is shown by the heavy-drawn path lying between two parts of the 
wave-fronts of the incident and reflected waves. Its length is 2Nd sin 0. 
The path difference between reflections on neighbouring planes is 
2d sin 0. If this equals a whole number, n, of wave-lengths h, then the 
phase difference is zero throughout the crystal. Therefore maximum 
amplitude of the reflected wave is obtained for angles On such that 

2d sin 0, = nh. (1) 

This ‘Bragg Equation’ determines the angles 0, under which the first, 
second, third,. . . order reflections occur, for n = 1, 2, 3,.. . The 
greater the wave-length, the larger the glancing angle for reflection 
on the same plane; the greater the spacing, the smaller is the glancing 
angle for a given wave-length. If h is known and 8, measured, then 
the value of n/d follows, and if the order can be found, the value of 
the spacing of the set of reflecting planes is determined. By putting 
together the information on various sets of reflecting planes, obtained 
in this way with the X-ray spectrometer, the first crystal structure 
determinations were made. 

As the angle of incidence is slightly varied from the Bragg angle, 
a phase difference develops between reflections from neighbouring 
planes and re-inforcement of the reflected waves becomes less perfect. 
Their effect cancels out to optical field zero if the maximum phase 
difference throughout the crystal corresponds to an entire wave-length 
path difference, or, indeed, to any multiple of it, say sh, where s is an 
integer. For then there will be for any reflected elementary wave one of 
opposite phase superimposed. The condition for the angles under 
which these ‘secondary zeros’ of the reflection curve occur is 

2Nd sin en,8 = (Nn + s)h, (2) 

and the angular distance of the sth zero from the Bragg angle 8, is 
given by 

2d sin On,s - 2d sin 8, = (s/N)& 

or, since the difference of angles is usually very small, this can be 
approximated by 

en,s - On = A8,,S = tan I&. (s/N). (3) 

If we plot the reflected amplitudes as a function of the difference of the 
angles of incidence and reflection from the Bragg angle, cp = I3 - On, 
each Bragg angle is seen surrounded by zeros of the reflected amplitude 
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and corresponding zeros of intensity obtained by squaring the curve. 
The principal or zero order maximum lies between the zeros for 
s = -& 1 and has therefore a width of (2 tan 8,)/N. 

Fig. 6-l(2). Amplitude and intensity curve of the wave reflected by a set of N atomic 
planes in the neighbourhood of the Bragg angle. 

The finite angular width of the Bragg reflection is a consequence of 
the limitation of thickness of the crystal to Nd. The thinner the crystal, 
the wider is the angular range of the principal maximum, and the 
poorer is the resolving power of the crystal as an optical instrument 
for distinguishing between neighbouring wave;lengths in spectroscopy. 
The total reflected intensity in any order of reflection is proportional 
to the area under the principal maximum of the intensity curve. Since 
the amplitude maximum is proportional to Nf 1, or essentially to N 
if this is large, the maximum intensity is proportional to Ns. With the 
width of the principal maximum given above, the total reflected 
intensity is then proportional to 2N tan 8,. This shows that the 
reflected intensity is proportional to the thickness or volume of the 
crystal,- a result that is true only as long as the crystal is so thin that 
the reflection leaves the incident, and transmitted, ray at practically 
its full strength. 

The consideration of the secondary maxima and of the finite 
resolving power of the crystal is essentially what H. A. Lorentz 
introduced into the theory, although using Laue’s diffraction, not 
Bragg’s reflection language. The measurement of the angular width of 
the principal maximum of reflection forms the basis of the determi- 
nation of particle size by means of X-rays-in the particular case 
considered the thickness of a crystal flake could be determined from 
such measurements. 
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Brag&s formula can be applied to reflections on atomic planes 
which are not parallel to the crystal surface, because the condition of 
re-inforcement does not contain the orientation of these planes to the 
surface. If a small general refraction of X-rays in a crystalline medium 
is taken into account, A and 8, in the formula have to be interpreted as 
the internal values which are related to the values outside the crystal 
by the ordinary laws of refraction. Since the refractive index for X-rays 
differs from 1 only by about one part in hundredthousand, this 
refraction need be considered only in measurements of very high 
precision; it was first found by W. Stenstrijm of M. Siegbahn’s school 
in 1919, and leads to a correction of wave-lengths or lattice constants 
when the usual Bragg formula is applied within the above range of 
accuracy. 

* t * 

The great simplicity of Bragg’s theory is achieved by the introduction 
and use of the spacing d of the reflecting planes. Starting from the 
axial system, or the cell of the crystal, the determination of d for 
different kinds of planes requires some geometry. On the surface 
Laue’s theory appears more complicated, but it contains this internal 
geometry of the crystal as it were built-in. There were, besides, some 
objections to Bragg’s idea of reflection which, in the early stages, made 
its acceptance not obvious. While densely populated planes of atoms 
are well defined, with wide spacings between them, the sparsely 
populated planes have little physical reality. Their spacing must be 
very small, in order to produce the fixed number of atoms per unit 
volume. Therefore it seems rather artificial to consider with Bragg 
that the few atoms on each plane reflect like a mirror, independently 
of the much closer atoms which belong to neighbouring parallel 
planes. Furthermore the regular arrangement of the atoms in any one 
of these planes is known, from the diffraction point of view, to produce 
many diffracted rays (cross-grating spectra), of which the specular 
reflection is only one. What becomes of the others? 

6.2. X-ray Dajfraction according to Laue 

a. The linear grating. We first consider a row of equally spaced atoms, 
each of which becomes the source of a scattered spherical wavelet 
under the stimulation by an ‘incident’ monochromatic plane wave. 
The mode of propagation of a plane wave is represented by its ‘wave- 
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vector’ k; this has length l/A (A the given wave-length), and its 
direction is that of the normal to the planes of equal phase, or, as we 
may call these, the wave front. Let the three axial vectors by which the 
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crystal is described be ai(i = 1,2,3), then any point 
in space can be described by the ‘coordinate vector’ 
x = xlal + xzaz + x3a3, where the xi are called the 
‘coordinate numbers’. It will be convenient to use 
the notion of the ‘scalar product’ of two vectors, for 
instance k *x. This is defined as meaning the product 
of the lengths of the two vectors (indicated by Ikl 
and 1x1 respectively) times the cosine of the angle 
between their positive directions : 

k-x = jkj.[xl* cos (k, x). 

Now 1x1 cos (k, x) is the length of the projection of x on the direction 
of k; this projection is often called the resolved part of x along k. 
Evidently the resolved part is the same for all points x lying on the 
dotted line of Fig. 6-2 (1), and, in three dimensions, for all points of the 
plane normal to k which contains the dotted line. Therefore the 
expression k *x = constant can be used to describe the planes of equal 
phase of a wave. The value of the constant is the length of the optical 
path, expressed in,wave-lengths, from the wave front passing through 
the origin to that passing through point x. The argument (- vt + k *x) 
is characteristic of a wave of frequency v travelling in the direction of 
k; v/jkl = q is th e velocity with which the phase travels. 

Consider now the wavelets scattered by the .equally spaced atoms 
under the stimulus of the incident wave of vector kl. Can a direction 
be found in which they all arrive in the same phase at a very distant 
point? We enumerate the atoms by an index I and call the vector 
from an atom I to its neighbour I + 1 the ‘translation’ a. For full 
cooperation of all wavelets it is sufficient to find the condition for 
wavelets Z and Z + 1 to arrive at the point of observation without any 
difference of phase. In Fig. 6-2 (2) th e wave fronts through atoms Z and 
Z + 1 respectively, are shown dotted. The optical path, measured in 
wave-lengths, through Z + 1 is shorter than that through Z by the 
resolved part of a along k, and longer by the resolved part of a along 
kl. Therefore it is shorter by 

k-a - k1.a = (k - kl).a 

For best ,re-inforcement this must be an integral number of wave- 
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lengths, say h wave-lengths. Thus a diffracted maximum occurs if k is 
such that 

(k - kl). a = h (2) 
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Fig. (i-2(2). Diffraction by linear grating (row of atoms); difference of optical paths 
through neighbouring atoms. 

By putting h = 0, a solution of this is seen to be k = kl; that is, 
there always occurs optimum re-inforcement of the wavelets in the 
direction of incidence. To the right of this direction (in the above 
figure) lie the directions with positive integers or ‘orders’ h, to the 
left those for negative. h. The values of h are limited by the condition 
that the diffracted waves have to move away from the row of atoms. 
The fact that the individual scattered wavelets are spherical will make 
the result of their superposition the same in all planes containing 
the row of atoms. The;direction of k is therefore only the representative 
of a cone of directions surrounding the row, and maximum amplitude 
is achieved in all .directions of observation along this cone. If we 
imagine the rays issuing from the row of atoms to be made visible by 

ground ~ICSB plate 

incident ray 

Fig. 6-2(3). Diffraction by linear grating shown on ground glass plate in physical space. 



88 THE TOOLS 

their intersection with a ground glass plate which is parallel to the row, 
the result will be a series of bright hyperbolae as in Fig. 6-2 (3) ; the 
same pattern would be obtained on a glass plate placed beneath the 
row- or, in fact, on any plate held parallel to the row. 

To this first description of the directions of difIraction in relation to 
the row of atoms we now add a second description in a ‘recifirocal 
space’. We take from equation (2) the following instruction for finding 
the direction of the wave vector k of a diffracted wave, given the 
direction of the wave vector kr of the incident wave: make the 
resolved parts of the two vectors with respect to the translation a such 
that they differ by a multiple (h) of l/la]. To this end we construct a 
series of equidistant plahes normal to the row of atoms and with 
spacing l/la/ between them. If the given wave vector kr is laid down so 
that it ends in the origin 0, its starting point T is determined. If now 
from T we draw any vector k ending on one of the planes, say that 
labelled h, then condition (2) is fulfilled and all wavelets arrive at a 

Fig. 6-2(4). Diffraction by linear grating shown in reciprocal space. 

distant point in the direction of k in the same phase. But in classical 
scattering there is no change of wave-length; therefore lk[ = 
= jkrl = l/A. Thi s means geometrically that the end-point of k 
must also lie on a sphere about T of radius l/h, i.e. which passes 
through the origin. This ‘sphere of rejiection’ is intersected by the set 
of planes in circles, and these are the geometrical loci for the ends 
of the diffracted wave-vectors. Connecting T, which will be called the 
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‘tie-point’, to all points of the circle in the plane numbered h, one 
obtains the cone of diffracted directions of order h, as in Fig. 6-2 (4). 

In this construction the distances at which the planes are drawn 
represent l/la], and the radius of the sphere of reflection is l/A; thus we 
are using a space in which the distance represents the inverse of a 
length in physical space and is measured in cm-l or l/A (= lO*cm-1). 
There is nothing more unusual in this than if we represent, for instance, 
a velocity [cm/set], force [g * cm/se@] or an electric field strength 
[volt/cm] by the length of an arrow in a suitably labelled space. The 
space we are operating in above is called ‘reciprocal space’ because the 
product of a length in this space and a length taken in physical space 
is a dimensionless quantity, i.e. a pure number. 

We shall now extend the same two representations of the directions 
of diffraction, in physical space and in its reciprocal, to two- and 
three-dimensional lattices of atoms. 

* * * 

b. The cross-grating. This is another name for an array of scattering 
centres filling a plane in a periodic manner. All atoms-if we take 
these to be the centres-are obtained from an original one by applying 
two translations, given vectorially by al and a2. If Zr and 12 are 
independent integral numbers, ranging from - co to + 00, the 
positions of the atoms are 

x11, 12 = llal + 12a2. (3) 

The condition for maximum re-inforcement of all wavelets issuing 
from these points is that there be no phase difference between the 
wavelets coming from an atom and its two neighbours by the al and as 
translations, respectively. But this is exactly the condition (2) applied 
twice over, once using the translation a1 and an integer hr, and again 
with as and an independent integer hs. Thus the condition for the 
wave-vector k of a diffracted wave is 

(k - kl) -aI = hr 
(k - kl) .a2 = hs. (4) 

We visualize this condition with the help of the ground glass plate 
of Fig. 6-2 (5) which we imagine to be parallel to the plane of the cross, 
grating. Each of the above equations is fulfilled along the hyperbolcf 
intersections of the plate with the cones surrounding the directions oi 
al and a2. The directions for which both conditions are fulfilled are 
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those leading to the points of intersection of the hyperbolae. Each 
diffracted ray is named as a two-digit ‘order’, (hr, hs), the integers 
of which tell the whole number of wave-lengths path difference of the 
wavelets scattered by an atom and its neighbours along al and as. 
Cross-grating spectra always exist, for any wave-length or angle of 
incidence. Should a2 be considerably larger than al, then the second 
set of hyperbolae have a much narrower spacing than the first, and 
the points of intersection mark out the first set very clearly. Starting 
out from the central spot which gives the direction of the incident 
ray and has order (0, 0), one can easily ‘index’ the diagram by assigning 
each point its (hr,ths) values. 

Fig. W(5). Cross-grating diffraction shown on ground glass plate in physical space. 

The spherical wavelets combine equally on both sides of the cross 
grating; a second ground glass plate beneath the grating would show 
the same design. To the transmitted beam on the upper plate cor- 
responds a reflected beam on the lower plate, and this has again the 
order (0,O). These two beams (0, 0) are always present, whatever the 
atomic distances, or even their regularity may be. 

Let us now look at the corresponding construction in reciprocal space. 
The first of the two conditions (4) leads to the set of planes normal to 
al with spacings l/la11 between them which we know from Fig. 6-Z(4). 
The similar set of planes representing the second condition (4) is 
normal to as, with spacing l/lazl. Both conditions are simultaneously 
fulfilled on the intersections of these sets, that is, on a periodic array 
of straight lines normal to the plane of al and as. Additional to this, 
the condition of scattering without change of wave-length requires 
that the vector k of a diffracted wave end on the sphere of reflection 
of radius lkl[ and centre at T. The wave-vectors khr, ha of the dif- 
fracted waves therefore start out from T and end in the points of 
intersection of the sphere of reflection with the straight lines of orders 
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hr, ha. Provided the radius of the sphere of reflection is not too small, 
intersections will always exist on the upper and lower hemisphere, 
corresponding to the cross-grating spectra of the same orders emitted 
to both sides of the cross-grating, as explained above. 

Fig. 6-2 (6). Left: cross-grating in physical space; upper right : pattern of cross-grating spectra 
in physical space; lower right: trace of the planes normal to al and as for construction in 

reciprocal space. 

Fig. 6-2(6) illustrates the cross-grating with translations al and as, 
and its relation to the pattern of crossed hyperbolae in physical space; it 
further shows in reciprocal space the ground plan of the sets of planes 
normal to al and as, and the distribution of their lines of intersection. 
The area of the parallelograms between these lines can be transformed 
into a rectangle whose one side is l/]arl, while the other (vertical) 
side is l/( /asI sin a), where a is the angle formed by a1 and as. Thus 
the area is l/(1 a1 as sin IX), and this is the inverse of the cell (or I 1 I 
parallelogram) of the cross-grating. 

* * * 

(c) . Lattice in three dimensions. Ifcross-gratings, formed by two translations 
. al and as, are stacked on top of one another by a third translation as, 

not lying in the plane of a1 and as, then a lattice is obtained with 
atoms lying at 

xl = Zrar + Zsas + Isas (Ii integers). (5) 
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The condition for the diffracted rays from all cross-gratings to be 
superimposed with the same phase in the direction of a wave vector k 
is once again of the form (2). Therefore we have now to fulfil1 three 
conditions, containing three arbitrary integers hi, namely 

(k - kl) ‘al = hr 
(k - kl) *a2 = hs (6) 
(k - kl) *as = hs 

These are the conditions which Laue gave, in slightly less condensed 
form, in his first paper on the subject (cf. pg. 50 for Laue’s form of 
the equations). 

What does the third condition add to the first ones in the two 
geometrical representations ? The ground glass plate of Fig. 6-2(5), 
which is parallel to the plane ofar, a2 will be intersected by as. For clarity 
we may assume the direction of a3 to be sufficiently steeply inclined 
to al, a2 so that the cones surrounding aa, which represent the third 
condition (6), intersect the glass plate in ellipses; if a3 is normal to 
the plate, the intersections will of course be circles. For all three 
conditions (6) to be fulfilled simultaneously, an ellipse or circle must 
pass through an intersection of the hyperbolae (Fig. 6-2(7)). This will 
in general not occur, except for the direction of incidence, and then the 
incident wave will travel through the crystal without being diffracted. 
However, as we decrease the wave-length, the cross-grating pattern 
contracts towards its centre, the direction of the incident ray, and the 
ellipses or circles contract about the point where the axis a3 intersects 
the plate. These contractions take place at different rates, and this 
means that for certain wave-lengths three curves intersect simul- 

lh,=o 

Fig. 6-Z(7). Diffraction by three-dimensional lattice shown in physical space on ground 
glass plate. The ellipses represent the third condition of re-inforcement of the wavelets. 
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taneously and a diffracted ray of order (hi, hs, hs) flashes up. This is 
the pass-filter action of the crystal for white X-radiation, since, given 
the direction of incidence, only a certain wave-length can appear in a 
diffracted ray, other wave-lengths not being admitted at this particular 
angle of diffraction. This statement has to be modified, however, 
because by multiplying the lengths of k and kr, as well as the order 
numbers ha by the same integral factor n, the equations (6) remain 
fulfilled without change of direction of k or kr. In other words, if a 
wave-length A is diverted by diffraction into a direction k, then A/Z, 
A/3,. . . can be contained in the same direction by diffraction at 
correspondingly higher orders, provided, of course, these shorter 
wave-lengths are contained in the spectrum of the incident white 
radiation. This multiplicity of the wave-lengths in the spots of Laue 
diagrams makes these less suitable for crystal structure determination 
than the diagrams obtained with monochromatic radiation. 

In reciprocal space, the third of the conditions (6) adds a set of 
equidistant planes normal to as, and of spacing l/jas], to the array of 
straight lines representing the first two conditions. The intersections 
of these lines or rods with the planes yields a three-dimensional lattice 
of points called the ‘reciprocal lattice’. The condition of diffraction is 
now that the sphere of reflection intersect a point of the reciprocal 
lattice. Again, with the direction of incidence and the wave-length 
given,-in short, given the tie-point-,the chances are that the sphere 
of reflection will not pass through anv point of the reciprocal lattice, 
except the one at the origin through which it passes by definition. If 
this is so, only the ‘primary’ beam (000), the continuation of the 
incident beam, is formed and there is no diffraction in the usual sense. 
If, however, we vary the position of the tie-point in any way, the 
sphere of reflection will sweep over some of the lattice points, and 
every time such intersection occurs, a diffracted ray will be flashing up. 
In the Laue method the direction of incidence is fixed, but the length 
of the vector kr is variable, inversely as the wave-length; therefore the 
tie-point moves on a straight line passing through the point (000), and 
the radius of the sphere varies accordingly. In the methods working 
with monochromatic X-rays, T is free to move on a sphere of radius 
l/A, the ‘wave number sphere’. If there is incidence in all directions 
with respect to the crystal lattice, as in powder diagrams, T moves over 
the entire surface of this sphere. In wide-angle diagrams, T moves 
only within that part of the sphere that is cut out by the solid angle of 
incidence. In a rotation or oscillation diagram, finally, T is restricted 
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to a great circle, or part of it, which is normal to the axis of rotation or 
oscillation. In each case, the process of ‘indexing’ a diffraction diagram 
is essentially the reconstruction of this geometry from the diagrams, 
and it thereby leads to the determination of the shape of the reciprocal 
lattice. This process is made easier by any additional information 
obtained about the spots on the diagram. It is hardest in the case of 
powder diagrams, where nothing is known; the higher the crystal 
symmetry is known to be, the easier it becomes. Oscillation diagrams 
are easier to index than rotation diagrams on which more overlapping 
of spots may occur. It is of further great help to know the position of the 
crystal at the instant of reflecting each spot of a rotation or oscillation 
diagram. This is achieved in the so-called goniometer methods by 
coupling a displacement of the film to the rotation of the crystal and 
limiting the recording of spots to certain types of reflections by ‘layer- 
line diaphragms’, as in the Weissenberg and Schiebold-Sauter 
goniometers. In the De Jong-Bouman and the Buerger precession 
camera film and crystal are moved in such a way that the spots 
appear in a pattern which is a section through the reciprocal lattice 
itself, so that there is no problem of indexing. In all cases, however, 
indexing is a routine procedure, once it has been done a few times. 

Let us add some detail to the geometry of the reciprocal lattice. We 
go back to the third part of Fig. 6-2 (6) which indicates the cross-section 
of the array of parallel rods normal to the plane of al, as. The same 
is shown in perspective in Fig. 6-2(8) together with the third axis, as. 
Two successive planes normal to aa are shown (which are at distance 
l/jas] from one another), and the points marked in which they 
intersect the rods. The eight intersections suspend a parallelopipedon 
which is the repeat unit or cell of the reciprocal lattice. Let us de- 
termine its volume. We know already that the ground plan of the cell 
had an area l/A, where A was the area defined by the axes ar and as. 
The volume of the cell is obtained by multiplying this area with the 
height of the cell, OQ. But we know that the resolved part of OQin 
the direction of as, that is, OP has length l//as/. Therefore OQ= 
= (l/Jasl): cos y, where y is the angle POQ. Thus OQis the inverse 
of the thickness of the crystal cell, namely l/( lasl cos y), and this 
makes the volume of the cell of the reciprocal lattice the inverse to the 
volume of the crystal cell. 

The faces of the reciprocal cell are formed of planes normal to al, 
as, and as, respectively. The edges of the cell are the translations of the 
reciprocal lattice, and we call them br, bs, bs; each of them is therefore 
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normal to two of the a-axes. This fact can be expressed by stating that 
the scalar products vanish, 

hi-arc = Ofori f-k (7) 

(see the definition of the scalar product on pg. 86). 

Fig. 6-2(8). The reciprocal lattice in three dimensions. The origin 0 is the corner from 
which the vectors ai and bi are drawn. al and as are actually shown representing length 
l/la11 and I/jasj, and OP = l/last. Then bl and bs are as shown and bs = OQ. These are 
the reciprocal vectors to the ai, fulfilling Eqs. (9), and they support the reciprocal lattice. 

This property of the b-axes is shared by the ‘polar axes’ which 
Bravais introduced in the 1840’s, but Bravais added an unsuitable 
definition of the length of the axes. For the reciprocal axes, which 
were first introduced by Willard Gibbs in his lectures at Yale Univer- 
sity, the normalization can easily be seen from Fig. 6-2 (8) for b3 = OQ, 
the length of which was discussed above. The result is that the resolved 
part of OQin the direction of OP is the inverse of the length of OP; 
in other words, the scalar product of a3 and bs has value 1. Since the 
decomposition of the crystal lattice into cross-gratings might have been 
performed with the choice of any two a-axes, analogous equations 
must hold for all axes, namely 

bs-aa = 1 (i = 1, 2, 3) (8) 

The conditions (7) and (8) can be condensed to the elegant statement 
of the relation between the a-axes and their reciprocals, the b-axes 

bs-ak = &, (9) 
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where Sdk, called the Kronecker symbol, signifies 1 if i = k and 0 if 
i # 1~. In this form the equivalence of the two sets of axes appears 
very forcibly. Just as we obtain the b-set of axes from the a-set, so 
we construct the a-set from a given b-set. In crystallography, many 
of the optical or X-ray measurements lead in the first instance to the 
b-axes. 

A lattice vector in the reciprocal lattice is defined as the vector from 
the origin to any other lattice point. Thus it is 

h = h&l + h&z + h&3, (10) 

in analogy to Eq. (5) for the lattice vector in the crystal lattice. We 
now show that h has the direction of the normal of the net plane in 
crystal space which has the Miller indices hi. From the definition of 
these indices we know that the intercepts such a plane makes on the 
axes are as latl/hr : [asl/hs : Iasl/hs, (see Ch. 3), and, multiplying 
with hrhshs, they are as hshslalj : hshljasl : hlhsjasl. Thus hshsar, 
hshlas, hlhsas are three points pr, ps, ps through which the plane 
with Miller indices hr, hs, hs may be laid. The vector h is normal to 
this plane if its scalar product with the two vectors ps - p1 and 
p3 - pr, which lie in the plane, vanishes. The values of these products 
are found by multiplying term by term 

ha (pz - PI) = (hlbl + hsbs + hsbs) - (hshlas - hshsar) 
ha (~3 - PI) = (h&l + h&z + h&3) * (Mms - howl). 

Because of the relations (9) both products vanish, and this proves the 
statement. 

If in (10) the component numbers hi have no common factor, we 
denote them by hs* and the lattice vector by h*. This vector ends in 
the first point of a row of equidistant points whose positions are 
obtained by letting a common factor n of the component numbers ht 
assume all integral values, positive and negative. This is indicated by 
writing 

h=nh*. (11) 

The linear lattice of spacing [h*l is, in reciprocal space, the image of 
the set of planes in physical space which are normal to h, and it is 
easy to show that their spacing is inverse to the spacing along the row 
of points along h: 

dl, = l/lh*[. (12) 

This spacing dh is the one entering in the Bragg formula nh = 2d sin 0. 
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To the vector h = nh* there corresponds the spacing d&r, or, in the 
Bragg formula, the ntlb order reflection on the set of planes. 

The relation between the reflection and diffraction terminologies 
becomes evident in Fig. 6-2(9) which shows a plane of the reciprocal 
lattice, the tie-point T and two diffracted rays. For one of these, the 
wave-vector kh is entered. The fact that the sphere of reflection 
passes through the lattice point h can be stated in the equation 

kh - kr = h (Laue Equation) (13) 

This one-vectorial equation expresses the same facts that are contained 
in the three scalar equations (6), or in the original equations of Laue 
quoted on page 50. 

Fig. 6-2(g). Relation between ‘diffracted’ and ‘reflected’ rays. 

Because kr and kh have the same length, the plane at right angles 
to the vector h and passing through its mid-point contains the tie-point. 
kh can thus be said to be the reflected image of kr by this plane-and 
this plane belongs to the set of atomic net planes with Miller indices 
(hr, hs, hs). This shows that every one of Laue’s ‘diffracted’ rays is 
simultaneously one of Bragg’s ‘reflected’ rays. 

6.3. Fourier Space 

So far, the reciprocal lattice has been introduced as a convenient 
means for visualizing the directions under which alone the perfectly 
periodic crystal gives diffraction. Since in all these directions the 
scattered wavelets combine without phase difference, the amplitude 
generated by a finite crystal in these directions is proportional to N, the 
number of atoms of the crystal, and the energy, which is ahvays pro- 
portional to the square ofthe amplitude, would be proportional toN2, i.e. 
to the square of the volume of the crystal if the latter is ‘bathed’ 
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in X-rays. We have already discussed in 6.1 that this is not 
the intensity which would normally be observed, because the larger 
the (perfect) crystal, the greater is its resolving power and the sharper 
its filter action, so that, with increasing N, the angular width of the 
principal maximum and the spectral range of admitted wave-lengths 
decreases. If we consider a finite, and therefore in the mathematical 
sense non-periodic crystal, there is a certain latitude in the fulfilling 
of the Laue-Bragg conditions, because for a very slight infringement 
the wavelets coming from the crystal will continue to re-inforce one 
another. This means that the vector k of the diffracted wave need not 
end on the lattice point of the reciprocal lattice, as long as it ends 
nearby, and that in this case the amplitude will be less than the 
maximum one. We can therefore plot the amplitude distribution in 
the space between the lattice points, similar to the amplitude distri- 
bution shown for the one-dimensional case in Fig. 6-l (2). Again, as in 
6.1, the observed intensity may be taken as proportional to the 
integral value under the principal peak of the energy distribution, 
which is obtained by squaring the amplitude distribution. The limits 
of this peak are set by vectors k for which one extra wave-length path 
difference develops throughout the crystal, beyond that existing when 
k ends at the lattice point. For then the crystal can be divided into two 
halves, so that to each reflecting plane in the first half there exists one 
in the second half whose reflections are by A/2 out of step with those of 
the first. If the areas of these corresponding planes were equal, full 
cancellation would occur; if they are unequal, only a surface effect 
remains over, instead of a volume effect. 

Let us assume that the crystal is a parallelopipedon oriented 
according to the crystal axes, i.e. containing Nr cells along al, Na 
along as, and Ns along as. Considering the direction al, the path 
difference between neighbouring wavelets is hrh for the diffraction of 
order (hr, ha, hs). Therefore between the two extreme wavelets 
coming from the crystal the path difference is Nrhrh if k ends at the 
lattice point (hr, hz, hs). If we increase this path by sh, where s is an 
integer, we get near-zero field. But this means that between any two 
neighbouring planes hr and hrf 1 of the reciprocal lattice, which 
have a distance l//al] between them, there are interleaved Nr parallel 
planes which are the geometrical loci for those wave-vectors k for 
which the resultant amplitude is zero, or nearly so. The same can be 
done in the two other directions with corresponding spacings 
l/(Ni]ail). We thus obtain a division of the cell ofthe reciprocallattice 
into NrNsNs subcells whose shape is reciprocal to the shape of the 
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whole crystal. On the walls of these subcells end the vectors k for 
which the diffracted optical field nearly vanishes; in the interior of 
each subcell the diffracted amplitude will have a (positive or negative) 
maximum value, and the intensity distribution a positive maximum, 
but the height of these maxima falls off rapidly with increasing 
distance from the lattice point, because an ever smaller fraction of the 
crystal produces those wavelets which are not cancelled out by others 
in opposite phase. All this is but the extension of Fig. 6-l (2) into three 
dimensions. 

We have now filled reciprocal space with an amplitude distribution 
which is the same about each point of the reciprocal lattice. Whereas 
these points themselves are indicative of the crystal lattice, the subcell 
walls and the amplitude distribution contained between them have 
nothing to do with the inner periodicity of the crystal; they are, 
instead, determined by the external shape of the crystal. In fact, they 
would remain unchanged about the origin point (000) if the external 
shape were filled with an amorphous distribution of scattering matter 
-liquid or glassy-,while in this case the reciprocal lattice points 
outside the origin loose their significance, and with them the sur- 
rounding amplitude distribution. The construction of the zero 
amplitude subcell walls can be obtained easily by what is known in 
optics as Fresnel Zones. 

Fig. 6-3 (1) showsin a schematic way how the lattice points in recipro- 
cal space are surrounded by the amplitude distribution (the ‘shape 
transform’ of the diffracting crystal). The division in the drawing is in 

Fig. f5-3( 1). Amplitude or intensity distribution surrounding the reciprocal lattice points 
in the case of diffraction by a finite rectangular crystal (Crystal Shape Factor). 
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twentieths and in tenths of the axes br and bs and the shape of the 
crystal is indicated in the drawing. This corresponds to a crystal of 
20 x 10 cells. The sphere of reflection intersects the distribution about 
the origin, and this would give rise to small angle diffraction. Besides, 
the sphere passes close by two other lattice points and the diffracted 
field in these orders will be given by the amplitude (or intensity) 
distribution on the surface of the sphere. In the upper intersection we 
see that the spot will be split into two parts, where the sphere intersects 
the two central rows passing through the point (hr, hs, hs) . These rows 
are principal peaks for either the hr or the hs directions, and as such 
have double width, as we know from the one-dimensional case of 6-l. 
Such ‘intensity spikes’ always occur when the shape of the crystal 
contains relatively large flat faces, and their occurrence is easily 
understood by applying a Fresnel zone argument. Laue was the first 
to point this out and to explain the splitting of diffracted spots in 
electron diffraction pictures of very small and regular, electrolytically 
deposited metal crystals of octahedral shape. If the crystals are larger, 
the whole amplitude distribution contracts around the lattice points 
and becomes unobservable; the integrated value of the intensity 
remains measurable, and the integration produces the Lorentz factor. 

* * * 

The above may be taken as an example of the way in which continuous 
amplitude and intensity distributions can be plotted in the space 
surrounding the lattice points of the reciprocal lattice. Because this is 
very closely connected to the mathematical theory of Fourier 
Transformation, the space in which the reciprocal lattice is imbedded 
is best called Fourier Space. This gets rid of the term ‘reciprocal 
space’, which is a bad term because reciprocity is a symmetrical 
relation between two things and therefore unsuitable for designating 
one of them. The modern presentation of the (kinematical) diffraction 
theory is governed and simplified by the mathematical notion of 
Fourier transformation. 

It can be shown that a distribution of matter, or electron density, 
or any other property throughout the crystal, can be described in two 
fundamentally different, but fully equivalent ways. One is, to give 
this function, say p(x), point by point in physical space, that is, as a 
function of the position vector x (or its component numbers x1, xs, xs) . 
The alternative one is to give, instead, a complete description of all 
the diffraction effects obtainable from this distribution of mass with 
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all possible wave-lengths, and this means to give the value of the 
diffracted amplitude F throughout Fourier space, that is for all values 
of the position vector q = qrbr + qabr + qsbs in this space. The 
transition from one description to the other is performed by an inte- 
gration and is therefore a straightforward mathematical operation to 
write down, though in many cases difficult to carry out. In the case 
that p(x) is strictly periodic (which includes its extending everywhere 
to infinity) F(q) is zero except at the points of the reciprocal lattice 
where q = h; this may be expressed by saying that Fourier space is 
reduced to an ‘index space’, namely the points of the reciprocal lattice 
corresponding to the periodicity of p(x). In that case the integral over 
Fourier space degenerates to a sum, or the Fourier integral to a Fourier 
series. 

Since we cannot observe F(q) but only IF(q)1 from the intensity 
IF(y1)/s, we cannot perform the Fourier transformation which would 
lead us back directly from Fourier space to crystal space; instead, the 
‘Phase Problem’ looms large between the two spaces (see also the 
next chapter). 
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