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Series Preface

The long term aim of the Commission on Crystallographic Teaching in
establishing this pamphlet programme is to produce a large collection of
short statements each dealing with a specific topic at a specific level. The
emphasis is on a particular teaching approach and there may well, in time,
be pamphlets giving alternative teaching approaches to the same topic. It
is not the function of the Commission to decide on the ‘best’ approach
but to make all available so that teachers can make their own selection.
Similarly, in due course, we hope that the same topics will be covered at
more than one level.

The initial selection of ten pamphlets published together represents a
sample of the various levels and approaches and it is hoped that it will
stimulate many more people to contribute to this scheme. It does not take
very long to write a short pamphlet, but its value to someone teaching a
topic for the first time can be very great.

Each pamphlet is prefaced by a statement of aims, level, necessary
background, etc.

C. A. Taylor
Editor for the Commission

The financial assistance of UNESCO, ICSU and of the International Union of Crystallog-
raphy in publishing the pamphlets is gratefully acknowledged.



Teaching Aims

To use the ideas of vector and matrix calculus to introduce the concepts
of symmetry operations and symmetry elements and to derive the crystal-
lographic point groups on this basis.

Level

This is a fairly high level course which would be most appropriate to
the later years of undergraduate study or to the early years of post-
graduate research. It could be helpful in relating crystallography to other
disciplines such as physical chemistry and physics provided that the
mathematical background of the students is high enough.

Background Required

Students need a sound basic knowledge of vector and matrix calculus
and of group theory in order to appreciate this course.

Practical Resources

No particular practical resources are required.

Time Required for Teaching

This is a2 meaty course and could well occupy 7-10 hours of teaching
and discussion for full assimilation.



Metric Tensor and Symmetry Operations
in Crystallography

Germano Rigault
Istituto di Mineralogia, Universita di Torino, Ttaly

Introduction

In the first part of this monograph the concepts of symmetry opera-
tions, symmetry elements and symmetry groups based on the metric
tensor invariance are introduced.

In the second part the crystallographic point groups are derived: first
the enantiomorphic groups using all possible combinations of the rotation
axes; secondly the centrosymmetric groups; and, finally, the non-
enantiomorphic, non-centrosymmetric groups.

This scheme is directed to students who already have a basic knowledge
of vector and matrix calculus, and of group theory (i.e. students of the III
course in Chemistry).

I hope this presentation will be helpful to teachers in relating some
aspects of crystallography to other topics in the field of physical
chemistry.

In a crystallography course this subject should be preceded by an
introduction to direct lattice and to reciprocal lattice (distances and
angles, transformations) and followed by a discussion of space groups, i.e.
of the combinations of the possible symmetry operations of the type
{A/t}.

Metric tensor

The scalar product of two vectors r;, and r, referred to the same base
system consisting of the three non-coplanar vectors 7,, 7,, 75 is defined as:

6= (07 + YT+ 217Ts) * (0T + YTt 22Ts). (1)
In matrix notation it could be written:
TTTy TitT: TiTT|| X2
o =[xzl T Tt T T2t Tl Y2 s (2)
T3°Ty T3'T: T3tTadlZy

it is easy to verify that formulae (1) and (2) are equivalent. Relation (2)
can be written more briefly as follows:

1 r,=rGr, (3)
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xz -
where r, is a column matrix | y, | and r} a transposed column matrix
LZp
[x; y1 z,); Gis the 33 matrix of relation (2) and is called a metric matrix
or metric tensor*, because its elements g; =, - 7; are dependent both on
the length of the base vectors and on the angles formed by them.
If in (3) we assume r, =r,, we have:

6 en=n) . nl=rGn (4)
and therefore: )
Iry| =vriGr,. (5)

On the other hand, bearing in mind that r, * 1, = |r,| |r,] cos ¢, where ¢

is the angle between r; and r,, we have:
T "X =ny| |6y cos ¢ =riGr, (6)

and finally, using relation (5), we obtain:

{ ‘1 Gr 2
oS p=——m— | (7
VriGr, - VriGr,

Equations (5) and (7) are the rules to obtain the vector lengths and the
angles between vectors. The space in which the lengths and the angles

between vectors are defined, is called metric space. The metric is given by
the G matrix.

Symmetry operations
We can represent every symmetry operation by a matrix A:
Q1 Qi Gy3
A=|ay ax 0| (8)
a3y A3z a
the value of the elements of this matrix is dependent on the kind and
orientation of the corresponding symmetry element with respect to the
base system, and on the choice of the latter. In fact, in direct space a

symmetry operation transforms a given vector r into the vector r’; in
matrix notation we can write:

r'=Ar (9)

where r and r’ are the two column matrices whose elements are given by
the components of the two vectors.

* Note that on the basis of the commutative property of the scalar product the G matrix is
symmetric.

2



If the base system is given by the three vectors 7y, T2, T3 of a primitive
lattice, the elements a; of the A matrix are necessarily integers. In fact
relation (9) must hold true for every vector r of the lattice; A transformsr
in another vector r': in this case the components of r and r’ are integers,
and since relation (9) holds for every group of three integers relative tor,
the elements of A must be integers.

We will now examine other restrictions on A which allow us to define
the single elements a; as a function of the metric tensor. A symmetry
operation obviously must not change the length of a vector or the angle
between vectors. Therefore we have:

r-r=r-r

from which follows, applying relation (4):

rGr'=r'Gr
and from (9):
r'A'GAr=r'Gr
and finally, since the previous relation must hold for any value of r:
) G=A'GA (10)
ie.:
11 81z 813 ayy Gz Q|8 812 B3| @ Gi2 aja
212 82 8n|=|G2 @2 a3n|| 82 82 B2||dxn Qzy da3
13 823 &3 dys Q3 Qazdlgys 823 Baadla@z Qs O

(11)

This identity is the matrix expression of the scalar product conservation
on the crystallographic base system. All the matrices satisfying relation
(10), are symmetry operations on the base system defined by G (see the
example in the Appendix).

From relation (10), using matrix and determinant properties, we ob-
tain:

|Gl=1A-1G|-|A|

from which, keeping in mind that |A‘|=|A], follows that the determinant
associated with the A matrix must be equal to 1. If the determinant is
equal to +1 the symmetry operation is said to belong to the type I and it
is defined as a rotation; if the determinant is equal to —1 the symmetry
operation is of type II and defined as a rotoinversion.®

% One can demonstrate in fact that, since the determinant of A is equal to 1, there is no
variation of the unit-cell volume; when the value of the determinant is negative the base
system passes from a right-handed one to a left-handed one and vice versa.
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Symmetry elements and their orientation

The symmetry element is the geometric entity around which one or
more symmetry operations take place, and corresponds to the locus of the
points that are left unmoved by these operations. The position of the
symmetry element is obtained by solving the equation:

Ar=r
from which
. (A-1r=0
where 1 is the unit matrix. A solution, other than the trivial solution r =0,
can be obtained only if the condition |A — 1|=0 is satisfied. If this does
not happen, it is necessary to take into account the matrix A - A.

Rotations compatible with a lattice base system

If matrix A represents a type I symmetry operation, we can calculate
the rotation angle a from the value of the A matrix trace. We must
remember that the trace of A is invariant with respect to a base system
transformation.

In a lattice base system the trace is an integer number, since the
elements of the matrix are integers. In an orthonormal base system, the
counter-clockwise rotation of an angle a, for example, around the z axis

is given by: o 5 5
cosa -—sina
[sin o cosa 0]

0 0 1
and then the trace is equal to 2 cos &+ 1.
We have then: 2cos a+ 1 =an integer, from which it is seen that the
values of a compatible with a lattice base system are: 60° 90° 120°,
180°, 240°, 270°, 300°, 360°.

Symmetry groups

If A, and A, are two matrices representing a symmetry operation, it is
not difficult to demonstrate that the product matrix A=A, - A, also
Tepresents a symmetry operation. In fact, since A GA,=G and
A5GA, =G we have:

(AI. ¥ Az)t G- (Al g A2)=A}2A; <G A!A2= AlzGA2= G.

This result obviously holds not only for the product of two matrices
A, - A,, but also for the product of several matrices A, - A, A5 (a
special case of this is AY).

Furthermore, if A; represents a symmetry operation, A" also does: in
fact from relation Aj - G - A, = G, pre- and post-multiplying both mem-
bers by (Aj)"" and by (A,)" respectively, and keeping in mind that
(A =(ATY" we obtain:

G=(ATY)' -G - (A
4



Finally it is obvious that matrix 1 represents a symmetry operation
(identity) no matter what the base system defined by G may be. In this
way we have demonstrated that all group theory postulates are applicable
to the symmetry operations. Therefore the symmetry operations are the
elements of a group, called a symmetry group. Since all symmetry
operations A, leave a point with coordinates (0, 0, 0,) unchanged, (i.e. all
the symmetry elements pass through that point) these symmetry groups
are called point groups.

Derivation of the Crystallographic Point Groups

Groups containing only one rotation axis

If A, represents a rotation of an angle & around a given axis, A3,
A3, ..., A7=1 are the symmetry operations corresponding to rotations of
2a, 3a,...,na=2360° respectively, around the same axis; keeping in
mind the values of « compatible with a lattice base system we obtain the
groups named by the symbol n, ie. 1,2,3,4,6.

Groups containing more than one rotation axis

Let us take two symmetry operations: the first one corresponding to a
rotation of an angle & around one axis, and the second one to a rotation
of an angle B around another axis. Let us call o the angle between the
two axes. Then, the product of the two rotation matrices is also a rotation
matrix. The rotation axis of the product matrix is, in general, oriented in a
different way than the other two. We can obtain the matrices correspond-
ing to symmetry operations in the following manner: for a given ortho-
normal vector basis, A;A,A; (Fig. 1), the symmetry operation corres-
ponding to a counter-clockwise rotation of an angle & around the A; axis
is represented by the matrix:

As
A’
cosa —sina 0
R,=|sina cosa 0O
© 0 0 1
A:'
Fig. 1



If, on the other hand, the rotation takes place around the Aj axis,
which lies on the plane determined by A, and A, and forms the angle »
with Aj (Fig. 1), the corresponding symmetry operation is given by:

R3'= Rz " .R:; *. R;l
where:
cosw 0 sine
Rz — 0 1 0
—sinw 0 cosw

represents a counter-clockwise rotation of an angle w around A,. We
have to bear in mind, in fact, that R, - R; - R3’ represents the symmetry
operation R; as it is transformed by the operation R,.

In explicit form we have:

cosw 0O sinw][cosa —sina O0fcosw 0 —sine
Ri= 0 1 0 sinae cosa 0 0 1 0

—sinw 0 cosw 0 0 1llsinw 0 cosw
cos? w cos & +sin® w —COS @ SIN @  —COS @ SIN @ COS & +Sin w oS w
sin & cos @ cos & —sin & sin @
—Sin @ COs @ COS @ +COS ® Sin @ sin @ sin « sin? @ cos & +¢0s® @

The counter-clockwise rotation of an angle B around the Aj axis is
given by the matrix:

cosB —sinf8 0
Ry=|sinB cospB 0]
0 0 1

The combination of two rotations (one of an angle 8 around the A,
axis and the other one of an angle o around the A, axis which forms an
angle @ with A, and lies on the plane A,A,) is also a rotation,
represented by the R matrix, given by:

R=R4R,
cos” @ cos a +sin® @ —cos w sin & —COS @ Sin @ cos & +sin @ cos w
sin a cos w cOS @ —sin @ sin @
—sin @ COS @ COS @ +COS @ Sin @  Sin @ sin & sin? w cos & +cos® w

cosB =sinfB 0
sinB cosgB O]
0 0 1
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The trace of the R matrix, given by the sum of the elements of the
principal diagonal, is:

cos? w cos a cos B +sin® w cos B —cos w sin a sin B - —
— —sin & cos @ sin B+cos a cos B

— == sin® w cos & +¢0s% @
i.e.

trace = cos® w(cos a cos B+ 1)+sin® w(cos B+ cos a)
— 2 cos w(sin « sin B) +cos « cos B

= cos? w(cos a cos B—cos a—cos B+1)
—2cos w sin a sin B+cos a cos B+cos a+cos B. (12)

This rotation R must be compatible with the lattice as well. Therefore,
the value of the trace, invariant with respect to a base system transforma-
tion, must be an integer. The possible values of the trace are: +3, +2,
+1, 0, — 1. These numbers give the order of the resulting rotation axis.

When we assign to o and B in the expression (12) all the possible
values, depending upon the order of the rotation axis, we obtain the
second degree equations in cos w listed in Table 1, where m is an integer
representing the trace of the R matrix.

In Table 1 those solutions for which cosw is greater than 1 are
obviously not shown, as well as those that do not give as a result both @
and 180°—w. This last condition is evidently necessary if two axes
intersect.

On the basis of the results listed in the table, we can obtain the axis
combinations shown in Fig. 2, i.e. the point groups 222, 32, 422, 622, 23,
432.

Groups containing type II symmefry operations

To derive the point groups which contain type II symmetry operations
as well, it is necessary to remember that the product of two operations of
the same type is an operation of type I, while the product of two
operations of different type is an operation of type II.

In such point groups the operations of type I, equal in number to those
of type II, form a group.

From the 11 groups given above we can obtain 11 other point groups
which have as elements the type I operations, plus other operations
obtained from these by combining them with the inversion operation,
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Tablel

Order
Order of the
of the resultant
axes’ Trace m Possible values of @ axis Orientation?
+3  0° 180° 1 —
+2  30° 150° 210°, 330° 6 010
22  4dcosfw—1-m=0 +1 45° 135°225° 315° 4 010
0 60° 120°, 240°, 300° 3 010
-1 90° 270° 2 010
+2  0°,180° 6 001
+1 35°16), 144°44", 4
R 215°16', 324°44’
32 3c0?w-1-m=0 o s400u” 155576 3
234°44', 305°16'
-1 90°270° 2 1/2 —v/3/20
+1  0° 180° 4 001
42 2cosfw—1-m=0 0 45°135°225°315° 3 IN3=13 143
-1 90°270° 2 1V2 —11N20
: S 0 0°180° 3 001
&2 awacl=m=0 _y oggne 2 32120
. R +3 180° 1 s
33 9eosfw—bcosw 7o 010028, 250°52 3 001
-1 70°32,289°28' 2
4-3 3cosfw-2v3cosw +1 125°16', 234°4' 4
—1-2m=0 -1 54°44’ 305°16' %
6-3 3cos?w-6cosw +2 180° 6 001
-1-4m=0 -1 0° 2 001
B +3 180° 1 —
gy B0 _z,f:’i% 0 90°,270° 3 N3 -11B81143
-1 0 2 001
6-4 cos*w—2v3cosw there are no
+1-2m=0 possible solutions
6-6 cosPw—6cosw +3 180° 1 —
+5-4m=0 0 o° 3 001

! The first rotation axis is coincident with A,, the second one with A;.
2 The resulting axis orientation is given by the direction cosines referred to the orthonormal base system
A,A,A; and it is obtained solving the equation (R-1)}x=0.

represented by the matrix:

o O -
o O
= o O

The centrosymmetric groups so obtained, which have an order double
with respect to the order of the groups with which we started, are
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Table 2

Order
24 432
12 23 622
R 422

/

32

4 222

L]
—— ) ————  ——
W ——J

respectively:
1, 2/m, 3, 4/m, 6/m, mmm, §m, 4/mmm, 6/mmm, m3, m3m.

It is also possible to obtain groups containing type Il symmetry operations
but which do not contain the inversion operation. In this case we must first
obtain, from the starting groups which contain only type I symmetry
operations, the corresponding subgroups, which have order 3 with respect
to the starting groups.

From the scheme shown in Table 2 we see that there are 10 subgroups
satisfying this condition. So, to obtain the new groups we multiply by the
inversion operation all the operations of the starting group which do not
belong to the subgroup.

The sum of the operations obtained in this way, plus the operations
belonging to the subgroup gives all the elements of the new group. The order
of the new group is then equal to the order of the starting group.

Let us fully analyse an example: the group 422, of order 8, has the groups 4
and 222 as subgroups of order 4.

In the first case, the subgroup 4 contains the symmetry operations 4*,4%, 4%,
1; therefore the operations corresponding to an 180° rotation around the axis
orthogonal to the 4-fold axis are inverted. In this way we obtain mirror planes
parallel to the 4-fold axis, and the resulting point group is 4mm.

In the second case, the subgroup 222 contains three 180° rotations around
three perpendicular axes. The operations inverted in this case are 4°, 42 2410,
2. 10. We obtain the operations: 4%, 4%, m,q0y, (1 7o); the resulting point group
is 42m. Altogether we can derive 10 groups, using the following scheme. (The
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subgroup utilized is shown in parentheses.) -

432 (23) —— 43m
622 (6) —— 6mm
622 (32) —— 6m2
422 (4) ——— 4mm
422 (222) —— 42m
6 3 ——6
32 (3) —— 3m
4 2 ——a4a
222 2) —— mm?2
2 (1) —— m

Altogether thirty two point groups are possible in three-dimensional space:
11 enantiomorphic; 11 centrosymmetric; and 10 non-enantiomorphic,
non-centrosymrnetric.

Appendix

Let us examine, as an example, the cubic lattice: since the unit cell
constants are d, = by = ¢y, ==y =90° the metric tensor G is given

by:
gn O 0
G=]10 g, O}
0 0 gn

From relation (10) we have:
g11°1=gu-A""1-A
and consequently: '
A'-A=1.

In this particular case the matrices A are such that their inverse A~ is
equal to their transposed matrix A‘; therefore we can obtain the follow-
ing relations:

Q1101+ G5y Ay + 85,03, = 1 (11)
Q13813+ G312+ @313, =0 (12)
@11Qy5+ Az, A33+ A5,033=0 (13)
@12@12F 2005+ Q3285 = 1 (22)
@32033F @p2053+ Q33833 =0 (23)
Q13033+ Q33853+ A33a33= 1. (33)

Relations (11), (22), (33) impose the condition that, in each column of the
11



A matrix, one element is equal to +1, and the other two are equal to
zero. Relations (12), (13), (23) impose the same condition for each row,
since the element different from zero of each column must lie in a
different row from the one occupied by the non-zero element of the other
two columns.

In conclusion the symmetry operations compatible with a cubic lattice
are represented by the following matrices:

1 0 0 100"010"‘
0 1 0f, 001,[100

0 01 0 1 0. 0 0 1l

0 1 0 0 0 17 0 0 17
00 1] ; [1 0 0], 10 1 0
1 0 0 0 1 0 1 0 0

plus those obtained from the above matrices, considering, for each of
them, all the possible permutations of one, two and three negative signs.
It is not difficult to see that from each of the above six matrices, we can
obtain seven others containing negative elements. The symmetry opera-
tions compatible with a cubic lattice are, thus, 48 in all. Their respective
matrices are shown in Table 3. For each matrix in the table the corres-
ponding symmetry operation and the orientation of the symmetry ele-
ment, derived as above, are given.

From the table it is seen that the symmetry operation corresponding to
a rotation of 60° i.e. symmetry element of order 6, is incompatible with
the cubic lattice, but is compatible with a different lattice (ay= by, co,
a=p=90° y=120°. As it is known, all 32 point groups are subgroups
of m3m or 6/mmm or both.

Finally, the relation A‘GA = G can be used to derive, if matrix A is
known, the metric tensor compatible with the symmetry operation A.
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Table 3. A matrices for the cubic lattice

1 00]
ot1o
001

100
o0l
o1 o)

4100)
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o7 o
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o001

100
o110

I

3(111]
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o1 o)
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lo 10
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© 0 =
~-lo o
Q =lo

o)

‘0 0 =i
0 =0

-l O O

(1o1)

Moo
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oo 1
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o190
Too

4Eot o]

|'1oo
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ooO1
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1oo

4icluu]

—lo o
o ~io
Q0 0 =

=1
4lo10)
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1 0o
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00 7]
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100
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Q
-

L

4

>
g
&

o - o
o0 =i
-0 0
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o

o5
8
=,

(o1 0
007

X1
3m)

o1 o)
oo1

l1 o o]

3

D -0
o 0 =i
10 o

2[170)

[0 1 0]
100

oo 1]

(7o)

io0] [Too |
oro|l (o710
ool loos |
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