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Abstract

The Bayesian viewpoint had long suggested that structure
refinement should be performed by the Maximum-
Likelihood (ML) rather than the Least-Squares (LS)
method.. ML refinement has been implemented by the
combined use of the BUSTER and TNT programs and has
been tested on a severely incomplete and imperfect model
of crambin. Comparison with LS refinement in the same
conditions shows that the ML results are more accurate,
and that the log-likelihood gradient map gives clear
indications as to the location of the missing atoms.
Maximum-entropy techniques implemented in BUSTER
are then able to bring out an even clearer picture of how
the partial structure should be completed. Much
fundamental statistical work remains to be done to allow
the construction of likelihood functions better adapted to
the type of errors present in macromolecular models at
medium resolution.

0. Introduction.

The Bayesian viewpoint has long suggested that structure
refinement should be carried out by maximising the log-
likelihood gain LLG rather than by minimising the
conventional least-squares residual [1,2,3] : only the
maximum-likelihood (ML) method can take into account
the uncertainty of the phases associated to model
incompleteness and imperfection by suitably down-
weighting the corresponding amplitude constraints. It was
predicted [3,4] that ML refinement would allow the
refinement of an incomplete model by using the structure
factor statistics of randomly distributed scatterers to
represent the effects of the missing atoms, in such a way
that the latter would not be wiped out; and that the final
LLG gradient map would then provide indications about
the location of these missing atoms. As will be shown
below, these predictions have now been confirmed by
actual tests.
This contribution ends with a discussion of the two main
concerns at the moment in the fields of structure

refinement and validation where Bayesian methods have
much to offer, namely (1) getting better reliability
indicators for the final results of structure refinement, i.e.
the design of new likelihood functions better suited to the
nature of errors in macromolecular models at medium
resolution; and (2) ensuring that these indicators are
effectively optimised during refinement.

1. Least-squares: ills and current remedies.

In small-molecule studies, where the data to parameter
ratio is huge, the error-covariance matrix gives a wealth of
accuracy estimates, which can be cast into more readable
form (e.g. TLS analysis of thermal parameters). The
Luzzati error model and plot [5] can also be used to
estimate final positional accuracy.
With macromolecules, however, the data to parameter
ratio is never huge, even with restraints. In these
circumstances least-squares (LS) structure refinement can
produce overfitting artefacts by moving faster towards
agreement with moduli than towards correctness of the
phases, because its shift directions assume the current
model phases to be error-free constants. R-factors and
Luzzati plots then become misleading. Furthermore, when
the model is very incomplete, density for the missing part
tends to disappear rather than improve during LS
refinement.
The current remedies rely on cross-validation (CV) [6] as
a powerful device for detecting the onset of overfitting. It
is based on the simple notion that overfitting amounts to
fitting "noise" rather than “signal” in the data, which
causes a loss of predictive power towards data not used in
the fit. It must be borne in mind, however, that using CV
in this way as a stopping criterion in a LS refinement only
guarantees optimality along the least-squares path: it does
not guarantee that the solution reached is optimal in a
global sense. Assessing the accuracy of the results in the
absence of an error-covariance matrix is not
straightforward; the safest method available at present for
estimating r.m.s. coordinate error seems to be a Luzzati
plot from cross-validated σA values .[7]
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2. Seeking a more radical cure.

Improvements on the current state of the art (least-squares

refinement with cross-validation by R
free

) seem desirable
in two related directions, in both of which the fundamental
techniques of structure factor statistics occupy a central
position.
Firstly, since the LS path is deflected towards a premature
fit to the moduli by excessive confidence in the current
phases, it is natural to think of a feed-back mechanism
whereby the current estimate of model error would be
converted into a representation of the uncertainty on the
phases, so that the latter could be used with more caution.
Exercising this caution, however, necessarily involves
altering weights (variances), which is not allowed within
the least-squares method: the latter must therefore be
abandoned in favour of the maximum likelihood (ML)
method (see a similar argument about the treatment of
non-isomorphism in §2.4.1 of [8]).
Secondly, since in the ML method the model now
parametrises its own uncertainty, the question arises of
choosing an adequate error model. It will be argued that
the Luzzati error model is not suited to the heavily-
restrained macromolecular setting, and that a new class of
statistical models is required.

3. Maximum Likelihood vs. Least-Squares.

ML refinement offers an attractive generalisation over LS
[1,2,3,4] by allowing the refinement of parameters which
modulate the variances of the model structure factors: the
latter are no longer handled as values but as probability
distributions, in which variances and covariances can
represent both model imperfection and model
incompleteness. According to the standard protocol
outlined in [1] the probability distributions for model
structure factors are integrated over the phase to yield
predicted distributions of model amplitudes; substituting
the observed values of these amplitudes then yields the
likelihood Λ of the model. All parameters can then be
refined by maximisation of L or  of  L = log Λ. The error
covariance matrix is the final Hessian of  L, if it can be
calculated. It should be recalled that ML estimation is only
an approximation to Bayesian estimation, and that the full
force of the latter should be invoked whenever the
maximum of L is not so pronounced as to dominate over
prior probability in the application of Bayes's theorem.

4. ML refinement using BUSTER and TNT.

To ascertain the impact of taking phase uncertainty into
account on the path followed during structure refinement,

we have used BUSTER [4] and TNT [9] on a test data set
for crambin [10] suffering from both model imperfection
and model incompleteness, and compared the results of LS
and ML refinements from these data.
Model incompleteness resulted from taking only residues
1-27 (60% of the atoms) as the fragment to be refined; the
remaining 40% (residues 28-46) was modelled through a
non-uniform distribution for the missing atoms, defined by
a mask for that region which had been extensively
smoothed then blurred by a B-factor of 250. The
expectation values and variances for the structure factor
contributions from this pool of random atoms were
calculated within BUSTER according to the equations in
§2.1.0 of [4].
Model imperfection was introduced by heating fragment
1-27 to 1000°K then regularising it, using XPLOR [11],
thereby creating positional errors with an r.m.s. value of
about 1.0Å. This imperfection was treated statistically
through a Luzzati model parametrised by a refinable

"imperfection B factor" B
impf

, similar to the quantity

B
glo

 used in the parametrisation of non-isomorphism in

heavy-atom derivatives (see §2.4.1 of [7]). This B
impf

intervenes in the calculation of expectation values

〈 F
impf

(h) 〉 and variance parameters  σimpf
2

(h)   for the

structure factor contributions from the imperfect fragment
according to:

〈 Fimpf(h) 〉 = D(h) × Ffrag(h) (1)

σimpf
2

(h)  = (1–D(h)2) × 〈 Ffrag(h)  
2
〉
d*

h

 (2)

where

D(h) = exp 



 – 

1
4 Bimpf (d*

h
)2  (3).

The expectation values for the imperfect fragment and
random atoms contributions, and the variances or
covariances caused by imperfection and incompleteness,
are added and used as arguments of elliptic Rice
likelihood functions [12], in combination with any
experimental phase information which may be available.
Refinement was carried out against 1.5Å synthetic data
calculated from the correct whole crambin structure,
without solvent, with 3% r.m.s. noise added. The reference
LS refinement was performed using TNT in the
conventional way. The ML refinement proceeded as
follows. At each cycle BUSTER refined the values of

overall scale and B factors and of  B
impf

  by maximum-
likelihood, and calculated the value, gradient and Hessian
of  the log-likelihood gain  L  with respect to the quantities
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F
frag

(h).  This “osculating LS” approximation to  L  was
passed on to TNT where is was used to generate parameter
gradients (AGARWAL command) and curvatures, and to
carry out one cycle of positional refinement on the
fragment structure.
In these conditions ML refinement clearly outperformed
LS refinement, giving a mean-square distance to the
correct positions of  0.176 (ML) instead of  0.415 (LS).
Examination of histograms of positional errors showed
that, apart from a small number of outliers corresponding
to model atoms near the boundary with the missing region,
the ML fit is much tighter than the LS fit.
Visualisation of the time course of the refinement showed,
as anticipated, that not only the end point but the entire
path of the refinement is altered by switching from LS to
ML. This may be understood by noting that the
contribution to structure factor variances from model
imperfection, given by eq. (2) above, increases sharply
with resolution, so that high-resolution contributions to the
gradient maps are filtered out in the early stages then
gradually switched on as refinement proceeds. This feature
leads to considerable increases in the radius of
convergence of the refinement.
Furthermore the ML method produced a final  LLG
gradient map displaying highly significant, correct
connected features for the missing part (40%) of the
molecule, while the final LS difference map showed no
such features (see Figs. 1 and 2). This enhances the
possibilities of bootstrapping from an otherwise
unpromising molecular replacement starting point to a
complete structure. Essentially the same behaviour was
observed at 2.0Å resolution, and with experimental rather
than calculated data.
Other prototypes for ML structure refinement have been
built and tested by Read [13] (using XPLOR and an
intensity-based LLG) and by Morshudov [14] (using
PROLSQ [15] and the Rice LLG). The BUSTER+TNT
prototype has the advantage of being able to use external
phase information by means of the elliptic Rice function
[12], as well as prior information about non-uniformity in
the distribution of the missing atoms in incomplete
models. It also allows the ML refinement of an incomplete
model to be carried out in conjunction with phase
permutation for those strong amplitudes which are most
poorly phased by that model, i.e. have the largest

renormalised E 's ; or in conjunction with maximum-

entropy updating of the distribution of random atoms,
initially taken as essentially featureless within the given
envelope. Using the method of joint quadratic models of
entropy and LLG described in [22] before and after
refinement of the incomplete model produced the updated
distributions shown in Figs. 3 and 4, demonstrating clearly
the advantage of carrying out ML refinement within the
integrated statistical framework provided by BUSTER.
This “after-burner” establishes a seamless continuity

between the middle game of structure determination and
the end game of structure refinement.

5. Limits of the Luzzati model.

In the test calculations reported above, examination of
partially converged models during or after refinement at
lower resolution leads to the obvious conclusion that
questions of accuracy concerning the results of
macromolecular refinement at medium resolution are
fundamentally different from the same questions posed
and studied for small molecules at high or very high
resolution. In the latter case it is reasonable to treat the
model errors on the positions of different atoms as
statistically independent and thus to use Luzzati's
treatment for the errors they induce on the structure
factors. Macromolecular refinement, on the other hand, is
so heavily restrained that the model positional errors at
any stage are highly correlated. This affects such crucial
quantities as the effective number of degrees of freedom in
the error statistics, and the magnitude of the uncertainty
along each of these degrees of freedom. The Luzzati
model is then inappropriate as a means of relating
positional error statistics to structure factor statistics, and
hence as a means of constructing a good likelihood
function for ML refinement.

6. New error models for macromolecular
structures.

In a macromolecular refinement, model positional errors
will be correlated through “regular perturbations” of a
restrained macromolecular structure, i.e. perturbations
compatible with the restraints which propagate positional
errors between atoms or groups of atoms. New error
models are required for deriving the structure factor
statistics associated to random regular perturbations.
This may be illustrated by a simple physical analogy, for
the physical aspects of which the reader is referred to [16].
The assumption of statistically independent random
perturbations of atomic positions underlies not only the
Luzzati model in structure factor statistics, but also the
Einstein model of thermal motion in crystals and the
Debye model of thermal effects on scattering. What is now
needed in the field of structure factor statistics is the
equivalent of the Born & von Kármán lattice-dynamical
model of thermal motion, and of the use of these lattice
normal modes in the parametrisation of anisotropic B
factors and of thermal diffuse scattering.
An attractive possibility – if computer limitations can be
overcome – would be to use the softest lattice ‘normal
modes’ with wave vector q=0 from the Hessian matrix of
the restraint function and parametrise the joint positional
uncertainty model in terms of the variances of normal
coordinates along these modes. This correlated positional
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error model could then be converted into a parametrised
joint probability distribution of complex structure factors,
then of amplitudes, which would yield the best likelihood
function for refining both the structural model parameters
and the mean-square normal coordinates describing the
errors. At the end of the refinement, this error model
would embody the description of the accuracy of the
refinement results.

7. Maximum-likelihood refinement for non-
macromolecular problems.

The two main sources of bias in macromolecular LS
refinement results, namely the low observation-to-
parameter ratio and the inadequate treatment of phase
uncertainty, are also present in other fields of
crystallography, in particular in Rietveld refinements of
powder structures [17] and in multipole refinements of
accurate electron densities [18-21]. In the powder case the
notion of phase can be generalised to that of a
hyperphase,[2] the loss of hyperphase information
comprising both that which results from the overlap of
different Bragg reflexions and from the ordinary loss of
phase for these Bragg reflexions. In this instance,
hyperphase-mediated bias is even more pernicious than the
phase-mediated bias considered above and is the likely
cause of numerous recently diagnosed pathologies in test
Rietveld LS refinements. The probability distributions and
likelihood functions for powder data derived in [2] will
enable the incorporation of hyperphase uncertainty into
the refinement and yield a maximum-likelihood Rietveld
method which can be expected to cure the observed biases
of the current LS method.

8. Validation and error models.

The use of cross-validation in the choice of refinable
model parameters and in the validation of refinement
results [7] has so far been based on the conventional
crystallographic R-factor, which is not a particularly
optimal criterion from the statistical point of view. In
particular, concern has arisen about possible dangers of its
use in the presence of non-crystallographic symmetries,
since data belonging to the test set may happen to be
strongly correlated to data which are being fitted, thus
creating misleadingly low values for the free R-factor. The
problem is clearly that the R-factor definition makes no
reference to any predictable variability in statistical
dispersion from one data item to another, nor to expected
patterns of correlation in this dispersion.
The Bayesian viewpoint gives an unequivocal answer to
this dilemma. Retaining the idea of cross-validation as a
measure of the predictive power of a statistical model
towards yet unseen data (already present in the scheme
proposed in §8.1 of [22]) it leads naturally to suggesting

that the free R-factor be replaced by the free log-

likelihood gain L
free

 calculated over the same test data
set. This viewpoint is none other than that formulated in
[1] and [4] and does require that the predictions from the
fit of the actively used data be couched in terms of a
conditional probability distribution for the test data, from
which the free LLG (e.g. from the model at the preceding
cycle) can be calculated by the standard procedure.
Since the strong correlations between amplitudes created
by non-crystallographic symmetries can be taken into
account in the calculation of likelihoods [3], the use of

L
free

 should be immune to the problems encountered by

R
free

 in this case. In less problematic cases L
free

 can still
be expected to perform better, in view of the Neyman-
Pearson optimality property [1], provided the likelihood
functions used are capable of correctly representing the
state of knowledge (or uncertainty) prevailing at each
stage. In the refinement context this adds to the urgency of
the developments outlined in §7.

9. Conclusion.

It has been shown that maximum-likelihood structure
refinement, long advocated by the first author, is greatly
superior to conventional least-squares refinement by virtue
of its ability to deal correctly with the phase uncertainties
introduced by model imperfection and incompleteness.
The end results are more accurate, the radius of
convergence is increased, and the final log-likelihood
gradient map gives useful indications as to the location of
missing atoms.
The increase in radius of convergence may rapidly
overturn the present reliance on simulated annealing [11]
as a means of getting out of local least-squares minima:
the automatic “blurring” of the LLG gradient maps in the
early stages of the refinement will largely suppress such
spurious minima. It is thus conceivable that simulated
annealing might be dispensed with altogether in the future,
any possible bifurcation being handled through phase
permutation techniques.
The optimal performance of ML refinement will depend
crucially on the design and implementation of better
statistical error models in real space as the basis for
obtaining better likelihood functions in structure factor
space. Much remains to be done in this area, as well as in
making better use of off-diagonal interactions during the
likelihood-maximisation process itself.
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Figures.

Figure 1  The log-likelihood gradient map at the end of LS refinement. The missing structure is drawn for
reference. There is very little reliable information to help complete the refined partial structure.
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Figure 2  The log-likelihood gradient map at the end of ML refinement. There is considerably more reliable
information to help complete the partial structure after it has been refined.
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Figure 3  Maximum-entropy update of the distribution of missing atoms before ML refinement of the
partial structure.
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Figure 4  Maximum-entropy update of the distribution of missing atoms after ML refinement of the
partial structure.


