Applications of XAFS to materials and nano – science

Federico Boscherini
Department of Physics and Astronomy
University of Bologna, Italy
federico.boscherini@unibo.it
www.unibo.it/faculty/federico.boscherini
Plan

• Examples of applications, using both
 – results which have “stood the test of time”
 – recent results
Today’s topics

• Dopants, defects
• Alloys
• Phase transitions
• Thin films, interfaces
• Nanostructures
XAFS and dopants/dilute elements

• Only the structure around the photo-excited atom is probed
• Fluorescence detection greatly enhances sensitivity
• Present sensitivity limit (depends on sample)
 – dopants in the bulk
 • EXAFS \(\sim 10^{18} \text{ at/cm}^3 \)
 • XANES \(\sim 10^{17} \text{ at/cm}^3 \)
 – thin films (single layer) \(\sim 10^{14} \text{ at/cm}^2 \)
Si in GaAs

- Si common dopant in GaAs
- Si:GaAs exhibits deactivation
- Accepted explanation: amphoteric nature of Si
 - Si$_{Ga}$ (Si in Ga site): donor
 - Si$_{As}$: acceptor
 - At low concentration all Si$_{Ga}$, at higher concentrations both: autocompensation
Si in GaAs: XANES

- Samples studied
 - Si:GaAs(001)
 - at low concentration Si_{Ga}
 - Si:GaAs(311)A
 - at low concentration Si_{As}
- XANES exhibit reasonable evolution with concentration
- Difference in lineshape between Si_{Ga} and Si_{As} due to difference in charge on Si and conduction band DOS
Si in GaAs: XANES

- Fitting of Very High concentration sample indicated that lineshape cannot be explained only on the basis of combination of Si_Ga and Si_As
Si in GaAs : EXAFS

• Compare EXAFS spectra with those of $\text{Si}_x\text{Ge}_{1-x}$ random alloys

• Ge has similar scattering amplitude to Ga and As

• VH sample spectrum very similar to $\text{Si}_{0.2}\text{Ge}_{0.8}$
 – 20% of Si is bonded to Si

• **Conclusion**: deactivation due also to presence of Si dimers and clusters
Fe in GaN

• Candidate material for spintronic applications
• Grown by Metal Organic Vapor Phase Epitaxy
• Fe concentrations
 \[4 \times 10^{19} \text{ cm}^{-3} - 4 \times 10^{20} \text{ cm}^{-3} \]
• Aims:
 – Determine the site of Fe in GaN
 – Determine the effect of Si co-dopant
 – Correlate with magnetic properties
Fe:GaN data

Low Fe content:
- only two Fe-N (R_1) and Fe-Ga (R_3) bonds.
- Fe substitutional; bond length in agreement with DFT for Fe$^{3+}$

High Fe content
- Appearance of Fe-Fe (R_2) coming from a precipitated Fe$_x$N phase
Si,Fe:GaN data

- For the same Fe content Si co-doping prevents the formation of Fe$_3$N
- No evidence of the Fe-Fe bond at R$_2$
Si affects the charge state of Fe

- Si addition causes partial reduction of Fe$^{3+}$ ions to Fe$^{2+}$
- Notable ability of XAFS to determine structure and valence
Fe:GaN conclusions

• Magnetization due to various components, including one due to ferromagnetic nanocrystals of \(\varepsilon\)-Fe\(_3\)N, \(\alpha\)-Fe, \(\gamma'\)-Fe\(_4\)N, \(\gamma\)-Fe\(_2\)N and \(\gamma\)-Fe

• Si codoping reduces the formation of Fe rich nanocrystals and permits a higher incorporation of Fe.

• Use new term: \((\text{Ga,Fe})\text{N} \) nanocomposites, not real doping
Low Z dopants and XAS

- C, N & O often used as dopants
- Experimentally difficult: low fluorescence yield, soft X-rays, UHV

![Graph showing fluorescence yield vs Z for K and LIII edges](image)

ALOISA beamline @ ELETTRA
Dilute nitrides: $\text{GaAs}_{1-y}N_y$, $\text{In}_x\text{Ga}_{1-x}\text{As}_{1-y}N_y$

- Anomalous non-linear optical and electronic properties of III-V nitrides
- Red shift of the band gap by adding few % of nitrogen (\approx 0.05-0.1 eV per N atomic percent in InGaAsN)
- Huge and composition dependent optical bowing
Hydrogen – nitrogen complexes in dilute nitrides

- Hydrogenation leads to reversible opening of E_g

$E_K \approx 100 \text{ eV}$
Hydrogen – nitrogen complexes in dilute nitrides

• Which is the hydrogen –nitrogen complex responsible for these changes?

Some candidate low energy structures
H–N complexes in dilute nitrides

- DFT calculations to determine lowest energy geometries
- Full multiple scattering XANES simulations
- **Answer:** C_{2v} – like complexes are mostly present
- 3-D sensitivity of XANES!!

Combined XAFS and XES
Amidani et al., Phys. Rev. B 89, 085301 (2014), talk MS 103.O05

XAS

XES

XES now possible, a complementary tool with sensitivity to
• Valence band electronic structure
• Atomic structure
• New level of refinement in x-ray spectroscopy
Combined XAFS and XES

XES
- local VBM unchanged
- decrease of main peak in favor of lower energy states

XAFS
- main peak disappears and local CBM is strongly blue-shifted
- N states move far from the CBM
XAFS and XES simulations

Good news: all spectral features are well reproduced by:

- MS spectral simulations based on DFT atomic structure
- ab-initio DFT simulations of electronic and atomic structure
XAFS and alloys

• High resolution in probing the local coordination in first few coordination shells
• Study, as a function of composition
 – Deviation of local structure from average structure
 – Atomic ordering
Semiconductor alloys

- For example: $\text{In}_x\text{Ga}_{1-x}\text{As}$
- Alloying leads to changes in
 - band-gap
 - lattice parameter
Vegard’s law & Virtual Crystal Approximation

• The lattice parameter depends linearly on concentration: “Vegard’s law”

• VCA: a linear and isotropic variation of the local structure with concentration
 – All atoms retain symmetric tetrahedral bonding

GaAs

In$_{0.5}$Ga$_{0.5}$As
Bond lengths in $\text{In}_x\text{Ga}_{1-x}\text{As}$

- The high resolution of EXAFS in determining bond lengths (0.01 Å) has shown that they stay close to sum of covalent radii
- Violation of the VCA
- First evidence of strong local structural distortions
XAFS and phase transitions

• Measure local structure through the phase transition

• XAFS has highlighted the difference between the real local structure and the average structure
Ferroelectric Phase transitions in PbTiO$_3$

- At T$_c$ = 763 K PbTiO$_3$ undergoes tetragonal to cubic phase transition
- T < T$_c$ it is ferroelectric (permanent dipole moment)
- Phase transition believed to be purely displacive (no local distortion for T > T$_c$)
Ferroelectric Phase transitions in PbTiO$_3$

- Ti and Pb XAFS data
- "Local lattice parameters" and local distortions do not change at T_c
 - c: sum of R(Ti-O$_1$)
 - a: calculated from R(Ti-O$_2$)

- Conclusion
 - local distortions survive above T_c
 - Above T_c random orientation of domains with permanent dipole moment
Phase change mechanism in optical media

- Phase change optical discs used in DVD-RAMs are based on Ge$_2$Sb$_2$Te$_5$ (GST)
- Writing: appropriate laser pulses induce reversible phase changes from amorphous to crystalline
- Reading: the reflectivity of the two phases is different
- What is associated structural change?
Phase change mechanism in optical media

- Phase change is based on “umbrella flip” of Ge, from octahedral to tetrahedral coordination within Te fcc lattice
 - Three strong Ge–Te covalent bonds remain intact
 - Weaker Ge–Te bonds are broken by laser pulse
- Phase change in GST is fast and stable because the process does not require rupture of strong bonds or diffusion
Time resolved XAFS of phase change

- Sub nanosecond time resolved XAFS with μm spot size at SPring-8
- The intensity of the “white line” is different for crystalline, amorphous and liquid phases

![Graph showing the intensity of the white line for different phases](image)

- Crystallized band
- As-deposited amorphous
- Amorphous marks
Time resolved XAFS of phase change

- White line intensity versus time
 - 100 ps time resolution
- Phase change does not involve melting
XAFS and thin films / interfaces

• With specific detection schemes sensitivity to very thin films achievable
 – Grazing incidence
 – Electron / fluo detection

• Exploit linear polarization of SR to obtain information on
 – Orientation
 – Lattice symmetry
Transitions to π^* molecular orbitals give rise to strong peak

Use of linear dichroism

- Intensity of peaks related to transitions to π^* orbitals depends on the orientation between the orbital and \vec{E}.
C K edge XANES of graphite

- Very clear dependence of peak due to transitions to π^* orbitals on orientation
- π^* are perpendicular to surface plane
Orientation of molecules on surfaces

- Typical application: determination of the orientation of molecules on single crystal surfaces
- \(\text{N}_2 \) on Ni(110)
- Molecules are "vertical"

XAFS and nanostructures

• XAFS is a local, short range, effect
 – Origin: core hole lifetime ($t_{\text{hole}} = 10^{-16} - 10^{-15} \text{ s}$) and electron mean free path (5 – 10 Å).

• Same formalism applies to molecule, cluster or crystalline solid
 – insensitive to variations of morphology
 – sensitive to low thicknesses, high dilutions

• Excellent probe of variations in local environment due to
 – Size effects
 – Change 3D / 2D / 1D
• Need for understanding of local bonding
• Analysis of aspect ratio provides measurement of relative amount of relaxed islands

Ge/Si(001)
(1 ML = 0.135 nm, WL = 3 ML)
Quantum Dots: Ge edge XAFS

- Assuming random alloy average composition is Ge$_{0.70}$Si$_{0.30}$
Conventional SK growth
SK growth with interdiffusion
Conclusions

• XAFS has been used to address important structural issues in materials/nano science

• It has specific advantages, especially
 – Atomic selectivity
 – Sensitivity to high dilutions & surfaces/interfaces
 – Equally applicable to ordered or disordered matter
 – EXAFS: high resolution for first few coordination shells
 – XANES:
 • valence/oxidation state
 • 3D structural sensitivity
 – µm spot size now available and decreasing fast
 – Time resolution in the 10 -100 ps range available and with FELs decreasing to 10 fs
X-Ray Absorption Fine Structure

- "EXAFS": Coordination numbers
 - Interatomic distances
 - Disorder of distances

- "XANES": Absorber symmetry and valence/oxidation state
 - Electronic structure of unoccupied states
 - Medium range structure
EXAFS

- **Extended X-ray Absorption Fine Structure**
- When applicable, fit with the “standard” EXAFS equation

\[\chi(k) = S_0^2 \sum_{j=\text{shells}} N_j A_j(k) \sin[2kr_j + \varphi_j + 2\delta_1] e^{-2k^2\sigma_j^2} \]

Measure:
- Coordination number
- Interatomic distance
- Debye Waller factor
 - thermal vibration
 - static disorder

From *ab-initio* calculations or from reference compounds

\[k = \frac{\sqrt{2m(\hbar \omega - E_B)}}{\hbar} \]
XANES

- **X-ray Absorption Near Edge Structure** (also NEXAFS)

$$\sigma(\hbar\omega) = 4\pi^2 \alpha \hbar\omega \left| \langle i | \hat{\mathbf{e}} \cdot \mathbf{r} | f \rangle \right|^2 \rho(E_f)$$

$$\Delta \ell = \pm 1, \quad \Delta m_\ell = 0$$

(lin. pol. light)

- “Molecular orbital” approach: 1 electron approximation, constant matrix element: probe site and symmetry projected density of states of final electronic states

- “Multiple scattering” approach: structural interpretation through simulation
Characteristics of XAFS

• Atomic selectivity (choose Z via photon energy)
• Equally applicable to ordered or disordered matter
• A core level technique: a local probe
• Interesting underlying physics
• Sensitive to high dilutions
• EXAFS: high distance resolution
• XANES: 3D structural sensitivity
• Recent developments:
 – Sub μm spot size
 – ns, ps and …fs time resolution
Role of XAFS in Materials Science

Objective: an understanding of physical properties of novel materials based on knowledge of their local structure