
WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN

Jungfraujoch: a Data Acquisition and
On-the-fly Analysis System for HDR MX
14th August 2021

Filip Leonarski :: Beamline Data Scientist :: MX Data Group

Page 1

• FPGA based detector data acquisition

• Compression for diffraction images

Topics

Page 2

WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN

FPGA based detector data acquisition

Page 3

Page 4

MX detector data rates double every 2 years

0.1

1

10

100

2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

Fr
am

e
ra

te
 [G

B/
s]

Year

2007 PSI PILATUS 6 Mpixel 12.5 Hz 0.2 GB/s

2014 Dectris EIGER 16 Mpixel 133 Hz 3.4 GB/s

2019 Dectris EIGER 2 XE 16 Mpixel 400 Hz 13.5 GB/s

2020 PSI JUNGFRAU 4 Mpixel 2200 Hz 18.4 GB/s

2022 PSI JUNGFRAU 10 Mpixel 2200 Hz 46.1 GB/s

• Beamline PXIII was selected as a pilot
project for SLS 2.0 (Phase 0) – it will get
major refurbishment in 2022

• One of developments is tiled JUNGFRAU
10 Mpixel detector for native-SAD
applications – producing up to 46 GB/s

• Need smooth integration of the detector
into beamline

• 4 Mpixel system planned for installation
this year

Task: JUNGFRAU 10 Mpixel in 2022

Page 5

• What is needed to operate JUNGFRAU detector?

- UDP receiver
- Conversion from raw to energy/photons
- Peak finder for fast experimental feedback
- Bitshuffle prefilter
- Write to memory

• JUNGFRAU at a synchrotron must be internally
operated at ≥ 1 kHz frame rates for continuous
measurement at synchrotron

• Each of these task is difficult at 46 GB/s

• All tasks have low computational complexity and
simple logic, but data throughput is high

Task: JUNGFRAU integration

Page 6

VMXi DLS
JUNGFRAU 1M tested at

multilayer monochromator
high-flux beamline

JUNGFRAU 4M tested at X06DA
Swiss Light Source (CH) –

special box to allow to cool
detector to – 15oC

• Raw to photon conversion example

• The most powerful single server
available from PSI vendor
- 4 CPU socket, 1.5 TB RAM, NVMe SSD

drives and Mellanox fiber ethernet
network cards

• Profiling and performance tuning

• Outcome: the server can handle
JUNGFRAU 4Mpixel at 550 Hz, but not
more

• Bottleneck: memory bandwidth of CPU
is too small for conversion procedure

Conventional hardware results

Page 7

See: “JUNGFRAU detector for brighter x-
ray sources: Solutions for IT and data
science challenges in macromolecular
crystallography” Leonarski et al.
Structural Dynamics (2019)
https://doi.org/10.1063/1.5143480

https://doi.org/10.1063/1.5143480

• FPGAs
- Real-time device:

design guarantees throughput and
latency

- Fast memory bandwidth:
up to 460 GB/s per chip with HBM2

- Vast I/O options:
100G ethernet, PCIe, ...

• Also considered GPUs, but lacked necessary
functionality

• Very powerful, but significant effort in
development, due to need of specific hardware
design skills and hardware description languages

Field programmable gate arrays (FPGA)

Page 8

Alpha-Data 9H3 board

OpenCAPI

Page 9

FPGA
board

POWER9
CPU

OpenCAPI
cable

• Similar to virtual mode starting from 80286/80386
CPUs (as opposed to real mode), which hides
complexity of system memory

• Each process has its own virtual address space
- Simplicity: virtual address space is not dependent

on system physical memory
- Safety: there is no (easy) way to access memory

of another process
• Translation virtual <-> physical memory is done by

CPU electronics

Page 10

What difference brings OpenCAPI?

Source: Wikipedia

• Standard HW interfaces, like PCIe, are
not aware of virtual address space –
developer need to address issue,
increasing complexity

• OpenCAPI allows external accelerators
(like FPGA) to attach directly to a
virtual address space of the process

• Drastically reduced complexity of
interconnect

Page 11

What difference brings OpenCAPI?

POWER9
WikiChip

OpenCAPI 25G

• Aim: (relatively) fast transformation of SW
based algorithms to FPGA

• High-level synthesis -> compile C++
functions into hardware description
language
- Not as efficient as pure HDL
- Easier to write
- Easier to test and plug into CI pipeline

• Memory coherent interconnect
(e.g. OpenCAPI, Intel CXL)
- Virtual, not physical, addressing
- CPU cache coherent
- No need for OS/kernel expertise
- Requires special hardware (at the

moment)

FPGA as software development project

Page 12

Both C++ verification and HDL simulation
are part of CI:
C++ 8 minutes to cover 13 scenarios and
95% of code
HDL 4 hours to cover single simple
scanario

Page 13

Jungfraujoch server

Ethernet
UDP/IP

Dark
current Conversion Strong

pixel finder Bitshuffle Memory
writer

FPGA board with OpenCAPI interface

- Data acquisition
- Initial data analysis

- Pre-compression
(2.5 Mpixel/board for JF)

Up to 50 GB/s acquisition and
data analysis in a single 2U

IBM POWER9 server with 1-4 FPGA
boards

Frame
summation

Page 14

Jungfraujoch & Gold Standard

Dectris Neggia ✅ Dectris Albula ✅ DIALS ✅

• Detector and data acquisition system was sent in
November for an experiment in Photon Factory, KEK

• More than 2,000 datasets collected for protein
targets, few real-life native-SAD structures solved

• Due to pandemic, detector support and
development (including deployment of new FPGA
design) was done fully remotely from Switzerland

Commissioning in KEK (Jan – May 2021)

Page 15

BL-1A Photon Factory
JUNGFRAU detector (up)
tested in helium chamber

for native-SAD
measurements with 3.75

keV X-rays

• Detector and data acquisition system was sent in
November for an experiment in Photon Factory, KEK

• More than 2,000 datasets collected for protein
targets, few real-life native-SAD structures solved

• Due to pandemic, detector support and
development (including deployment of new FPGA
design) was done fully remotely from Switzerland

Commissioning in KEK (Jan – May 2021)

Page 16

BL-1A Photon Factory
JUNGFRAU detector (up)
tested in helium chamber

for native-SAD
measurements with 3.75

keV X-rays

Results will be presented in another presentation:

The crystallomics pipeline, a shotgun approach on native proteomes to
(re)discover the unsuspected

by Sylvain Engilberge
18.08 11:45

Possible gain from using FPGA based system

Page 17
Courtesy: B. Mesnet (IBM)

Possible gain from using FPGA based system

Page 18
Courtesy: B. Mesnet (IBM)

WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN

Compression of diffraction images

Page 19

• FPGA processing can help in early stages of the pipeline, however transfer and
storage remain an issue - efficient compression can be a good answer

• Bitshuffle/LZ4 introduced with EIGER images is currently dominant

• There is lot of happening in the community:
- Argonne: SZ lossy compression project for ExaFEL

https://arxiv.org/pdf/2105.11730.pdf
- Argonne: On-chip compression of X-ray data following counting statistics.

https://doi.org/10.1107/S1600577520013326
- RIKEN and FSU: TEZIP based on recurent neural networks

https://ieeexplore.ieee.org/document/9499386

• Is HDR MX community ready to embrace these developments?
• Is there a way to tweak bitshuffle/LZ4?

Efficient compression should be
complementary to HW development

Page 20

https://doi.org/10.1107/S1600577520013326
https://ieeexplore.ieee.org/document/9499386

How does current compression work?

Page 21

Bitshuffle

• Precompression filter
• Makes compression easier, but there is

no actual data reduction at this step

LZ4

• Popular lossless compressor
• Dictionary algorithm
• Byte oriented

• Algorithm like LZ4 try to find repeatable sequences of bytes, which are replaced
by some special tokens

• They focus on bytes, as texts are encoded as bytes

• The longer these sequences are – the more efficient is compression

• However, it is hardly expected to find repeatable byte sequences in diffraction
images

Byte compression of pixels in LZ4

Page 22

1 0 0 2 0 0 1 0

Bitshuffle filter – input sequence

Page 23

1 0 0 2 0 0 1 0

Bitshuffle filter – input sequence in binary

Page 24

00000001 00000000 00000000 00000010 00000000 00000000 00000001 00000000

1 0 0 2 0 0 1 0

Bitshuffle filter – shuffling operation

Page 25

00000001 00000000 00000000 00000010 00000000 00000000 00000001 00000000

1 0 0 2 0 0 1 0

000000000 000000000 00000000 00000000 00000000 00000000 00100000 10000010

Bitshuffle filter - outcome

Page 26

00000001 00000000 00000000 00000010 00000000 00000000 00000001 00000000

1 0 0 2 0 0 1 0

000000000 000000000 00000000 00000000 00000000 00000000 00100000 10000010

0 0 0 0 0 0 32 130

Long sequence of zero – low
entropy: trivial to compress

High entropy: unlikely to compress
this part

Bitshuffle filter - outcome

Page 27

00000001 00000000 00000000 00000010 00000000 00000000 00000001 00000000

1 0 0 2 0 0 1 0

000000000 000000000 00000000 00000000 00000000 00000000 00100000 10000010

0 0 0 0 0 0 32 130

Long sequence of zero – low
entropy: trivial to compress

High entropy: unlikely to compress
this part

MX diffraction images (esp. collected at high frame rates) contain
mostly low counts (background) and small number of high counts

(Bragg spots)

• On CPU, bitshuffle is implemented as combination of some bit instructions –
there is no perfect CPU instruction to do it

• Bitshuffle step is generally fast (GB/s), but it will be a bottleneck, if compression
is also fast

• Doing bitshuffle on FPGA is trivial – just connecting wires properly between
source and destination

Bitshuffle implementation

Page 28

• LZ4 is made to be extremely fast to decompress, relatively simple in construction

• Y. Collet, author of LZ4, made new algorithm called Zstandard (at Facebook)

• github.com/facebook/zstd

• Zstandard is similar to LZ4, but has more options within the algorithm

• By setting Zstdandard compression level, one can set tradeoff between
performance and compression ratio

LZ4 has excellent performance, but no flexibility

Page 29

https://gregoryszorc.com/blog/2017/03/07/better-compression-
with-zstandard/

• Lysozyme dataset collected with JF4M

• Zstandard provides flexibility, not available with LZ4
• In general Zstandard compression is slower than LZ4

Zstandard for diffraction image

Page 30

Compression ratio Throughput

Bshuf+LZ4 7.0x 2.5 GB/s

Bshuf+Zstandard (default) 8.0x 0.6 GB/s

Bshuf+Zstandard (+10) 8.3x 0.2 GB/s

Bshuf+Zstandard (-10) 6.8x 1.9 GB/s

All performance numbers from AMD Ryzen 5950X

• Lysozyme dataset collected with JF4M

• Zstandard provides flexibility, not available with LZ4
• In general Zstandard compression is slower than LZ4

• Zstandard can benefit from large compression blocks. With 1 MB block
compression factor of 9.0x could be reached with 1.1 GB/s throughput.
LZ4 doesn’t gain from larger block size.

Zstandard for diffraction image

Page 31

Compression ratio Throughput

Bshuf+LZ4 7.0x 2.5 GB/s

Bshuf+Zstandard (default) 8.0x 0.6 GB/s

Bshuf+Zstandard (+10) 8.3x 0.2 GB/s

Bshuf+Zstandard (-10) 6.8x 1.9 GB/s

• Do bitshuffle in FPGA and transfer bitshuffled images to host memory
(currently 8 kB block)

Speed-up in Jungfraujoch

Page 32

Compression ratio Throughput

LZ4 (bshuf on CPU) 7.0x 2.5 GB/s

LZ4 (bshuf on FPGA) 7.0x 4.0 GB/s

• Do bitshuffle in FPGA and transfer bitshuffled images to host memory
(currently 8 kB block)

• Use custom Zstandard compressor – only compress long sequences of zeroes
(at least 5 bytes), no compression for other byte values; standard decompressor

Speed-up in Jungfraujoch

Page 33

Compression ratio Throughput

LZ4 (bshuf on CPU) 7.0x 2.5 GB/s

Zstandard (bshuf on CPU) 8.0x 0.6 GB/s

LZ4 (bshuf on FPGA) 7.0x 4.0 GB/s

Zstandard/RLE (bshuf on FPGA) 6.4x 7.4 GB/s

• Do bitshuffle in FPGA and transfer bitshuffled images to host memory
(currently 8 kB block)

• Use custom Zstandard compressor – only compress long sequences of zeros (and
ones), don’t do any other compression; standard decompressor

Speed-up in Jungfraujoch

Page 34

Compression ratio Throughput

LZ4 (bshuf on CPU) 7.0x 2.5 GB/s

Zstandard (bshuf on CPU) 8.0x 0.6 GB/s

LZ4 (bshuf on FPGA) 7.0x 4.0 GB/s

Zstandard/RLE (bshuf on FPGA) 6.4x 7.4 GB/s

Just compressing zeros of bitshuffled
data accounts from most of

compression and can be done extremly
efficient (incl. FPGA implementation).

To get beyond this, one needs
significant effort.

• EIGER and JUNGFRAU modules are both
1024 col x 512 lines

• However pixels on ASIC boundaries are larger, leading
to double sized pixel

• In post-processing these pixels are replaced with 2
(edges) or 4 pixels (corners)

• Resulting 1030x514 pixel image better represents
geometry, but has worse properties for splitting into
packets and blocks (not power-of-two)

• It is relatively complex to add these multipixels in
electronics (FPGA) + they add small to image size
without extra information

There is one issue - multipixels

Page 35

• EIGER and JUNGFRAU modules are both
1024 col x 512 lines

• However pixels on ASIC boundaries are larger, leading
to double sized pixel

• In post-processing these pixels are replaced with 2
(edges) or 4 pixels (corners)

• Resulting 1030x514 pixel image better represents
geometry, but has worse properties for splitting into
packets and blocks (not power-of-two)

• It is relatively complex to add these multipixels in
electronics (FPGA) + they add small to image size
without extra information

There is one issue - multipixels

Page 36

Requirement to have multipixels precludes
bitshuffling on FPGA at the moment.

The solution is simple – add these at
decompression with special HDF5 plugin (in

pipeline for development).

Is there a more elegant solution?

• EIGER and JUNGFRAU modules are both
1024 col x 512 lines

• However pixels on ASIC boundaries are larger, leading
to double sized pixel

• In post-processing these pixels are replaced with 2
(edges) or 4 pixels (corners)

• Resulting 1030x514 pixel image better represents
geometry, but has worse properties for splitting into
packets and blocks (not power-of-two)

• It is relatively complex to add these multipixels in
electronics (FPGA) + they add small to image size
without extra information

There is one issue - multipixels

Page 37

Requirement to have multipixels precludes
bitshuffling on FPGA at the moment.

The solution is simple – add these at
decompression with special HDF5 plugin (in

pipeline for development).

Is there a more elegant solution?

How about placeholders for module gaps?
These are even bigger problem and even

less useful.
But here GOLD STANDARD is an answer!

Page 38

Summary

Jungfraujoch is a fully
integrated DAQ
solution for kilohertz
frame rate JUNGFRAU
detectors – deployed
on X06DA beamline
this summer for user
operation

More focus is
necessary for
compression
development –
flexibility of Zstandard
can come handy for
future data rates

MX Group (PSI)
• Vincent Olieric
• Takashi Tomizaki
• Chia-Ying Huang
• Sylvain Engilberg
• Justyna Wojdyła
• Meitian Wang

Detector Group (PSI)
• Aldo Mozzanica
• Martin Brückner
• Carlos Lopez-Cuenca
• Bernd Schmitt

Science IT (PSI)
• Leonardo Sala

Controls (PSI)
• Andrej Babic
• Leonardo Hax-Damiani

SLS management (PSI)
• Oliver Bunk

Photon Factory, KEK
• Naohiro Matsugaki
• Yusuke Yamada
• Masahide Hikita

MAX IV
• Jie Nan
• Zdenek Matej

Uni Konstanz
• Kay Diederichs

LBL
• Aaron Brewster

DLS
• Graeme Winter

ESRF
• Jerome Kieffer

Dectris
• Stefan Brandstetter
• Andres Förster

IBM Systems (France)
• Alexandre Castellane
• Bruno Mesnet

InnoBoost SA
• Lionel Clavien

Acknowledgements

Page 39

