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Series Preface 

The long te rm aim of the Commission on Crystallographic Teaching in 
establishing this pamphle t  p rog ramme is to produce a large collection of 
short s tatements each dealing with a specific topic at a specific level. The 
emphasis is on a particular teaching approach and there may well, in time, 
be  pamphlets  giving alternative teaching approaches to the same topic. It  
is not the function of the Commission to decide on the 'best '  approach 
but to make  all available so that teachers can make  their own selection. 
Similarly, in due course, we hope that the same topics will be covered at 
more  than one level. 

The  initial selection of ten pamphlets  published together  represents a 
sample of the various levels and approaches and it is hoped that it will 
st imulate many  more  people  to contribute to this scheme. It  does not take 
very long to write a short pamphlet ,  but its value to someone  teaching a 
topic for the first t ime can be very great. 

Each pamphle t  is prefaced by a s tatement  of aims, level, necessary 
background,  etc. 

C. A. Taylor  
Editor  for the Commission 

The financial assistance of UNESCO, ICSU and of the International Union of Crystallog- 
raphy in publishing the pamphlets is gratefully acknowledged. 



Teaching Aims 

To help students with some basic qualitative knowledge of X-ray 
diffraction and crystal structure determinat ion to put this knowledge on a 
quanti tat ive basis. 

Level 

This approach would be suitable for undergraduate  students in most  
science subjects who need to understand how some of the basic calcula- 
tions in X-ray diffraction may be done. 

Background 

A general qualitative introduction to X-ray diffraction is assumed. 
Some familiarity with the representat ion of waves as projections of 
circular motion and with complex numbers  is assumed. 

Practical Resources 

No specific practical resources are required but the availability of detailed 
information about  structures on which practice calculations could be 
made  would be an advantage. 

Time Required for Teaching 

Depending on the previous acquaintance of the students with X-ray 
diffraction this course could occupy anything f rom 1 to 5 lectures. 



I n t r o d u c t i o n  to the  C a l c u l a t i o n  of St ructure  Fac tors  

S. C.  W a l l w o r k  

University of Nottingham, En g l an d  

In X-ray crystallography the structure factor F(hkl) of any X-ray 
reflection (diffracted beam) hkl is the quantity that expresses both the 
amplitude and the phase of that reflection. It plays a central role in the 
solution and refinement of crystal structures because it represents the 
quantity related to the intensity of the reflection which depends on the 
structure giving rise to that reflection and is independent of the method 
and conditions of observation of the reflection. The set of structure 
factors for all the reflections hkl are the primary quantities necessary for 
the derivation of the three-dimensional distribution of electron density, 
which is the image of the crystal structure, calculated by Fourier methods. 
This image is the crystallographic analogue of the image formed in a 
microscope by recombination of the rays scattered by the object. In a 
microscope this recombination is done physically by the lenses of the 
microscope but in crystallography the corresponding recombination of 
diffracted beams must be done by mathematical calculationl 

The  way in which the separate scattered or diffracted rays combine to 
form an image depends on three factors associated with each ray: 

(a) the direction, 
(b) the amplitude, 
(c) the phase. 

In the physical recombination of rays by the lenses of a microscope these 
three pieces of information about each ray are retained and used au- 
tomatically in the recombination process. In X-ray crystallography, the 
diffracted beams are separately observed and their intensities measured as 
the blackness of spots on an X-ray film or by direct quantum counting in 
a diffractometer. By identifying the Miller indices (hkl) of the crystal 
plane giving rise to each diffracted beam, the direction of the beam is 
specified. From the measured intensity of the beam its amplitude may 
readily be deduced. So two of the three necessary pieces of information 
about each beam are known, but unfortunately there is no method 
available yet for observing the phase of each diffracted beam, which is the 
third piece of information needed before mathematical recombination is 
possible to produce an image of the structure. This consti tutes what is 
known as the phase problem in crystallography. 

The solution of a crystal structure therefore consists o f  applying some 
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technique for obtaining the approximate  phases of at least some of the 
X-ray reflections, and the process of structure refinement is one in which 
the knowledge of phases is extended to all reflections and is made  as 
accurate as possible for all reflections. Apar t  f rom the direct methods of 
obtaining some initial phases, both  the solution and ref inement  processes 
depend on the ability to calculate structure factors for a proposed 
approximate  arrangement  of some or all of the atoms in the crystal 
structure. This is the subject of this pamphlet .  It  will be seen that it is 
possible to calculate simultaneously both the ampli tude [F(hkl) I and 
phase a(hkl) of each beam that would be diffracted by the proposed 
structure. Since the phases cannot be compared  with any observable 
quantities, the val id i ty  of the proposed structure must  b e  tested by 
comparison of the calculated values of the amplitudes of the structure 
factor [Fcl with the observed amplitudes IF0[. This is done by calculating a 
reliability index or R factor defined by 

R Yll~01- Ifcll, 
IFol 

where the summation is usually taken over  all the reflections giving 
significant intensities. Because of r andom errors in the observed structure 
factor amplitudes Ifol, and approximations made  in the model  on which 
the calculated structure factors are based, it is never  possible to obtain a 
set of [F~I which exactly reproduce  the If01, so structure refinement never  
reduces R to zero. For  good quality diffractometer data, values of R in 
the region of 0.05 are quite common for fully refined structures. For  
initial approximate  structures arising f rom the structure solution process 
R should not normally be  ~ e a t e r  than about  0.5 to be capable of 
satisfactory refinement. 

A structure factor represents  the resultant X-ray scattering power  of 
the whole crystal structure, though, since the whole structure consists of a 
large number  of unit cells all scattering in phase 'wi th  each other, the 
resultant scattering power  is actually calculated for the contents of one 
unit cell only. The  structure factor therefore  represents  the resultant 
amplitude and phase of scattering of all the electron density distribution 
of one unit cell. The  amplitude is calculated as the number  of times 
greater  it is than the amplitude o f  scattering f rom an isolated electron. 
The phase is calculated relative to a phase of zero for hypothetical 
scattering by a point at the origin of the unit cell. The  resultant is 
calculated as a superimposit ion of waves, one f rom each a tom in the unit 
ceil, each wave having an amplitude which depends on the number  of 
electrons in the a tom and a phase which depends on the position of the 
atom in the unit cell. 

Before seeing how to do this calculation in detail we must  first see how 



wave motions of different amplitudes and phases can be combined. We  
consider the simplest case of the addition of a wave of amplitude ]'1 and 
phase 41 and a wave of ampli tude f2 and phase 42- Each wave may be 
considered as a cosine function generated by projecting on to the hori- 
zontal diameter  of a circle the positions of a point (P1 or P2) rotating with 
uniform velocity round the circle, (Fig. 1). The  displacement of the 
projection on to the horizontal d iameter  may be taken as x. If each wave 
had a phase of zero, the radius connecting the points P1 or i°2 with the 
centre of each circle would make  the same angle v with the horizontal 
d iameter  at the same momen t  in time, as shown in Fig. l (a) ,  and the 
displacements on the horizontal diameters would be given by: 

x l = ] ' l c o s v  and x 2 = f 2 c o s v .  

The  sum of these two wave motions is simply a wave of the same phase 
with amplitude (fl + fz). At  any momen t  in t ime the total displacement is 
given by: 

X,ot~ = f l  c o s  ~ + f2  c o s  ~, = ( f l  + f2) c o s  ~. 

When the first wave has a phase angle 4~ relative to the radius at the 
angle v and the second wave has a phase angle ,52 relative to the same 
radius, the two component  waves and their resultant are as shown in Fig. 
l(b).  The  resultant now has an ampl i tude  which is less than (fx+fa), 
because the component  waves no longer completely reinforce one 
another,  and its phase differs f rom the phase of either of the components .  
The  displacements, xl and x2 for the two component  waves are now given 
by: 

x l = f l c o s ( v + 4 1 )  and x 2 = f 2 c o s ( v + 4 2 )  

and the displacement for the resultant wave is given by 

Xtot~ = x~ + x ,  = f l  cos  (v  + 61)  + f2 cos  (v  + 42) .  

When the cosine terms are expanded this becomes 

X~ot~a = f l  cos v cos 4 1 - f l  sin v sin 4 1 + f a  cos U cos 4 2 - h  sin v sin 42 (1) 

= cos v(f~ cos 41 +rE cos 4 2 ) - s i n  v(fl sin 4 i  +rE sin 42). 

As can be seen f rom Fig. 1 the resultant wave is another  cosine wave of 
the same frequency as the component  waves but of different phase which 
we will call o~. It  can therefore  be  represented by: 

xtot~ = IFI cos (v + a) ,  where IFI is the resultant amplitude. 

Expanding this, we have 

x~ot~ = [FI cos v cos oe - ] F  1 sin v sin a. (2) 

3 



(a) 

~ - 180 ° 

? 
c450 ° 

Y 5400 

i l l  2 

i I x-_*:l 

.f~_~ - 180 ° 

 OoO 

o 

- 540*  

Resultant 
X t o t  ---~ 

 2222 

(b) 

0 ! x ~ ,  

~90°k~'~~ 

,450 o 

540* 

, Resultant I 
I X2- '~  

~ 90 ° 
i 

270 ° ~ O° 

360 ° 

'450° C 
-x540 ° 

Ztot---4 

.90 ° ~, 

.180 ° 

> 
~50 ° 

i40 ° 

Fig. 1. Generation and combination of two waveforms, (a) both with phase zero, 
(b) with phases 4~1 and 'b2. 

Compar ing  equat ion  (2) with equa t ion  (1), we see that  

IFI cos ~ = f l  cos 4~1 + f2 cos 4'2. W e  call this A ' .  

IFI sin a = f l  sin ~1+/2 sin ~b2. W e  call this B' .  

To  find the ampli tude IFI and phase  a of  the  resul tant  wave  we note  that:  

( m ' ) 2 +  ( B ' )  2 = lEO 2 cos 2 a + IFI 2 sin 2 a = IFl 2 
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and 

( B ' ) / ( A ' )  = (IFI sin o~)/(IF I cos ~) = tan e. 

phase for a wave 
component  j has 

In general, to find the resultant amplitude and 
composed of n cosine waves, of which a typical 
amplitude fj and phase &i, we have 

e ' =  IFI cos e = f /cos  4)j (3) 
j=l 

B ' =  IFI sin o~ = ~. f/sin &j (4) 
j=l 

and IFI and e are related to A '  and B '  as in the case of two components. 
This addition of components may be represented conveniently on a 

vector diagram as in Fig. 2, where the example of the addition of the 
same two components is again shown. It can be seen on this diagram that 
A '  is the algebraic sum of the fi cos 4~ terms and B '  is the algebraic sum 
of the f/sin 4~ terms. The resultant vector F is the vector sum of the two 
components and the square of its amplitude, I.FI 2, is shown by Pythagoras'  
theorem to be given by (A ' )2+(B ' )  2. The direction or phase of the 
resultant is given by the angle a, whose tangent is equal to B ' / A ' .  

It is conventional to represent the amplitude and phase of a wave by a 
complex number which may be expressed in the form a + ib or as x e  i° 
(=  x cos 0 + ix sin 0). In these representations, a or x cos 0 is the real part 
of the complex number and ib or ix sin 0 is the imaginary part. This is 
quite consistent with the vector representation of Fig. 2 in that A '  
represents the real part a of the complex wave F and iB '  is the imaginary 

. . . .  

A'  
1 
Z c'~,s *2 

I 

-- fl cos (bl --: 

Pig. 2. Combination of component waves of amplitudes f~ and f2 and phases ~ 
and d~ 2 to give a resultant wave of amplitude IFI and phase o~, represented as a 

process of vector addition. 



part ib. The horizontal axis of Fig. 2 should therefore be regarded as the 
real axis and the vertical axis as the imaginary axis of the conventional 
Argand diagram for representing complex numbers. In the exponential 
form of a complex wave, x e  i°, the angle 0 corresponds to the phase angle 

of Fig. 2 and x corresponds to the amplitude IF I. 
Having seen how waves may be added to give a resultant wave we are 

now in a position to apply this procedure to the addition of waves 
scattered by the different atoms of a unit cell to give a resultant structure 
factor F. We need to consider the amplitude f of the scattering from each 
atom and its phase ~b. Both these quantities are best approached from the 
point of view of the Bragg treatment of X-ray diffraction, which will first 
be outlined. 

The Braggs, father and son, considered the diffraction of X-rays by a 
crystal to be more conveniently thought of in terms of reflection from 
regularly spaced, parallel planes in the crystal. Like any reflection process 
the angle 0 between the incident beam and the reflecting plane is equal to 
the angle between the reflected beam and the plane. Unlike specular 
reflection, however, only certain angles of incidence and reflection will 
give rise to appreciable intensity in the reflected beam. These are the 
angles for which the rays reflected by successive planes in the crystal 
differ in phase by a whole number of wavelengths. (This restriction arises 
because the problem is really one of diffraction.) The difference in phase 
is found by calculating the difference in path length for two successive 
rays. 

Consider first two rays of the incident beam that strike successive 
crystal planes at points O and B,  respectively, where O B  is perpendicular 
to the crystal planes (Fig. 3a). The extra distance travelled by the lower 
ray is calculated by drawing perpendicular wave-fronts O A  and OC to 
the incident and diffracted beams, respectively. It is seen to be AB + BC. 
Since 0 is the angle between AB and the crystal plane and between B C  
and the crystal plane, 0 is also the angle between the perpendicular to AB 

B 

(a) (b) 

Fig. 3. Bragg reflection by equally-spaced, parallel crystal planes. (a) Construction 
to calculate the relative phases of rays reflected at the points O, B and P. (b) 

Enlargement of part of (a). 



(i.e. O A )  or to B C  (i.e. O C )  and the perpendicular  to the crystal planes 
(i.e. O B ) .  This is shown on the enlarged par t  of the diagram in Fig. 3b. 
Now, f rom the triangles A B O  and B C O :  

A B  = O B  sin O and B C  = O B  sin O 

= d sin 0 = d sin 0 

since O B  = d, the perpendicular  spacing of the crystal planes. The  total 
path difference between the two rays (AB + B C )  is therefore  equal to 
2d sin 0. For re inforcement  of successive rays this path difference must be 
a whole number  of wavelengths. 

.'. nX = 2d sin 0. (5) 

This is known as the Bragg equation or the Bragg law. 
Secondly we must  show that the path  difference is  the same for two 

rays reflected f rom two successive crystal planes irrespective of the points 
on the. planes at which they strike the planes. Consider the two rays 
reflected f rom the top plane at the points P and O. To  check that there is 
no path difference between these two rays we construct the perpendicu-  
lars PQ and OR.  The distance travelled by the ray reflected at O between 
the perpendicular  wave f ronts  P Q  and O R  is QO. This is equal to 
P O  cos 0. The  distance travelled by the ray reflected at P between the 
same two wave-fronts is PR.  However ,  since the angle R P O  is also 0, P R  
is also equal to P O  cos 0. The  two rays are therefore  in phase with each 
other  throughout.  This also means that if the phase difference between 
the rays reflected at O and B is nX after reflection, then the phase 
difference between the rays reflected at P and B is also nX after 
reflection. This establishes the principle that the phase difference between 
rays reflected f rom parallel planes in a crystal depends on the distances of 
the points of reflection measured perpendicular  to the planes and not on 
the separation of the points of reflection measured parallel to the planes. 
Use  is made of this principle both in considering how the amplitude of 
scattering of an a tom depends on the Bragg angle 0 and also in calculat- 
ing how the phase of the scattered beam from each atom depends on its 
position in the unit cell. 

If  all the electrons in an a tom were concentrated at one point, the 
ampli tude of the X-rays scattered by the a tom would simply be Z times 
the ampli tude scattered by a single free electron, where  Z is the atomic 
number  of the atom. In fact, the electrons form a diffuse cloud of varying 
density, spherical in symmetry  to a first approximation,  but with quite 
high electron densities at, say, half the conventional atomic radius away 
f rom the centre of the atom. I t  is possible for the X-rays scattered f rom 
one part  of the a tom to be  out of phase with those scattered f rom another  
part  so that their contributions to the total scattering cancel instead of 
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adding. The total amplitude of scattering by an atom will therefore,  in 
general, be less than Z and will depend on the spacing of the parallel 
diffracting planes for the X-ray reflection under consideration. 

This may be understood by reference to Fig. 4. On the left is shown the 
situation where the spacing dl between the Bragg planes AB and CD is 
large compared with the atom centred at O. If the X-rays reflected at CD 
are one wavelength out of phase with the X-rays reflected at A B then a 
ray reflected from P will only be a small fraction of a wavelength out o f  
phase with a ray reflected from O. The scattered rays from these two 
points will therefore largely reinforce each other. In fact, the scattering 
from all parts of the atom will largely add together to give a total 
amplitude f not much less than Z. In Fig. 4(b), on the other  hand, a 
different X-ray reflection is considered, where the spacing between the 
Bragg planes, d2, is now of the same order  of size as the atom. Now, the 
ray reflected from the point P will be almost exactly out of phase with the 
ray reflected from O. There  will be destructive interference between them 
(not cancelling to zero, however, because the electron density, and 
therefore the amplitude of scattering at P, will be less than at O). In this 
situation the total amplitude of scattering f from the whole atom will be 
much less than Z. Since d and the Bragg angle 0 are related by the Bragg 
equation (5), the situation of Fig. 4(a) corresponds to a reflection at a 
small angle 0 and the situation of Fig. 4(b) corresponds to a large Bragg 
angle 0. In fact the amplitude of scattering from a n  atom f varies 
smoothly with sin O/lt in the manner  shown for some typical atoms in Fig. 
5. The  amplitude f for an atom is called the atomic scattering factor. It 
extrapolates to Z as sin 0/h tends to zero because d tends to infinity and 
the differences of phase of scattering from different parts of the atoms 
tend to zero. When calculating a structure factor for a particular X-ray 
reflection hkl, the calculation is first of all carried out as though the 
scattering for each atom all took place from one point, the atomic centre. 

A I @  B 
dl 

A B 

C' ~ D' 

Ca) (b) 

Fig. 4. The dependence of the relative phases of X-ray scattering, from two points 0 
and P in an atom, on the interplanar spacing d of successive Bragg planes AB and 

CD (or C'D'). 
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I i I i i 10-  

8 

2 

, ~  I I 
0 0.2 0.4 0.6 0.8 1.0 

sin O/h 

Fig. 5. Atomic scattering factors f for hydrogen, carbon and fluorine, plotted against 
sin 8/h. 

The effect of the distribution of electron density over an appreciable 
volume is then allowed for by multiplying the term for each atom by the 
atomic scattering factor f appropriate for the Bragg angle 0 of the 
reflection. 

We must now consider how the phase & of scattering by an atom, as a 
contribution to a total structure factor F, depends on the position of the 
atom in the unit cell. The  principle of the method is that the rays reflected 
by successive Bragg planes are one wavelength out of phase with each 
other  and therefore differ in phase angle by 2~r radians or 360 °. The 
hypothetical ray reflected from the oriNn of the cell always defines the 
phase angle zero, so the points of intersection of the plane hk l  with the 
cell axes correspond to a phase of 2~r radians or 360 °. The phase for the 
scattering by any atom in the unit cell (considered for this purpose as 
being at the point of its centre) is therefore  given by its distance measured 
perpendicularly between a plane through the origin parallel to the plane 
hk l  and the plane hk l  itself. (It will be remembered  that the phase is 
independent of the position parallel to the Bragg planes.) The  calculation 
of the phase is best illustrated in two dimensions, as in Fig. 6. 

The x and y axes of a two dimensional cell are shown intersected by 
the Bragg plane (actually a line) defined by the Miller indices h, k. From 
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repeat of 
plane (h, k)1 

through origin 
of unit cell 

y axis 

.,.)laWa/h 

plane (h, k) J /  

~x axis 

Fig. 6. Construction for calculating the phase of scattering from a point x, y in two 
dimensions for a reflection h, k. 

the definition of Miller indices, the intersection along the x axis occurs at 
a distance a/h f rom the origin O and the intersection along the y axis 
occurs at b/k where a and b are the unit cell dimensions along the x and 
y axes, respectively. The  perpendicular  spacing d between this plane and 
the parallel plane through the origin is given by the distance OR. 
Consider an a tom at the point T, having coordinates x and y in the cell. 
We  wish to know how far T is perpendicularly f rom the plane through O 
towards the plane through a/h, b/k, compared  with the total perpendicu- 
lar distance between these planes. It is convenient  to measure  all the 
perpendicular  distances along the line OR, so the component  of the 
distance due to the x coordinate is obtained by projecting the distance x 
onto OR as OP, and the componen t  due to the y coordinate is obtained 
by projecting y onto O R  as PQ. The  total perpendicular  distance of T 
f rom the plane through O is therefore  O 0  and it is calculated as follows: 

OP = x cos 8 

PQ = S T  = y cos e. 

But, f rom the triangle defined by O, R and the point a/h, 

O R  d dh 
cos 8 . . . .  

alh alh a 
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and, from the triangle defined by O, R and the point b/k, 

OR  d dk 
COS IS . . . .  

b/k b/k b 

dh dk 
• O P = x . - -  and P O = y - =  - .  

a b 

So 

dh dk 
OQ = OP + PQ = x "--+a y "-b- 

• o o =  (hx+ y  
"" d \ a  b / "  

Now OR or distance d corresponds to a phase change of 2w radians. So 
O O  corresponds to a phase change of OQ.  2zr/d radians. This is therefore 
equal to 2w(h.x/a + ky/b) radians and it represents the phase of scattering 
from the point T compared with zero phase at the origin of the cell. 

When this calculation is extended to three dimensions, the intercept of 
the plane hkl with the crystallographic z axis at the point c/l and the 
projection of z on the perpendicular from O to the plane must also be 
taken into consideration. The phase of scattering by an atom at the point 
x, y, z is then given by 

[hx ky lz\  
2w k a  +--~- + c )  radians. 

This is therefore the expression for the calculated phase angle 4~i for use 
in equations such as (3) and (4)• The amplitude f/ for the scattering of the 
atom, which takes account of the number  of electrons in the atom and the 
fact that they are not actually concentrated at the point x, y, z but 
distributed round it, is the atomic scattering factor f, already discussed. 
The  equations for the real part (A') and the imaginary part (B') of the 
structure factor, corresponding to equations (3) and (4) are therefore: 

[hx ky lz~ = ( h x + k y + I z )  B '  ~ fj sinZw/--~-+--~-+c). A' , . ,  f j  c o s  = i=1 2~r\a  b c /  
i = l  

Or, in exponential form, the structure factor may be  expressed as: 

F =  ~. f~ exp 2wi (hx+ky+I z ~  
i=~ \ a  b c/" 

In each case the summation is taken over the n atoms in the unit cell. 
In practice, any one atom in the unit cell is related to other  atoms in 

the cell by the operation of the various symmetry elements. By taking 
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account of the relationship between the coordinates of these symmetry-  
related atoms, formulae can be derived expressing the sum of the cos q5 i 
factors and the sum of the sin q~i factors for the whole of this ~ o u p  of 
symmetry  related atoms. These sums are usually called A and B respec- 
tively. The  whole sum, A or B, is then multiplied by the atomic scattering 
factor  which again, in practice, is corrected for thermal motion of the 
atoms which further  smears out the electron cloud and causes a more  
rapid drop in f/ with sin 0/h than that illustrated in Fig. 5. Then: 

A '=  Y. fiA and B'= F~ f~.B, 

where the sum is taken over  the atoms of one asymmetric  unit only. The  
details of these extensions to the basic principles of the calculation of 
structure factors are outside the scope of this pamphle t  but formulae for 
A and B are given in the International Tables for X-ray Crystallography, 
Volume I, 1969, (Birmingham, Kynoch Press). The  calculations are 
usually carried out on a computer .  

Finally it should be ment ioned that whenever  a collection of atoms for 
which a structure-factor  calculation is being per formed has a centre of 
symmetry,  the resultant structure factor is always entirely real and hence 
the associated phase angles are always either 0 or ~r. Tha t  this is so  may 
easily be seen by dividing the structure up into centrosymmetrically 
related pairs. For  every a tom at x, y, z, there will be one at - x , - y , - z  
and hence the imaginary parts,  B', of the structure factor, since they involve 
a sine term, will be opposi te  in sign and cancel out. 
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