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Outline

● Introduction and statement of problem
● 1st example: meaning of “quality”: accuracy 
versus precision

● 2nd example: measuring “quality”
● 3rd example: common misunderstandings
● Recent work: measuring non-isomorphism 
(i.e. systematic deviations of datasets)
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Crystallography has been 
extremely successful

Could it 
be any 
better?

Protein Data Bank : ~133.000 entries
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Three examples for

● Rules that may have been useful in the 
past under different circumstances, but are 
still commonly used today and result in 
wrong decisions
● Concepts resulting from first principles 
that would, if applied, deliver the 
information to reach the correct decision
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1st example: Not understanding the 
difference between, and the relevance 

of precision and accuracy

Precision versus Accuracy
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B. Rupp, Bio-
molecular 
Crystallography

Accuracy  – how different from the true value?
Precision – how different are measurements?

Precision versus Accuracy

“Quality”
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Numerical example

Repeatedly determine π=3.14... as 3.1, 3.2, 3.0  : 
observations have medium precision, medium accuracy
Precision= mean relative  absolute deviation from average value=
(0+0.1+0.1)/(3.1+3.2+3.0) = 2.2%

Accuracy= mean relative absolute deviation from true value: 
=(|3.14-3.1| + |3.14-3.2| + |3.14-3.0|)/(3*3.14) = 2.5%

Repeatedly determine π=3.14... as 2.70, 2.71, 2.72 : 
observations have high precision, low accuracy. 
Precision= mean relative absolute deviation from average value=
(0.01+0+0.01)/(2.70+2.71+2.72) = 0.24%

Accuracy= mean relative absolute deviation from true value=
(|3.14-2.70| + |3.14-2.71| + |3.14-2.72|)/(3*3.14) = 13.7%
                                                               

R
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What is the “true value“?

➔  if only random error exists, accuracy = precision (on
    average)
➔  if unknown systematic error exists, true value cannot
    be found from the data themselves
➔  precision can easily be calculated, but not accuracy 
➔  accuracy and precision differ by the unknown
    systematic error
➔  true values may be known from other approaches (e.g.
    Fcalc

2 may be considered an estimate of the true value)

All data quality indicators estimate precision (only), 
but YOU (should) want to know accuracy!

Precision versus Accuracy
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➔ Rules: “The data processing statistics tells me (and the reviewers!)
              how good my data are. 
              To satisfy reviewers, the indicators must be good.”

● Suboptimal result: these rules encourage
      - overexposure of crystal to lower Rmerge

     - data collection “strategy” with low multiplicity

     - data massaging: rejecting many “outliers”, throwing away
        negative or weak data

➔ Concepts: 
      - Data processing output reports the precision of the data, not
        their accuracy.

     - averaging increases accuracy unless the data repeat systematic errors 
      - rejecting too many data as outliers may increase the precision, but
        decreases accuracy!

Precision versus Accuracy
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2nd example: confusion by 
multitude and properties of 
crystallographic indicators

Unmerged versus merged
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Confusion – what 
do these mean?
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Unmerged versus merged

Calculating the precision of 
unmerged (individual) observations
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using the √n law of error propagation (Wikipedia “weighted arithmetic mean”):
 

   <I/σ(I)>  

by comparing averages of two randomly selected half-datasets X,Y:

Calculating the precision of merged data

H,K,L        I
i 
 in order of                          Assignment to                Average I of

                measurement                        half-dataset                       X    Y
1,2,3        100 110 120  90 80 100        X, X, Y, X, Y, Y              100  100
1,2,4         50    60    45     60                Y X Y X                           60   47.5 
1,2,5        1000 1050  1100 1200          X Y Y X                         1100 1075
 ...  

(calculate the R-factor (D&K1997) or correlation coefficient CC
1/2

 (K&D 2012) on X, Y)

R pim=
∑
hkl √ 1

n−1
∑
i=1

n

|I i (hkl )− Ī (hkl )|

∑
hkl

∑
i= 1

n

I i(hkl )
R

pim
 ~ 0.8 / <I/σ > 

Unmerged versus merged
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Measuring the precision of merged data 
with a correlation coefficient

• Correlation coefficient has clear meaning and well-known 
statistical properties 

• Significance of its value can be assessed by Student's t-
test: 
e.g. CC>0.3   is significant at p=0.01 for n>100; 
       CC>0.08 is significant at p=0.01 for n>1000

• Using “random half-datasets” of crystallographic intensity 
data:  → CC1/2  

• From CC1/2 , we can analytically estimate CC of the  
merged dataset against the true (usually unmeasurable) 
intensities using

• (Karplus and Diederichs (2012) Science 336, 1030) 

CC*=√ 2CC1/21+CC 1/2
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● Rule: “the quality of the data that I use for refinement can be assessed 
by Rmerge/Rmeas . Data with Rmerge/Rmeas > e.g. 60% are useless.”

● Suboptimal result: Wrong indicator. Wrong high-resolution cutoff. Wrong 
data-collection strategy.

 Concept: - use an indicator for the precision of the merged data if you 
are interested in the suitability of the data for MR, phasing and refinement.

- Use <I/σ> or <I>/<σ> (but how to calculate σ; and which cutoff??)  

Unmerged versus merged

CC*=√ 2CC 1/21+CC 1/2
- Use                               if you want to know how high (numerically) CC

work
 , CC

free
 

in refinement can become (i.e. how data quality limits model quality):
CC

work
 larger than CC* implies overfitting, because in that case the model agrees 

better with the experimental data than the true signal does. 

This does not work with R-values because data R-values and model R-values have different definitions!
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3rd example: improper 
crystallographic reasoning

apples and oranges
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 situation: data to 2.0 Å resolution

using all data: Rwork=19%, Rfree=24% (overall)

cut at 2.2 Å resolution: Rwork=17%, Rfree=23%

● Rule: “The lower the R-value, the better.” 
„cutting at 2.2 Å is better because it gives lower R-
values“

● (Potentially) suboptimal result: throwing away data. 

● Concept: indicators may only be compared if they 
refer to the same reflections.

apples and oranges



18

Proper crystallographic 
reasoning

…. requires three concepts: 

1.. Better data allow to obtain a better model

2.  A better model has a lower Rfree, and a lower Rfree-Rwork gap

3.  Comparison of model R-values is only meaningful when 
using the same data

apples and oranges

Taking these together, this leads us to the „paired 
refinement technique“: compare models in terms of their 
R-values against the same data.

P.A. Karplus and K. Diederichs (2012) Linking Crystallographic Data with 
Model Quality. Science 336, 1030-1033.
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Recent work: Measuring non-
isomorphism

Kinds of errors in (crystallographic/image) data -
● Random: mostly quantum effects 
(photon/electron emission/absorption)

● Systematic: macroscopic/experimental 
differences (nonlinearity, differences in 
absorption, conformation, composition, …)

Non-isomorphism denotes those systematic 
effects on measured signal that differ between 
individual datasets, or groups of datasets.
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RMSD = 0.18 Å Δcell = 0.7 %

3aw6
3aw7

Riso = 44.5%

RH: 84.2%
   vs 71.9%

Crystallographic example: two forms of 
lysoyzme
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Crystallography: multiple crystals/datasets

Femtosecond X-ray protein nanocrystallography
Chapman et al. (2011) Nature 470, 73-77 
“... nanocrystals of photosystem I, one of the largest membrane protein 
complexes. More than 3,000,000 diffraction patterns were collected in 
this study, and a three-dimensional data set was assembled from 
individual photosystem I nanocrystals (~200 nm to 2 μm in size). …”  
(15445 xtals used; Data collection at XFEL (LCLS, Stanford)
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Separating random and 
systematic errors in data

● data-based (rather than cell-based) approach
● comparison of datasets based on pairwise correlation 

coefficients

  
● hierarchical cluster analysis 

- allows no distinction between 
  random and systematic error

cc ij=
∑ (xk− x̄)( y k− ȳ )

√∑ (x k− x̄ )
2∑ ( yk− ȳ)

2
cc

ij
= -1 .. 1
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Making sense of pairwise 
differences

Need to separate the random error from the systematic error

● total error (difference of values that should be equal) is
● pairwise CC has contributions from total error, i.e. from both sources of error
● separation of random and systematic errors is not generally possible

New way to analyze pairwise CCs: CC_ANALYSIS

● Brehm and Diederichs (2014) minimize                              with {x}={x1,x2,...xN}
where xi and xj are N vectors in n-dimensional space representing the datasets, 
and ccij is (Pearson's) correlation  coefficient between intensities of datasets i and 
j  

● with n = 2 or 4, this solves the indexing ambiguity (→ twinning) present in point 
groups 3, 4, 6, 312, 321 and 23, and additional cases with particular values of cell 
parameters.

● This type of analysis is called Multidimensional Scaling
● It turns XFEL data collection into a technique with general applicability

√random2+ systematic2

ϕ({ x⃗ })=∑
i> j

(ccij−x⃗ i∗x⃗ j)
2
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Least-squares iterations starting from random positions -
each point represents one dataset with one of two indexing modes

Brehm, W. & Diederichs, K. (2014) Breaking the indexing ambiguity in serial crystallography. Acta 
Cryst. (2014). D70, 101-109
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Which information can be extracted from the 
matrix of pairwise CCs?

ϕ({ x⃗ })=∑
i> j

(ccij−x⃗ i∗x⃗ j)
2

The analysis (Diederichs 2017, Acta D73, 286-293) shows that …
- the least-squares solution of                                     exists and is "unique" if ccij known
● it can be obtained from the n Eigenvalues/Eigenvector of the ccij matrix
● the x vectors are arranged in a sphere with radius 1, in n-dimensional space 
● vectors can be given as coordinates, or (better) length and spherical angles

Amount of signal

the length of a vector is CC*, the correlation with its prototype (“true”) dataset, 
and depends on the random error of the dataset
● CC*  may be calculated from multiple observations in a dataset (crystallography) 

Relation between datasets
● angle between xi  and xj is proportional to the systematic difference between i 
and j

● ccij = CC*i · CC*j · cos(angle( xi, xj))
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Example: two kinds of noisy 
images

Result of averaging 
without knowledge 
whether original 
image, or its mirror

noisy images (SNR=1/13 
and SNR=1/9) of original 
and mirror picture

50+50
→



27

CC analysis with n=2

weakest 
S/N ratio
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After clustering and separate 
averaging 

mirrororiginal

100→
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Summary
 

• Crystallographic decisions are often based on rules of (if 
anything) only historical interest. These rules frequently 
lead to improper shortcuts being taken

• “make everything as simple as possible, but not simpler” 
(attributed to A. Einstein)

• Rules may be needed in expert systems; however, 
humans should rather learn, apply and further develop 
the underlying concepts

• Random and systematic differences of datasets (or 
images) can be separated within a simple and general 
framework. (Unpublished) implementations for classical 
and serial crystallography (XDS and CrystFEL) exist. 



30

Thank you for your attention!
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