
supporting materials

COMCIFS Dictionary Writing Workshop
A Satellite Workshop to the XXVI IUCr Congress

Organised by COMCIFS, the IUCr Committee for the Maintenance of the CIF Standard

The workshop will provide an introduction to writing and working with CIF dictionaries. Topics covered will include
an introduction to CIF dictionaries, writing individual definitions for existing dictionaries, writing new dictionaries
for topic areas, creating dREL methods, and writing software that uses CIF dictionaries.

The CIF dictionaries underpin the crystallographic data management framework that has been so successful over
the last 30 years. The IUCr benefits as this workshop aims to grow the pool of competent CIF dictionary authors,
which is more important than ever as the previous generation of CIF authors moves toward retirement.

Monday 21 August 2023 International Convention Centre, Melbourne, Victoria, Australia

supporting materials

COMCIFS Dictionary Writing Workshop

A Satellite Workshop to the XXVI IUCr Congress

Monday 21 August 2023 International Convention Centre, Melbourne, Victoria, Australia

Workshop programme

Introduction

Welcome to the 2023 Dictionary Writing Workshop organised by the IUCr Committee for the Maintenance of the
CIF Standard (COMCIFS).

CIF, the Crystallographic Information Framework, was developed by the International Union of Crystallography in
1991 initially as a standard file format for the exchange of data between crystallographic software applications,
journals and databases. The formal definitions of terms that could be used in these files were collected in so-called
‘dictionaries’, and the terms and their attributes were stored in machine-parsable form using the same syntax as the
data files. This meant that applications that could read the data files could also read the associated dictionaries, and
so it was possible to develop validating programs that could handle extensions of the original standard by parsing
and validating against new dictionaries or extensions of existing ones. In time, these definitions were also deployed
in binary or otherwise formatted files that carried the same content, and so CIF became a framework for standards
development and not just another file format.

This is the third workshop to be organised by COMCIFS to support the next-generation Crystallographic Information
Framework. The first, held at the University of Warwick, UK, in 2013, introduced the extended CIF2 syntax and the
prototype dictionary definition language (DDLm) that was then under development for more complex methods-
based validation. The second, held in Hyderabad, India, in 2017, explored the implementation of CIF in various file
formats, and developed the skills for constructing dictionaries for new domains using both DDLm and the relational
dictionary definition language DDL2 prevalent in macromolecular structural science. The current workshop will
refine DDLm skills at a time when the IUCr will reissue the canonical CIF dictionaries maintained by COMCIFS in
conformance with the now mature DDLm standard.

This workshop will develop the skills needed for developing and working with CIF dictionaries. Included in this
booklet are drafts of chapters in the forthcoming revised edition of the reference volume International Tables for
Crystallography, Volume G: Definition and exchange of crystallographic data, which participants are encouraged
to review and comment on.

Contents

2 Introduction
3 Provisional timetable
4 Creating and expanding CIF dictionaries

20 Management and use of CIF dictionaries
32 Appendix 1: DDLm dictionary
41 Appendix 2: Style guide for DDLm dictionaries
49 Appendix 3: 30 Years of CIF
56 Appendix 4: Additional resources

4 COMCIFS Dictionary Writing Workshop 2023

Workshop programme

Provisional timetable

Timings may change according to the needs and wishes of participants.

9.25am Opening (James Hester)

9.30am Introduction to the CIF Ontology (Brian McMahon)

10.00am The relational underpinnings of CIF (James Hester)

10.45am Morning tea

11.00am Structure of a CIF dictionary (Brian McMahon)

11.30am Dictionary creation exercise (James Hester)

12.30pm Lunch

2.00pm Dictionary creation exercise – conclusion

2.30pm Using Github (Matthew Rowles)

Using Github: some simple workflows

4.00pm Afternoon tea

4.30pm Strategies for writing CIF software

5.00pm Discussion

COMCIFS Dictionary Writing Workshop 2023 5

Creating and expanding CIF dictionaries
STATUS: Draft prepared for 2023 Dictionary Writing

Workshop

This is a draft of a forthcoming chapter of International Tables for Crystallography Volume G: Definition and
exchange of crystallographic data, 2nd edition (in preparation).

3.1. Creating and expanding CIF dictionaries

BY JAMES R. HESTER1 AND BRIAN MCMAHON2

3.1.1. Introduction

Much of the power and usefulness of the Crystallo-
graphic Information Framework (CIF) arises from the
existence of a comprehensive set of curated data dic-
tionaries that define all data items commonly used in
the field. These are the dictionaries that are presented
in Part 4 of this volume, and the contents of which
are described and annotated in this Part. We call this
corpus of curated dictionaries the ‘CIF ontology’, using
a term which has become widespread in data science
to describe a structured description of concepts, termi-
nologies and relationships within a scientific discipline.
The information contained in a data file (in any format)
is expressed in terms of these data items. A data item
consists of one or more values associated with a data
name, or tag, which is a unique character string that is
the key to the definition of the data value in the dic-
tionary. The data name may appear explicitly in a data
file, as it does in CIF-format files, or values in a file may
be associated with data names through a specification
external to the data file.

A data definition may include information such as a
text description of the quantity, its physical units, the
range within which valid values must lie, the names of
other data items that are related to the data item and so
on. Placing this information in a dictionary file, rather
than in the data file itself, has a number of important
advantages. First, it encourages the standardization of
unique tags for data items, which is an essential step
towards the seamless and unambiguous exchange of
information. Curated dictionaries also facilitate a glo-
bally accepted understanding of what each data item is,
and thus ensure that different data files using the same
tags have a consistent interpretation.

This chapter will discuss general principles behind the
design of CIF dictionaries, including important con-
siderations when defining data names. It is directed
at users who wish to compile new data defini-
tions, whether acting autonomously to develop a
novel area of study or accommodate a new soft-
ware package, or as part of a community effort
to increase the scope of the CIF ontology (see
Section 4.1.2.2). It will describe how to construct
dictionaries, how to extend existing dictionaries,

1 James R. Hester, Australian Nuclear Science and Technology Organ-
isation, New Illawarra Road, Lucas Heights, NSW 2234, Australia;
2 Brian McMahon, International Union of Crystallography, 5 Abbey
Square, Chester CH1 2HU, England.

and how local extensions may be built and used in
ways that do not conflict with the need for community
standards. Chapter 4.1 will describe the infrastructure
maintained by the International Union of Crystallogra-
phy (IUCr) for developing and distributing curated dic-
tionaries under the aegis of its Committee for the Main-
tenance of the CIF Standard (COMCIFS). Dictionaries of
data definitions specific to biological macromolecular
structures are maintained separately by the Worldwide
Protein Data Bank (wwPDB).

3.1.1.1. DDL versions

Ideally, compatibility between the data dictionar-
ies originating from specific subdisciplines would be
ensured by the adoption of the same attribute sets for
data items. However, at this point in the evolution of the
CIF standard, two slightly different attribute sets have
become established. These are expressed in two ver-
sions of the dictionary definition language, DDLm and
DDL2 (detailed in Sections 2.4.2 and 2.4.3, respec-
tively). The core data items in crystallography must of
course be accessible across the field, and so there are
two formulations of the dictionary of core items, one in
each DDL version.

An older DDL, DDL1, is now deprecated. Most dictio-
naries outside the domain of biological macromolecu-
lar crystallography were originally written in DDL1, but
have now been rewritten in DDLm. DDL1 should not
be used for new dictionaries. Information about DDL1
is available in Chapter 8.3.

Section 2.4.1.1 (‘The dictionary data model’) should be
consulted for an introduction to the terminology and
the relational data model used by the dictionaries. The
current chapter focuses on the creation of DDLm dic-
tionaries, although the general approach may be help-
ful for writing DDL2 dictionaries as well. Section 2.4.2
and Chapter 4.13 may be consulted as a reference for
the individual meanings of the DDLm attributes.

3.1.2. Creating new dictionaries
3.1.2.1. Introduction

Dictionaries are generally associated with distinct areas
of endeavour, are created and curated with the involve-
ment of area specialists, and are likely to involve
dozens of new data names. A dictionary will often
be associated with a distinct set of software tools and

6 COMCIFS Dictionary Writing Workshop 2023

Creating and expanding CIF dictionaries

may be driven by a need to standardize communication
between these software tools. Where dictionaries build
on other dictionaries, they are likely to involve addi-
tion of new key data names to existing categories [see
Section 2.4.1.1 and item (iii) of Section 3.1.2.2 below],
and changes to the way that some data names are cal-
culated. For example, the powder dictionary adds a
phase (constituent) identifier to many categories, and
the method of calculation of structure factors differs
substantially from the core dictionary. If all proposed
data names are either additions to existing categories
or no new key data names are added to existing cate-
gories, addition of data names to existing dictionaries
should be considered instead.

The dictionary development strategy introduced in tuto-
rial form in Section 3.1.2.3 below begins with a very
general approach that may be employed in the con-
struction of any relational ontology, either within or
outside the CIF paradigm.

3.1.2.2. Types of data names

For convenience in the following discussion, we clas-
sify data items into four different but overlapping types:
derived, observational, keys and identifiers. Derived
and observational data names are mutually exclusive
classifications.

(i) Derived. Derived data items have values that can
be derived using the values of other data items and
well-known constants and relationships. Definitions for
these data items should include enough information to
allow their values to be re-derived.

(ii) Observational. If the value of a data item cannot
be derived from other values, it is classed as observa-
tional. Examples of such data items include equipment
settings, lists of experimenters, and raw measurements.
The observational status of a data item may change if
subsequent data items are defined that allow derivation
of that data item: the ‘observational’ status of a data
item is simply a practical distinction to aid dictionary
construction.

(iii) Keys. In the relational model (Section 2.4.1.1) key
data items are those whose combined values allow a
unique row of a table to be referenced. All tables have
a key, because a key consisting of all data items in the
table will always identify a particular row (as rows may
not be repeated in the relational model). However, in
most cases a subset of the tabulated values suffices to
identify any table row uniquely. A key data item may be
observational, derived, or an identifier, or may be cre-
ated especially to serve as a key – so-called ‘synthetic

keys’. In the simplest case, a single data item, often an
identifier (see below) can act as a key.

(iv) Identifiers. Identifiers serve to identify particular
instances of a class of things or concepts. The actual
values of ‘identifier’ data items are ideally irrelevant, as
the values are only used to distinguish or label differ-
ent members. Examples of identifier data items include
measurement points, serial numbers, atom sites, sam-
ple numbers and run numbers. Identifiers are also used
to group objects which themselves have identifiers, in
which case the identifier both labels the group and
organises the individuals into the group: for example,
a molecule may be assigned an identifier, and the con-
stituent atom labels, which are themselves identifiers,
are associated with that identifier to group them into
the molecule.

While numbers are often used for identifier data values
because it is easy to pick a unique value if we label
sequentially, their numerical properties should not be
used; if an identifier value contains more information
beyond uniqueness, for example, it is used in calcu-
lations, then we run the risk that a situation will arise
where the same value should be assigned to distinct
items, and so our values can no longer serve as iden-
tifiers. For example, we may decide to identify image
frames in a data collection by numbering sequentially
from zero, with each frame corresponding to a small
uniform change in a sample orientation axis. If we use
the image number multiplied by the axis step to get
the axis value, we can no longer cope with a situation
where the same orientation was recollected.

3.1.2.3. A dictionary development strategy

Dictionary design is fundamentally about the distribu-
tion of a list of potentially linked data items across one
or more tables. The following strategy is applicable for
the development of any relational model; however the
CIF terminology of data names (table column names)
and categories (tables or relations) has been followed
for simplicity. Exchange of text files, ideally mediated
through a modern version-control system, will simplify
management of the development process.

Although this strategy is laid out as a linear sequence of
steps, later steps will often inspire revisions to previous
decisions, so the process is better viewed as iterative.

3.1.2.3.1. Step 1. Data granularity

Data always appear in containers. These containers
may be files, or logical divisions within files. Contain-
ers may themselves be collected into other containers,

COMCIFS Dictionary Writing Workshop 2023 7

Creating and expanding CIF dictionaries

for example files within a directory. Section 3.1.4.1 dis-
cusses the significance and use of containers in more
detail.

A CIF dictionary describes the contents of the lowest-
level container, while controlling aggregation of con-
tainers into larger collections. Container contents are
defined by the items within them that may only take
a single value: for example, a data block may con-
tain information about a single compound, or a single
experiment, or a single set of experimental conditions.
Containers are then aggregated when describing multi-
ple compounds, or experiments, or experimental con-
ditions.

For this first step, decide what the topic or topics of
a single data block will be. Where the new dictionary
will build on existing dictionaries, this topic choice will
already be partially determined. For example, the core
CIF dictionaries describe a data container that includes
information from an experiment conducted at a single
wavelength from a single sample, using a single atomic
model, so any dictionaries importing the CIF core dic-
tionary are restricted in the same way.

3.1.2.3.2. Step 2. Develop a graph of data names

For simplicity ‘data names’ are referred to here, but at
this stage focusing on the concepts is recommended,
to avoid unnecessary disagreement about the meaning
of a particular term. Where such disagreements arise, it
is likely that several overlapping meanings need to be
disentangled and assigned separate names.

Firstly, under a heading corresponding to the ‘topic’ of
your data block chosen in the previous step, list short
phrases or words describing concepts that relate to that
topic. Particular attention should be paid to writing a
plural noun where more than one of the labelled con-
cept could be associated with the headline concept. For
example, if the headline topic is ‘a scientific presenta-
tion’, then an associated concept would be the plural
‘authors’, as there could be multiple authors.

Next, repeat the process described in the previous para-
graph, this time treating each of the plural nouns as a
new heading. Do the same for the singular nouns, in
those cases where additional information is necessary
to properly describe the concept. For example, if ‘room’
is associated with ‘presentation’, then additional infor-
mation for ‘room’ might include ‘location’, ‘capacity’,
and ‘equipment’. Continue this iterative process until
no new concepts can be added. Ways of generating
new data names are listed at the end of this section.

The result of the process outlined above can be repre-

sented as a graph with lines connecting the headline
topic to the associated phrases or words. Plurals and
singular nouns with extra information form new nodes
in this graph. Leaf nodes are those nodes that only have
a single line connecting them with the rest of the graph.
This graph representation will be referred to below.

The following are useful ways to generate potential data
names for inclusion in the graph:

(i) Identify relevant objects and their properties.
For example, ‘an experimenter’ may have properties
‘name’, ‘address’, ‘role’, ‘photograph’.

(ii) Nouns in data name definitions (see next step) are
often sources of more objects for the previous step.

(iii) Locate identifiers and consider whether finer classi-
fication of the identified objects would reduce duplica-
tion. For example, instead of labelling each measured
point in a sequence of scans with a unique identifier,
it is likely to be more practical to label each point with
both a scan identifier and an identifier for that point that
is unique only within the scan. By doing this, all data
names whose values do not change in a single scan can
be tabulated by scan identifier instead of being repeated
for every measurement point.

Such ‘group’ identifiers become useful if each identi-
fier is expected to have many values in a given data file
and there are properties that are fixed for each value
of the identifier. For example, within a single scan the
scan step or certain axis settings might be constant.
In other cases the need to group items together arises
from calculations that use a group of values, for exam-
ple describing the Fourier transform of an XAFS scan
requires that a scan identifier be created and assigned
to each point in the scan so that the points for each
Fourier transform can be identified.

(iv) Look at the data files that are already used in the
field and identify the concepts used in them. Note that
every scientifically useful value in a data file can and
should be assigned to a data name.

(v) Finally, go through the list of data names and identify
all the derived data names. The remaining data names
are observational. Note which of these observational
items are identifiers.

3.1.2.3.3. Step 3. Consolidate the graph

Check the graph of data names for repeated concepts.
These can be consolidated by simply removing all but
one of the duplications and redirecting lines to the
remaining node. For example, when describing a con-

8 COMCIFS Dictionary Writing Workshop 2023

Creating and expanding CIF dictionaries

ference, a session might have a list of presenters, and
a list of chairpersons, and so the initial graph might
include a link between session and presenters, and ses-
sion and chairs. However, both presenters and chair-
persons are people. Therefore a single node, perhaps
called ‘person’, has two links to ‘session’; one identifies
the chairpersons, and the other the presenters.

3.1.2.3.4. Step 4. Link categories using key data names

Each of the non-leaf nodes in the graph representation
created in the previous step will eventually become a
CIF category. In order for a node to be a proper cate-
gory, it is sufficient that each line connecting nodes is a
mathematical function, that is, if an arrow points from
A to B, then a particular ’a’ in A determines a particu-
lar ’b’ in B. Therefore, as a first step, every line in the
graph from the previous step should become an arrow,
representing a function. Where this is not possible a
separate ‘glue’ table needs to be created (see below).
Each of these arrows corresponds to a data name in the
source category. Note that the target of the arrow is not
the data name, but the arrow itself. This is evident from
our previous example of two links between a confer-
ence session and a list of people: one of those links
would be the ‘presenter’ data name and one of those
links would be the ‘chair’ data name.

In order to decide how a particular ’a’ in ’A’ is iden-
tified, so that it can be mapped to a particular ’b’ in
’B’, data names forming the key that uniquely deter-
mine an item in that category must be chosen or cre-
ated. These key data names of a category, and the data
names within the category that are used to refer to other
categories, together form the basic structure of the dic-
tionary.

In many cases the role of key data name will be per-
formed by pre-existing identifiers for items in the cat-
egory. For example, atomic elements have standard
names that serve to identify that element. Before choos-
ing key data names in this way, the possibility that
they could fail to uniquely identify an item in the cate-
gory should be considered carefully; a first name/family
name combination would not uniquely identify an
author if the pool of possible authors is reasonably
large. In such cases, it is sufficient to invent a new data
name whose sole purpose is to act as a key data name;
in the above example ‘author id’ might be created to
uniquely identify an author. Similarly, for a list of mea-
surements the key data name might be a ‘measurement
identifier’.

Identifiers may also be created in order to reduce the
number of key data names – so-called ‘synthetic’ iden-
tifiers. For example, in order to identify an atomic bond,

two atomic sites in the asymmetric unit, two symmetry
transformations applied to those sites, and potentially
cell translations in all three directions for each atom
should be specified, resulting in ten key data names.
Any other categories referring to bonds must define ten
of their own data names in order to link to the category
listing the bonds. If a synthetic ‘bond id’ identifier is cre-
ated, those other categories can identify bonds much
more concisely.

As mentioned above, transforming a line in our graph
into an arrow representing a function may not be possi-
ble. For example, while authors are associated with sci-
entific papers, it is not possible to determine a unique
paper given an author, nor is it usually possible to deter-
mine a unique author given a paper. In such cases
an ‘associative table’ is created, where the two key
columns take values from each of the items that we
are trying to link. In our author example, one column
would identify scientific papers, while another column
identifies an author. The complete author list of a paper
is then specified by repeating the paper identifier and
providing a different author identifier on each row.

At the end of this step each non-leaf node should have
a set of key data names assigned to it that allow items
within it to be uniquely identified. Similarly, if a cate-
gory ’A’ refers to another category ’B’, data names will
have been created in ’A’ to allow ’A’ to refer to ’B’ by
giving the values of key data names within ’B’.

3.1.2.3.5. Step 5. Adjust data names to be computationally
useful

An important reason for writing CIF dictionaries is to
convey information in a way that is manipulable by
computer. The collection of data names should now be
adjusted with reference to the following points.

(i) Any data name that has values that are free text
strings (e.g. ‘sample description’) is placing information
out of reach of reliable automated processing. There-
fore, where information that could be used in compu-
tation appears in free or formatted text, the data name
definition should be changed (potentially creating addi-
tional data names) so that values are either numeric or
drawn from a set of strings.

For example, instead of a data name ‘location’, with
a description of position in an experimental measure-
ment chain left up to the software author, values of
‘monitor’: before the sample; ‘detector’: after sample;
‘foil’: after sample and calibration foil might be chosen,
allowing software to be written to automatically deter-
mine the appropriate detector data to process.

COMCIFS Dictionary Writing Workshop 2023 9

Creating and expanding CIF dictionaries

(ii) A situation sometimes arises where multiple data
names refer to multiple occurrences of a single con-
cept, for example, ‘gas 1’, ‘gas 2’ to refer to the com-
ponent gases in a gas mixture. Where there is no in-
principle restriction to the number of such compo-
nent names (for example, there may be three or more

Example 3.1.2.1. Replacing repetitive data names with an
associative table: an example using ion chamber gas
mixtures.

This example considers ion chamber detectors used at syn-
chrotrons, which adjust sensitivity to the X-ray beam running
through them by adjusting the gas or mix of gases in them.
Each of these ion chamber detectors must be described, includ-
ing recording the gas mixture information.

Initial data names are: ‘gas mix’, the mixture of gases in
an ion chamber, in format element-percent-element-percent;
‘detector length’, length of the ion chamber; and ‘location’, the
location of the ion chamber relative to sample and foil; with key
data name ‘detector id’. A tabulation using these data names
might be:

detector id gas mix detector length location
BB25 He-50-N-50 5 monitor
XYZ Ar-100 5 detector
Old-G Ar-100 10 foil

As noted in point (i) of Section 3.1.2.3.5, the gas mix defini-
tion embeds data items into the value, essentially making them
unavailable elsewhere in our ontology. To remedy this, we create
data names ‘first gas’, ‘first gas percent’, ‘second gas’ and ‘sec-
ond gas percent’ (leaving out the other two columns for now):

detector id first gas first gas % second gas second gas %
BB25 He 50 N 50
XYZ Ar 100 . .
Old-G Ar 100 . .

Now we are in the situation described by point (ii). The gases
and gas percentages are of the same type (with the same key
data name), and in a situation where three or more gases are
used we would need to define new data names. Therefore we
create a new table that will describe gas mixes. First, we cre-
ate an identifier ‘gas mix id’ and replace the original identifier
data names ‘first/second gas’ by ‘gas’, which will have a value
of ‘gas mix id’, dropping also ‘first/second gas percent’ as this
information will now be added in our new table. Apart from ‘gas
mix id’, the new table will require ‘percentage’ and ‘gas name’.
Now, given a detector, it is sufficient for us to nominate the gas
mix id to completely identify the gas components. We can now
tabulate all of our mixes in an associative table:
gas name gas mix id gas percentage
Ar C 100
He A 50
N A 50

And we can now describe our detectors as follows:
detector name detector gas mix id detector length location
BB25 A 5 monitor
XYZ C 5 detector
Old-G C 10 foil

As a result of this transformation, we can describe an arbitrary
number of gases in a detector; that is, our data description has
acquired robustness against future changes.

gases possible in a mixture), these names should be
transformed by creating an identifier that labels each
specific combination of the components.

To carry out this procedure, a new key data name
that will be used to identify combinations of values for
these duplicate data names is created. A second key
data name is created that draws from the values of the
original duplicated data names. Instead of the original
data names, a single data name is created that refers
to the data name that identifies particular combina-
tions. Example 3.1.2.1 shows how this transformation
appears in practice.

As a result of this transformation, an arbitrary number
of component items can be accommodated. Note that
this transformation is not necessary where multiplicity
is intrinsically restricted, such as for the two atoms at
each end of a bond or the three atoms defining a bond
angle.

(iii) Commonly-occurring combinations of values
should be bundled together. Where a set of data names
is expected to take the same set of values, a separate
identifier can be assigned to each set of values and
these values are then replaced by a data name holding
the value of that identifier (see Example 3.1.2.2).

(iv) Choose specific units. Unit choices at data file cre-
ation time create extra work for the file reading soft-
ware in anticipating every possible unit that is appro-
priate. If the community has not converged on a partic-
ular unit, a second definition differing only in the unit
used should be created.

(v) Avoid software-specific names. Any data name that
refers to the input or output of a software package
calculation has value in proportion to the number
of people with access to the version of the software
in question, or to the extent to which the software
setting/output can be linked to specific calculations
through documentation or source code. Given this, the
value of such data names is likely to decline rapidly
over time. Therefore, where such data names appear in
the provisional list, they should be rephrased in non-
software-specific terms. For example, instead of ‘multi-
plicity as calculated by package XYZ Version 1.2’, write
‘the number of special positions divided by the number
of general positions’.

(vi) Avoid instrument-specific names. Any data name
whose definition refers to the configuration of an instru-
ment in a way that is insufficient to enable reproduction
in a different lab or through independent modelling is
unlikely to be of use outside the lab that produced it.
So, instead of ‘Position of motor mom’, ‘monochroma-
tor takeoff angle’ could be written. Of course, a large

10 COMCIFS Dictionary Writing Workshop 2023

Creating and expanding CIF dictionaries

Example 3.1.2.2. Grouping commonly-occurring values.

Suppose that we plan to store a set of raw data images using ‘raw
image id’, ‘encoding type’ and ‘compression type’ as key data
names, using ‘compressed data’ to hold the data:

raw image id encoding type compression compressed data
type

image 1 ”signed 16-bit integer” none AABRAAAAAAAA. . .
image 2 ”signed 16-bit integer” none AABRAAAAAAAA. . .
.
image 656 ”signed 32-bit integer” none AAZBQSr1sKTbq7bg. . .
image 657 ”signed 32-bit integer” none AAZBOeOe9HTdMdDg. . .
.
image 4206 ”signed 32-bit integer” packed 8RJ1vKqAvxYDMD6. . .
image 4207 ”signed 32-bit integer” packed r/tgsjMZoL0AEc4KigE. . .

However, we expect only one or two possible alternative encod-
ings. Therefore, only a few combinations of ‘compression type’
and ‘encoding type’ will be present in any given collection of
images, and the same combinations are likely to be repeated
many, many times if we expect hundreds of images. So we create
a new key identifier ‘byte array construction id’ and make this
the key data name for ‘encoding type’ and ‘compression type’:

byte array construction id encoding type compression type
construct 1 ”signed 16-bit integer” none
construct 2 ”signed 32-bit integer” none
construct 3 ”signed 32-bit integer” packed

We add ‘construction id’ as a key data name for ‘compressed
data’ in place of ‘compression type’ and ‘encoding type’. Now
we can list the few combinations of compression and encod-
ing against ‘construction id’, and match the appropriate value of
‘construction id’ with ‘raw image id’ and ‘compressed data’.

raw image id byte array construction id compressed data
image 1 construct 1 AABRAAAAAAAAAAAA. . .
image 2 construct 1 AABRAAAAAAAAAAAA. . .
.
image 656 construct 2 AAZBQSr1sKNTbq7bg. . .
image 657 construct 2 AAZBOeOe9HITdMdDg. . .
.
image 4206 construct 3 8RJ1vKqAvx9YDMD6. . .
image 4207 construct 3 r/tgssjMZobL90AEXc4KigE. . .

In this case we have saved one column of repetition.

facility may choose to create a dictionary for in-house
use in which case such definitions might be sufficient
for internal purposes when combined with local knowl-
edge.

3.1.2.3.6. Step 6. Finalise the text definitions

A text definition for each of the items identified in the
previous steps is written, conveying unambiguously to
a human reader the following three things:

(i) a description of the data name understandable to a
scientist working in the field;

(ii) the nature of the data values (e.g. arbitrary identifier,
real number, text, vector, integer, ‘true’/‘false’, image)
chosen from the list of DDLm types (Table 2.4.2.1);

(iii) how to interpret this data name given the values of
the varying key data names.

Well-defined terminology from the field and references
to literature should be used to keep the definition short.

At this point overlooked data names may become
apparent. Nouns in the definitions that do not corre-
spond to any data name usually indicate objects that
have been overlooked. Identifiers are often associated
with indefinite nouns, for example ‘an image’, ‘a mea-
surement’, or ‘an experimenter’.

3.1.2.3.7. Step 7: Naming

Data names in CIF are generally constructed in the
form _<category>.<object>, where <category> is the
category name and <object> is an arbitrary identifier.
This naming strategy is advantageous as (i) data names
that are closely related will often be close when listed
alphabetically, and (ii) it will be easy for a human
reader to recognise which key data names a given data
name is related to.

Names should be chosen for each of the categories
found in the earlier steps, and then <object> parts for
each data name created. Abbreviated names should
generally be avoided as they are potentially confusing
for human readers: ‘temp’ may be short for ‘temper-
ature’ or ‘temporary’. However, although the CIF 2.0
specification lifts the earlier 75-character length restric-
tion on data names (Bernstein et al., 2016), many data
names in the original CIF dictionaries used abbrevi-
ated terms to stay within that limit. If it is desired to
use abbreviations to extend or parallel existing data
names, such abbreviations should be consistent with
those already in use (Table 3.1.2.1).

CIF has the restriction that a data name may only
appear once in a data block; therefore where a key
data name appears in multiple categories, a distinct
name is created for each category and its relationship to
the other data names indicated using the parent–child
DDLm attributes. In terms of the graph representation
described above, the parent key data name is the data
name in the category at the destination of the arrow on
the graph.

Where a dictionary is created solely to serve a single
application, no further considerations are necessary.
However, if it is to be used alongside other dictionar-
ies, some care must be taken to avoid possible name
clashes. Section 4.1.5.1 describes the use of a [local]_

prefix convention to ensure that no attempt is made
by public applications to interpret these data names,
and Section 4.1.5.2 describes a procedure for reserving
other prefix components to avoid name clashes. Section
3.1.5 of this chapter addresses the case where name
clashes can occur, e.g. by the merging of dictionaries
from different subdisciplines.

COMCIFS Dictionary Writing Workshop 2023 11

Creating and expanding CIF dictionaries

Table 3.1.2.1. Abbreviations in CIF data names

Terms for which abbreviations are defined are sometimes found unabbreviated.
Abbreviation Term Abbreviation Term Abbreviation Term

abbrev abbreviation eqn equation oper operation
abs absolute (configuration, not

structure)
esd standard uncertainty (estimated org organism

absorpt absorption standard deviation) (see su) orient orientation
alt alternative expt experiment origx orthogonal coordinate matrix

(PDB files)
amp amplitude exptl experimental os operating system
AN accession number fom figure of merit param parameter
anal analyser fract fractional pd powder diffraction
aniso anisotropic* Fsqd F squared PDB Protein Data Bank
anisotrop anisotropic* gen generation PDF Powder Diffraction File
anom anomalous gen generator perp perpendicular
ASTM American Society for Testing and

Materials
gen genetic phos phosphate

asym asymmetric geom geometric pk peak
atten attenuation H-M Hermann–Mauguin polarisn polarization
au arbitrary units ha heavy atom poly polymer
auth author hbond hydrogen bond pos position
av average hist history prep preparation
ax axial horiz horizontal proc processed
B B form of atomic displace- I intensity prof profile

ment parameter (a.d.p.) ICSD Inorganic Crystal Structure
Database

prot protein

backgd background* id identifier ptnr partner
beg begin illum illumination publ publication
bg background* imag imaginary R agreement index
biol biology inc increment rad radius
bkg background* incl include recd received
bond bonding info information recip reciprocal
Bsol B form of a.d.p. for solvent instr instrument ref reference
calc calculated Int international refine refinement
calib calibration (pd) ISBN International Standard Book

Number
refln reflection

cartn Cartesian iso isotropic reflns reflections
CAS Chemical Abstracts Service iso isomorphous res resolution
char characterization (pd) ISSN International Standard Serial

Number
restr restraints

chem chemical IUCr International Union of Crystal-
lography

rev revision

chir chirality IUPAC International Union of Pure and Rmerge agreement index of merging
clust cluster Applied Chemistry rms root mean square
coef coefficient len length rot rotation
com common lim limit S goodness of fit
comp component loc lack of closure samp sample
conc concentration ls least squares scat scattering factor
conf conformation max maximum seq sequence
config configuration MDF Metals Data File sigI σ(I)*
conform conformant meanI mean intensity sigmaI σ(I)*
conn connectivity meas measured sint sin θ
cons constant mid middle (between max and min) sint/lambda sin(θ)/λ*
CSD Cambridge Structural Database min minimum sol solvent
db database mod modification spec specimen
defn definition mods modifications src source
detc detector mon monomer std standard
der derivative monochr monochromator (pd)* stol sin(θ)/λ*
dev standard deviation mono monochromator (pd)* struct structure
dict dictionary nat natural su standard uncertainty
dif difference* NBS National Bureau of Standards suppl supplementary
diff difference* (now National Institute of sys systematic
diffr diffractometer Standards and Technology) tbar mean path length
diffrn diffraction NCA number of connected atoms temp temperature
displace displacement ncs noncrystallographic symmetry tor torsion angle
dist distance netI net intensity tran transformation*
divg divergence NH number of connected hydrogen

atoms
transf transformation*

dom domain nha non-hydrogen atoms transform transformation*
dtime deadtime norm normal tvect translation vector (PDB files)
ens ensemble nst nonstandard vert vertical
eq equatorial* nucl nucleic acid wR weighted agreement index
equat equatorial* num number wt weight
equiv equivalent obs observed

* Terms with multiple definitions.

12 COMCIFS Dictionary Writing Workshop 2023

Creating and expanding CIF dictionaries

3.1.2.3.8. Step 8: child categories

The DDLm language allows a category to be the child
of another category (Section 2.4.2.1.2). A child category
is essentially a single category that has been split into
two or more separate categories for efficiency. This is
done when one or more of the data names in the cat-
egory will potentially have missing or null values for a
significant subset of the rows in the category. For exam-
ple it is often the case that only a subset of atoms has
refined anisotropic displacement parameters. The child
category contains only those data names whose values
are expected to be present or absent as a group.

When constructing the dictionary, a child category is
created by splitting a category into two categories, with
the leaf nodes divided between the two categories. The
key data names are duplicated, with the child category
versions becoming the children of the parent category
versions. The child category is that category which is
expected to have fewer rows, as described in the previ-
ous paragraph.

3.1.2.3.9. Summary

At the conclusion of the steps outlined above, a com-
plete set of proto-definitions for a CIF dictionary will
have been prepared. At the final stage, these definitions
are rewritten in the DDLm language (Section 2.4.2). As
a general guide, the decisions made in the previous
steps are encoded as follows:

(i) Categories for which only one value of all of their
key data names are permitted in a data block (see
3.1.2.3.1) have _definition.class of ‘Set’, other-
wise it is ‘Loop’.

(ii) Data names whose values are drawn from the val-
ues of another data name (typically identifiers) have
_name.linked_item_id set to that parent data name.

(iii) The text description is given in _description.text.
(iv) The data name is given in _definition.id.
(v) The type is given in _type.contents and

_type.container.
(vi) Derived items have _type.source of ‘Derived‘.
(vii) Key data names are listed under _category_key.name.

Including key data names in ‘Set’ category defini-
tions allows multi-data-block data sets to be cov-
ered (see Section 3.1.4.1).

(viii) Key data names also have a _type.purpose of ‘Key’.
(ix) The category is given in _name.category_id, and

the object part in _name.object_id.

Further attributes may be required depending on the
particular type of the data name.

3.1.3. Considerations when writing data
definitions

A general strategy for creating data definitions has been
outlined in Section 3.1.2.3. Here we provide some con-
crete examples that illustrate how the strategy has been
applied in existing canonical dictionaries, and we dis-
cuss some of the subtleties that can arise in practice.

3.1.3.1. Definitions of single quantities

Example 3.1.3.1 is the core dictionary definition of the
data name for the ambient pressure during the exper-
iment. The fact that this is a single value (as opposed
to a vector or matrix quantity) is expressed by assigning
the value ‘Single’ to its container type.

The type of the associated data value (‘Real’ to indi-
cate a real number) is specified, together with indi-
cations of its status through use of the attributes
_type.purpose and _type.source, indicating that it is
a numerical value that has been recorded by measure-
ment or derivation. The allowed numeric range is speci-
fied (‘0.0:’ indicates that it may be any non-negative
real number) and the physical units of the quantity are
given.

Although data names are usually constructed by con-
catenation of the category name with a specific object
identifier, these components must be explicitly identi-
fied using the _name.category_id and _name.object_id

attributes. It is also good practice for tracing the prove-
nance of data to record the date at which the definition
was last updated. Permissible alternative forms of the
data name are listed as aliases.

Example 3.1.3.1. A simple definition of a data item
describing a physical quantity.

save_diffrn.ambient_pressure
_definition.id ’_diffrn.ambient_pressure’
_alias.definition_id

’_diffrn_ambient_pressure’
_definition.update 2023-01-13
_description.text

;
Mean hydrostatic pressure at which
intensities were measured.

;
_name.category_id diffrn
_name.object_id ambient_pressure
_type.purpose Measurand
_type.source Recorded
_type.container Single
_type.contents Real
_enumeration.range 0.0:
_units.code kilopascals

save_

COMCIFS Dictionary Writing Workshop 2023 13

Creating and expanding CIF dictionaries

Example 3.1.3.2. A definition of a data item describing
the standard uncertainty associated with another item.

save_diffrn.ambient_pressure_su
_definition.id ’_diffrn.ambient_pressure_su’

loop_
_alias.definition_id

’_diffrn_ambient_pressure_su’
’_diffrn.ambient_pressure_esd’

_definition.update 2021-03-03
_description.text

;
Standard uncertainty of the mean hydrostatic
pressure at which intensities were measured.

;
_name.category_id diffrn
_name.object_id ambient_pressure_su
_name.linked_item_id

’_diffrn.ambient_pressure’
_type.purpose SU
_type.source Recorded
_type.container Single
_type.contents Real
_units.code kilopascals

save_

The _description.text attribute is a concise human-
readable documentation of the meaning associated
with the data name.

Note that as an experimentally recorded value (pur-
pose ‘Measurand’), the recorded value may (and ide-
ally will) have a standard uncertainty (s.u.) that may be
appended in parentheses in CIF-format files. A sepa-
rate data item must be defined to hold a s.u., in this
case _diffrn.ambient_pressure_su. The definition of
this linked property should have a _type.purpose value
of ‘SU’ and a _name.linked_item_id value of the data
name to which it relates (see Example 3.1.3.2).

A further real-world consideration is that the exper-
imental quantity (in this case the ambient pres-
sure) may not have been recorded directly, but
is known to be within some range. To accom-
modate this possibility, additional data items have
been defined (_diffrn.ambient_pressure_gt and
_diffrn.ambient_pressure_lt), the ‘gt’ and ‘lt’ suf-
fixes indicating ‘greater than’ and ‘less than’ limits
respectively. As estimated values, these are assigned
a _type.purpose value of ‘Number’ and so do not have
associated standard uncertainties.

Example 3.1.3.3 is taken from the powder dictionary
and illustrates a data item that can have only one of a
limited set of values. This data item indicates the geom-
etry of the experiment. The associated data value is of
type ‘Code’ and may legally take only one of the two
possible values listed. Note the type source value of
‘Assigned’ to indicate that this is a parameter chosen
to determine the course of an experiment.

Example 3.1.3.3. A data item that can take only one of a
discrete set of allowed values.

save_pd_spec.mount_mode
_definition.id ’_pd_spec.mount_mode’
_alias.definition_id ’_pd_spec_mount_mode’
_definition.update 2014-06-20
_description.text

;
A code describing the beam path through
the specimen.

;
_name.category_id pd_spec
_name.object_id mount_mode
_type.purpose Encode
_type.source Assigned
_type.container Single
_type.contents Code

loop_
_enumeration_set.state

reflection
transmission

save_

3.1.3.1.1. Looped data

The attributes of looped data items, such as their phys-
ical units or valid numerical values, are defined in
exactly the same way as for non-looped data. The rela-
tionships between different looped data items are deter-
mined by the definition of the category to which they
belong.

Consider the following example listing of some three-
dimensional atom-site coordinates and displacement
parameters.

loop_
_atom_site.label
_atom_site.fract_x
_atom_site.fract_y
_atom_site.fract_z
_atom_site.U_iso_or_equiv
_atom_site.thermal_displace_type
O1 .4154(4) .56990(10) .3026000 .0600(10) Uani
C2 .5630(5) .5087(2) .32460(10) .060(2) Uani
C3 .5350(5) .4920(2) .39970(10) .0480(10) Uani
N4 .3570(3) .55580(10) .4167000 .0390(10) Uani
C5 .3000(5) .6122(2) .35810(10) .0450(10) Uani

loop_
_atom_site_aniso.label
_atom_site_aniso.U_11
_atom_site_aniso.U_22
_atom_site_aniso.U_33
_atom_site_aniso.U_12
_atom_site_aniso.U_13
_atom_site_aniso.U_23
O1 .071(1) .076(1) .0342(9) .008(1) .0051(9)
-.0030(9)
C2 .060(2) .072(2) .047(1) .002(2) .013(1)
-.009(1)
C3 .038(1) .060(2) .044(1) .007(1) .001(1)
-.005(1)
N4 .037(1) .048(1) .0325(9) .0025(9) .0011(9)
-.0011(9)
C5 .043(1) .060(1) .032(1) .001(1) -.001(1)
.001(1)

14 COMCIFS Dictionary Writing Workshop 2023

Creating and expanding CIF dictionaries

loop_
_geom_bond.atom_site_label_1
_geom_bond.atom_site_label_2
_geom_bond.distance

O1 C2 1.342(4)
O1 C5 1.439(3)
C2 C3 1.512(4)
C2 O21 1.199(4)

These loops, or tables of values, are properties of atom
sites, each identified by a label such as O1. The def-
inition of the ATOM_SITE category makes clear that the
items in the category should be looped together, and
that _atom_site.label is the key data name that ensures
uniqueness of each table row (Example 3.1.3.4).

Example 3.1.3.4. Extract from category definition show-
ing the expected loop structure and category key.

save_ATOM_SITE
_definition.id ATOM_SITE
_definition.scope Category
_definition.class Loop
_definition.update 2023-02-03
_description.text

;
The CATEGORY of data items used to describe
atom site information used in
crystallographic structure studies.

;
_name.category_id ATOM
_name.object_id ATOM_SITE
_category_key.name ’_atom_site.label’

save_

The anisotropic atomic displacement parameters are
properties associated with atom sites, and could legit-
imately be appended to each row of the ATOM_SITE

table. However, they have traditionally been presented
in journals as separate tables, and this presentational
aspect is facilitated by creating the ATOM_SITE_ANISO

category as a child of the ATOM_SITE category, as shown
in Example 3.1.3.5.

.
Example 3.1.3.5. Definition of a child category, which can

be presented as a standalone loop structure or folded
into its parent category.

save_ATOM_SITE_ANISO
_definition.id ATOM_SITE_ANISO
_definition.scope Category
_definition.class Loop
_definition.update 2023-01-16
_description.text

;
The CATEGORY of data items used to describe
the anisotropic atomic displacement
parameters of the atomic sites in a crystal
structure.

;
_name.category_id ATOM_SITE
_name.object_id ATOM_SITE_ANISO
_category_key.name ’_atom_site_aniso.label’

save_

The key data name for this category (which is
_atom_site_aniso.label) differs from that of the parent
ATOM_SITE category, but is understood to be equivalent
to _atom_site.label through the category parent–child
relationship.

3.1.4. Describing data in multiple blocks

In the simplest case, a complete data set is contained
within a single data block where all data names are
described in a single dictionary. In more complex data
sets information about an experiment or model may
be distributed over multiple data objects. For exam-
ple, calibration information may be provided as a sep-
arate measurement in a separate file, while having an
important, machine-actionable relationship to the pri-
mary data and therefore forming part of the complete
data set. The following sections describe how dictio-
naries can be created and used to describe data spread
over multiple files or objects.

3.1.4.1. Foundations

The following discussion is arranged around the con-
cept of a ‘data container’. A data container encapsu-
lates a collection of data items, and may include nested
data containers. Typical data containers include files,
levels in logical hierarchies within a single file, and
directories in filesystems. When using the CIF format,
a data container is either a save frame or a data block.
A ‘data set’ is defined as the top level in this container
hierarchy, encompassing all nested containers. The for-
mal relationship of each data container to the complete
data set is defined below using ‘projection’ and ‘scop-
ing’ operations.

The complete data set may always be modelled as a set
of relational tables. These tables may be algorithmically
decomposed into data containers using ‘projection’,
where the operation of ‘projecting over <data name>’ is
defined as choosing in turn each value of <data name>,
and retaining only those rows in any tables for which
<data name> takes the chosen value. This operation
extends to all child data names of <data name> tak-
ing that same value, and any tables not contain-
ing <data name> or its children remain unchanged.
When this procedure is repeated for every value of
<data name>, a series of non-overlapping, internally
consistent sub-tables is produced. Each of these sub-
table collections corresponds to a separate data con-
tainer. The projection operation can be recursively
applied to each of the collections, using different data
names for the projection, to replicate further levels of
encapsulation. It follows that any data container that

COMCIFS Dictionary Writing Workshop 2023 15

Creating and expanding CIF dictionaries

does not constitute the entirety of a data set is a pro-
jection of the complete data set over one or more data
names.

The encapsulation provided by data containers allows
the use of scoping semantics to simplify the data con-
tainer contents. In programming languages, the ‘scope’
of a variable refers to the region of code where the value
of that variable is well-defined and accessible. By anal-
ogy, the ‘scope’ of a single-valued data name is defined
as the data container within which it appears. Thus,
when all the values of a data name in a table are iden-
tical, that data item can be provided instead as a single
value outside the table but within the container, and
its value for every row of that table remains unambigu-
ous. When combining this scoping rule with the pro-
jection operation described above, both the projected
data name and its children can be left out of the pro-
jected tables and replaced by a key–value pair consist-
ing of the parent data name and value. Figure 3.1.4.1
illustrates how projection and scoping are used to dis-
tribute table contents between separate data blocks.

Dataset descriptions often evolve from a starting point
that describes common cases encapsulated in a single
data container. Thus, the original starting point for the
core CIF dictionary was the description of a diffrac-
tion experiment conducted at a single wavelength on a
single sample at a single set of diffraction conditions,
contained within a single data block. Description of
data sets containing more complex data, such as data
collected at multiple wavelengths, then requires that
either the specification of the original data block con-
tents is expanded, with all data continuing to appear
in a single data container, or that multiple data con-
tainers are permitted. The latter choice is equivalent to
preserving the implicit data projection and scoping that
applied to the original data container, and is preferable
in practice so that software designed for the original
data description will continue to correctly interpret the
component data blocks of the whole data set.

Consideration of Figure 3.1.4.1 reveals that, in order to
reconstruct the complete data set from constituent con-
tainers, it is sufficient to append each relational table to
its equivalents in the other data containers after rein-
stating any key data names that have been dropped
by the scoping rule. This procedure is iterated until all
projected data names have been dealt with and the
full tables for the complete data set have been recon-
structed. In practice, a data set may have been divided
into separate containers for space or handling reasons,
and actually reconstituting it would be unwieldy. The
reconstruction procedure described here is thus not
a requirement for software to construct large internal
tables; rather, any operations that the software performs
should be consistent with such a data structure.

A B Data
x
y
x
z
y
q

1.1
3.2
-1.1
2.2
1.0
4.1

...

A C Data
RR
EE
RR
FF
SS
EE

green
green
green
brown
green
black

...

1
1
2
1
2
1

1
2
2
1
2
1

A Item1 Item2

1
2

20.34 151.4
17.4 132.1

B

A=1

x
y
z
q

Data
1.1
3.2
2.2
4.1

...

C Data
RR
FF
EE

green
brown
black

...

Item1 = 20.34
Item2 = 151.4

B

A=2

x
y

Data
-1.1
1.0

C Data
EE
RR
SS

green
green
green

...

Item1 = 17.4
Item2 = 132.1

Fig. 3.1.4.1. Using projection and scoping to split a set of tables into data
blocks. The right-hand side of the diagram is the result of projecting
the tables in the left-hand side over the values of column ‘A’, resulting
in two data blocks, one for each value of ‘A’. Values from the top-most
table can be presented as key–value pairs in the projected data blocks
and column ‘A’ is dropped as values for each row of column ‘A’ are
known for each data block. The original tables can be reconstituted as
long as the implicit presence of column ‘A’ in all tables is specified.
In a CIF context, columns labelled ‘A’ would be given distinct names
and the relationship with other columns labelled ‘A’ indicated using
_name.linked_item_id.

3.1.4.2. DDLm attributes for expanded data sets

The DDLm dictionary language used in IUCr dictionar-
ies divides categories into single-valued ‘Set’ categories
and multi-valued ‘Loop’ categories, where ‘single-
valued’ refers to the number of values in the lowest-
level data container. It follows from the previous sec-
tion that each of these ‘Set’ categories is the result of
projecting a notional ‘Loop’ category over one or more
of the Loop category’s key data names to obtain a single
row, putting separate values of the key data name into
separate data blocks, and then dropping any child data
names from related Loop categories using the scop-
ing rule. DDLm descriptions of multi-container data
make the projection and scoping relationship explicit
by adding key data names to the ‘Set’ categories and
defining children of these key data names that were
previously only implicitly present in Loop categories.

Simply redefining ‘Set’ categories to become ‘Loop’
categories is not recommended when dealing with an
expanded data description. In this case, legacy software

16 COMCIFS Dictionary Writing Workshop 2023

Creating and expanding CIF dictionaries

is likely to incorrectly process data block contents: for
example, density would be incorrectly calculated when
each atom occurs more than once in the ATOM_SITE list
owing to inclusion of atom positions from several dif-
ferent compounds. To minimise the possibility of such
errors, a special CIF data name _audit.schema has been
introduced. Non-default values of this dataname within
a data block indicate that data names from one or more
‘Set’ categories in the core dictionary now appear in
loops, with additional key data names added to other
loops as described above. Each official _audit.schema
value corresponds to a particular collection of these
looped ‘Set’ categories. In general, it is desirable to
restrict the number of such ‘schema’ in order to sim-
plify software development, instead distributing com-
plex data sets over multiple data blocks. Neverthe-
less, _audit.schema remains important for dealing with
legacy data set descriptions and differences between
the ways in which domains conventionally group their
data. In particular, the mmCIF and imgCIF dictionaries
each assume distinct collections of ‘Set’ categories that
differ from core CIF.

The CIF framework does not include a comprehensive
standard for specifying which data containers belong to
a particular data set. Instead, a number of facilities are
available to help determine the validity and complete-
ness of a given group of data blocks. Firstly, each data
block may be assigned a universally unique identifier
(UUID) using the _audit.block_id data name, follow-
ing which data blocks can refer to other data blocks
forming part of the data set at the time that it was cre-
ated using data names from the AUDIT_LINK category.
Secondly, the relational structure of CIF data contain-
ers allows the consistency of any given data container
aggregation to be checked independently of these audit
data names. This is because each data container con-
tains slices of an overall set of tables, and so after recon-
struction of these tables from the individual containers
key data names should either never repeat their com-
bined values, or else if they do repeat combined values
all other values in the same row for the same columns
must be identical.

3.1.4.3. Expanding dictionaries to describe data spread
over multiple data blocks

As discussed above, enhancing a dictionary to allow
data spread over multiple data blocks is equivalent to
adding key data names to one or more Set categories,
with attendant addition of child data names to the rel-
evant pre-existing Loop categories. Such a dictionary
will usually build on definitions found in a base dic-
tionary designed for a single data block. The following
steps outline an approach to creating such a dictionary.

(i) The ‘Head’ category of the new dictionary should
contain an import statement (Section 2.4.2.2.4) that
imports the base dictionary with ‘mode’=‘Full’.
This has the semantic effect of replacing the
‘Head’ category in the imported dictionary with
the ‘Head’ category of the importing dictionary,
creating a composite dictionary that contains all
of the old definitions, with some category def-
initions rewritten according to the steps below.
If any definitions are overwritten (for example, a
category has new key data names added), the
_import_details.if_dupl flag in the import spec-
ification must be set to ‘Replace’.

(ii) Definitions adding to pre-existing categories or
developing new categories are created as usual.

(iii) Definitions of new key data names for any ‘Set’ cat-
egories are added.

(iv) Definitions for those Set categories from the previ-
ous step are rewritten with the _category_key.name

attribute added pointing to the key data name
defined in the previous step.

(v) Child data names of the data names defined in step
(iii) are defined for all categories in the base dictio-
nary that implicitly assumed a single value of any
data name in the relevant ‘Set’ categories.

(vi) Category definitions for each of the Loop categories
with a new child data name from the previous step
are rewritten to include this new data name in the
list of category keys.

3.1.4.4. Examples

3.1.4.4.1. Symmetry dictionary

The symmetry extension dictionary (see Chapter 3.12)
adjusts definitions to permit multiple space groups
to be used within a single data set. As a conse-
quence, any categories that assume a single space
group must have their category key expanded to
include a child data name of the new space group
identifier data name, _space_group.id. Such child
data names are defined and added to categories
SPACE_GROUP_SYMOP, SPACE_GROUP_WYCKOFF, CELL,
REFLN, MODEL_SITE, GEOM_ANGLE and CELL_MEASUREMENT

in the extension dictionary. As the information is
distributed over several data blocks, the value of
_space_group.id can be stated as a key–value pair
within each data block and then the child data names
in the above categories need not be included owing to
the scoping rules, and _audit.schema takes its default
value as the core CIF set of unlooped categories is
preserved.

3.1.4.4.2. Modulated and composite structures dictionary

The modulated and composite structures dictionary
(Chapter 3.6) includes definitions for describing struc-

COMCIFS Dictionary Writing Workshop 2023 17

Creating and expanding CIF dictionaries

tures formed from multiple components. When the
component structures are listed within separate data
blocks, _cell_subsystem.code takes a single value for
each data block and the default _audit.schema value is
used.

3.1.4.4.3. Powder diffraction dictionary

Powder diffraction projects routinely collect and model
data from samples containing mixtures of compounds.
In powder diffraction, each of these constituents is
called a ‘phase’. The final model often includes calcu-
lated reflection intensities for peaks from each phase,
but the REFLN category from the core dictionary (see
Section 3.2.3.2.1) assumes that a single hkl value is suf-
ficient to identify a reflection and so cannot accommo-
date the multiple instances of the same reflection that
might be required when multiple phases are present
in the REFLN loop. The powder dictionary therefore
extends the core dictionary by adding a new key data
name to the REFLN category that is linked to the powder
phase identifier. Thus, each set of reflections (together
with structural information) for each phase can either
be listed in separate data blocks containing different
values for _pd_phase.id, or listed together in a single
data block with _audit.schema set to the appropriate
non-default value, typically ‘Custom’.

3.1.4.4.4. Advanced example: DDL dictionaries as data
files

A dictionary save frame contains data about data
names. A dictionary is a self-consistent collection of
these data containers. By the arguments above, each
save frame is necessarily a projection of some cate-
gory over a key data name. In the case of DDL dic-
tionaries, that key data name is the DDL attribute used
to state the data name being defined [_definition.id
(DDLm) or _item.name (DDL2)]. In keeping with the
scoping rule, child data names of this attribute need not
be included in any loops appearing in the definition:
thus the DDLm attribute dictionary does not include
these child attributes, whereas DDL2 explicitly defines
them. So, for example, _enumerated_set.item_name is
an attribute that could appear in DDL2 ENUMERATED_SET

loops with a value that is always the item being defined,
but it does not appear in definitions in the published
dictionaries as its value is unambiguous.

Following the procedure described in Section 3.1.4.1,
a DDLm dictionary can be transformed into a single,
large table for which the data name is the key. DDL2
dictionaries transform instead into two separate tables
as they use separate categories for category and item
names.

All dictionaries within an ontology may be further
aggregated into a single set of tables by recognising that

each dictionary projects the DICTIONARY category over
its key data name.

3.1.5. Combining and extending existing
dictionaries

A full description of some data sets requires drawing on
data names from more than one dictionary. For exam-
ple, a data file describing the data and results from a
powder diffraction experiment on a modulated struc-
ture using an imaging detector would use data names
from the modulated structures dictionary, the powder
diffraction dictionary, and the image CIF dictionary. In
the simplest case, dictionaries may be combined by
simply associating each of them with the data file (see
Section 3.1.6). In more complex cases, an overall dic-
tionary using the import mechanism (Section 2.4.2.2.4)
must be created.

Directly using data names from multiple dictionaries in
the data file is appropriate when no categories or data
names have been explicitly or implicitly redefined in
any of the dictionaries. This condition is fulfilled if (i)
any common categories have the same key data names,
and (ii) the data file contains no data names defined
in more than one of the source dictionaries. Typically
this situation arises where the domains of the dictio-
naries are largely separate; for example, the image dic-
tionary covers raw data and the core dictionary covers
reduced and processed data, with only the DIFFRN cat-
egory in common. Note that dictionaries that conform
to the same _audit.schema value (see Section 3.1.4.2)
will automatically satisfy criterion (i) above. Where the
above criteria cannot be met, a new dictionary must be
built through importation of the component dictionar-
ies and addition or replacement of definitions.

In the context of data manipulation the ‘meaning’ of a
data name can be divided into two aspects. The first
aspect relates to how values of this data name are
used, or the ‘downstream’ meaning of the data name.
The second aspect relates to how values of this data
name are derived, or the ‘upstream’ meaning. COM-
CIFS requires consistency in the downstream meaning
of data names defined in dictionaries that it adminis-
ters. New dictionaries may not, therefore, redefine a
data name in a way that would render existing uses of
values of that data name incorrect. Thus, while the way
in which _refln.F_calc (the calculated structure fac-
tor) is determined will vary depending on the model,
_refln.F_calc values found in data files may be used
and interpreted identically regardless of the model (for
example, to calculate a difference density). Similarly, a
number of approaches exist for deriving observed inten-
sity for a hkl spot from raw diffraction data, but that
intensity, once derived, is used identically regardless of

18 COMCIFS Dictionary Writing Workshop 2023

Creating and expanding CIF dictionaries

derivation method in downstream calculations.

From the above discussion it follows that new dictio-
naries change only the ‘upstream’ meaning of one or
more imported data names. This change usually arises
from a change in the model underlying derived values,
whether owing to a change in experimental technique
or an enhancement of the structural model. Historically,
changes in the upstream meaning of data names have
not always been documented in dictionaries owing to
the unchanged downstream use of the values found
in data files; however, documenting variations in the
upstream meaning of a data name is important for
enabling reproducible science.

The dREL language (chapter 2.5) has been introduced
as a way of capturing the upstream meaning of data
names in a machine-readable way. Where a dREL
method exists for a data name, a convenient way of
determining whether or not a redefinition is required in
a new dictionary is to check whether the dREL method
needs to be changed. Importantly, dREL methods do not
require changes where new key data names have been
added to a category that simply expose relationships
that were previously implicit. For example, although
the powder diffraction dictionary adds _pd_phase.id

as a new key data name to a number of categories,
the dREL methods that access items in these cate-
gories remain identical for those dREL methods that
are located in categories that have the same new key
data name. This is described in detail in point (ii) of
Section 2.5.2.3. In other words, because many cate-
gories in the single-crystal dictionary already implicitly
described a particular compound (or ‘phase’ in pow-
der diffraction terminology), making this dependency
explicit by adding a phase identifier to the category
does not change the substance of any calculations and
therefore does not trigger the need to redefine every
data name in those categories.

3.1.5.1. Creating a combined dictionary

Given the previous discussion one possible procedure
for constructing a dictionary that extends existing dic-
tionaries is as follows:

(i) Create a Head category that imports all the nec-
essary existing dictionaries (see Section 2.4.2.2.4).
It is not necessary to repeat imports of dictionaries
that are imported within other imported dictionar-
ies. Note that most dictionaries already import the
core dictionary.

(ii) Add definitions for any new categories and their
data names

(iii) Add definitions for any new non-key data names
belonging to existing categories

(iv) Where an existing category has acquired key data
names, define the expanded _category_key.name

in a new definition for that category and define the
new key data name.

(v) Repeat the previous step for any categories that
refer to the expanded existing category until no
such categories are left. A category references
another category either when key data names share
common parents, or _name.linked_item_id refers
to a data name in that category.

(vi) Determine any pre-existing derived data names
whose derivation methods are different relative to
the imported dictionaries. Provide new definitions
for each of these data names, explaining the new
derivation method.

When data spread over multiple blocks is anticipated,
the above procedure can usefully be combined with the
procedure described in section 3.1.4.3.

3.1.6. Linking data to dictionaries

Software that attempts to validate a data file against the
relevant CIF dictionaries needs to be able to identify
and locate those dictionaries. This is sometimes achiev-
able only through the context in which a data file has
been acquired. For example, files provided with a pow-
der diffraction paper are likely to be using the pow-
der dictionary, files in a magnetic database use the
magnetic dictionary etc. Sometimes a suitable heuristic
exists for guidance; for example, the presence of _pd_*
names in a data file indicates the powder dictionary.

However, formal machine-readability or adherence to
the FAIR principles (Findability, Accessibility, Interoper-
ability and Reusability) of data management (Wilkinson
et al., 2016) requires an explicit link between data
names and dictionaries. The core CIF dictionary pro-
vides the AUDIT_CONFORM category to provide such a
link and allow the identification and retrieval of the dic-
tionaries relevant to any data file (see Section 3.1.6.1
below).

Where a simple listing of dictionaries is not sufficient,
perhaps because of conflicting definitions, it may be
necessary to create an extension using the methods of
Section 3.1.5.

A dictionary merging protocol was described in the pre-
vious edition of this volume to resolve potential con-
flicts (McMahon, 2005), but is not appropriate for the
handling of DDLm dictionaries.

3.1.6.1. Identification of dictionaries relevant to a data
file

To permit automatic validation against the dictionar-
ies used in constructing a CIF data file, the file should
declare within each of its data blocks the names, ver-
sion numbers and, where appropriate, locations of the

COMCIFS Dictionary Writing Workshop 2023 19

Creating and expanding CIF dictionaries

canonical and local dictionaries that contain defini-
tions of the data names used in that block. The relevant
identifiers are the items _audit_conform.dict_name,
*.dict_version and *.dict_location, defined in the
core dictionary.

The values of the items _audit_conform.dict_name

and _audit_conform.dict_version are character strings
that match the values of the _dictionary.title and
_dictionary.version identifiers in the dictionary that
defines the relevant data names. Validation against the
latest version of a dictionary should always be suffi-
cient, since every effort is made to ensure that a dic-
tionary evolves only by extension, not by revising or
removing parts of previous versions of the dictionary.
Nevertheless, including _audit_conform.dict_version

is encouraged: it can be useful to confirm which version
of the dictionary the CIF was initially validated against.

The data item _audit_conform.dict_location may be
used to specify a file name or uniform resource loca-
tor (URL). However, a file name on a single computer
or network will be of use only to an application with
the same view of the local file system, and so is not
portable. A URL may be a better indicator of the loca-
tion of a dictionary file on the Internet, but can go out
of date as server names, addresses and file-system orga-
nization change over time. The preferred method for
locating a dictionary file is to make use of a dynamic
register, as described in Section 4.1.2.3. Nevertheless,
_audit_conform.dict_location remains a valid data
item that may be of legitimate use, particularly in man-
aging local applications.

The following example demonstrates a statement of dic-
tionary conformance in a data file describing a powder
diffraction experiment with some additional local data
items:

loop_
_audit_conform.dict_name
_audit_conform.dict_version
_audit_conform.dict_location

cif_core.dic 2.3.1 .
cif_pd.dic 1.0.1 .
cif_local_my.dic 1.0

/usr/local/dics/my_local_dictionary

It is clear that the location specified for the local dic-
tionary is only meaningful for applications running on
the same computer or network, and therefore the ability
to validate against this local dictionary is not portable.
On the other hand, it may be that the local data names
used by the authors of this CIF are not intended to have
meaning outside their own laboratory.

3.1.6.2. Locating a dictionary for validation

The following protocol applies to the creation and use
of software designed to locate the dictionaries refer-
enced by a data file and validate the data file against
them. The protocol is necessary to address the issues
that arise because dictionaries evolve through various
audited versions, because not all dictionaries refer-
enced by a data file may be accessible, and because
data files might not in practice contain pointers to their
associated dictionaries.

Software source code for applications that use CIF dic-
tionaries to validate the contents of data files should be
distributed with a copy of the most recent version of the
register of dictionaries, and with the URL of the master
copy hard-coded. Library utilities should be provided
that permit local cacheing of the register file and the
ability to download and replace the cached register at
regular intervals. Individual dictionary files located and
retrieved through the use of the register should also be
cached locally, to guard against temporary unavailabil-
ity of network resources.

Each CIF data file should contain a reference
to one or more dictionary files against which
the file may be validated. At the very least this
will be _audit_conform.dict_name (N). The other
data items _audit_conform.dict_version (V) and
_audit_conform.dict_location (L) are optional. In the
event that no dictionaries are specified, the default val-
idation dictionary should be that identified as having
N = CORE_DIC and V = ‘.’ (i.e. the most recent version
of the core dictionary). Since dictionaries are intended
always to be extended, it is normally enough just to
specify the name (and possibly the location).

A software application validating against CIF dictionar-
ies should attempt to locate and validate against the
referenced dictionaries in the order cited in the data
file, according to the following procedure. The terms
‘warning’ and ‘error’ in this procedure are not neces-
sarily messages to be delivered to a user. They may be
handled as condition codes or return values delivered
to calling procedures instead.

If N, V and L are all given, try to load the file from
the location L, or a locally cached copy of the refer-
enced file. If this fails, raise a warning. Then search
the dictionary register for entries matching the given N
and V . (An appropriate strategy would be to search a
locally cached copy of the register, and to refresh that
local copy with the latest version from the network if
the search fails.) If a successful match is made, try to
retrieve the file from the location given by the match-
ing entry in the register (or a locally cached copy with
the same N and V previously fetched from the location

20 COMCIFS Dictionary Writing Workshop 2023

Creating and expanding CIF dictionaries

specified in the register). If this fails, try to load files
identified from the register with the same N but pro-
gressively older versions V (version numbering takes the
form n.m.l . . ., where n, m, l, . . . are integers referring
to progressively less significant revision levels). Version
‘.’ (meaning the current version) should be accessed
before any other numbered version. If this fails, raise
a warning indicating that the specified dictionary could
not be located.

If N and V but not L are given, try to load locally cached
or master copies of the matching dictionary files from
the location specified in the register file, in the order
stated above, viz: (i) the version number V specified;
(ii) the version with version number indicated as ‘.’; (iii)
progressively older versions. Success in other than the
first instance should be accompanied by a warning and
an indication of the revision actually loaded.

If only N is given, try to load files identified in the regis-
ter by (i) the version with version number indicated as
‘.’; (ii) progressively older versions.

If all efforts to load a referenced dictionary fail, the val-
idation application should raise a warning.

If all efforts to load all referenced dictionaries fail, the
validation application should raise an error.

For any dictionary file successfully loaded according to

this protocol, the validation application must perform a
consistency check by scanning the file for internal iden-
tifiers (_dictionary.title, _dictionary.version) and
ensuring that they match the values of N and V (where
V is not ‘.’). Failure in matching should raise an error.

3.1.7. References

Bernstein, H. J., Bollinger, J. C., Brown, I. D. et al. (2016).
Specification of the Crystallographic Information File for-
mat, version 2.0. J. Appl. Cryst. 49, 277–284.
https://doi.org/10.1107/S1600576715021871 .

COMCIFS (2006). Terms of Reference.
https://www.iucr.org/resources/cif/comcifs/terms-of-
reference

COMCIFS (2014). IUCr Committee for the Mainte-
nance of the CIF Standard (GitHub repositories).
https://github.com/COMCIFS

Hall, S. R., Allen, F. H. & Brown, I. D. (1991). The Crystallo-
graphic Information File (CIF): a new standard archive file
for crystallography. Acta Cryst. A47, 655–685.
https://doi.org/10.1107/S010876739101067X .

McMahon, B. (2005). In International Tables for Crystallog-
raphy Volume G: Definition and exchange of crystallo-
graphic data, edited by S. R. Hall & B. McMahon, Section
3.1.9, pp. 88–89. Dordrecht: Springer, 1st ed.

Spadaccini, N. & Hall, S. R. (2012). DDLm: A new dictionary
definition language. J. Chem. Inf. Model. 52(8), 1907–
1916.
https://doi.org/10.1021/ci300075z.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J. et al.
(2016). The FAIR Guiding Principles for scientific data
management and stewardship. Sci. Data, 3, 160018.
https://doi.org/10.1038/sdata.2016.18.

COMCIFS Dictionary Writing Workshop 2023 21

https://doi.org/10.1107/S1600576715021871
https://doi.org/10.1107/S010876739101067X
https://doi.org/10.1021/ci300075z
https://doi.org/10.1038/sdata.2016.18

Management and use of CIF dictionaries
STATUS: Draft prepared for 2023 Dictionary Writing

Workshop

This is a draft of a forthcoming chapter of International Tables for Crystallography Volume G: Definition and
exchange of crystallographic data, 2nd edition (in preparation).

4.1. Management and use of CIF dictionaries

BY JAMES R. HESTER1 AND BRIAN MCMAHON2

4.1.1. Introduction

This part of the volume presents the definitions and
most significant attributes of terms in the set of dictio-
naries over which the International Union of Crystallog-
raphy (IUCr) exercises control. This canonical set forms
the ontology that is the basis of the Crystallographic
Information Framework.

Here we include in Chapter 4.10 the biological macro-
molecular CIF dictionary (mmCIF) that was originally
developed under the aegis of the IUCr. This has
subsequently been greatly expanded and enhanced
with additional dictionaries covering biological struc-
ture determination and reporting, and the so-named
mmCIF/PDBx family of dictionaries is now managed
and maintained by the Worldwide Protein Databank,
who provide a rich set of documentation resources on
their website (https://mmcif.wwpdb.org), which should
be consulted for current information. Nevertheless, the
early version of the mmCIF dictionary and its descrip-
tion (Chapter 3.10) are retained here to provide an
insight into the essentials of the macromolecular struc-
ture description and its relationship to the core CIF
model.

This introductory chapter discusses the administrative
machinery established by the IUCr to manage these
canonical dictionaries. It describes how to locate,
retrieve and handle single or aggregated dictionaries
appropriate to different disciplinary needs. It establishes
a high-level view of the different categories of defini-
tions that contribute to the overall conceptual model of
the subject. It concludes with guidance on developing
local extensions to the framework if needed for specific
purposes.

4.1.2. Administration of canonical
dictionaries

4.1.2.1. The role of COMCIFS

The body known as COMCIFS (the Committee for the
Maintenance of the CIF Standard) was established in
1993 at the XVI Congress of the IUCr in Beijing, China.

1 James R. Hester, Australian Nuclear Science and Technology Organ-
isation, New Illawarra Road, Lucas Heights, NSW 2234, Australia;
2 Brian McMahon, International Union of Crystallography, 5 Abbey
Square, Chester CH1 2HU, England.

At that time the only data definitions in use were those
specified in the original CIF paper (Hall et al., 1991).
Its role was defined as ratifying extensions to the set of
CIF approved data names and the commissioning and
guidance of experts in other areas to construct new CIF
dictionaries appropriate to their subject. It subsequently
undertook responsibility for managing and extending
the CIF format specification (Bernstein et al., 2016),
and the adoption and implementation of a methods-
enabled dictionary definition language (DDLm) based
on an initial proposal of Spadaccini & Hall (2012).

Its current terms of reference (COMCIFS, 2014) empha-
size its primary role as maintaining the integrity of
the Crystallographic Information Framework, and its
responsibility to extend the crystallographic ontology
into other related disciplines.

COMCIFS operates as an advisory subcommittee of the
IUCr Executive Committee, to which it reports directly.
As such, it represents a high level of authority invested
by the Union in the standardization project that it rep-
resents.

The technical work for which COMCIFS was originally
responsible is now largely undertaken by delegated
dictionary maintenance groups or technical working
groups (see Section 4.1.2.2).

The Committee now consists of a small core of voting
members responsible for directing overall policy. In a
spirit of openness, it welcomes a larger group of inter-
ested participants who act as observers, but are free
to participate in the majority of COMCIFS discussions,
which are conducted through email discussion lists and
publicly archived on the IUCr web site.

4.1.2.2. Developing community standards

The core CIF dictionary was developed to describe con-
cepts relevant to all areas of crystallography, as well as
the central activity of single-crystal structure determi-
nation by diffraction methods. However, crystallogra-
phy and closely neighbouring structural sciences cover
a wide range of subdisciplines, each with different com-
munity norms and modes of practice. COMCIFS has
sought to work with these various communities to initi-
ate and ratify new subdiscipline-specific dictionaries.

22 COMCIFS Dictionary Writing Workshop 2023

Management and use of CIF dictionaries

Often these have been started or encouraged by IUCr
Commissions, but sometimes they have been the initia-
tive of individual research groups. Dictionary authoring
efforts ideally include representatives of all stakehold-
ers in the relevant community. A typical stakeholder
group might include software authors, domain experts,
publishers and database managers. A diverse author
group ensures that any issues with the dictionary are
detected quickly, and therefore barriers to subsequent
adoption are eased. It is particularly helpful if target
software applications can be modified to allow live test-
ing of proposed new dictionary content as it is devel-
oped.

Early dictionary extensions were carried out in an ad
hoc manner by specialist groups, usually collaborat-
ing by email. Once their dictionaries received formal
COMCIFS approval, dictionary management groups
were created with dedicated discussion lists. Archives
of these list discussions are also on the IUCr web site.

Since 2014, COMCIFS has provided a shared standards
development area on GitHub, a major code repository
platform (COMCIFS, 2006), to allow collaborative work
on CIF dictionaries and related software. This mode of
operation has several advantages. It allows all workers
on a common project to have a common view of the
progress of the work, and new participants may join at
any time and see a complete history of all work carried
out to date. All changes are tracked automatically by
the repository software, and retrieval of any prior ver-
sion is possible. Versions of the dictionary or software
code may be forked, allowing for development of dif-
ferent approaches. Issues may be raised and tracked in
online structured discussion. Further, the ability to visit
different repositories provides a useful survey of how
different groups are approaching their specific projects.

4.1.2.3. Distribution infrastructure

COMCIFS retains the responsibility of trying to har-
monize the treatment of similar data requirements in
different dictionaries and to maintain maximum com-
patibility between data files originating from different
subdisciplines. To achieve this, COMCIFS can officially
approve dictionaries submitted to and reviewed by it.
It is these approved dictionaries that are included in
this volume. Provisional dictionaries may also be issued
and used within the relevant community before formal
approval is given.

The GitHub site described in Section 4.1.2.2 is an
important platform for developing new dictionaries and
extensions to existing dictionaries, and can usefully
function as a source for provisional releases.

However, formally approved dictionaries are then pub-
lished from the network services of the IUCr. The CIF
section of the IUCr web site provides links to current
and archived versions of approved dictionaries, with
commentaries and change logs.

Since the dictionaries are machine-readable resources,
it is of course useful for software to be able to down-
load them directly from a known uniform resource
locator (URL). The dictionaries are currently distributed
over two network protocols, ftp and https. The use
of the File Transfer Protocol (ftp) goes back to the
release of the original dictionary in 1991, when that
was the standard means of transferring files across the
then still relatively young academic Internet. When the
World Wide Web was launched around 1994, web
browsers rapidly became the application of choice for
retrieving distributed information. For many years, most
popular web browsers supported ftp natively, so that
the user could visit a URL with an ftp scheme (e.g.
ftp://ftp.iucr.org/pub/cifdics/cif core.dic) and view the
contents immediately in the browser. However, support
for this protocol was dropped from most browsers by
the early 2020s, and so the IUCr now also allows for
transport over the secure hypertext transmission proto-
col (https).

COMCIFS maintains a register of dictionaries known to
it, including the identifying name and version strings
within those dictionaries. In addition to COMCIFS-
approved dictionaries, there are a number of dic-
tionaries used internally by other organizations or
users that are known to be properly constructed,
so that this register has the potential to be a cen-
tral resolver for any public dictionary. The register
includes the location of each dictionary, expressed as
ftp: or https: based URLs. The location of the register is
https://www.iucr.org/ data/iucr/cif/dictionaries/cifdic.register
and (to maintain compatibility with ftp-based applica-
tions) ftp://ftp.iucr.org/pub/cifdics/cifdic.register.

The IUCr makes every effort to retain published URLs
indefinitely, but changes are sometimes forced by exter-
nal circumstances (e.g. the dropping of native sup-
port for ftp transfer by browsers, or the expiry of a
registered domain name). Consequently, since 2023,
digital object identifiers (DOIs) have also been intro-
duced for dictionaries. A DOI is a persistent identi-
fier that can be resolved to an Internet location using
a resolver service, thus allowing for changes in the
end-point URL to be handled transparently within the
resolver service. Registered DOIs are also included in
the dictionary register. At the time of writing, the recom-
mended resolver for these DOIs is provided by Cross-
Ref; to link to a DOI such as 10.1107/cifdics 000001,
one may prefix the address of the resolver service:
https://doi.org/10.1107/cifdic 000001.

COMCIFS Dictionary Writing Workshop 2023 23

Management and use of CIF dictionaries

Table 4.1.2.1. CIF dictionary register (maintained as a
CIF-format file). The https URLs have been abbrevi-
ated to fit into the column width. The elided part of
the address is __data/iucr/cif/dictionaries.

data_validation_dictionaries
loop_
_cifdic_dictionary.name
_cifdic_dictionary.version
_cifdic_dictionary.DDL_compliance
_cifdic_dictionary.reserved_prefix
_cifdic_dictionary.date
_cifdic_dictionary.URL
_cifdic_dictionary.DOI
_cifdic_dictionary.resource_type
_cifdic_dictionary.description

###
COMCIFS approved dictionaries
###
cif_core.dic . 1.4.1 . .

https://www.iucr.org/.../cif_core_2.4.5.dic
10.1107/cifdic_000001 landing_page
’Core CIF Dictionary’

.
cif_core.dic 2.3.1 1.4.1 . 2005-06-27

ftp://ftp.iucr.org/pub/cifdics/cif_core_2.3.1.dic
. .
’Core CIF Dictionary as published in ITG edition 1’

.
cif_core.dic 3.2.0 4.1.0 . 2023-05-30

https://www.iucr.org/.../cif_core_3.2.0.dic
10.1107/cifdic_000002 dictionary
’Core CIF Dictionary’

.
mmcif_std.dic 2.0.09 2.1.6 . 2005-06-27

ftp://ftp.iucr.org/pub/cifdics/cif_mm_2.0.09.dic
. .
’Macromolecular CIF Dictionary (ITG edition 1)’

##
Private dictionaries (re)distributed by the IUCr
##

.
cif_iucr.dic 1.2 1.4.1 . 2014-07-09

https://www.iucr.org/.../cif_iucr_1.2.dic
. .
’IUCr private data items for journal publishing’

.
##
DDL dictionaries
##

.
mmcif_ddl_2.1.6.dic . 2.1.6 . 2004-04-15

ftp://ftp.iucr.org/pub/cifdics/mmcif_ddl_2.1.6.dic
. .
’Relational (DDL2) dictionary definition language’

DDLm.dic 3.14.0 3.14.0 . 2019-09-25
https://www.iucr.org/.../DDLm_3.14.0.dic
. .
’Methods dictionary definition language’

.
##
Data items in the CIF dictionary register itself
##
cif_register.dic . 1.4 . .

https://www.iucr.org/.../cif_register.dic
. .
’Data items used within the register of published CIF dictionaries’

cif_register.dic 2.0 4.1.0 . 2023-06-20
https://www.iucr.org/.../cif_register_2.0.dic
. .
’Data items used in CIF dictionary register’ %

cif_register.dic 1.0 1.4 . 2005-06-24
ftp://ftp.iucr.org/pub/cifdics/cif_register_1.0.dic
. .
’Data items used in CIF dictionary register’ %

Table 4.1.2.2 shows some extracts from the current reg-
ister. The data name _cifdic_dictionary.resource_type

may take two values, ‘dictionary’ or ‘landing page’. The
former provides a direct link to the machine-readable
dictionary file. The latter is a link to an informational
web page that describes the nature, purpose and ver-
sion history of the dictionary. It also provides links to
formatted versions of the dictionary (typeset PDF and
hyperlinked HTML) and to relevant ancillary files.

By convention, an entry with resource type ‘dictionary’
that does not also have a specified version number will
link to the current release version of the dictionary file.

4.1.3. An overview of the ontology

The collection of dictionaries approved by COMCIFS
forms the crystallographic ontology expressed in the
DDLm definition language. The collection of dictio-
naries maintained by the Worldwide Protein Data
Bank forms a parallel ontology for biological structures
expressed in DDL2. The conceptual framework of both
ontologies is very similar, and is based on the notion of
categories (which are formally equivalent to relational
tables of objects and properties).

Fig. 4.1.3.1 is a very schematic ‘map’ of the CIF ontol-
ogy maintained by COMCIFS. It sketches the families
of categories in the various extension dictionaries, and
indicates overlaps with the categories defined in the
core dictionary. It also illustrates that mmCIF, the basis
of the macromolecular structural ontology, is a superset
of the core CIF dictionary.

RESTR_...
Restraints

TWIN_...
Twinning

ATOM_LOCAL_AXES
ATOM_RHO_MULTIPOLE_...

Electron density

DIFFRN_STANDARD_REFLN
GEOM_ANGLE
REFINE
REFLN
REFLNS
SPACE_GROUP_SYMOP

Modulated structures
ATOM_SITES_AXES
ATOM_SITES_...
ATOM_SITE_...
CELL_SUBSYSTEM
CELL_SUBSYSTEMS
CELL_WAVE_VECTOR
CELL_WAVE_VECTORS

ATOM_SITE_MOMENT_...
ATOM_SITES_MOMENT_...
PARENT_...
SPACE_GROUP_MAGN_...
SPACE_GROUP_SYMOP_MAGN_...

Magnetic

TOPOL
TOPOL_...

Topology

PD__...
Powder

Core mmCIF/PDBx

DIFFRN_DETECTOR
DIFFRN_MEASUREMENT
DIFFRN_RADIATION

Image
ARRAY_,,,
AXIS
DIFFRN_... (new)
MAP
MAP_SEGMENT
VARIANT

DIFFRN_REFLN

ATOM_SITE_FOURIER_WAVE_VECTOR

ATOM_SITE
*

(many others) (many others)

FUNCTION
MODEL_SITE

Fig. 4.1.3.1. Schematic map of ontological categories in the CIF dictionary
collection. Categories are indicated in very abbreviated form; only cat-
egories in the core (and mmCIF) dictionaries that overlap with other
extension dictionaries are indicated. The asterisk indicates that the
magnetic dictionary defines a new category (ATOM_SITES_MOMENT)
which is a proper child of the cited core category.

24 COMCIFS Dictionary Writing Workshop 2023

Management and use of CIF dictionaries

This figure demonstrates that, for the most part, the
extension dictionaries define terms specific to a partic-
ular topic area. Only the image and modulated struc-
tures dictionaries add to a relatively small number of
core categories.

This establishes that the core CIF dictionary supplies
most of the information that might be needed to char-
acterise any crystal structure, whether reported as a
standalone model, or presented as a database entry or
within a literature article. Hence, all these categories
must be made available to a complete description of a
structure additionally characterised by one or more of
the extension dictionaries.

The formal way to achieve this is through the
_import.get statement that appears in the ‘Head’
category of each extension dictionary (see Section
2.4.2.2.4). Fig. 4.1.3.2 shows how this is presented
in the topology dictionary. See also Fig. 2.4.2.6 for
an extended example (where the magnetic dictionary
imports both the core and the modulated structures
dictionaries) and an equivalent technique that uses the
DDLm IMPORT_DETAILS category. The imported defini-
tions are said to be ‘reparented’ to the Head category
of the importing dictionary.

save_TOPOLOGY

_definition.id TOPOLOGY
_definition.scope Category
_definition.class Head
_description.text

;
This category is the parent of all
categories in the dictionary.

;
_name.category_id TOPOLOGY_CIF
_name.object_id TOPOLOGY

_import.get
[{’file’:cif_core.dic

’mode’:Full ’save’:CIF_CORE}]
save_

Fig. 4.1.3.2. Different ways of describing imports.

In principle, each data block in a CIF data file should
indicate the dictionaries that contain the definitions of
the data names used in that block. This is done by using
relevant items from the AUDIT_CONFORM category. Fig.
4.1.3.3 illustrates how this might appear in legacy data
files (conformant to dictionaries constructed with the
DDL1 formalism) and in data files using DDLm dictio-
naries. Note how, in the latter case, the core CIF dic-
tionary is not included, because it is imported by the
powder dictionary. The example also indicates the pos-
sibility of using ‘local’ dictionaries to make use of new

definitions not found in the canonical set. Details of
how to set these up are given in Section 4.1.5.

Notice that the location given for the local dictionary in
this example is filesystem-based, and thus only mean-
ingful for applications running on the same computer
or network. This is legitimate, but means that the ability
to validate against this local dictionary is not portable.
On the other hand, it may be that the local data names
used by the authors of this CIF are not intended to have
meaning outside their own laboratory.

loop_
_audit_conform_dict_name
_audit_conform_dict_version
_audit_conform_dict_location

cif_core.dic 2.3.1 .
cif_pd.dic 1.0.1 .
cif_local_my.dic 1.0

/usr/local/dics/my_local_dictionary

(a)

loop_
_audit_conform.dict_name
_audit_conform.dict_version
_audit_conform.dict_DOI
_audit_conform.dict_location

cif_pd.dic 2.5.0
10.1107/cifdic_00007 .

cif_local_my.dic 1.0 . .
/usr/local/dics/my_local_dictionary

(b)

Fig. 4.1.3.3. The CIF dictionaries to which the data block conforms. (a) An
example DDL1 statement in a legacy file. (b) The same example using
DDLm formalism, with the additional ability to locate a dictionary by
means of a digital object identifier.

Note that, since the AUDIT_CONFORM strategy resides
in the core dictionary, there is a potential circularity:
the dictionary that defines _audit_conform.dict_* data
names needs to be loaded before those data names can
be interpreted. It is not anticipated that this will cause
significant problems in practice. Dictionary-aware val-
idators may have the appropriate behaviour for taking
action on AUDIT_CONFORM hard-coded as a bootstrap-
ping procedure.

If a dictionary-aware program is dependent on load-
ing dictionaries declared through the AUDIT_CONFORM

mechanism, and these datanames are absent, then the
appropriate default values should be
loop_

_audit_conform.dict_name
_audit_conform.dict_version
_audit_conform.dict_location
cif_core.dic .

ftp://ftp.iucr.org/pub/cifdics/cif_core.dic

COMCIFS Dictionary Writing Workshop 2023 25

Management and use of CIF dictionaries

where the core dictionary will be loaded; the version is
not declared, so that the latest version will be fetched,
and the use of an ftp-based location will also access the
current version for direct download. The default loca-
tion has been maintained since the early days of the
CIF standard, but if transfer over the https protocol is
preferred, an equivalent https location can be looked
up in the dictionary register (Section 4.1.2.3).

This default procedure will load the most recent core
dictionary in DDLm formalism, which will handle
legacy data files based on DDL1 in a satisfactory way
through data name aliasing.

4.1.4. Overview of the canonical CIF
dictionaries
In this section we give a broad overview of the cate-
gories contained in each of the CIF dictionaries pre-
sented here in Part 4 of the volume. More details are
given in the commentary chapters in Part 3, but the
following summary may also help to orient the reader
in finding relevant subject-specific data definitions, and
in understanding better how the various dictionaries fit
together.

This may also be considered an exercise in establish-
ing what is needed to facilitate interoperability between
related ontologies. Although these dictionaries explore
different facets of crystallographic science, and so are
in some sense all children of the ‘core’ CIF dictionary
(so named to assert its central importance to the entire
discipline), there is an opportunity to look at how the
whole collection might interoperate with other, wider
ontologies. Disciplines such as materials science, min-
eralogy and chemical structure are immediate exam-
ples that spring to mind, while the core dictionary
already contains generic categories that are relevant to
any field (author metadata, project sponsorship infor-
mation etc.). We will not here develop strategies for
wider integration – that is a future project of arbitrarily
great complexity – but we present the category sum-
maries as useful source material in seeking to build
concordances or integration bridges with other subject
ontologies.

4.1.4.1. The core CIF dictionary

Table 4.1.4.1 lists the categories defined in the core CIF
dictionary (Chapter 4.2). With the introduction of for-
mal parent–child category relationships, the core con-
tents now have a clearer hierarchical structure. TFor
convenience in discussion, the categories are arranged
in six themes, marked in bold type in Table 4.1.4.1. A
complete description of the concepts covered by this
dictionary is given in Chapter 3.2.

The PUBLICATION categories have a broader compass
than conventional literature publication, and include
the AUDIT categories that carry general metadata about
the project under which the CIF has been generated.
These include details of authorship, financial sponsor-
ship and other provenance metadata; information on
links between data blocks in the same CIF; biblio-
graphic details of resulting literature publications and
database definitions; and possibly the entire discursive
text of an associated publication. Most of these items
are common to any scientific research project.

The EXPTL categories relate to experimental work car-
ried out prior to diffraction measurements. While many
of these are specific to crystallographic experiments
(crystal preparation, space-group determination), it is
clear that any other experimental science would have
a parallel requirement to record preparation and set-up
information about an experiment.

The DIFFRACTION categories handle the description of a
diffraction experiment – still the most characteristic of
crystallographic experiments – and its data collection
and recording. These categories were originally devel-
oped for the typical single-crystal point-detector exper-
iment current in the late 1980s, and have undergone
considerable expansion with the emergence of new
diffraction methodologies.

The STRUCTURE categories contain a variety of structure-
related information, including (within the REFINE cate-
gories) information about the structure refinement. The
definitions in the core dictionary are not sufficiently
comprehensive to allow a re-refinement (some further
information is provided through the restraints dictio-
nary), but they do provide an indication of the meth-
ods and assumptions used to derive the reported struc-
ture. This is an essential requirement in meeting the
FAIR principle (Wilkinson et al., 2016) of replicability
of published models.

The MODEL categories report details of the molecular
or ionic structure derived from the inferred disposition
of atoms in the crystal structure. Whereas the latter is
represented in crystallographic coordinates, the geom-
etry (and valence) information is directly interpretable
in terms of a chemical model, easily exposing these
aspects to non-crystallographic applications.

The single FUNCTION category currently provides func-
tional relationships that ensure the integrity of intra-CIF
relationships expressed with DDLm methods attributes.
These data items are not generally expected to appear
in data CIFs, but their appearance within the dictionary
provides a strong assertion of the scientific relationships
between reported data items, and so provides a strong
basis for automated validation checks.

26 COMCIFS Dictionary Writing Workshop 2023

Management and use of CIF dictionaries

Table 4.1.4.1. Category hierarchy of the core CIF dictionary. The Head category is CIF_CORE. See text for a discus-
sion of the grouping by theme, indicated in bold.

DIFFRACTION
DIFFRN

CELL
CELL_MEASUREMENT

CELL_MEASUREMENT_REFLN
DIFFRN_ATTENUATOR
DIFFRN_DETECTOR
DIFFRN_MEASUREMENT
DIFFRN_ORIENT

DIFFRN_ORIENT_MATRIX
DIFFRN_ORIENT_REFLN

DIFFRN_RADIATION
DIFFRN_RADIATION_WAVELENGTH

DIFFRN_REFLN
DIFFRN_REFLNS

DIFFRN_REFLNS_CLASS
DIFFRN_REFLNS_TRANSF_MATRIX

DIFFRN_SCALE_GROUP
DIFFRN_SOURCE
DIFFRN_STANDARDS

DIFFRN_STANDARD_REFLN
REFLN
REFLNS

REFLNS_CLASS
REFLNS_SCALE
REFLNS_SHELL

EXPTL
CHEMICAL

CHEMICAL_CONN_ATOM
CHEMICAL_CONN_BOND
CHEMICAL_FORMULA

EXPTL_ABSORPT
EXPTL_CRYSTAL

EXPTL_CRYSTAL_APPEARANCE
EXPTL_CRYSTAL_FACE

SPACE_GROUP
SPACE_GROUP_GENERATOR
SPACE_GROUP_SYMOP
SPACE_GROUP_WYCKOFF

FUNCTION

MODEL
GEOM

GEOM_ANGLE
GEOM_BOND
GEOM_CONTACT
GEOM_HBOND
GEOM_TORSION

MODEL_SITE
VALENCE

VALENCE_PARAM
VALENCE_REF

PUBLICATION
AUDIT

AUDIT_AUTHOR
AUDIT_AUTHOR_ROLE
AUDIT_CONFORM
AUDIT_CONTACT_AUTHOR
AUDIT_LINK
AUDIT_SUPPORT

CITATION
CITATION_AUTHOR
CITATION_EDITOR
COMPUTING
DATABASE

DATABASE_CODE
DATABASE_RELATED
DISPLAY

DISPLAY_COLOUR
JOURNAL

JOURNAL_COEDITOR
JOURNAL_DATE
JOURNAL_INDEX
JOURNAL_TECHEDITOR

PUBL
PUBL_AUTHOR
PUBL_BODY
PUBL_CONTACT_AUTHOR
PUBL_MANUSCRIPT

PUBL_MANUSCRIPT_INCL_EXTRA
PUBL_REQUESTED
PUBL_SECTION

STRUCTURE
ATOM

ATOM_ANALYTICAL
ATOM_ANALYTICAL_MASS_LOSS
ATOM_ANALYTICAL_SOURCE

ATOM_SITE
ATOM_SITE_ANISO

ATOM_SITES
ATOM_SITES_CARTN_TRANSFORM
ATOM_SITES_FRACT_TRANSFORM

ATOM_TYPE
ATOM_TYPE_SCAT

REFINE
REFINE_DIFF
REFINE_LS

REFINE_LS_CLASS

4.1.4.2. The restraints dictionary

Current extension dictionaries have rather ‘flat’ struc-
tures (i.e. do not have the same richness of hierarchi-
cal parent–child category relationships as the core).
This largely reflects their focus on specific topics. The
restraints dictionary (Chapter 4.3) provides several cat-
egories that describe constraints and restraints that can
be applied within a structure refinement procedure
(Table 4.1.4.2). These are described in detail in Chapter
3.3. Different software packages may restrain refinable
parameters in many different ways, so it is not possible
to provide definitions of all possible refinement strate-

gies. Nevertheless, the structured description of the
types of restraint applied provides guidance if attempts
are made to re-refine the structure (particularly if the
original software is again used). They also allow an
experienced crystallographer to form a broad impres-
sion of the appropriateness of the refinement strategy
used.

4.1.4.3. The twinning dictionary

This dictionary (Chapter 4.4) contains a small set of
categories that describe twinning reported in a crystal

COMCIFS Dictionary Writing Workshop 2023 27

Management and use of CIF dictionaries

Table 4.1.4.2. Category hierarchy of the restraints CIF
dictionary. The Head category is CIF_RSTR.

RESTR
RESTR_ANGLE
RESTR_DISTANCE
RESTR_DISTANCE_MIN
RESTR_EQUAL_ANGLE
RESTR_EQUAL_ANGLE_CLASS
RESTR_EQUAL_DISTANCE
RESTR_EQUAL_DISTANCE_CLASS
RESTR_EQUAL_TORSION
RESTR_EQUAL_TORSION_CLASS
RESTR_PARAMETER
RESTR_PARAMETER_CLASS
RESTR_PLANE
RESTR_PLANE_CLASS
RESTR_RIGID_BODY
RESTR_RIGID_BODY_CLASS
RESTR_TORSION
RESTR_U_ISO
RESTR_U_RIGID
RESTR_U_SIMILAR

Table 4.1.4.3. Category hierarchy of the twinning CIF
dictionary. The Head category is TWIN_GROUP.

TWIN
TWIN_INDIVIDUAL
TWIN_REFLN

(Table 4.1.4.3). The TWIN_REFLN category partitions
reflections according to the twin component with
which they are associated, and so might be consid-
ered an interpretative extension of corresponding cat-
egories in the core. The remaining categories capture
the methodology of twin assignment. See Chapter 3.4
for a detailed discussion.

4.1.4.4. The modulated structures dictionary

The modulated and incommensurate structures dictio-
nary (Chapter 4.6) addresses the topic of aperiodicity
in crystal structures from the viewpoints of superposi-
tion of distinct structural models, and projection into
3-space of higher-dimensional symmetries (see Chap-
ter 3.6 for a detailed explanation). In consequence
(Table 4.1.4.4), several core categories are extended by
this dictionary, which also introduces some new cat-
egories that fit conceptually within core parent cate-
gories: the various ATOM_SITE_* and ATOM_SITES_* cat-
egories have parallels in the core dictionary (within
the STRUCTURE theme), while the CELL_SUBSYSTEM* and
CELL_WAVE_VECTOR* categories naturally belong within
the core DIFFRACTION heading.

Table 4.1.4.4. Category hierarchy of the modulated
structures CIF dictionary. The Head category is
MS_GROUP. The symbol ¶ indicates extensions to
categories already defined in the core CIF dictio-
nary.

ATOM_SITES_AXES
ATOM_SITES_DISPLACE_FOURIER
ATOM_SITES_MODULATION
ATOM_SITES_ORTHO
ATOM_SITES_ROT_FOURIER
ATOM_SITE_DISPLACE_FOURIER

ATOM_SITE_DISPLACE_FOURIER_PARAM
ATOM_SITE_DISPLACE_LEGENDRE
ATOM_SITE_DISPLACE_ORTHO
ATOM_SITE_DISPLACE_SPECIAL_FUNC
ATOM_SITE_DISPLACE_XHARM
ATOM_SITE_FOURIER_WAVE_VECTOR
ATOM_SITE_OCC_FOURIER

ATOM_SITE_OCC_FOURIER_PARAM
ATOM_SITE_OCC_LEGENDRE
ATOM_SITE_OCC_ORTHO
ATOM_SITE_OCC_SPECIAL_FUNC
ATOM_SITE_OCC_XHARM
ATOM_SITE_PHASON
ATOM_SITE_ROT_FOURIER

ATOM_SITE_ROT_FOURIER_PARAM
ATOM_SITE_ROT_LEGENDRE
ATOM_SITE_ROT_ORTHO
ATOM_SITE_ROT_SPECIAL_FUNC
ATOM_SITE_ROT_XHARM
ATOM_SITE_U_FOURIER

ATOM_SITE_U_FOURIER_PARAM
ATOM_SITE_U_LEGENDRE
ATOM_SITE_U_ORTHO
ATOM_SITE_U_XHARM
CELL_SUBSYSTEM
CELL_SUBSYSTEMS
CELL_WAVE_VECTOR
CELL_WAVE_VECTORS
¶ DIFFRN_REFLN
¶ DIFFRN_REFLNS
¶ DIFFRN_STANDARD_REFLN
¶ GEOM_ANGLE
¶ REFINE
¶ REFLN
¶ REFLNS
¶ SPACE_GROUP_SYMOP

4.1.4.5. The electron density dictionary

The current electron density dictionary (Chapter 4.7) is
restricted to a multipole expansion description of the
electron density associated with atom sites in the crystal
structure (Chapter 3.7). All the categories in this dictio-
nary (Table 4.1.4.5) are associated with the properties
of individual atom sites, including ATOM_LOCAL_AXES,
which defines an atom-centric Cartesian coordinate
system at each site.

28 COMCIFS Dictionary Writing Workshop 2023

Management and use of CIF dictionaries

Table 4.1.4.5. Category hierarchy of the electron
density CIF dictionary. The Head category is
RHO_GROUP.

ATOM_LOCAL_AXES
ATOM_RHO_MULTIPOLE

ATOM_RHO_MULTIPOLE_COEFF
ATOM_RHO_MULTIPOLE_KAPPA
ATOM_RHO_MULTIPOLE_RADIAL_SLATER

4.1.4.6. The magnetic CIF dictionary

Magnetic properties of crystal structures are
described by the magnetic CIF dictionary (Chap-
ter 4.8). Table 4.1.4.6 shows the categories defined
in this dictionary. Two (ATOM_SITE_MOMENT and
ATOM_SITE_FOURIER_WAVEVECTOR) are extensions of the
properties associated directly with atom sites in the
core and modulated structures dictionaries respectively.
As magnetic properties are often found in incommen-
surate structures (see Chapter 3.8), the magnetic CIF
dictionary imports both the core and modulated struc-
tures dictionaries to provide a complete set of necessary
definitions.

The remaining categories in this dictionary detail mag-
netic properties for both periodic and aperiodic struc-
tures.

Table 4.1.4.6. Category hierarchy of the magnetic CIF
dictionary. The Head category is MAGNETIC. The
symbol ¶ indicates children of categories already
defined in the core CIF dictionary and the symbol §
indicates children of categories defined in the mod-
ulated structures dictionary.

§ ATOM_SITE_FOURIER_WAVE_VECTOR
¶ ATOM_SITE_MOMENT
ATOM_SITE_MOMENT_FOURIER

ATOM_SITE_MOMENT_FOURIER_PARAM
ATOM_SITE_MOMENT_SPECIAL_FUNC
ATOM_SITES_MOMENT_FOURIER
PARENT_PROPAGATION_VECTOR
PARENT_SPACE_GROUP
SPACE_GROUP_MAGN
SPACE_GROUP_MAGN_SSG_TRANSFORMS
SPACE_GROUP_MAGN_TRANSFORMS
SPACE_GROUP_SYMOP_MAGN_OG_CENTERING
SPACE_GROUP_SYMOP_MAGN_CENTERING
SPACE_GROUP_SYMOP_MAGN_OPERATION
SPACE_GROUP_SYMOP_MAGN_SSG_CENTERING
SPACE_GROUP_SYMOP_MAGN_SSG_OPERATION

4.1.4.7. The topology dictionary

The topology CIF dictionary (Chapter 4.9) describes
the topological and connectivity properties of peri-
odic nets, and is thus more of a mathematical abstrac-
tion of the underlying lattice (or lattices) of a crys-
tal structure than its physical description (see Chapter
3.9). Table 4.1.4.7 lists the categories in this dictionary,
which for the most part define abstract periodic nets.
The TOPOL_ATOM category does allow for a mathemat-
ical lattice to be superimposed on or otherwise asso-
ciated with a physical crystal structure, and the data
item _topol_atom.atom_label, by matching a value of
_atom_site.label, is the mechanism that links together
the topological and physical descriptions of the crystal
structure.

Table 4.1.4.7. Category hierarchy of the topology CIF
dictionary. The Head category is TOPOLOGY.

TOPOL
TOPOL_ATOM
TOPOL_ENTANGL
TOPOL_LINK
TOPOL_NET
TOPOL_NODE
TOPOL_TILING

4.1.4.8. The macromolecular dictionary

The macromolecular CIF dictionary and its family of
associated dictionaries used for biological structures is
maintained by the Worldwide Protein Data Bank, and
is not fully covered in this volume. Details of the cen-
tral mmCIF as originally developed under the aegis of
COMCIFS are found in Chapter 3.10, and the reference
version of the dictionary is present in Chapter 4.10. Fig.
4.1.3.1 shows that the mmCIF dictionary was originally
a proper superset of the core dictionary, though core
categories such as FUNCTION and MODEL_SITE, which
were developed at a later date to accommodate meth-
ods descriptions, do not appear in current versions of
the expanded mmCIF/PDBx dictionary.

The handling of category relationships differs between
DDLm and DDL2 dictionaries, the latter group-
ing related categories using a _category_group.id

attribute. Table A3.10.1.1 shows the category structure
of the reference mmCIF dictionary, arranged by the cat-
egory group organisation within that dictionary.

4.1.4.9. The image dictionary

The image CIF dictionary (Chapter 4.11) is concerned
with the raw image data collected in a diffraction

COMCIFS Dictionary Writing Workshop 2023 29

Management and use of CIF dictionaries

experiment (see Chapter 3.11 for an explanation of
the way in which individual data arrays are organized
into frames and scans, and how instrumental and sam-
ple coordinate axes are described). Conceptually, all
its categories fit within the DIFFRACTION heading of the
core dictionary. Table 4.1.4.8 lists the categories in
the image dictionary, and identifies several that extend
existing core categories.

Table 4.1.4.8. Category hierarchy of the img CIF dic-
tionary. The symbol ¶ indicates extensions to cate-
gories already defined in the core CIF dictionary.

ARRAY_DATA
ARRAY_DATA_EXTERNAL_DATA
ARRAY_ELEMENT_SIZE
ARRAY_INTENSITIES
ARRAY_STRUCTURE
ARRAY_STRUCTURE_LIST
ARRAY_STRUCTURE_LIST_AXIS
ARRAY_STRUCTURE_LIST_SECTION
AXIS
DIFFRN_DATA_FRAME
¶ DIFFRN_DETECTOR
DIFFRN_DETECTOR_AXIS
DIFFRN_DETECTOR_ELEMENT
DIFFRN_FRAME_DATA
¶ DIFFRN_MEASUREMENT
DIFFRN_MEASUREMENT_AXIS
¶ DIFFRN_RADIATION
¶ DIFFRN_REFLN
DIFFRN_SCAN
DIFFRN_SCAN_AXIS
DIFFRN_SCAN_COLLECTION
DIFFRN_SCAN_FRAME
DIFFRN_SCAN_FRAME_AXIS
DIFFRN_SCAN_FRAME_MONITOR
MAP
MAP_SEGMENT
VARIANT

4.1.5. Extending the dictionaries to meet
local requirements

We emphasise, as elsewhere in this volume, that the
Crystallographic Information Framework is, strictly, for-
mat agnostic. That is, the definitions of specific data
items, including their specific attributes (type, numeric
range etc.) can be applied to a presentation of those
data in any well-defined format (e.g. XML, JSON), so
long as the data values can be unambiguously identi-
fied through association with the relevant data name. In
the adoption and application of CIF-format files using
data names defined in CIF dictionaries as a specific
exchange mechanism, the crystallographic community
has imposed on itself a particular discipline. This is not

to be seen as a restriction but as a means to unambigu-
ous and effective communication.

The existence and use of canonical dictionaries does
not limit the contents of data files. A data file may con-
tain arbitrary items not in the canonical dictionaries,
as well as items formally defined in local dictionaries,
which are intended for use only by certain software
packages or in particular applications. The choice of
which items to include in the data file depends on the
capabilities of the applications that will use the data in
the file. It is also influenced by the extent to which the
author of the file wishes the data to be retrievable with-
out ambiguity in the future.

It is therefore important to be able to include informa-
tion in CIF data files that is only of local interest in a
way that does not conflict with canonical or other pub-
lic data names.

An author may define local data names in some com-
pletely informal manner; that is, there is no obligation
to construct an attribute table in an external file that
conforms to the style of the public dictionaries. Nev-
ertheless, there are clear advantages to doing so: the
author will benefit from standard software tools that val-
idate data against dictionaries and the data names are
more easily exported to the public domain if they sub-
sequently become relevant to a wider community.

4.1.5.1. The [local] prefix

The string [local]_ is reserved as a prefix to iden-
tify data names that will not appear in any pub-
lic dictionary. (The left and right square brackets
are included in this label.) Hence an author may
construct private data names according to one of
the following models, secure in the knowledge that
the name will not appear in any global dictio-
nary. With the older dictionary definition language
DDL1 (now deprecated), a private data name will
always have the form _[local]_private_data_name,
while with DDLm and DDL2 the forms
_[local]_new_category_name.private_data_name and
_existing_category_name.[local]_private_data_name

may be used. The first form is used for private data
names in a category not already defined by a public
dictionary; the second form permits the addition of
local data names to an existing category.

While this convention guarantees that the new data
name will not conflict with a public one, it cannot guar-
antee that it will not conflict with a local data name cre-
ated by another author. Therefore these data names are
appropriate only for testing purposes and not for release
in data files that may be used by others.

30 COMCIFS Dictionary Writing Workshop 2023

Management and use of CIF dictionaries

Table 4.1.5.1. Reserved prefixes for private CIF data
names

String Reserved for the use of

acihd Anorganisch-Chemisches Institut Heidelberg
aflow AFLOW high-throughput Density Functional Calculations
amcsd American Mineralogist Crystal Structure Database
anbf Australian National Beamline Facility
asd Active Site Database
B+S Software developers Bernstein + Sons
BplusS Software developers Bernstein + Sons (use with DDLm)
bruker Bruker AXS software
ccdc Cambridge Crystallographic Data Centre
CCP4 CCP4 program system
cgraph Oxford Cryosystems Crystallographica package
chimerax University of California San Francisco ChimeraX
cod Crystallography Open Database
cifdic Register of CIF dictionaries
crystmol CrystMol package
csd Cambridge Structural Database
dft Density functional theory calculations (T. Björkman)
ebi European Bioinformatics Institute
edchem Edinburgh University Chemistry Department
gsas GSAS powder refinement system
gsk GSK (GlaxoSmithKline)
H5 CIF support of HDF5 and NeXus
iims EBI project on integration of information about

macromolecular structure
ISO ISOTROPY software suite
itqb Instituto de Tecnologia Quı́mica e Biológica da

Universidade NOVA de Lisboa
iucr IUCr journal use
LANL Los Alamos National Laboratory
manchester University of Manchester
mdb Model Database (Glaxo)
montpellier University of Montpellier
mp Materials Project (MP) database
mpod Material Properties Open Database
msd EBI Molecular Structure Database Group
naned Project NanED for 3D electron diffraction data
ndb Nucleic Acids Database Project, Rutgers University
NIEHS National Institute of Environmental Health Sciences
nomad NOMAD Center of Excellence for theoretical material

science calculations and structures
nottingham University of Nottingham
NX Nexus-related tags for CIF HDF5/NeXus integration
oxford CRYSTALS package, University of Oxford
parvati Validation and statistical summaries from PARVATI

validation server
pdb Protein Data Bank
pdbx Protein Data Bank exchange dictionary
pdb2cif Additions to mmCIF used by program pdb2cif
phenix PHENIX software suite for macromolecular structures
prop Properties (used in Material Properties Open Database)
publcif publCIF editor
raman Spectra obtained by Raman spectroscopy technique
rayonix Information specific to Rayonix (Mar USA) instruments
rcsb Research Collaboratory for Structural Bioinformatics
rotag Rotamer software library rotag
shelx SHELXL solution and refinement programs
solsa SOLSA H2020 project (sonic drilling with automated

mineralogy and chemistry)
SSAD Sulfur SAD Database
sydney University of Sydney
tcod Theoretical Crystallography Open Database
TOPOS ToposPro software
vrf Validation reply form (IUCr/Acta Crystallographica use)
wdc Entries in the World Directory of Crystallographers
xtal Xtal program system

4.1.5.2. Reserved prefixes

To guarantee that locally devised data names may be
placed without name conflict in interchange data files,
authors may register a reserved character string for their
sole use. As with the special prefix [local]_ discussed
in Section 4.1.5.1, the author’s reserved prefix is simply
an underscore-terminated string within the data name
(i.e. it may not itself include an underscore character).
For DDL1 applications it must be the first component
of the data name; for DDLm and DDL2 applications it
forms the first component of the data name if describ-
ing data names in a category not defined in the official
dictionaries; or the first component after the full stop
(category delimiter) if the local data name is an exten-
sion to an existing category.

Prefixes may be registered online through a web form at
https://www.iucr.org/cgi-bin/cifreserve.pl. Table 4.1.5.1
gives a list of prefixes registered as of June 2023; this list
will of course go out of date, but a current list will be
maintained on the web at the address above.

An example of a data name incorporating a
reserved prefix is the average (or Wilson) B fac-
tor reported by the Oxford CRYSTALS package as
_oxford_diffrn_Wilson_B_factor.

4.1.5.3. Name spaces

The allocation of special prefixes as in Sections 4.1.5.1
and 4.1.5.2 above is a basic form of name-space alloca-
tion, because it gives authors the freedom to reproduce
portions of otherwise standard data names within their
own private constructions. This convention has been
supported since the release of the original core dictio-
nary.

DDLm has introduced _dictionary.namespace that
allows formal name-space assignment within dictionar-
ies (Section 2.4.2.2.3). At the time of writing this is used
only in dREL methods [see item (iv) of Section 2.5.2.3],
but it may provide a convenient mechanism for future
development of dictionaries, especially in the context
of cross-domain applications.

References

Bernstein, H. J., Bollinger, J. C., Brown, I. D. et al. (2016).
Specification of the Crystallographic Information File for-
mat, version 2.0. J. Appl. Cryst. 49, 277–284.
https://doi.org/10.1107/S1600576715021871 .

COMCIFS (2006). Terms of Reference.
https://www.iucr.org/resources/cif/comcifs/terms-of-
reference

COMCIFS (2014). IUCr Committee for the Mainte-
nance of the CIF Standard (GitHub repositories).
https://github.com/COMCIFS

COMCIFS Dictionary Writing Workshop 2023 31

https://doi.org/10.1107/S1600576715021871

Management and use of CIF dictionaries

Hall, S. R., Allen, F. H. & Brown, I. D. (1991). The Crystallo-
graphic Information File (CIF): a new standard archive file
for crystallography. Acta Cryst. A47, 655–685.
https://doi.org/10.1107/S010876739101067X .

McMahon, B. (2005). In International Tables for Crystallog-
raphy Volume G: Definition and exchange of crystallo-
graphic data, edited by S. R. Hall & B. McMahon, Section
3.1.9, pp. 88–89. Dordrecht: Springer, 1st ed.

Spadaccini, N. & Hall, S. R. (2012). DDLm: A new dictionary
definition language. J. Chem. Inf. Model. 52(8), 1907–
1916.
https://doi.org/10.1021/ci300075z.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J. et al.
(2016). The FAIR Guiding Principles for scientific data
management and stewardship. Sci. Data, 3, 160018.
https://doi.org/10.1038/sdata.2016.18.

32 COMCIFS Dictionary Writing Workshop 2023

https://doi.org/10.1107/S010876739101067X
https://doi.org/10.1021/ci300075z
https://doi.org/10.1038/sdata.2016.18

Management and use of CIF dictionaries

Appendices

COMCIFS Dictionary Writing Workshop 2023 33

DDLm dictionary STATUS: Version 4.2.0 of 18 July 2023

APPENDIX 1: This is a concise listing of the DDLm dictionary, formatted in the style of International Tables
for Crystallography Volume G: Definition and exchange of crystallographic data, 2nd edition (in preparation).

DDLm dictionary

BY SYDNEY R. HALL1, NICK SPADACCINI1 , JAMES R. HESTER2, JOHN C. BOLLINGER3 AND ANTANAS
VAITKUS4

This dictionary contains the definitions of attributes that make up the DDLm dictionary definition language. It
provides the meta meta data for all CIF dictionaries.

ATTRIBUTES

This category is parent of all other categories in the
DDLm dictionary.

ALIAS

The attributes used to specify the aliased names of def-
initions.
Category key(s): _alias.definition_id

_alias.definition_id (Tag)

Identifier tag of an aliased definition.

_alias.deprecation_date (Date)

Date that the aliased tag was deprecated as a definition
tag.

_alias.dictionary_uri (Uri)

Absolute URI of dictionary to which the aliased defini-
tion belongs.

CATEGORY KEY

The attributes used to specify (possibly multiple) keys
for a given category.
Category key(s): _category_key.name

_category_key.name (Tag)

A minimal list of tag(s) that together constitute a com-
pound key to access other items in a Loop category.
In other words, the combined values of the data items
listed in this loop must be unique, so that unambigu-
ous access to a packet (row) in the table of values is
possible.

DEFINITION

The attributes for classifying dictionary definitions.

1 The University of Western Australia, 35 Stirling Highway, 6009
Perth, Australia; 2 Australian Nuclear Science and Technology Organ-
isation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
3 Department of Structural Biology, St Jude Children’s Research Hos-
pital, Memphis, Tennessee 38105, USA; 4 Institute of Biotechnology,
Vilnius University, Vilnius, Lithuania.

_definition.class (Code)

The nature and the function of a definition or defini-
tions.
Where no value is given, the assumed value is ‘Datum’.

The data value must be one of the following:

Attribute Item used as an attribute in the definition of other
data items in DDLm dictionaries. These items
never appear in data instance files.

Functions Category of items that are transient function defi-
nitions used only in dREL methods scripts. These
items never appear in data instance files.

Datum Item defined in a domain-specific dictionary.
These items appear only in data instance files.

Head Category of items that is the parent of all other cat-
egories in the dictionary.

Loop Category of items that in a data file may reside in
a loop-list with a key item defined.

Set Category of items that form a set (but not a
loopable list). These items may be referenced as
a class of items in a dREL methods expression.

_definition.id (Code)

Identifier name of the Item or Category being defined.

_definition.scope (Code)

The extent to which a definition affects other defini-
tions.
Where no value is given, the assumed value is ‘Item’.

The data value must be one of the following:

Dictionary Applies to all defined items in the dictionary.
Category Applies to all defined items in the category.
Item Applies to a single item definition.

_definition.update (Date)

The date that a definition was last changed.

DEFINITION REPLACED

Attributes used to describe deprecated and replaced
definitions.
Category key(s): _definition_replaced.id

_definition_replaced.by (Tag)

Name of the data item that should be used instead of
the defined data item. The defined data item is depre-
cated and should not be used. A value of ‘.’ signifies
that the data item is deprecated, with no replacement.

_definition_replaced.id (Code)

An opaque identifier for the replacement.

34 COMCIFS Dictionary Writing Workshop 2023

DDLm dictionary

DESCRIPTION

The attributes of descriptive (non-machine parsable)
parts of definitions.

_description.common (Text)

Commonly-used identifying name for the item.

_description.key_words (Text)

List of key-words categorising the item.

_description.text (Text)

The text description of the defined item, category, or
dictionary.

DESCRIPTION EXAMPLE

Descriptive (non-machine parsable) examples of val-
ues of the defined items and categories.
Category key(s): _description_example.case

_description_example.case (Implied)

An example case of the defined item or category. Cat-
egory example cases present data names and values as
they would appear in a CIF-formatted file. Item exam-
ple cases present values only, which inherit the enu-
meration range, enumeration set, container, dimension,
content and purpose type constraints of the defining
item.

_description_example.detail (Text)

A description of an example case for the defined item
or category.

DICTIONARY

Attributes for identifying and registering the dictio-
nary. The items in this category are not used as
attributes of INDIVIDUAL data items.

_dictionary.class (Code)

The nature, or field of interest, of data items defined in
the dictionary.
Where no value is given, the assumed value is ‘Instance’.

The data value must be one of the following:

Reference DDLm reference attribute definitions.
Instance Domain-specific data instance definitions.
Template Domain-specific attribute/enumeration templates.
Function Domain-specific method function scripts.

_dictionary.date (Date)

The date that the last dictionary revision took place.

_dictionary.ddl_conformance (Version)

The version number of the DDL dictionary that this dic-
tionary conforms to.

_dictionary.DOI (Text)

The digital object identifier (DOI) of the dictionary.
Example: ‘10.5555/12345678’

_dictionary.formalism (Text)

The definitions contained in this dictionary are associ-
ated with the value of this attribute. Data items may
only be redefined if the value of this attribute is also
changed, and any such redefinitions must include the
original behaviour as a particular case.

_dictionary.namespace (Code)

The namespace code that may be prefixed (with a trail-
ing double colon ‘::’) to an item tag defined in the
defining dictionary when used in particular applica-
tions. Because tags must be unique, namespace codes
are unlikely to be used in data files.

_dictionary.title (Code)

The common title of the dictionary. Will usually match
the name attached to the data_ statement of the dictio-
nary file.

_dictionary.uri (Uri)

An absolute uniform resource identifier (URI) for this
dictionary.

_dictionary.version (Version)

A unique version identifier for the dictionary.

DICTIONARY AUDIT

Attributes for identifying and registering the dictio-
nary. The items in this category are not used as
attributes of individual data items.
Category key(s): _dictionary_audit.version

_dictionary_audit.date (Date)

The date of each dictionary revision.

_dictionary_audit.revision (Text)

A description of the revision applied for the
_dictionary_audit.version.

_dictionary_audit.version (Version)

A unique version identifier for each revision of the dic-
tionary.

DICTIONARY AUTHOR

Attributes used to record the dictionary author infor-
mation.
Category key(s): _dictionary_author.id

COMCIFS Dictionary Writing Workshop 2023 35

DDLm dictionary

_dictionary_author.email (Text)

The electronic mail address of an author of the dictio-
nary, in a form recognizable to international networks.
The format of e-mail addresses is given in Section 3.4,
Address Specification, of Internet Message Format, RFC
2822, P. Resnick (Editor), Network Standards Group,
April 2001.
Examples: ‘name@host.domain.country’, ‘bm@iucr.org’

_dictionary_author.id (Word)

Arbitrary identifier for this author.

_dictionary_author.id_ORCID (Code)

Identifier in the ORCID Registry of a publication author.
ORCID is an open, non-profit, community-driven ser-
vice to provide a registry of unique researcher identi-
fiers (https://orcid.org/).
Example: ‘0000-0003-0391-0002’

_dictionary_author.name (Text)

The name of an author of this dictionary. The fam-
ily name(s), followed by a comma and including any
dynastic components, precedes the first name(s) or ini-
tial(s). For authors with only one name, provide the full
name without abbreviation.
Examples: ’’’O’Neil, F.K.’’’, ‘Yang, D.-L.’, ‘M\"uller, H.A.’,

‘Chandra’

DICTIONARY VALID

Data items which are used to specify the con-
tents of definitions in the dictionary in terms of the
_definition.scope and the required and prohibited
attributes. Validation rules described by data items in
this category apply only to Reference and Instance
dictionaries.
Category key(s): _dictionary_valid.scope

_dictionary_valid.option

_dictionary_valid.application (Code[2])

Deprecated. Provides the information identifying the
definition scope (from the _definition.scope enu-
meration list) and the validity options (from the
_dictionary_valid.option enumeration list), as a two
element list.

_dictionary_valid.attributes (Code[])

A list of the attribute names and categories that are
assessed for application in the item, category and dic-
tionary definitions. A parent attribute category implic-
itly recursively includes all child categories.

_dictionary_valid.option (Code)

Option codes for applicability of attributes in defini-
tions. Attributes not listed as ‘Prohibited’ for a given
scope are allowed in that scope.
Where no value is given, the assumed value is ‘Recommended’.

The data value must be one of the following:

Mandatory Attribute must be present in definition frame.
Recommended Attribute is usually in definition frame.
Prohibited Attribute must not be used in definition frame.

_dictionary_valid.scope (Code)

The scope to which the specified restriction on usable
attributes applies.
The data value must be one of the following:

Dictionary Restriction applies to dictionary definition.

Category Restriction applies to a category definition.

Item Restriction applies to an item definition.

ENUMERATION

The attributes for restricting the values of defined data
items.

_enumeration.def_index_id (Tag)

Deprecated. The _enumeration.def_index_ids data
item should be used instead of this item. Specifies
the data name of the item with a value used as an
index to the DEFAULT enumeration list (in category
ENUMERATION_DEFAULT) in order to select the default
enumeration value for the defined item. The value
of the identified data item must match one of the
_enumeration_default.index values.

_enumeration.def_index_ids (Tag[])

Specifies the data names of items that are collec-
tively used to identify the suitable default value in
the ENUMERATION_DEFAULTS category loop. The val-
ues of these items are used to construct an ordered
list which is checked against the values of the
_enumeration_defaults.index attribute.

_enumeration.default (Implied)

The default value for the defined item if it is not spec-
ified explicitly. Value of this attribute inherits the enu-
meration range, enumeration set, container, dimension,
content and purpose type constraints of the defining
item.

_enumeration.mandatory (Code)

Yes or No flag on whether the enumerate states speci-
fied for an item in the current definition (in which item
appears) must be used on instantiation.
Where no value is given, the assumed value is ‘Yes’.

The data value must be one of the following:

Yes Use of state is mandatory.
No Use of state is unnecessary.

36 COMCIFS Dictionary Writing Workshop 2023

DDLm dictionary

_enumeration.range (Range)

The inclusive range of numerical values allowed for the
defined item. If the defined item has associated SU val-
ues, the reported data values may fall outside these lim-
its.
Examples: ‘-4:10’ (Values must be no less than -4 and no greater than 10.),

‘0:’ (Values must be greater than or equal to 0.), ‘:3.1415’ (Values must be

less than or equal to 3.1415.)

ENUMERATION DEFAULT

Deprecated. The ENUMERATION_DEFAULTS category
should be used instead of this category. Loop of pre-
determined default enumeration values indexed to a
data item by the item _enumeration.def_index_id.
Category key(s): _enumeration_default.index

_enumeration_default.index (Code)

Deprecated. The _enumeration_defaults.index data
item should be used instead of this item. Index key
in the list default values referenced to by the value of
_enumeration.def_index_id.

_enumeration_default.value (Implied)

Deprecated. The _enumeration_defaults.value data
item should be used instead of this item. Default enu-
meration value in the list referenced by the value of
_enumeration.def_index_id. The reference index key
is given by the value of _enumeration_default.index
value.

ENUMERATION DEFAULTS

Loop of pre-determined default enumeration values
indexed by a set of data items specified using the
_enumeration.def_index_ids attribute.
Category key(s): _enumeration_defaults.index

_enumeration_defaults.index (Inherited[])

An index value, in the form of an ordered list, which
allows the identification of the most suitable default
value. The order of values in the list must correspond
to the order of the related data item references in
the _enumeration.def_index_ids attribute list. That is,
the nth list element is assumed to represent a value
that may be assigned to the data item referenced at
the nth position of the _enumeration.def_index_ids
attribute list value. The constituent values of the
_enumeration_defaults.index attribute inherit the enu-
meration range, enumeration set, and the content type
from the data item with which they are paired.

_enumeration_defaults.source_id (Word)

An identifier which corresponds to an entry in the ENU-
MERATION_SOURCE category loop. Used to provide a ref-
erence to the original source of a specific enumeration
value.
Values must match those for the following item(s): _enumeration_source.id

_enumeration_defaults.value (Implied)

The default enumeration value associated with a spe-
cific index value constructed using data items refer-
enced by the _enumeration.def_index_ids attribute.
The associated index value is provided using the
_enumeration_defaults.index attribute.

ENUMERATION SET

Attributes of data items which are used to define a set
of unique pre-determined values.
Category key(s): _enumeration_set.state

_enumeration_set.detail (Text)

The meaning of the code (identified by
_enumeration_set.state) in terms of the value of the
quantity it describes.

_enumeration_set.state (Text)

Permitted value state for the defined item.

ENUMERATION SOURCE

Attributes used to record the original sources of
the default values enumerated using the ENUMERA-
TION_DEFAULTS category.
Category key(s): _enumeration_source.id

Example 1 – There are two sources for the default values given in
the enumeration. Entries marked with ‘a’ come from Table 4.4.4.1
in the 2nd edition of Volume C of the International Tables of Crys-
tallography. Entries marked with ‘b’ come from Table 4.3.2.1 in the
1st edition of Volume H of the International Tables of Crystallogra-
phy.
loop_
_enumeration_source.id
_enumeration_source.reference
a ’International Tables Vol. C Table 4.4.4.1 2nd ed.’
b ’International Tables Vol. H Table 4.3.2.1 1st ed.’

loop_
_enumeration_defaults.index
_enumeration_defaults.value
_enumeration_defaults.source_id

[H] 1 a
[H-] 2 a
[He] 2 b
...

Example 2 – There is a single source for all default values given in
the enumeration. All entries can be found in Table S4 of the material
referenced by the given DOI.
_enumeration_source.reference
’https://doi.org/10.1107/S2053273322010944, Table S4’

loop_
_enumeration_defaults.index
_enumeration_defaults.value

[He] 0.8733928
[Li] 1.129319
[Be] 1.592162
...

COMCIFS Dictionary Writing Workshop 2023 37

DDLm dictionary

_enumeration_source.id (Word)

A unique identifier of the source material from which
the _enumeration_defaults.value attribute values were
taken.

_enumeration_source.reference (Text)

Bibliographic information sufficient to iden-
tify the original source of the associated
_enumeration_defaults.value attribute values.

IMPORT

Used to import the values of specific attributes from
other dictionary definitions within and without the
current dictionary.

_import.get (ByReference)

A list of tables of attributes defined individually in
the category IMPORT_DETAILS, used to import definitions
from other dictionaries.

IMPORT DETAILS

Items in IMPORT_DETAILS describe individual attributes
of an import operation.
Category key(s): _import_details.order

_import_details.file_id (Uri)

A URI reference as per RFC 3986 giving the location of
the source dictionary. When a relative URI is used, the
base URI for the URI reference is the _dictionary.uri
of the importing dictionary.

_import_details.file_version (Version)

The required version number for _dictionary.version
of the imported dictionary. Dictionaries with the same
major version number are compatible. If absent or null,
any version is permitted.

_import_details.frame_id (Code)

The save frame code of the definition frame to be
imported.

_import_details.if_dupl (Code)

Code identifying the action taken if the requested defi-
nition block already exists within the importing dictio-
nary in ‘Full’ mode, or an attribute exists in both the
importing definition block and the requested definition
block in ‘Contents’ mode.
Where no value is given, the assumed value is ‘Exit’.

The data value must be one of the following:

Ignore Ignore imported definitions if block identifiers
match in ‘Full’ mode. Ignore imported attributes
that match attributes already in the importing def-
inition in ‘Contents’ mode. When importing in
‘Contents’ mode, if the ignored attribute belongs
to a Loop category, all attributes from that cate-
gory must be ignored to avoid loop mismatches.

Replace Replace existing definitions with imported defi-
nitions if block identifiers match in ‘Full’ mode.
When importing in ‘Contents’ mode, contents
of the two save frames should be merged and
any duplicate attributes replaced with those from
the imported save frame. In case the replaced
attribute belongs to a Loop category, all attributes
from that category must first be removed from the
importing save frame to avoid loop mismatches.

Exit Issue an error exception and exit.

_import_details.if_miss (Code)

Code identifying the action taken if the requested defi-
nition block is missing from the source dictionary.
Where no value is given, the assumed value is ‘Exit’.

The data value must be one of the following:

Ignore Ignore import.
Exit Issue error exception and exit.

_import_details.mode (Code)

Code identifying how the definition referenced by
_import_details.frame_id is to be imported. ‘Full’
imports the entire definition together with any child def-
initions (in the case of categories) found in the target
dictionary. The importing definition becomes the par-
ent of the imported definition. As such, the ‘Full’ mode
must only be used in category definitions. As a special
case, a ‘Head’ category importing a ‘Head’ category
is equivalent to importing all children of the imported
‘Head’ category as children of the importing ‘Head’ cat-
egory. A ‘Head’ category can only be imported in ‘Full’
mode and only by another ‘Head’ category. ‘Contents’
imports only the attributes found in the imported defi-
nition.
Where no value is given, the assumed value is ‘Contents’.

The data value must be one of the following:

Full Import requested definition together with any child
definitions.

Contents Import contents of requested definition.

_import_details.order (Integer)

The order in which the import described by the refer-
enced row should be executed.

_import_details.single (Text)

A Table mapping attributes defined individually in cate-
gory IMPORT to their values; used to import definitions
from other dictionaries.

_import_details.single_index (Code)

One of the indices permitted in the entries of values of
attribute _import_details.single.
The data value must be one of the following:

file URI reference as per RFC 3986 giving the location
of the source dictionary.

version Version of source dictionary.

save Save frame code of source definition.

mode Mode for including save frames.

dupl Option for duplicate entries.

miss Option for missing duplicate entries.

38 COMCIFS Dictionary Writing Workshop 2023

DDLm dictionary

METHOD

Methods used for evaluating, validating and defining
items.
Category key(s): _method.purpose

_method.expression (Text)
The method expression for the defined item.

_method.purpose (Code)

The purpose and scope of the method expression.
Where no value is given, the assumed value is ‘Evaluation’.

The data value must be one of the following:

Evaluation Method evaluates an item from related item val-
ues. Definitions of primitive data items should
normally not contain methods of this type.

Definition Method generates attribute value(s) in the defini-
tion.

Validation Method compares an evaluation with existing item
value.

NAME

Attributes for identifying items and item categories.

_name.category_id (Name)

The name of the category in which a category
or item resides. For Head categories this is the
_dictionary.title given in the enclosing data block.

_name.linked_item_id (Tag)

Data name of an equivalent item which has a common
set of values, or, in the definition of a type SU item is
the name of the associated measurand item to which
the standard uncertainty applies.

_name.object_id (Name)

The object name of a category or name unique within
the category or family of categories.

TYPE

Attributes which specify the ‘typing’ of data items.

_type.container (Code)

The structure of values for the defined data item.
Where no value is given, the assumed value is ‘Single’.

The data value must be one of the following:

Single Single value.
List Ordered set of values. Elements need not be of

same contents type.
Array Ordered set of values of the same type. Operations

across arrays are equivalent to operations across
elements of the Array.

Matrix Ordered set of numerical values for a tensor. Ten-
sor operations such as dot and cross products, are
valid cross matrix objects. A matrix with a single
dimension is interpreted as a row or column vec-
tor as required.

Table An unordered set of id:value elements.
Implied Applied ONLY in the DDLm Reference Dic-

tionary. The value structure is taken from
_type.container in the definition in which
the defined attribute appears.

_type.contents (Code)

Syntax of the value elements within the container type.
Where the definition is of a ‘List’ or ‘Array’ type, this
attribute describes the contents of each element. Where
the definition is of a ‘Table’ container this attribute
describes the construction of the value elements within
those (Table) values. The CIF2 character set refer-
enced below consists of the following Unicode code
points: [U+0009], [U+000A], [U+000D], [U+0020-
U+007E], [U+00A0-U+D7FF], [U+E000-U+FDCF],
[U+FDF0-U+FFFD], [U+10000-U+1FFFD], [U+20000-
U+2FFFD], [U+30000-U+3FFFD], [U+40000-
U+4FFFD], [U+50000-U+5FFFD], [U+60000-
U+6FFFD], [U+70000-U+7FFFD], [U+80000-
U+8FFFD], [U+90000-U+9FFFD], [U+A0000-
U+AFFFD], [U+B0000-U+BFFFD], [U+C0000-
U+CFFFD], [U+D0000-U+DFFFD], [U+E0000-
U+EFFFD], [U+F0000-U+FFFFD], [U+100000-
U+10FFFD] Two case-insensitive strings are consid-
ered identical when they match under the Unicode
canonical caseless matching algorithm. In all cases,
‘whitespace’ refers to ASCII whitespace only, that is
[U+0009],[U+000A],[U+000D] and [U+0020]. Note
that descriptions of text syntax are relevant only to
those formats that encode data values as text.

Where no value is given, the assumed value is ‘Text’.

The data value must be one of the following:

Text Case-sensitive sequence of CIF2 characters.
Word Case-sensitive sequence of CIF2 characters con-

taining no ASCII whitespace.
Code Case-insensitive sequence of CIF2 characters con-

taining no ASCII whitespace.
Name Case-insensitive sequence of ASCII alphanumeric

characters or underscore.
Tag Case-insensitive CIF2 character sequence with

leading underscore and no ASCII whitespace.
Uri Uniform Resource Identifier reference as defined in

RFC 3986 Section 4.1.
Date ISO standard date format <yyyy>-<mm>-<dd>.

Use DateTime for all new dictionaries.
DateTime A timestamp. Text formats must use date-time or

full-date productions of RFC 3339 ABNF.
Version Version number string that adheres to the

formal grammar provided in the Semantic
Versioning specification version 2.0.0. Ver-
sion strings must take the general form of
<major>.<minor>.<patch> and may also con-
tain an optional postfix with additional informa-
tion such as the pre-release identifier.
Reference: https://semver.org/spec/v2.0.0.html

Dimension Size of an Array/Matrix/List expressed as a text
string. The text string itself consists of zero or
more non-negative integers separated by commas
placed within bounding square brackets. Empty
square brackets represent a list of unknown size.

Range Inclusive range of numerical values expressed
using the min:max notation in which the smallest
value ’min’ and the largest value ’max’ are sep-
arated by a colon character. If ’max’ is omitted,
then the range includes all values that are greater
than or equal to ’min’. If ’min’ is omitted, then
the range includes all values that are less than or
equal to ’max’.

Integer A number from the set of all integers.

COMCIFS Dictionary Writing Workshop 2023 39

DDLm dictionary

Real Floating-point real number.
Imag Floating-point imaginary number.
Complex A complex number.
Symop A string composed of an integer optionally fol-

lowed by an underscore or space and three or
more digits.

Implied The contents are described by the
_type.contents attribute in the defini-
tion in which the defined attribute appears.

ByReferenceThe contents have the same form as
those of the attribute referenced by
_type.contents_referenced_id.

Inherited Applied ONLY in the DDLm Reference Dictionary.
Intended to be used with List, Array, Matrix or
Table containers which may simultaneously con-
tain values of several content types. The content
type of each value in such containers matches the
content type of the data item to which it is directly
related. Specific rules for relating data values to
data items MUST be provided as human-readable
text in the _description.text attribute of all
data items that have the Inherited content type.

Example: ‘Integer’ (Content is a single or multiple integer(s).)

_type.contents_referenced_id (Tag)

The value of the _definition.id attribute of an attribute
definition whose type is to be used also as the
type of this item. Meaningful only when this item‘s
_type.contents attribute has value ’ByReference’.

_type.dimension (Dimension)

The dimensions of a list, array or matrix of elements
expressed as a text string. A Matrix with a single dimen-
sion is interpreted as a vector.
Examples: ‘[3,3]’ (3x3 matrix of elements.), ‘[6]’ (List of 6 elements.), ‘[]’

(Unknown number of list elements.)

_type.indices (Code)

Used to specify the syntax construction of indices of
the entries in the defined object when the defined
object has ‘Table’ as its _type.container attribute.
Values are a subset of the codes and constructions
defined for attribute _type.contents, accounting for the
fact that syntactically, indices are always case-sensitive
quoted strings. Meaningful only when the defined item
has _type.container ‘Table’. See the definition for
_type.contents for the character set definition.
Where no value is given, the assumed value is ‘Text’.

The data value must be one of the following:

Text A case-sensitive sequence of CIF2 characters.
Code Case-insensitive sequence of CIF2 characters

containing no ASCII whitespace.
Date ISO date format <yyyy>-<mm>-<dd>.
Uri A Uniform Resource Identifier string, per RFC

3986.
Version Version digit string of the form

<major>.<version>.<update>
ByReference Indices have the same form as the con-

tents of the attribute identified by
_type.indices_referenced_id.

_type.indices_referenced_id (Tag)

The _definition.id attribute of a definition whose type
describes the form and construction of the indices of
entries in values of the present item. Meaningful only
when the defined item’s _type.container attribute has
value ‘Table’, and its _type.indices attribute has value
‘ByReference’.

_type.purpose (Code)

The primary purpose or function the defined data item
serves in a dictionary or a specific data instance.
Where no value is given, the assumed value is ‘Describe’.

The data value must be one of the following:

Import Applied ONLY in the DDLm Reference Dic-
tionary. Used to type the SPECIAL attribute
‘_import.get’ that is present in dictionaries to
instigate the importation of external dictionary
definitions.

Method Applied ONLY in the DDLm Reference
Dictionary. Used to type the attribute
‘_method.expression’ that is present in
dictionary definitions to provide the text method
expressing the defined item in terms of other
defined items.

Audit Applied ONLY in the DDLm Reference Dictio-
nary. Used to type attributes employed to record
the audit definition information (creation date,
update version and cross reference codes) of
items, categories and files.

Identify Applied ONLY in the DDLm Reference Dictio-
nary. Used to type attributes that identify an item
tag (or part thereof) or external location.

Describe Used to type items with values that are descriptive
text intended for human interpretation.

Encode Used to type items with values that are text or
codes that are formatted to be machine parsable.

State Used to type items with values that are restricted
to codes present in their ‘enumeration set.state’
lists.

Key Used to type an item with a value that is unique
within the looped list of these items, and does not
contain encoded information.

Link Used to type an item that acts as a foreign
key between two categories. The definition of
the item must additionally contain the attribute
‘_name.linked_item_id’ specifying the data
name of the item with unique values in the
linked category. The values of the defined item
are drawn from the set of values in the referenced
item. Cross referencing items from the same cat-
egory is allowed.

Composite Used to type items with value strings composed
of separate parts. These will usually need to be
separated and parsed for complete interpretation
and application.

Number Used to type items that are numerical and exact
(i.e. no standard uncertainty value).

Measurand Used to type an item with a numerically estimated
value that has been recorded by measurement or
derivation. A data item definition for the standard
uncertainty (SU) of this item must be provided
in a separate definition with _type.purpose
of ’SU’. The value of a measurand item should
be accompanied by a value of its associated SU
item, either: 1) integrated with the measurand
value in a manner characteristic of the data for-
mat; or 2) as a separate, explicit value for the
associated SU item. These alternatives are seman-
tically equivalent.

40 COMCIFS Dictionary Writing Workshop 2023

DDLm dictionary

SU Used to type an item with a numerical value
that is the standard uncertainty of another data
item. The definition of an SU item must have
the _type.source attribute set to ‘Related’ and
must include the _name.linked_item_id
attribute which explicitly identifies the associ-
ated measurand item. SU values must be non-
negative.

Internal Used to type items that serve only internal pur-
poses of the dictionary in which they appear. The
particular purpose served is not defined by this
state.

_type.source (Code)

The origin or source of the defined data item, indicat-
ing by what recording process it has been added to
the domain instance. All data items can be classified
as primitive or non-primitive based on the origin of the
data. Primitive data items record data that usually can-
not be deduced without repeating the entire experiment
such as measurements, observations (e.g. instrument
settings) and decisions made in nonlinear processes.
Non-primitive data items record derivable data that can
be directly evaluated from other data.
Where no value is given, the assumed value is ‘Assigned’.

The data value must be one of the following:

Recorded Data value (numerical or otherwise) was recorded
by observation or measurement during the exper-
imental collection of data. Data items of this type
are considered primitive.

Assigned Data value (numerical or otherwise) was assigned
as part of the data collection, analysis or mod-
elling required for a specific domain instance.
These assignments often represent a decision
made that determines the course of the experi-
ment (and therefore the data item may be deemed
primitive) or a particular choice in the way the
data was analysed (and therefore the data item
may be considered non-primitive).

Related Data item was added based on a relationship to
another data item. This state indicates that the
item was used to record the SU value of a related
measurand item or that the item was used in
the construction of looped lists of data. In the
latter case, it typically identifies an item whose
unique values are used as the reference key for
a loop category and/or an item which has val-
ues in common with those of another loop cate-
gory and is considered a Link between these lists.
Data items of this type includes both primitive
and non-primitive items.

Derived Data item was derived from other data items within
the domain instance. Data items of this type are
considered non-primitive.

UNITS

The attributes for specifying units of measure.

_units.code (Code)

A code which identifies the units of measurement. The
‘unspecified’ code should only be used in cases when
the units cannot be properly expressed in DDLm. A typ-
ical example of such situation is a List data item with
constituent values that may have differing units.
The data value must be one of the following:

none dimensionless – e.g. a ratio, factor, weight
or scale

coulomb electronic charge in coulombs

electron volts electronic charge in electron volts eV

metres length ’metres (metres * 10^(0))’

centimetres length ’centimetres (metres * 10^(-2))’

millimetres length ’millimetres (metres * 10^(-3))’

micrometres length ’micrometres (metres * 10^(-6))’

nanometres length ’nanometres (metres * 10^(-9))’

angstroms length ’angstroms (metres * 10^(-10))’

picometres length ’picometres (metres * 10^(-12))’

femtometres length ’femtometres (metres * 10^(-15))’

reciprocal centimetres

per-length ’reciprocal centimetres (metres
* 10^(-2)^-1)’

reciprocal millimetres

per-length ’reciprocal millimetres (metres
* 10^(-3)^-1)’

reciprocal nanometres

per-length ’reciprocal nanometres (metres
* 10^(-9)^-1)’

reciprocal angstroms

per-length ’reciprocal angstroms (metres *
10^(-10)^-1)’

reciprocal angstrom squared

per-area ’reciprocal angstroms^2’

reciprocal picometres

per-length ’reciprocal picometres (metres
* 10^(-12)^-1)’

nanometre squared length squared ’nanometres squared
(metres * 10^(-9))^2’

angstrom squared length squared ’angstroms squared
(metres * 10^(-10))^2’

8pi angstroms squared

length squared ’8pi^2 * angstroms
squared (metres * 10^(-10))^2’

picometre squared length squared ’picometres squared
(metres * 10^(-12))^2’

femtometre squared

length squared ’femtometres squared
(metres * 10^(-15))^2’

nanometre cubed length cubed ’nanometres cubed (metres
* 10^(-9))^3’

angstrom cubed length cubed ’angstroms cubed (metres *
10^(-10))^3’

picometre cubed length cubed ’picometres cubed (metres *
10^(-12))^3’

grams per centimetre cubed

density ’grams per cubic centimetre’

kilograms per metre cubed

density ’kilograms per cubic metre’

megagrams per metre cubed

density ’megagrams per cubic metre’

angstrom cubed per dalton

density ’angstrom cubed per dalton’

kilopascals pressure ’kilopascals’

gigapascals pressure ’gigapascals’

hours time ’hours’

minutes time ’minutes’

seconds time ’seconds’

microseconds time ’microseconds’

degrees angle ’degrees (of arc)’

cycles phase ’angle in 360 degree arcs’

radians angle ’radians’

degrees squared angle ’degrees (of arc)’

COMCIFS Dictionary Writing Workshop 2023 41

DDLm dictionary

degree per minute rotation per-time ’degrees (of arc) per
minute’

Celsius temperature ’degrees (of temperature) Cel-
sius’

kelvins temperature ’temperature in kelvins’

kelvins per minute

cooling rate ’kelvins per minute’

electrons electrons ’electrons’

electron squared electrons-squared ’electrons squared’

electrons per nanometre cubed

electron-density ’electrons per nanome-
tres cubed (electrons * (metres * 10^(-
9))^(-3))’

electrons per angstrom cubed

electron-density ’electrons per angstroms
cubed (electrons * (metres * 10^(-10))^(-
3))’

electrons per picometre cubed

electron-density ’electrons per picometres
cubed (electrons * (metres * 10^(-12))^(-
3))’

dalton standard atomic mass unit

pixels per millimetre

area resolution unit

pixels per element

area resolution unit

kilowatts power ’kilowatts’

milliamperes current ’milliamperes’

kilovolts emf ’kilovolts’

volt squared emf ’volts squared’

Bohr magnetons magnetic moment

arbitrary arbitrary ’arbitrary system of units’

counts per photon measure of gain used in array detectors

counts counts from a detector

’photons per second’

photons registered in one second

42 COMCIFS Dictionary Writing Workshop 2023

Style guide for DDLm dictionaries
STATUS: Draft prepared for 2023 Dictionary Writing

Workshop

APPENDIX 2: This is an excerpt from a forthcoming draft chapter of International Tables for Crystallography
Volume G: Definition and exchange of crystallographic data, 2nd edition (in preparation).

Style guide for DDLm dictionaries

BY JAMES R. HESTER, ANTANAS VAITKUS AND BRIAN MCMAHON

Overview

The following rules describe the preferred layout of
DDLm Reference and Instance dictionaries. Following
these rules should allow generic dictionary manipula-
tion software to ingest, semantically edit and re-output
dictionaries with minimal irrelevant changes to whites-
pace.

These rules are not intended to apply to CIF data files
or Template dictionaries.

These rules are not comprehensive, for example, they
do not envisage table values that are semicolon-
delimited. They should cover all situations typi-
cally encountered in DDLm dictionaries, and will be
expanded as new situations arise.

Terminology

‘Attribute’ refers to a DDLm attribute (a ‘data name’
in CIF syntax terms). Columns are numbered from
1. ‘Starting at column x’ means that the first non-
whitespace character (which may be a delimiter)
appears in column x. ‘Indent’ refers to the num-
ber of whitespace characters preceding the first
non-whitespace value. ‘Special values’ are the non-
delimited question mark (?) and period (.) used in CIF
syntax to denote Unknown and Null values, respec-
tively.

Magic numbers

The following values are used in the description.

line length 80
text indent 4
text pre f ix >
value col 35
value indent text indent + loop step
loop indent 2
loop align 10
loop step 5
min whitespace 2

1. Lines and padding

1. Lines are a maximum of line length characters long.
Multi-line character strings should be broken after the
last whitespace character preceding this limit and trail-
ing whitespace removed, unless rule 2.1.15 applies.

2. Unless rule 2.1.15 applies, data values with no inter-
nal whitespace that would overflow the line length limit
if formatted according to the following rules should be
presented in semicolon-delimited text fields with lead-
ing blank line, no indentation and folded, if necessary,
so that the backslash appears in column line length.

3. (No trailing whitespace) The last character in a line
should not be whitespace.

4. Blank lines are inserted only as specified below.
Blank lines do not accumulate, that is, there should be
no sequences of more than one blank line.

5. All lines are terminated by a newline character (\n)
as per CIF2 specifications.

6. Tab characters may not be used either as whitespace
or within data values, unless part of the meaning of the
data value.

7. No comments appear within, or after, the data block.

2. Value formatting

2.1 Text strings

In general multi-line text strings can include formatting
like centering or ASCII equations. The rules below aim
to minimise disruption to such formatting where present
in the supplied value. Note also that rule 1.2 overrides
indentation rules below.

1. Values that can be presented undelimited should not
be delimited, unless rule 9 applies. Note that the lit-
eral question mark (?) and period (.) must always be
delimited as otherwise they will be interpreted as spe-
cial values.

2. Where a delimiter is necessary, the first delimiter in
the following list that produces a syntactically correct
CIF2 file should be used: single quote (’), double quote
("), triple-single-quote (’’’), triple-double-quote ("""),
semicolon (\n;).

COMCIFS Dictionary Writing Workshop 2023 43

Style guide for DDLm dictionaries

3. Text fields containing newline characters are always
semicolon-delimited.

4. If a text field contains the newline-semicolon
sequence the text-prefix protocol is used with
text pre f ix as the prefix.

5. Each non-blank line of multi-line text fields not
appearing as part of loops should contain text indent
spaces at the beginning. Tab characters must not be
used for this purpose. Paragraphs are separated by a sin-
gle blank line which must contain only a newline char-
acter. Lines may contain more than text indent spaces
at the beginning, for example for ASCII equations or
centering purposes.

6. No tab characters may be used for formatting data
values.

7. The first line of a semicolon-delimited text field
should be blank, except for line folding and prefixing
characters where necessary.

8. A newline character always follows the final semi-
colon of a semicolon-delimited text field.

9. Looped attributes should use the same delimiter
for all values in the same column. Special values are
exempt from this rule.

10. Category names in a category definition should
be presented CAPITALISED in _name.category_id,
_name.object_id and _definition.id.

11. Category and object names in data item definitions
should be presented in ‘canonical’ case. Canonical
case follows the rules of English capitalisation where
the first letter is not considered to start a sentence. In
particular:

(i) Proper names and place names (e.g. Wyckoff,
Cambridge) and their abbreviations (e.g. ‘H M’ for
‘Hermann–Mauguin’, ‘Cartn’, ‘Lp factor’) are capi-
talised.

(ii) Symbols are capitalised according to crystallo-
graphic convention (e.g. Uij).

(iii) Initialisms are capitalised (e.g. CSD, IT for Interna-
tional Tables).

12. Case-insensitive data items should be output with a
leading capital letter unless convention dictates other-
wise.

13. Values of attributes drawn from enumerated states
should be capitalised in the same way as the definition
of that attribute.

14. Function names defined in DDLm Function cate-
gories are CamelCased.

15. If a character drawn from the set #ˆ*-=+˜ appears
5 or more times sequentially (e.g. ˆˆˆˆˆˆ) anywhere in

a multi-line text value, the value is assumed to be pre-
formatted. No line-length, prefixing or other alterations
to the contents should be made.

2.2 Lists

No DDLm attributes are currently defined that require
more than one level of nesting. If such attributes are
defined, these rules will be extended.

1. The first and last values of a list are not separated
from the delimiters by whitespace.

2. Each element of the list is separated by
min whitespace from the next element.

3. Where application of the rules for loop or attribute-
value layout require an internal line break, the list
should be presented as a multi-line compound object
(see below).

4. These rules do not cover lists containing multi-line
simple data values or lists with more than one level of
nesting.

Examples
[112 128 144]

One level of nesting, can stay on single line

[[t.11 t.12 t.13] [t.21 t.22 t.23] [t.31 t.32 t.33]]

One level of nesting, can stay on a single line

_import.get [’file’:templ_attr.cif ’save’:aniso_UIJ]

2.3 Tables

No DDLm attributes are currently defined that require
more than one level of nesting. If such attributes are
defined, these guidelines will be extended.

1. Key:value pairs are presented with no internal
whitespace around the : character.

2. The key is delimited by single quotes (’). If this is not
possible, the rules for text strings (2.1) are followed.

3. Key:value pairs are separated by min whitespace.

4. Keys appear in alphabetical order.

5. There is no whitespace between the opening and
closing braces and the first/last key:value pair.

6. Where application of the rules for loop or attribute-
value layout require an internal line break, the table
should be presented as a multi-line compound object.

7. These rules do not cover tables containing multi-line
simple data values or tables with more than one level
of nesting.

44 COMCIFS Dictionary Writing Workshop 2023

Style guide for DDLm dictionaries

Examples
’save’:orient_matrix ’file’:templ_attr.cif

One level of nesting:

[’save’:orient_matrix ’file’:templ_attr.cif]

2.4 Multi-line compound object

A multi-line compound object is a list or table contain-
ing newlines. DDLm does not define attributes with
more than one level of nesting. These rules will be
extended if and when such items are defined. The
indentation of the opening delimiter determined by
rules (1) and (2) is labelled ob ject indent. Note that
this refers to the number of whitespace characters pre-
ceding the opening delimiter, so the opening delimiter
appears at column ob ject indent + 1. The intent of rule
(1) is to minimise line breaks within any internal com-
pound objects.

1. The opening delimiter is placed at the maxi-
mum of (value col, the end of the previous value +
min whitespace), as long as any internal compound val-
ues would not exceed the line length when formatted as
non-multi-line values according to the following rules.

2. Otherwise, the opening delimiter is placed at

value indent + 1 on a new line.

3. Each subsequent value is formatted according to the
present rules until the final character of the next value
would be beyond line length.

4. The next value is placed on a new line indented by
ob ject indent + n, where n is the nesting level.

5. A nested opening delimiter followed immediately by
a primitive value is placed on a new line indented by
ob ject indent + n, where n is the nesting level.

6. A closing delimiter immediately following a primi-
tive value is placed on the same line.

7. Except when immediately following a primitive
value, closing delimiters are placed on a separate line
indented by the same amount as their corresponding
opening delimiter.

8. A ‘corresponding value’ is either a list entry at the
same position in each list of a list of lists, or a table
value with the same key in a list of tables. Correspond-
ing values must be vertically aligned on their first char-
acter such that a minimum spacing of min whitespace is
maintained, and at least one whitespace gap between
each column is exactly min whitespace for at least one
row.

Examples

One level of nesting, but the nested data do not fit on a single line:
[
[c.vector_a*c.vector_a c.vector_a*c.vector_b c.vector_a*c.vector_c]
[c.vector_b*c.vector_a c.vector_b*c.vector_b c.vector_b*c.vector_c]
[c.vector_c*c.vector_a c.vector_c*c.vector_b c.vector_c*c.vector_c]

]

Alignment of internal values, nested opening delimiter:
[
’file’:cif_core.dic ’save’:CIF_CORE ’mode’:Full
’file’:cif_ms.dic ’save’:CIF_MS ’mode’:Full

]

Internal value doesn’t fit when starting at value col, so must start at value indent. Internal opening delimiter on new
line:

_import.get
[
"file":templ_attr.cif "save":Cromer_Mann_coeff
"file":templ_enum.cif "save":Cromer_Mann_a1

]

Internal value fits using value col as indent, but outer brackets are on separate lines by rule 5:
_import.get [

’file’:templ_attr.cif ’save’:Miller_index
]

Array item in loop starts at column 37 to maintain min whitespace:
loop_

COMCIFS Dictionary Writing Workshop 2023 45

Style guide for DDLm dictionaries

_dictionary_valid.application
_dictionary_valid.attributes

[Dictionary Mandatory] [’_dictionary.title’ ’_dictionary.class’
’_dictionary.version’ ’_dictionary.date’
’_dictionary.uri’
’_dictionary.ddl_conformance’
’_dictionary.namespace’]

[Dictionary Recommended] [’_description.text’
’_dictionary_audit.version’
’_dictionary_audit.date’
’_dictionary_audit.revision’]

2.5 Enumeration ranges

Values of the _enumeration.range attribute should be
expressed in a format that best reflects the content type
of the defining item. That is, numeric range limits of
data items with the ‘Integer‘ content type should be
formatted as integers while data items with the ‘Real‘
content type should be formatted as floating-point real
numbers. Additional formatting rules for enumeration
ranges are provided in Section 2.5.1 and Section 2.5.2.

2.5.1. Integer ranges

Numeric range limits of data items with the ‘Integer‘
content type should be expressed as integers that:

1. Do not include non-significant leading zeros, e.g. ’7’
instead of ’007’.

2.Do not include a fractional part, e.g. ’1’ instead of
’1.0’.

3. Do not include a trailing decimal separator, e.g. ’2’
instead of ’2.’.

4. Do not include the ’+’ symbol, e.g. ’42’ instead of
’+42’.

5. Do not include a signed zero, e.g. ’0’ instead of ’+0’
or ’-0’.

The following regular expression may be used to check
if a number adheres to the integer range limit formatting
rules:
ˆ
(

0|([-]?[1-9][0-9]*)
)
$

The regular expression above is formatted for readabil-
ity using the additional syntax rules enabled by the ‘/x‘
Perl regular expression modifier (e.g. any unescaped
whitespace symbols must be ignored).

Examples of properly formatted integer number ranges
1:230
0:
-8:8

2.5.2. Real number ranges

Numeric range limits of data items with the ‘Real‘ con-
tent type should be expressed using floating-point real
numbers that:

1. Include at least one digit before the decimal separa-
tor, e.g. ’0.5’ instead of ’.5’.

2. Include at least one digit after the decimal separator,
e.g. ’7.0’ instead of ’7.’ or ’7’.

3. Include the smallest number of non-significant lead-
ing zeros that still satisfies other formatting rules, e.g.
’0.25’ instead of ’000.25’.

4. Include the smallest number of non-significant trail-
ing zeros that still satisfies other formatting rules, e.g.
’13.0’ instead of ’13.000’.

5. Do not include the ’+’ symbol, e.g. ’42.0’ instead of
’+42.0’.

6. Do not include a signed zero, e.g. ’0.0’ instead of
’+0.0’ or ’-0.0’.

The following regular expression may be used to check
if a number adheres to the real number range limit for-
matting rules:

ˆ
(

Real number ’0.0’.
(0[.]0) |
All integer-like numbers, e.g. ’-5.0’.
([-]?([1-9][0-9]*)[.]0) |
All remaining floating-point numbers.
([-]?(0|([1-9][0-9]*))[.]([0-9]*[1-9]))

)
$

The regular expression above is formatted for readabil-
ity using the additional syntax rules enabled by the ‘/x‘
Perl regular expression modifier (e.g. any unescaped
whitespace symbols must be ignored).

Examples of properly formatted real number ranges
0.0:100.0
0.0:
:13.0
-180.0:180.0
-3.14:3.14
0.95:1.0

46 COMCIFS Dictionary Writing Workshop 2023

Style guide for DDLm dictionaries

3. Data items

3.1 Attribute–value pairs

Note the following rule assumes that no DDLm
attributes are longer than value col − text indent −
min whitespace. The length of a value includes the
delimiters. The rules for attribute–value pairs cover
items from Set categories as well as items from single-
packet Loop categories.

1. DDLm attributes appear lowercased at the beginning
of a line after text indent spaces.

2. A value with character length that is lesser or equal
to line length− value col + 1 starts in column value col.

3. A value with character length that is greater
than line length − value col + 1 and lesser or equal

to line length − value indent + 1 starts in column
value indent + 1 of the next line.

4. A value with character length greater than
line length − value indent + 1 is presented as a
semicolon-delimited text string or as a multi-line com-
pound object.

5. _description.text is always presented as a
semicolon-delimited text string.

6. Attributes that take default values (as listed in
‘ddl.dic’) are not output, except:

(i) Those that participate in category keys
(ii) The following attributes from category TYPE:

_type.purpose, _type.source, _type.container,
_type.contents

(iii) Attributes used outside definitions (e.g.
_dictionary.class)

Examples
_definition.id ’_alias.deprecation_date’

Maximum length value that can still appear on the same line (46 characters):
_description_example.case ’Quoted value with padding: 123456789A1234567’

Minimum length value that must appear on the next line (47 characters):
_description_example.case

’Quoted value with padding: 123456789A12345678’

Maximum length value that can appear on the next line (72 characters):
_description_example.case

’Quoted value with padding: 123456789A123456789B123456789C123456789D123’

Minimum length value that requires semicolon delimiters (75 characters):
_description_example.case

;
Quoted value with padding: 123456789A123456789B123456789C123456789D1234

;

Long values with no internal whitespaces that fit into a single line should be presented without indentation as
specified in rule 2.1:

_description_example.case
;
InChI=1S/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-,3-,4+,5-,6?/m1/s1
;

Long values with no internal whitespaces that do not fit into a single line should be folded and presented without
indentation as specified in rule 2.1:

_description_example.case
;\
InChI=1S/C40H60N10O12S2/c1-5-20(4)31-37(58)44-23(12-13-29(41)52)33(54)45-25(17-\
30(42)53)34(55)48-27(39(60)50-14-6-7-28(50)36(57)47-26(40(61)62)15-19(2)3)18-63\
-64-32(43)38(59)46-24(35(56)49-31)16-21-8-10-22(51)11-9-21/h8-11,19-20,23-28,31\
-32,51H,5-7,12-18,43H2,1-4H3,(H2,41,52)(H2,42,53)(H,44,58)(H,45,54)(H,46,59)(H,\
47,57)(H,48,55)(H,49,56)(H,61,62)/t20-,23+,24+,25?,26-,27-,28-,31+,32?/m1/s1
;

COMCIFS Dictionary Writing Workshop 2023 47

Style guide for DDLm dictionaries

3.2 Loops

Loops consist of a series of packets. Corresponding
items in each packet should be aligned in the output
to form visual columns. To avoid confusion with ‘col-
umn’ in the sense of ‘horizontal character position’,
these visual columns are called ‘packet items’ in the
following. Note that loops in dictionaries rarely have
more than 2 such packet items. The ‘width’ of a packet
item is the width of the longest data value for the cor-
responding data name, including delimiters. The rules
below are designed to make sure that packet items align
on their first character, and that loops with only two
packet items are readable.

1. A loop containing a single data name and single
packet is presented as an attribute –value pair.

2. The lowercase loop_ keyword appears on a new
line after text indent spaces and is preceded by a sin-
gle blank line.

3. The n lowercase, looped attribute names appear
on separate lines starting at column text indent +
loop indent + 1.

4. Each packet starts on a new line. The final packet is
followed by a single blank line.

5. The first character of the first value of a packet is
placed in column loop align.

6. Non-compound values that are longer than
line length − loop step characters are presented as
semicolon-delimited text strings.

7. Semicolon-delimited text strings in loops are format-
ted as for section 2.1, except that they are indented so
that the first non-blank, non-prefix character of each
line aligns with the first alphabetic character of the
data name header, that is, the first non-blank charac-
ter appears in column text indent + loop indent + 2.

8. If the number of looped attributes n > 1, values in
packets are separated by min whitespace together with
any whitespace remaining at the end of the line dis-
tributed evenly between the packet items. The follow-
ing algorithm achieves this:

(i) Find largest integer p such that no data values
before packet item p on the current line contain a
new line and the sum of the widths of next p packet
items, separated by min whitespace is not greater
than line length. Call this total width.

(ii) Calculate remaining whitespace as floor[(line length−
total width)/(p − 1)].

(iii) The start position of values for attribute
number d + 1 is start position of attribute
d + width of data name d + min whitespace +
remaining whitespace + 1.

(iv) If p < n, the next value is placed in column
loop step on a new line and procedure repeated
from step 1.

(v) If any values for a data name contain a new line,
data values following that data value start from step
4.

(vi) Notwithstanding (4), the starting column for multi-
line compound data values is that given in section
2.4.

9. If there are two values on a single line and the rules
above would yield a starting column for the second
value that is greater than value col, the calculated value
is replaced by value col unless it would be separated
by less than min whitespace from the first value in the
packet.

10. If there are two values in a packet and the second
value would appear on a separate line, loop step in rule
3.2.8(iv) above is replaced by loop align+text indent. If
one of the values is semicolon-delimited and the other
is not, the semicolon-delimited value has an internal
indent of loop align − 1.

Examples

Alignment of semicolon-delimited text strings:

loop_
_enumeration_set.state
_enumeration_set.detail

Attribute
;

Item used as an attribute in the definition
of other data items in DDLm dictionaries.
These items never appear in data instance files.

;
Functions

;
Category of items that are transient function
definitions used only in dREL methods scripts.
These items never appear in data instance files.

;

48 COMCIFS Dictionary Writing Workshop 2023

Style guide for DDLm dictionaries

Alignment of semicolon-delimited text strings when both values are semicolon-delimited:

loop_
_description_example.case
_description_example.detail

;
Example 1 in the first semicolon delimited field.

;
;

Detail 1 in the second semicolon delimited field.
;
;

Example 2 in the first semicolon delimited field.
;
;

Detail 2 in the second semicolon delimited field.
;

Alignment of single-line values:

loop_
_enumeration_set.state
_enumeration_set.detail

Dictionary ’applies to all defined items in the dictionary’
Category ’applies to all defined items in the category’
Item ’applies to a single item definition’

4. Ordering

4.1 Front matter and definitions

1. The first line contains the CIF2.0 identifier with no
trailing whitespace.

2. Between the first line and the data block header
is an arbitrary multi-line comment, consisting of a
series of lines commencing with a hash character. The
comment-folding convention is not used.

3. A single blank line precedes the data block header.

4. The final character in the file is a new line (\n).

5. A single blank line follows the data block header.

6. data_ is lowercase in the data block header.

7. The first definition is the ‘Head’ category.

8. A category is presented in order: category definition,
followed by all data names in alphabetical order, fol-
lowed by child categories.

9. Categories with the same parent category are pre-
sented in alphabetical order.

10. Notwithstanding (8), SU definitions always follow
the definitions of their corresponding Measurand data
names.

11. Notwithstanding (9), categories with
_definition.class of ‘Functions’ appear after all other
categories.

4.2 Layout of non-save-frame information

1. All non-looped attributes describing the dictionary
appear before the first save frame, in the following
order:

(i) _dictionary.title

(ii) _dictionary.class

(iii) _dictionary.version

(iv) _dictionary.date

(v) _dictionary.uri

(vi) _dictionary.ddl_conformance

(vii) _dictionary.namespace

(viii) _description.text

2. All looped attributes describing the dictionary are
presented as loops appearing after the final save frame,
in the following category order. Looped data names
appear in the order provided in brackets.

(i) DICTIONARY_VALID (scope, option, attributes)
(ii) DICTIONARY_AUDIT (version, date, revision)

3. _dictionary_audit.revision is always presented as
a semicolon-delimited text string.

4. Non-looped attributes not covered in
rule 4.2.1 appear in alphabetical order after
_dictionary.namespace.

5. Looped attributes not covered in rule 4.2.2 appear
before DICTIONARY_VALID in alphabetical order of cat-
egory, with data names in each loop provided in the
order: key data names in alphabetical order, followed
by other data names in alphabetical order.

COMCIFS Dictionary Writing Workshop 2023 49

Style guide for DDLm dictionaries

4.3 Definition layout

1. One blank line appears before and after the save
frame begin and end codes. The variable part of the
save frame begin code is uppercase for categories and
lowercase for all others.

2. _import.get attributes are separated by one blank
line above and below.

3. IMPORT_DETAILS attributes are not used.

4. Attributes in a definition appear in the following
order, where present. The names in brackets give the
order in which attributes in the given category are pre-
sented.

(i) DEFINITION (id, scope, class)
(ii) DEFINITION_REPLACED (id, by)
(iii) ALIAS (definition_id)
(iv) _definition.update

(v) DESCRIPTION (text, common)
(vi) NAME (category_id, object_id, linked_item_id)
(vii) _category_key.name

(viii) TYPE (purpose, source, container, dimension,
contents, contents_referenced_id, indices,
indices_referenced_id)

(ix) ENUMERATION (range)
(x) ENUMERATION_SET (state, detail)
(xi) _enumeration.default

(xii) _units.code

(xiii) DESCRIPTION_EXAMPLE (case, detail)
(xiv) _import.get

(xv) METHOD (purpose, expression)

5. Any attributes not included in this list should be
treated as if they appear in alphabetical order after the
last item already listed for their (capitalised) categories
above. If the category does not appear, the attributes are
presented in alphabetical order of category and then
object_id after DESCRIPTION_EXAMPLE.

5. Naming convention

1. Save frame code of a data item definition frame
should be identical to the lowercase version of the
_definition.id attribute value contained in the defi-
nition, with any leading underscores removed.

2. Save frame code of a category definition should
be identical to the uppercase version of the
_definition.id attribute value contained in the defi-
nition, with any leading underscores removed.

50 COMCIFS Dictionary Writing Workshop 2023

30 years of CIF

APPENDIX 3: Reproduced from the IUCr Newsletter.

Feature article IUCr Newsletter (2021), Vol. 29, no. 4

30 Years of CIF

James Hester and Brian McMahon

Photograph by Kamyar Adl licensed under Creative Commons CC-BY-2.0.

A new paradigm in data characterization

Thirty years ago, in November 1991, Acta Crystallo-
graphica Section C published the first of a new category
of articles, Regular Structural Papers. At the same time,
an article appeared in Acta Crystallographica Section
A describing a new standard archive file for crystallog-
raphy. The two, of course, were not unconnected: the
Acta C article was the first to be submitted using the
new file format, CIF, described in the Acta A paper.
Since that time, CIF has grown to be the accepted
standard way to describe crystal and molecular struc-
tures derived from single-crystal X-ray diffraction exper-
iments. Many journals will not publish such a structure
unless it is accompanied by a CIF; and in many cases,
the decision to publish will have included a technical
review of the quality of the structure using the IUCr’s
automated checkCIF procedure.

However, CIF has grown far beyond its original design
as a standard file format for single-crystal structure
reports, and extensions of the original standard are
found in an increasing number of crystallographic and
other structural science applications. The acronym now
stands for ’Crystallographic Information Framework’, in

recognition of its application across all of these fields,
and many of the Commissions of the IUCr are actively
engaged in extending its use within their disparate
fields. In an age of data-driven science, crystallography
has come to be seen as a pioneer in defining experi-
mental and derived data with the precision and scope
necessary to achieve the goals of the FAIR data manage-
ment strategy – namely, to ensure that data are findable,
accessible, interoperable and reusable.

Out of the blue?

As with most great ideas, CIF did not spring into
the world fully-formed and with no history (Fig. 1).
Of course, crystallography is a discipline blessed by
an area of study that – to a first approximation –
is inherently orderly and well defined (regular three-
dimensional packing of atomic or molecular motifs),
and that produces copious results from certain reason-
ably standard types of experiment (diffraction, whether
of X-rays, electrons or neutrons). And classification of
crystallographic properties, whether of mineral types,
crystal habits, or space group symmetries, has been a
key activity for decades, if not centuries.

COMCIFS Dictionary Writing Workshop 2023 51

30 years of CIF

Figure 1. Selection of key contributors to the evolution of ‘a
new standard archive file for crystallography’ that would rev-
olutionize the reporting of crystal structures in databases and
journals.

Even so, efforts towards capturing all the information
necessary to repeat a crystal structure determination,
especially when electronic computers became a sig-
nificant research tool, go back further than many peo-
ple realise. Fig. 1 captures some of the steps in the
path towards the creation and early implementation of
the CIF standard, based on the current authors’ memo-
ries. Mario Nardelli, a distinguished and prolific struc-
tural chemist, launched the journal Crystal Structure
Communications (1972–1983) at his home institution
at University of Parma, and developed software (Parma
Structural Checking – PARST) to ease the labour of
checking the reported structures. When the journal was
taken into the IUCr family of publications as Acta Crys-
tallographica Section C, its rigorous standards of check-
ing were adopted by the Editor-in-Chief, Sidney Abra-
hams, who formalised the requirements for informa-
tion (what we would now call experimental metadata)
needed to check the consistency and reasonableness
of the reported structure. Similar requirements were
emerging at that time within the relatively new struc-
tural databases, such as those developed for inorganic
structures (ICSD) and organic/organometallic structures
(CSD). Within the Cambridge Crystallographic Data
Centre (CCDC), validation software (UNIMOL) was
developed and subsequently used for the CSD and in
early automated structure checking in IUCr journals.

Special mention should be made of David Brown, of
McMaster University, who led the IUCr’s first initia-
tive towards a computer-readable standard file format –
the Standard Crystallographic File Structure (SCFS)[1].
In the 1980s, when Fortran dominated scientific soft-
ware development, any such standard was inevitably
tied to Fortran input/output conventions (80-column
records, fixed field lengths for different types of data);

and by the late 1980s this was seen as lacking the flex-
ibility to meet the increasingly complex requirements
of increasingly capable and ambitious programming
projects. Nevertheless, the SCFS project (informed by
the requirements of the databases and journals) iden-
tified many of the discrete data items that needed to
be transferred between different crystallographic pro-
grams, work that was to bear fruit in the development
of the CIF core dictionary.

Jim Stewart pioneered a type of structured informa-
tion storage within the crystallographic software pack-
age XRAY that was further refined by Syd Hall (Uni-
versity of Western Australia) in Xtal, an early example
of a collaborative project where crystallographic pro-
grammers around the world contribute separate mod-
ules to a growing library of software. Syd, Frank Allen
of the CCDC and David Brown (Fig. 2) together devel-
oped CIF as a standard format in 1991, an outcome
of the Working Party on Crystallographic Information
that the IUCr had convened in 1987 under the leader-
ship of Ted Maslen. Together with a lightweight exten-
sible free-form structure, CIF was populated by the data
items identified as essential to validation and struc-
ture characterization in databases and journals. Authors
of leading structure refinement software of the time
rapidly adopted this standard, giving the impetus for
its universal adoption within the small-unit-cell com-
munity. Ton Spek developed a very powerful software
tool that checked both the internal consistency of the
reported structure and its chemical reasonableness, the
latter informed by the wealth of data in the structural
databases.

Meanwhile, the Protein Data Bank (PDB), founded
in 1971 as a repository for biological macromolecu-
lar structures, was also feeling the limitations of the
Fortran-style standard that it had adopted. The com-
munity embarked upon an extension of CIF – the
macromolecular Crystallographic Information File –
that could capture all the experimental data associated
with a protein structure determination by X-ray diffrac-
tion, but that could also adequately describe the com-
plex structure of intricately folded protein and nucleic
acid molecules. To meet the needs of the new relational

Figure 2. David Brown, Syd Hall, Frank Allen: authors of the
original CIF specification.

52 COMCIFS Dictionary Writing Workshop 2023

30 years of CIF

Timeline of Crystallographic Information

An updated version of the interactive timeline at http://www.iucr.org/resources/cif/comcifs/symposium-2013/timeline

1948

1950

1960

1970

1980

1990

2000

2010

2020

2023

Journals

Acta Crystallographica
launched

Acta Cryst. Section C
launched

CIF adopted for Acta Cryst. C

Mandatory online submission
for Acta Cryst. C
checkCIFas a Web service
Online access to
electronic journals
Acta Cryst. Section E
launched

Acta Cryst. Section E
open access

IUCrJ launched

IUCrData launched

IUCr journals encourage
raw data deposition

Raw Data Letters section
introduced in IUCrData

Databases

Powder Diffraction File Set 3
(PDF set 1 in 1938)

Cromer & Larson begin compiling
 metals database

Cambridge Structural
Database established

Protein Data Bank (PDB) established
NBS CRYSTAL DATA

CRYSTMET established at NRC, Canada

Inorganic Crystal Structure
Database established;
JCPDS-ICDD formed

NBS CRYSTAL DATA on magnetic tape

ICSD managed by Gmelin/FIZ Karlsruhe

free online access to PDB data via anon FTP
Nucleic Acid Database (NDB) founded

PDB website set up with free access to all data

PDB managed by RCSB;
American Mineralogist crystal structure database

wwPDB launched;
Crystallography Open Database created

wwPDB archive remediation
PDB structure factors mandatory
webCSD launched

1 million structures in CSD; PDBx/mmCIF standard
format mandatory for PDB depositions

File formats

Standard Generalized Markup
Language (SGML)
SHELX-76

Standard Crystallographic
File Structure (SCFS) ASN.1

HDF precursor format developed
SCFS-87; JCAMP-DX;
FSER, ASER (CSD internal formats)
HTML
CIF
DDL1

DDL2
NeXuS; CML; MIF
XML
powder CIF (pdCIF);
macromolecular CIF (mmCIF) HDF-5

image CIF (imgCIF/CBF)
symmetry CIF (symCIF)
modulated structures CIF (msCIF)
electron density CIF (rhoCIF)

PDB data made available
in PDBML/XML format

NeXuS Definition Language (NXDL) defined

restraints CIF
NXDL released
DDLm/dREL;
PDBx/mmCIF standard for PDB data
deposition and distribution
CIF2 standard published

Gold standard for image metadata

Reference/
 abstracting

Structure Reports
published until 1993

International Tables for
X-ray Crystallography

Molecular Structures and
Dimensions published
until 1977

International Tables for
Crystallography Volume A

International Tables for
Crystallography Volume G
Online access to
International Tables

First CIFiesta school

Figure 3. Timeline of developments in crystallographic information before and after the publication of the CIF standard.

COMCIFS Dictionary Writing Workshop 2023 53

30 years of CIF

database that was being designed for the PDB, mmCIF
imposed more constraints on the relations between the
data items that it defined. In a series of workshops[2],
the mmCIF standard was refined to become a superset
of the core dictionary with the additional attributes that
made it formally equivalent to a relational database.

CIF and Crystallography

Many young researchers will have grown up (Fig. 3)
with the idea of CIF as the natural way to publish single-
crystal structure reports and import structural models;
and they will be equally familiar with checkCIF as a
validation tool and indicator of the completeness and
precision of a structure determination.

While many journals require a CIF as supporting infor-
mation, Fig. 4 shows the particular power of the com-
plete integration of CIF in the publishing process that
IUCr journals offers. In this interactive figure, the author
has provided some alternative views of the molecule
studied, highlighting different areas of interest. How-
ever, the reader can right-click into the main image to
find a much larger menu of options, permitting visu-
alization of the unit-cell packing, the crystal structure,
or individual symmetry operations; and interrogation of
the data for arbitrary geometric measurements.

However, researchers may have had fewer opportuni-
ties to use the small-unit-cell derivatives of CIF that
have been developed during their lifetime, and that
are gradually becoming established as ways to describe
more complex types of structure. There are now sep-
arate extension dictionaries that cover such fields as:
powder diffraction (embracing the different measur-
ables of a wider range of instrumentation, the practice
of using multiple data sets to fit a single crystallographic
model, and the need to characterize different phases);
modulated and composite structures (with the ability
to assign superspace groups and modulation wave vec-
tors); magnetic structures (describing both commensu-
rate and incommensurate magnetic structures exhibit-
ing long-range three-dimensional magnetic order); and
the description of the topology of lattices and their rela-
tion to crystal structures (Fig. 5).

There are also small extension dictionaries describing
aspects of twinning, multipole expansion of electron
density, and structure refinement restraints and con-
straints. These are not very widely used, but are avail-
able as starting points for more detailed treatment when
required. Many of the IUCr Commissions are also inter-
ested in developing CIF dictionaries to provide standard
machine representations within their own spheres of
interest.

Figure 4. Slightly modified version of Fig. 2 of Knott et al.
(2008)[3] demonstrating the ability to visualize and inter-
rogate CIF data sets in situ within a research publication.
The interactive version of this figure can be visited online
at https://www.iucr.org/news/newsletter/volume-29/number-
4/30-years-of-cif/interactive-figure. Interactive functionality
provided by Jsmol [4].

In the area of structural biology, the Worldwide Pro-
tein Data Bank curates the mmCIF family of dictio-
naries, including PDBx (the main extension to mmCIF
that tracks the developing field of protein crystallog-
raphy) and a number of extension dictionaries rele-
vant to NMR structure determinations, small-angle scat-
tering, three-dimensional electron microscopy, integra-
tive/hybrid methods, features of synchrotron radiation
facilities and beamlines, and validation reports.

Figure 5. Logos of the CIF dictionaries under the curation of
the IUCr Committee for the Maintenance of the CIF Standard
(COMCIFS) published by 2021.

54 COMCIFS Dictionary Writing Workshop 2023

30 years of CIF

Another important development has been imgCIF,
designed to capture diffraction image data and also the
necessary experimental metadata allowing proper inter-
pretation of the images captured. Since imgCIF and its
binary data representation equivalent CBF (the Crystal-
lographic Binary File) were developed in the late 1990s,
data acquisition volumes and rates have increased so
rapidly that this type of file format is no longer suit-
able for real-time data capture. Nevertheless, the data
definitions of imgCIF have partly informed the NeXus
macromolecular crystallography application definition
(NXmx) that provides full metadata definitions in the
HDF5 format increasingly used by beamlines.

This is a significant illustration that the real power of
CIF lies in its definitions of concepts and quantities.
While the concrete CIF file format is a useful informa-
tion exchange mechanism, it is relatively easy to trans-
late the format to other common standards, such as
XML, the old PDB format, or – increasingly popular –
JSON.

A simple catalogue of this plethora of dictionaries and
their specific applications perhaps obscures the real
importance that CIF has acquired during the course of
its evolution. It now touches upon the complete work-
flow of a structure determination, from the capture of
the experimental data, through its interpretation, mod-
elling and publication, to worldwide dissemination in
curated databases (Fig. 6). In data science applications,
the collection of controlled vocabularies and interrela-
tionships among detailed data definitions has come to
be known as an ‘ontology’, and crystallography now
has one of the most completely developed of any sci-
ence. It is now possible to offer schools and workshops
to early-career structural scientists where experimental
best practice is developed with the full rigour of data
characterization, interpretation and validation[5].

Figure 6. A coherent information flow in crystallography. CIF
ontologies characterize data at every stage of the information
processing life cycle, from experimental apparatus to pub-
lished paper and curated database deposit.

Leading the way

The significance of CIF has been recognised in the infor-
mation and data science communities, in the form of
the 2006 Association of Learned and Professional Soci-
ety Publishers Award for Publishing Innovation and the
prestigious 2014 CODATA Prize to Professor Sydney
Hall. In both cases the award citations were generous
in their acclaim for what the CODATA judges called ‘a
momentous contribution’.

Yet despite the potential applicability of the approach to
any field of science, there has been relatively little pen-
etration in other scientific domains. Syd Hall intended
CIF to be just one application of a general approach
– ‘STAR’ (Self-Defining Text Archive and Retrieval) –
which has also been used in small-scale pilots in chem-
istry (MIF, the molecular information file), quantum
chemistry, and botany, and most successfully as the
basis for the NMR structures database of BioMagRes-
Bank, one of the partners of the wwPDB[6].

There are also encouraging signs of novel projects in
solid-state science that are inspired by CIF[7]. These are
greatly to be welcomed, as a proliferation of domain
ontologies in a common format will certainly lead to
easier interoperability. It is likely that, despite its suc-
cess within crystallography, many other disciplines con-
sider the STAR/CIF approach as niche, and not suffi-
ciently supported by the wider information and data
science communities. Nevertheless, in our opinion as
people who have been involved with CIF for a com-
bined 45 years, STAR and CIF have much to offer, not
least in the process of devising new ontologies. The
basic file syntax is lightweight and clean, and the dic-
tionary attribute sets (that is, the terms used to express
definitions of concepts in machine-readable ways) are
not unduly complex, and extensible where needed.

Relationships may be expressed in many different ways
– early interest in the STAR File with its nested loops
that are absent from CIF explored its suitability for pop-
ulating object-–relational databases. Yet the more natu-
ral relational-database type structure that CIF more eas-
ily encapsulates is adequate for developing conceptual
frameworks of sufficient complexity for most scientific
purposes[8]. We respectfully encourage scientists who
need to provide machine-readable descriptions of sci-
entific data and metadata within their own discipline
to consider the STAR/CIF approach as a useful starting
point. Development into more complex web ontology
frameworks such as OWL[9], if needed, can be left to
a later implementation stage, once the essential defi-
nitions and relationships have been expressed in the
manner of a CIF dictionary.

COMCIFS Dictionary Writing Workshop 2023 55

30 years of CIF

Constancy and change

As is apparent from the title of the 1991 CIF paper,
one of its primary design goals was to archive data.
As such, stability is crucial, both of the file format and
of the dictionary definitions. Definitions should not be
changed, as that could invalidate archived data sets. On
the other hand, concepts do evolve, and the dictionar-
ies will acquire new data names with their associated
definitions. Where there is a clear shift in the way an
existing concept is realised, there are mechanisms to
mark an old data name as deprecated and to express its
relationship to a new entry.

In fact, the core dictionary has grown rather little since
its original release, reflecting the relative maturity of
single-crystal structure determination. In marked con-
trast, the PDBx extension to the original mmCIF dictio-
nary has raised the number of data names defined for
the core biological macromolecular structure determi-
nation from around 1670 to over 6400, reflecting both
the complexity of the structural description of proteins
and nucleic acids and the explosive growth of the sub-
ject itself.

To accommodate new requirements in data manage-
ment the CIF file format itself was revised in 2016[10].
Its main differences from version 1 were the adop-
tion of Unicode as the native character set, the abil-
ity to represent all possible text strings, and simpler
ways to represent vectors, matrices and other com-
pound data structures. This was coincident with the
adoption of a new formalism for dictionary defini-
tions known as DDLm, a methods-capable dictionary
definition language. The term ‘methods’ indicates that
formal relationships between different data items can
be expressed, evaluated and validated by machine-
executable statements within the dictionary itself. This
opens the way to more rigorous validation tools, and
in principle brings closer the idea of a universal pro-
cessing engine that can manipulate scientific entities
by inputing a suitable dictionary – no domain-specific
coding would be needed within such programs.

Again reflecting the maturity of single-crystal diffrac-
tion and the existence of established software that ade-
quately handles the publication requirements of such
structures, relatively few ‘CIF2’ files are yet found in
the wild. However, we expect that they will be popular
in newer areas of research, and we note, for example,
the adoption of CIF2 in a novel Raman spectroscopy
database[11].

The image we have chosen to introduce this article is,
we feel, an appropriate metaphor for CIF at the end of
its first three decades of deployment. From small begin-

nings, it has grown to a significant size, constantly pro-
pelled by a small core of developers and adopters. In
the process, it may have acquired some grit and irreg-
ularities around the edge, and is now at a stage where
even more effort will be needed, especially to gather up
more material from the fresh ‘snowfields’ of new tech-
niques, structural representations, and understanding.

However, most of the pioneers from the early days have
now retired or otherwise withdrawn from the scene. If
we are not to lose momentum, we need fresh young
blood to keep the snowball rolling and growing ever
larger. Please join in the fun!

Resources

Find out more about CIF:

• The IUCr CIF website
• CIF dictionaries maintained by COMCIFS
• CIF software for small-unit-cell structures
• PDBX/mmCIF dictionary resources maintained by

wwPDB
• CIF software for macromolecular structures
• cif-developers mailing list
• Crystallographic Information and Data Manage-

ment Symposium, U. Warwick, 2013
• Crystallographic Information Fiesta School, Naples

2019
• International Tables for Crystallography Volume G:

Definition and exchange of crystallographic data
(1st online edition 2006; a second edition is in
preparation)

Notes and references

[1] Brown, I. D. (1988). Standard Crystallographic
File Structure-87. Acta Cryst. A44, 232. DOI:
https://doi.org/10.1107/S010876738700970X

[2] Fitzgerald, P., Berman, H., Bourne, P., McMahon, B.,
Watenpaugh, K. & Westbrook, J. (1996). The macromolecu-
lar CIF dictionary
https://www.iucr.org/resources/commissions/crystallographic-
computing/schools/school96/the-mmcif-dictionary

[3] Knott, S. A., Hitchcock, S. R. & Ferrence, G.
M. (2008). (5S,6S)-4,5-Dimethyl-3-methylacryloyl-6-phenyl-
1,3,4-oxadiazinan-2-one. Acta Cryst. E64, o1101. DOI:
https://doi.org/10.1107/S1600536808013986

[4] Jsmol is the HTML5 modality of Jmol : an open-source Java
viewer for chemical structures in 3D. http://www.jmol.org/
Under continual development by its principal developer,
Robert M. Hanson, this tool provides innovative and insightful
visualizations of structures described by many flavours of CIF,
including macromolecular (mmCIF), incommensurate modu-
lated (msCIF), magnetic (magCIF) and topological (topoCIF)

56 COMCIFS Dictionary Writing Workshop 2023

30 years of CIF

structures.

[5] The pioneering CIFiesta school, hosted by the Ital-
ian Crystallographic Association in Naples in 2019,
has been described in the IUCr Newsletter. Teach-
ing materials from the school are available at:
https://www.iucr.org/resources/cif/comcifs/cifiesta-2019

[6] Hall, S.R. & McMahon, B. (2016). The Implementation
and Evolution of STAR/CIF Ontologies: Interoperability and
Preservation of Structured Data. Data Science Journal, 15,
p.3.

[7] Some examples of recent standards development efforts
in solid-state science: Zainul Ihsan, A., Dessi, D., Alam, M.,
Sack, H. & Sandfeld, S. (2021). Steps towards a Disloca-
tion Ontology for Crystalline Materials. arXiv [cond-mat.mtrl-
sci], arXiv:2106.15136; Evans, J. D., Bon, V., Senkovska,
I. & Kaskel, S. (2021). A Universal Standard Archive
File for Adsorption Data. Langmuir, 37, 4222–4226. DOI:
https://doi.org/10.1021/acs.langmuir.1c00122; Andersen, C.
W., Armiento, R., Blokhin, E. et al. (2021). OPTIMADE,
an API for exchanging materials data. Sci Data 8, 217.
DOI: https://doi.org/10.1038/s41597-021-00974-z; Cheung,
K., Drennan, J. & Hunter, J. (2008). Towards an ontology for
data-driven discovery of new materials. AAAI Spring Sympo-
sium: Semantic Scientific Knowledge Integration, pp. 9–14.

[8] Hester, J. (2016). A Robust, Format-Agnostic Scientific
Data Transfer Framework. Data Science Journal, 15, p.12.
DOI: http://doi.org/10.5334/dsj-2016-012

[9] Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider,
P. & Rudolph, S. (2012). OWL 2 Web Ontology
Language Primer In: Tech. rep. W3C. Available at:
https://www.w3.org/TR/2012/REC-owl2-primer-20121211.

[10] Bernstein, H. J., Bollinger, J. C., Brown, I. D., Grazulis, S.,
Hester, J. R., McMahon, B., Spadaccini, N., Westbrook, J. D.
& Westrip, S. P. (2016). Specification of the Crystallographic
Information File format, version 2.0. J. Appl. Cryst. 49, 277–
284. DOI: https://doi.org/10.1107/S1600576715021871

[11] El Mendili, Y., Vaitkus, A., Merkys, A., Grazulis, S.,
Chateigner, D., Mathevet, F., Gascoin, S., Petit, S., Bardeau, J.-
F., Zanatta, M., Secchi, M., Mariotto, G., Kumar, A., Cassetta,
M., Lutterotti, L., Borovin, E., Orberger, B., Simon, P., Hehlen,
B. & Le Guen, M. (2019). Raman Open Database: first inter-
connected Raman–X-ray diffraction open-access resource for
material identification. J. Appl. Cryst. 52, 618–625. DOI:
https://doi.org/10.1107/S1600576719004229

Appreciation

As we were working on this article, we were sad-
dened to hear of the unexpected passing of John West-
brook (1957–2021), who did so much to develop the
mmCIF/PDBx and related extension standards, and
whose companionship along almost the entire route of
CIF development will be greatly missed.

Brian McMahon is based at the IUCr offices in Chester,
UK, and has been COMCIFS Secretary since 1993.
James Hester works at ANSTO, Australia, and has been
COMCIFS Chair since 2008.

25 October 2021

Copyright © – All Rights Reserved – International Union of Crystallography

COMCIFS Dictionary Writing Workshop 2023 57

Resources

APPENDIX 4: Additional resources for learning about CIF dictionaries

CIF dictionaries maintained by COMCIFS
The CIF section of the IUCr web site, especially

• CIF home page https://www.iucr.org/resources/cif/
• CIF dictionaries section

https://www.iucr.org/resources/cif/dictionaries

Standards development site on GitHub, especially
• IUCr Core CIF development repository (includes DDLm dictionary)

https://github.com/COMCIFS/cif core
• Dictionary Writing Workshop materials

https://github.com/COMCIFS/Dictionary-Writing-Workshop

International Tables for Crystallography Volume G: Definition and exchange of
crystallographic data

• https://it.iucr.org/G
• Online access is by institutional subscription to the entire International Tables

series.
• Printed copies of the first edition (2005, slightly revised 2010) are available

from Wiley, price £232
• Second-hand or discounted prices are sometimes available. Search on ISBN

1-4020-3138-6
The Second Edition, from which draft material has been included in this booklet,
is in an advanced stage of preparation.

CIF dictionaries maintained by the Worldwide Protein Data Bank

The wwPDB Dictionary Resources website, especially
• PDBX/mmCIF home page https://mmcif.wwpdb.org/
• Dictionary organization tutorial

https://mmcif.wwpdb.org/docs/tutorials/mechanics/pdbx-mmcif-dict-
struct.html

PDB-101 tutorials, especially
• Virtual Crash Course Use PDB data to their full extent:

Understanding PDBx/mmCIF
https://pdb101.rcsb.org/train/training-events/mmcif

General

Previous COMCIFS events at IUCr and regional meetings
• Crystallographic Information and Data Management Symposium

(ECM 28, University of Warwick, UK, August 2013)
https://www.iucr.org/resources/cif/comcifs/symposium-2013

• Crystallographic Information and Data Management Workshop
(ECM 28, University of Warwick, UK, August 2013)
https://www.iucr.org/resources/cif/comcifs/workshop-2013

• Dictionary Writing Workshop
(IUCr XXIV, Hyderabad, India, August 2017)
https://www.iucr.org/resources/cif/comcifs/workshop-2017

The Crystallographic Information Fiesta (AIC International School 2019)
• https://www.iucr.org/resources/cif/comcifs/cifiesta-2019
• http://www.iucr.org/news/newsletter/volume-27/number-4/cifiesta

58 COMCIFS Dictionary Writing Workshop 2023

	3.1.1.1. DDL versions
	3.1.2.1. Introduction
	3.1.2.2. Types of data names
	3.1.2.3. A dictionary development strategy
	3.1.2.3.1. Step 1. Data granularity
	3.1.2.3.2. Step 2. Develop a graph of data names
	3.1.2.3.3. Step 3. Consolidate the graph
	3.1.2.3.4. Step 4. Link categories using key data names
	3.1.2.3.5. Step 5. Adjust data names to be computationally useful
	3.1.2.3.6. Step 6. Finalise the text definitions
	3.1.2.3.7. Step 7: Naming
	3.1.2.3.8. Step 8: child categories
	3.1.2.3.9. Summary

	3.1.3.1. Definitions of single quantities
	3.1.3.1.1. Looped data

	3.1.4.1. Foundations
	3.1.4.2. DDLm attributes for expanded data sets
	3.1.4.3. Expanding dictionaries to describe data spread over multiple data blocks
	3.1.4.4. Examples
	3.1.4.4.1. Symmetry dictionary
	3.1.4.4.2. Modulated and composite structures dictionary
	3.1.4.4.3. Powder diffraction dictionary
	3.1.4.4.4. Advanced example: DDL dictionaries as data files

	3.1.5.1. Creating a combined dictionary
	3.1.6.1. Identification of dictionaries relevant to a data file
	3.1.6.2. Locating a dictionary for validation
	3.1.7. References
	4.1.2.1. The role of COMCIFS
	4.1.2.2. Developing community standards
	4.1.2.3. Distribution infrastructure
	4.1.4.1. The core CIF dictionary
	4.1.4.2. The restraints dictionary
	4.1.4.3. The twinning dictionary
	4.1.4.4. The modulated structures dictionary
	4.1.4.5. The electron density dictionary
	4.1.4.6. The magnetic CIF dictionary
	4.1.4.7. The topology dictionary
	4.1.4.8. The macromolecular dictionary
	4.1.4.9. The image dictionary
	4.1.5.1. The [local]_ prefix
	4.1.5.2. Reserved prefixes
	4.1.5.3. Name spaces
	References
	Overview
	Terminology
	Magic numbers
	1. Lines and padding
	2. Value formatting
	2.1 Text strings
	2.2 Lists
	2.3 Tables
	2.4 Multi-line compound object
	2.5 Enumeration ranges

	3. Data items
	3.1 Attribute–value pairs
	3.2 Loops

	4. Ordering
	4.1 Front matter and definitions
	4.2 Layout of non-save-frame information
	4.3 Definition layout

	5. Naming convention
	A new paradigm in data characterization
	Out of the blue?
	CIF and Crystallography
	Leading the way
	Constancy and change
	Resources
	Notes and references
	Appreciation

