

IUCr-XAFS, Madrid, 22-8-2011

APPLICATIONS OF X-RAY SPECTROSCOPY IN

CHEMISTRY

M. Fernández-García

Instituto de Catálisis y Petroleoquímica ICP-CSIC, Spain

APPLICATIONS OF X-RAY SPECTROSCOPY IN CHEMISTRY

- Summary
- General Introduction XAFS/XES
 - **Overview XANES/EXAFS utility in Chemistry**
- XAFS analysis of materials genesis
- XAFS analysis of industrial-related chemical properties

APPLICATIONS OF X-RAY SPECTROSCOPY IN CHEMISTRY

• XAFS (XES) Techniques: XANES and EXAFS

Fit Chemical needs (Atmosphere, P, T) Local order sensitive (around each component) Independent of crystallinity XANES: high S/N ratio (absence thermal effects)

NANO-CHEMISTRY

Control of Structure and Morphology (primary particle size, shape)

Structure / Morphology <> **Chemical Properties**

Electronic Properties

- Edge
- Pre-edge
- CRs

Average Oxidation State

Electronic Properties

W: TiO_2 W L₁ L₁₁₁-edge

- Edge
- Pre-edge
- CRs

Pre-edge Position and Intensity: Ox. State + Local symmetry

CRs: "Projected" Empty (s,p,d) Density of States

J. Phys. Chem. B 109 (2005) 6075

Electronic/Structural Properties

- Pre-edge
- CRs

Nanophases

Th. Calculations

Size/Shape dependence

Cu nanoparticles

Electronic Properties

W: TiO_2 XES W L_{III}-edge

- Edge
- Pre-edge
- CRs

High Resolution => Fine electronic details

Eur. J. Phys 169 (2010) 207

M. Fernández García, IUCr-XAFS-2011

-

-10

OVERVIEW XAFS APPLICATION: CHEMISTRY XES: selective spectra

Electronic Properties (a) $K\beta_{25}$ Intensity (a.u.) XANES **K**β" 5440 5450 5460 5470 Emission energy (eV) 10 [IV]V2+ В (1) Kß" integral intensity (a.u.) 9 с (2) ^С [V]V⁵⁺(4) 8 -8 (3) [V]V4+ Energy (eV) 7 (3) N 6. (1) -12 • [VI]V3+ (2)5 о (4-9) -16 3.5 4.5 5.0 3.0 4.0 **Oxidation state** -30 -20 Energy (eV)

Oxidation State and Ligand Selective Electronic details

Structural Properties

-

XES: selective spectra

Site (Local St.) Selective Structural details

Coord. Chem. Rev. 249 (2005) 65

Structural Properties

- **Pre-edge** (s -> p/d)

Undercoordinated Metal

Ti⁴⁺5c

Number of Oxygen Vacancies

Metal Oxides (1st Transition Series)

X-Ray Spectrom. 37 (2008) 572

Metal Oxides (1st Transition Series)

Structural Properties

- Pre-edge (s \rightarrow p/d)

Partially Reduced And/or Undercoordinated Metal

Mⁿ⁺_{xe}

Number Defects/Vacancies

X-Ray Spectrom. 37 (2008) 572

Structural Properties

Ce³⁺ in quasi-stoichiometric particles

- CRs

• Ce³⁺ > Vacancies below 5 at. %

 Strain from Ce³⁺ presence Raman (Ce³⁺ < 1.6 at. %)

XANES: Relatively Poor Detection Limit

PCCP 6 (2004) 3524

Structural Properties

Pd-Cu alloys

M. Fernández García, IUCr-XAFS-2011

Nano-metals

Structural Properties

- Primary p. size and shape for nano-particles

1st Shell CN

Dispersion (Surf. vs. Bulk)

High Sensitivity < 300 at.

PCCP 1 (1999) 4059; 12 (2010) 5562

M. Fernández García, IUCr-XAFS-2011

OVERVIEW EXAFS APPLICATION: CHEMISTRY

Structural Properties

- Primary p. size/shape

1st Shell CN

Size

Surface Disorder

Size < 5 nm

Limited validity Usual Analytical Approach

Underestimation CN

Phys. Rev. B 81 (2010) 115451

Structural Properties

- Primary p. size and shape for nano-particles (metals)

1st Shell CN; size

CNn: CN1; shape

Fee; hep OK

Bcc; only CN1 > 4

Nano-metals

PCCP 1 (1999) 4059; 12 (2010) 5562

Structural Properties

Nano-alloys

Homogeneity

$$\alpha = \frac{1 - N_{\text{PtPd}} / N_{\sum \text{PtPt} + \text{PtPd}}}{X_{\text{Pd}}}$$

$$\Delta = \boldsymbol{\alpha}_{\text{M1}} - \boldsymbol{\alpha}_{\text{M2}} \boldsymbol{\Sigma} = \boldsymbol{\alpha}_{\text{M1}} + \boldsymbol{\alpha}_{\text{M2}}$$

Combination

Degree of interaction/mixing

	(a)	(b)
(c) (d)		
	(c)	(d)

Fig. 9 Hypothetical bimetallic clusters (Pt = blue, Pd = green): (a) bi-cluster; (b) core-shell; (c) random; (d) single-half; (e) bi-cluster homo; (f) bi-cluster inhomo.

Table 5	1st shell	coordination	numbers	for	PtPd	bimetallic	systems
---------	-----------	--------------	---------	-----	------	------------	---------

Cluster Type	Pt-Pt	Pt–Pd	$\sum N_{PtP}$	Pd–Pd	Pd-Pt	$\sum N_{PdP}$	x _{Pt}	$x_{\rm Pd}$	$\alpha_{\rm Pt}$	$\alpha_{\rm Pd}$	Δα	Σα
Bi-cluster	8.73	0.07	8.80	8.73	0.07	8.80	0.5	0.5	-0.98	-0.98	0	-1.96
Single-Half	7.08	1.58	8.66	7.85	1.19	9.04	0.43	0.57	-0.68	-0.69	0.01	-1.37
Core-shell	7.73	3.86	11.59	3.90	2.92	6.82	0.43	0.57	-0.42	0	-0.42	-0.42
Random	3.63	4.80	8.42	5.59	3.63	9.22	0.43	0.57	0	-0.08	0.08	-0.08
Decorated	3.43	3.00	6.43	8.73	0.77	9.50	0.21	0.78	-0.18	-0.9	0.72	-1.08
Random (50/50)	5.41	4.26	9.68	4.20	3.88	8.09	0.5	0.5	-0.12	-0.08	-0.04	-0.2
Bi-cluster homo	7.63	0.92	8.55	3.25	4.33	7.58	0.82	0.18	-0.39	-0.31	-0.08	-0.7
Bi-cluster inhomo	7.63	0.24	7.88	5.92	1.17	7.08	0.82	0.18	-0.82	-0.8	-0.02	-1.62

APPLICATIONS OF X-RAY SPECTROSCOPY IN CHEMISTRY

- Summary
- General Introduction XAS/XES
 - **Overview XANES/EXAFS utility in Chemistry**
- XAFS analysis of materials genesis
- XAFS analysis of industrial-related chemical properties

CONTROL OF STRUCTURE AND MORPHOLOGY: SYNTHESIS Liquid Phase; synthesis of Zeotypes (Co-AIPO) XAS - XRD Analysis

Complementary analysis of the local/long range order evolution

PCCP 12 (2010) 559

Liquid Phase; synthesis of Zeotypes

XAS XRD Analysis

Detection of four different regions (Initial) Intermediate only detected by XAS

PCCP 12 (2010) 559

Synthesis of Oxides

Surfactant	Т	riton X-100	Tween 85		
$H_2O/Surf.$	18	4.5	3	18	3
Samples / 773 K	Т	ТА	TB	TW	TWB
Samples / 873 K	T1	T1A	T1B	T1W	T1WB

Solid state treatment

High Surface Area Nanostructured Anatase materials

J. Phys. Chem. C 111 (2007) 674

Solid phase: Initial Precursors

XANES Spectra: Pre-edge

Ti-Ti C.N. 2.2 ± 0.5

Precursors lack 3D connectivity

CONTROL OF STRUCTURE AND MORPHOLOGY: SYNTHESIS Treatment of Solid precursors; synthesis of Oxides

EXAFS Spectra: Ti-Ti 2nd Shell CN

R < 4 Å may inform about the *nucleation* step

J. Am. Chem. Soc. 129 (2007) 13604

Treatment of Solid precursors; synthesis of Oxides

Multitechnique XAS; XRD-PDF

3-5 Å local order \rightarrow control *nucleation* and primary particle size

Thermodynamic factor

J. Am. Chem. Soc. 129 (2007) 13604

CONTROL OF STRUCTURE AND MORPHOLOGY: SYNTHESIS Treatment of Solid precursors; synthesis of Oxides XAS Analysis

R > 4 Å may inform about the *growth* process (at low T)

XRD Analysis

Growth $(D^2-D_0^2) = kT$; 15-30 kJ mol⁻¹; hydration surface layers

J. Phys. Chem. C 111 (2007) 674

Surface "sensitive" DRIFT Spectra

Control particle shape: complex phenomenon (thermo/structure)

TiO₂ Anatase Nanomaterials: Size and Shape

CONTROL OF STRUCTURE AND MORPHOLOGY: ACTIVITY

3 Size Regions Size < 5-6 nm; low activity NO clear differences a/b 15 nm

Shape Above 6 nm Isotropic Shape enhances Photoactivity

APPLICATIONS OF X-RAY SPECTROSCOPY IN CHEMISTRY

- Summary
- General Introduction XAFS/XES
 - **Overview XANES/EXAFS utility in Chemistry**
- XAFS analysis of materials genesis
- XAFS analysis of industrial-related chemical properties

Mutitechnique SYNCHRONOUS approach

XAFS-SAXS-WAXS; XAFS-UV (MS) approaches

Real "operando" conditions

Time dependent Structure – Chemical Activity

Catal. Today 145 (2009) 204

Mutitechnique SYNCHRONOUS approach Modern requirements

Energy Dispersive ED-XAFS-IR (MS)

μs "real" single-shot Time Resolved experiment; TOFs

Catal. Today 145 (2009) 204

M. Fernández García, IUCr-XAFS-2011

CHEMICAL ACTIVITY OF MATERIALS

Mutitechnique SYNCHRONOUS approach Modern requirements

Spatial Resolved ED-XAFS-IR (MS)

2D (3D) sub-µm analysis of industrial Structures (pellets, monolith)

Chem. Soc. Rev. 39 (2010) 4741

M. Fernández García, IUCr-XAFS-2011

CHEMICAL ACTIVITY OF MATERIALS XAS techniques; novel experiment

Summary

Fast (ms-µs) easy track of structuralelectronic properties

Combination Surface-Bulk (Spatial-resolved) Information

Link with Chemical Activity

Nat. Mater. 6 (2007) 528

XANES technique; time-resolved studies

Size-dependence => Fitting procedures

Statistical Analysis: Self-resolving or multivariate curve resolution

Pd²⁺

0.05

XANES-Fluorescence microscopy technique; Spatial Resolution

2D Chemical (10 x 10 nm x 10-100 μm) imaging of "active" species

Nature 456 (2008) 222

XANES (XRD) microtomography technique; Spatial Resolution

3D Chemical (10x10 nm x 360 °) imaging of "active" species

Appl. Phys. Lett. 82 (2003) 3360

CHEMICAL ACTIVITY OF MATERIALS EXAFS technique; time-resolved studies Pd size-dependence; cycling CO/NO at 673 K EXAFS analysis assumptions o² constant and/or R harmonic distribution

Incorrect Information

J. Am. Chem. Soc. 132 (2010) 4540

M. Fernández García, IUCr-XAFS-2011

CHEMICAL ACTIVITY OF MATERIALS

EXAFS technique; time-resolved studies

Pd size-dependence; cycling CO/NO at 673 K

J. Am. Chem. Soc. 132 (2010) 4540 J. Catal. 270 (2010) 275

CHEMICAL ACTIVITY OF MATERIALS EXAFS technique; time-resolved studies Pd size-dependence; cycling CO/NO at 673 K

EXAFS technique; time-resolved studies

Pd size-dependence; cycling CO/NO at 673 K

Raw Data

Dynamic Dispersion

M. Fernández García, IUCr-XAFS-2011

APPLICATIONS OF X-RAY SPECTROSCOPY IN CHEMISTRY

XANES/EXAFS

Tools for dynamic structural-electronic characterization of nano-solids

CONTROL PHASE AND MORPHOLOGY

CHEMICAL ACTIVITY

ACKNOWLEDGEMENTS

<u>Collaborators</u>

Dr. A. Kubacka Dr. Iglesias Juez Dr. K. Chistoforidis Dr. M. Ferrer Prof. A. Martínez Arias Prof. J.C. Conesa Prof. J. Soria ICP; CSIC; SPAIN Dr. G. Colón Prof. J.A. Navío ICMSE; CSIC-US; SPAIN

> Dr. J.A. Rodríguez Dr. J.C. Hanson BNL; USA

Dr. S. Figueroa Dr. M.A. Newton Dr. M. Di Michiel ESRF; France XAS experiments

All staff at: -7.1, 9.2, 9.3 at SRS

-1D15, BM23, ID24, ID26, BM29 at ESRF

-X7B, X19A at NSLS

Financial sources

EU program for Large Scale Installations Spain-MICINN (CTQ2010-14872)