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Luc’s Observation

Collaboration is always a waste of time in
the short term but we both learn how
invaluable it is on the mid to long term.

Jun 3,2008
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Aspects of a Library

® Functionality

® Environment

® |mplementation languages
® Portability

® Developer community

® Reusability

® Stability

® Maintainability
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Functionality - major cctbx modules

. Comprehensive symmetry algorithms (uctbx, sgtbx)
Handling of reflection data (miller.array, iotbx.reflection_file_utils)
Structure factor calculations (direct summation & FFT approximation)
FFT library (fftpack)
Map manipulation tools (maptbx)
Direct methods (dmtbx)
Charge flipping (smtbx)
General purpose minimizers (Ibfgs)
Fully featured small-molecule refinement (smtbx)
All major components for macromolecular refinement (mmtbx)
. TLS constraints
. Rigid-body refinement
Bulk-solvent correction
Twin refinement
NCS restraints (Cartesian space, torsion-angle space)
Secondary structure restraints
Simple molecular dynamics (Cartesian space, torsion-angle space)
Simulated annealing (Cartesian space, torsion-angle space)
. Validation tools
Data reduction tools: spot finding, indexing, integration (spotfinder, rstbx)
Fast comprehensive PDB handling library (iotbx.pdb)
Comprehensive CIF library (iotbx.cif)
Comprehensive handling of SHELX ins/res/hkl files
Family of array types and matrix algorithms (scitbx.array_family, scitbx.matrix)
Parameter handling language (libtbx.phil)
OpenGL support (crys3d, gltbx)
OpenMP support (omptbx)
Fortran to C++ converter (fable)
Modular, non-intrusive build system (libtbx, SCons)
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Environment
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Shell
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ColdFusion
Cobo
Erlang
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Scala
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Forth
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0.20 0.40 0.60 0.80 1.00

langpop.com

Wednesday, August 17, 2011



A
. _r:}‘ i
Environment

® |nternet has fundamentally changed software development
® Confluence of technologies
® The World-Wide-Web in which we live

® Revision control systems (e.g. Subversion)

® Mailing lists for fast asynchronous exchange of ideas

® |ssue tracking systems (e.g. Bugzilla)

® Open-source tool chain

® |inux < GCC « Boost, Python < SCons + cctbx
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Implementation lansuages - Spectrum
P guages - op

Python

Interpreted, Object Oriented, Exception handling
C++

Compiled, Object Oriented, Exception handling
C

Compiled, User defined data types, Dynamic memory management

Fortran

Compiled, Some high-level data types (N-dim arrays, complex numbers)

Assembler

Computer program is needed to translate to machine code

Machine code

Directly executed by the CPU
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Fortran

) Assembly

Programmer Productivity

@ Machine code

Runtime Performance
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Dynamically typed Statically typed
= Programmer Productivity = Speed
Interpreted
= Programmer Productivity Python Java
Compiled to machine code
= Speed P)'P)' C++
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Implementation lansuages - Pros & Cons
P gHas

Python

+ Very high-level programming

+ Easy to use (dynamic typing)

+ Fast development cycle (no compilation required)

— Too slow for certain tasks

+ Easy multiprocessing on multi-core machines (1800 x 64)

+ Abstraction of Operating System / Intersection with role of Operating System
C++

+ High-level or medium-level programming

— Many arcane details (strong static typing, C legacy)

+ Largely automatic dynamic memory management (templates)

+ Much faster than Python

With enough attention, performance within 15% of FORTRAN
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Portability

® “How easy is it to install cctbx on my machine?”
® Reusing libraries
+ Increased productivity (“don’t re-invent the wheel”)
— Dependencies
® End-users: distribute binaries
+ Good approach in many situations
+ Eliminates time-consuming compilation
— Requires access to many machines
— May lead to surprises (“strange crashes”)
® Developers: need source by definition
® Easy installation from sources is essential
® Side-effect: easy installation from sources for end-user

® Open-source is essential
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® C(lick to download cctbx python 272 bundle.selfx
perl cctbx python 272 bundle.selfx

® |[nstalls Python and cctbx including all dependencies from scratch
® There are also binary bundles (all major platforms including Windows)
® cctbx includes tools for building bundles

® often easy to tie external sources into the cctbx build system

® Only dependencies: Operating System, C/C++ compiler
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Developer community —

® One-man project vs. group of developers
® Pre-internet era: mostly one-man projects or one-lab projects
® Post-internet era:

® community geographically spread out

® diverse communities, but with intersecting interests

® communities are constantly improving infrastructure for
working together most efficiently

® self-organizing division of labor
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cctbx contributors with >100 commits
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Community resources

B8 nuip / /www.ohloh.net/p/cctbx

GENERAL The Computational Crystallography Toolbox (cctbx) is a collection Ohloh Analysis Summary

Summary of reusable, open-source Python and C++ libraries. It has been Updated 1 day ago
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Projects modules). @ very | ctive devel tt

Widgets ery large, active development team
No managers have claimed this project yet. Claim this position © Increasing year-over-year development

DEVELOPMENT activity

Code Analysis Add tags to this project © Estimated project cost: $7,657,166

Commits

Estimated Cost

Enlistments ) View All Possible Factolds
Code Analysis

COMMUNITY

Contributors ~ CSo0t——18) 30-Day Commit Activity

Users 800k Jul 18 — Aug 16

Managers

World Map G © 11 committers made 282 commits

Ratings & © 292 files modified

Reviews © 32856 lines added

Journal Entries :
© 19816 lines removed

Total Lines
FS
=
»

EDIT
Permissions 200k
History World Activity Map
% 000 2002 2004 2006 2008 2010 g - .:"
@8 Code @B Comments W Blanks 1
L4 o 4
This chart is interactive. C_hfg‘;}{g :
You can mouse over lines, click on/off labels from the legend and drag inside the - - .

chart to zoom.

Wednesday, August 17, 2011



Reusability
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® Object-oriented paradigm

® Better name IMHO: context-oriented (namespaces)

® (lasses

® (lasses

"~y
"~y

"~y
"~y

enhanced namespaces

functions that preserve context (data & algorithms)

® Polymorphism

® Runtime (dynamic typing, C++ virtual functions)

® Compile-time (C++ templates)

® Exception handling

® Bertrand Meyer (Eiffel creator) ca. mid 1990’s:
“It is impossible to write reusable code without exception handling.”
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Stability

® Automatic testing

® Multiple developers: nobody knows all interactions

® “No copy-and-paste” paradigm — generalization of existing code

® Requires discipline: tests must be written together with the
production code

® |Interface changes
® OK to change relatively new interfaces

® | ong-established interfaces should only be changed with great
care (and ample warnings to anyone who could potentially be

affected)
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Typical development cycle

® |nitial implementation in Python
®  Much faster than writing C++ (factor 3-5)
® Tests are developed at the same time (ca. |/3 of initial effort)
e Often results in efficient code since optimized C++ libraries are reused

® Analysis of working code

® Find performance bottlenecks (if any)

® Port rate-limiting parts to C++ (ca. |/2 of total effort)
e cp algorithm.py algorith.hpp

e factor 10-30 speedup
® Bind C++ implementation to Python (ca. 1% of total effort)

® Adjust prototype to make use of C++ version
® Remove original Python code

®  Or reuse in unit test, comparing the results of the two versions

® |Integrate into application

Wednesday, August 17, 2011



A
. _r:}‘ i
Typical release cycle

Run automatic multi-platform build & tests
Manually check the results

Tell co-workers about problems

Wait for fixes

Rerun until all problems are resolved

Regenerate the online documentation

Release (trivial operation)
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Maintainability

® “Redundancy is the worst enemy of long-term development.”

® “Each time you copy-and-paste more than three lines without
modifying at least two you are making a mistake.”

® Redundancy leads to code inflation

® Severe problem for large projects
® cctbx sizes after about ten years of development:

® ca. 600k lines (20+ MB) source code

® (ca.’3 unit test code)
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Tutorials

Central cctbx types

=

composition
—3 crystal.symmetry
inheritance
min _distance svm equiv anomalous_flag
composition composition

miller.set

special position settings

inheritance inheritance bool

int
array Of P VN {18254 34 array of- double
complex_double

.e s hendrickson_lattman
composition composition

xray.structure miller.array
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