Scripting and programming using

cctbx

(Computational Crystallography Toolbox)

Ralf Grosse-Kunstleve
Crystallographic Computing School, Oviedo, Spain,Aug 16-22,201 |

rerreerer |m

Wednesday, August 17, 2011

A\
r:}‘ ||||

) . '
Luc’s Observation

Collaboration is always a waste of time in
the short term but we both learn how
invaluable it is on the mid to long term.

Jun 3,2008

Wednesday, August 17, 2011

A
Aspects of a Library

® Functionality

® Environment

® |mplementation languages
® Portability

® Developer community

® Reusability

® Stability

® Maintainability

Wednesday, August 17, 2011

rerererer |m

Functionality - major cctbx modules

. Comprehensive symmetry algorithms (uctbx, sgtbx)
Handling of reflection data (miller.array, iotbx.reflection_file_utils)
Structure factor calculations (direct summation & FFT approximation)
FFT library (fftpack)
Map manipulation tools (maptbx)
Direct methods (dmtbx)
Charge flipping (smtbx)
General purpose minimizers (Ibfgs)
Fully featured small-molecule refinement (smtbx)
All major components for macromolecular refinement (mmtbx)
. TLS constraints
. Rigid-body refinement
Bulk-solvent correction
Twin refinement
NCS restraints (Cartesian space, torsion-angle space)
Secondary structure restraints
Simple molecular dynamics (Cartesian space, torsion-angle space)
Simulated annealing (Cartesian space, torsion-angle space)
. Validation tools
Data reduction tools: spot finding, indexing, integration (spotfinder, rstbx)
Fast comprehensive PDB handling library (iotbx.pdb)
Comprehensive CIF library (iotbx.cif)
Comprehensive handling of SHELX ins/res/hkl files
Family of array types and matrix algorithms (scitbx.array_family, scitbx.matrix)
Parameter handling language (libtbx.phil)
OpenGL support (crys3d, gltbx)
OpenMP support (omptbx)
Fortran to C++ converter (fable)
Modular, non-intrusive build system (libtbx, SCons)

Wednesday, August 17, 2011

\

recoeceerc|

Environment

BEERKELEY LAB

5

Java

C++

PHP
JavaScript
Python

C#

Perl

SQL

Ruby

Shell
Visual Basic
Assembly
Actionscript
Objective C
Lisp
Delphi
Pascal
Scheme
Haskell

Tcl
Fortran
Ada

Lua
ColdFusion
Cobo
Erlang

D

Scala
Smalitalk
OCaml|
Forth
Rexx

0.20 0.40 0.60 0.80 1.00

langpop.com

Wednesday, August 17, 2011

A
. _r:}‘ i
Environment

® |nternet has fundamentally changed software development
® Confluence of technologies
® The World-Wide-Web in which we live

® Revision control systems (e.g. Subversion)

® Mailing lists for fast asynchronous exchange of ideas

® |ssue tracking systems (e.g. Bugzilla)

® Open-source tool chain

® |inux < GCC « Boost, Python < SCons + cctbx

Wednesday, August 17, 2011

A
r:}‘ ||||

Implementation lansuages - Spectrum
P guages - op

Python

Interpreted, Object Oriented, Exception handling
C++

Compiled, Object Oriented, Exception handling
C

Compiled, User defined data types, Dynamic memory management

Fortran

Compiled, Some high-level data types (N-dim arrays, complex numbers)

Assembler

Computer program is needed to translate to machine code

Machine code

Directly executed by the CPU

Wednesday, August 17, 2011

gy

| .
reeerroer]]
Implementation languages - Efficiencies /\‘ |
P gUag

Fortran

) Assembly

Programmer Productivity

@ Machine code

Runtime Performance

Wednesday, August 17, 2011

gy

. . reererrrr [
Implementation languages - Matrix “\|

BEERKELEY LAB

Dynamically typed Statically typed
= Programmer Productivity = Speed
Interpreted
= Programmer Productivity Python Java
Compiled to machine code
= Speed P)'P)' C++

Wednesday, August 17, 2011

A
r:}‘ ||||

Implementation lansuages - Pros & Cons
P gHas

Python

+ Very high-level programming

+ Easy to use (dynamic typing)

+ Fast development cycle (no compilation required)

— Too slow for certain tasks

+ Easy multiprocessing on multi-core machines (1800 x 64)

+ Abstraction of Operating System / Intersection with role of Operating System
C++

+ High-level or medium-level programming

— Many arcane details (strong static typing, C legacy)

+ Largely automatic dynamic memory management (templates)

+ Much faster than Python

With enough attention, performance within 15% of FORTRAN

Wednesday, August 17, 2011

N :.rm)
Portability

® “How easy is it to install cctbx on my machine?”
® Reusing libraries
+ Increased productivity (“don’t re-invent the wheel”)
— Dependencies
® End-users: distribute binaries
+ Good approach in many situations
+ Eliminates time-consuming compilation
— Requires access to many machines
— May lead to surprises (“strange crashes”)
® Developers: need source by definition
® Easy installation from sources is essential
® Side-effect: easy installation from sources for end-user

® Open-source is essential

Wednesday, August 17, 2011

ortability - cctbx approac

® C(lick to download cctbx python 272 bundle.selfx
perl cctbx python 272 bundle.selfx

® |[nstalls Python and cctbx including all dependencies from scratch
® There are also binary bundles (all major platforms including Windows)
® cctbx includes tools for building bundles

® often easy to tie external sources into the cctbx build system

® Only dependencies: Operating System, C/C++ compiler

Wednesday, August 17, 2011

A
r:}‘ ||||

Developer community —

® One-man project vs. group of developers
® Pre-internet era: mostly one-man projects or one-lab projects
® Post-internet era:

® community geographically spread out

® diverse communities, but with intersecting interests

® communities are constantly improving infrastructure for
working together most efficiently

® self-organizing division of labor

Wednesday, August 17, 2011

cctbx contributors with >100 commits

cctbx Contributors - Ohloh

GENERAL Contributors
Summary

News

Links

Similar rwgk
e IR

Widgets

DEVELOPMENT

Code Analysis . luc_j_bourhis
Commas lesear
Estimated Cost

Enlistments

natechols
comonry IR

Contributors
Users
Managers

World Map ‘ afonine
Ratings &

Reviews

Journad Entries

EDIT ‘ phzwart

Permissions
History

rgildea — P
nksauter

MetalHeadd

Kudo Rank

@

Kudo Rank

©)

Kudo Rank

©

Kudo Rank

©

Kudo Rank

©

Kudo Rank
8)

Kudo Rank

&

Kudo Rank

)

Fiter on:

5 949

763

&) (Update)

136 1otal |

registered developers: 42

ey

reererrrr

BEERKELEY LAB

\
Il

Wednesday, August 17, 2011

Community resources

B8 nuip / /www.ohloh.net/p/cctbx

GENERAL The Computational Crystallography Toolbox (cctbx) is a collection Ohloh Analysis Summary

Summary of reusable, open-source Python and C++ libraries. It has been Updated 1 day ago

News developed to support applications for crystal structure determination

Links and refinement. To maximize reusability, it is organized in © Mostly written in Python

Similar hierarchical submodules (libtbx, scitbx, cctbx, mmtbx and a few smaller support © Mature, well-established codebase

Projects modules). @ very | ctive devel tt

Widgets ery large, active development team
No managers have claimed this project yet. Claim this position © Increasing year-over-year development

DEVELOPMENT activity

Code Analysis Add tags to this project © Estimated project cost: $7,657,166

Commits

Estimated Cost

Enlistments) View All Possible Factolds
Code Analysis

COMMUNITY

Contributors ~ CSo0t——18) 30-Day Commit Activity

Users 800k Jul 18 — Aug 16

Managers

World Map G © 11 committers made 282 commits

Ratings & © 292 files modified

Reviews © 32856 lines added

Journal Entries :
© 19816 lines removed

Total Lines
FS
=
»

EDIT
Permissions 200k
History World Activity Map
% 000 2002 2004 2006 2008 2010 g - .:"
@8 Code @B Comments W Blanks 1
L4 o 4
This chart is interactive. C_hfg‘;}{g :
You can mouse over lines, click on/off labels from the legend and drag inside the - - .

chart to zoom.

Wednesday, August 17, 2011

Reusability

rreereer |m

® Object-oriented paradigm

® Better name IMHO: context-oriented (namespaces)

® (lasses

® (lasses

"~y
"~y

"~y
"~y

enhanced namespaces

functions that preserve context (data & algorithms)

® Polymorphism

® Runtime (dynamic typing, C++ virtual functions)

® Compile-time (C++ templates)

® Exception handling

® Bertrand Meyer (Eiffel creator) ca. mid 1990’s:
“It is impossible to write reusable code without exception handling.”

Wednesday, August 17, 2011

- :.rm)
Stability

® Automatic testing

® Multiple developers: nobody knows all interactions

® “No copy-and-paste” paradigm — generalization of existing code

® Requires discipline: tests must be written together with the
production code

® |Interface changes
® OK to change relatively new interfaces

® | ong-established interfaces should only be changed with great
care (and ample warnings to anyone who could potentially be

affected)

Wednesday, August 17, 2011

A
. _r:}‘ i
Typical development cycle

® |nitial implementation in Python
® Much faster than writing C++ (factor 3-5)
® Tests are developed at the same time (ca. |/3 of initial effort)
e Often results in efficient code since optimized C++ libraries are reused

® Analysis of working code

® Find performance bottlenecks (if any)

® Port rate-limiting parts to C++ (ca. |/2 of total effort)
e cp algorithm.py algorith.hpp

e factor 10-30 speedup
® Bind C++ implementation to Python (ca. 1% of total effort)

® Adjust prototype to make use of C++ version
® Remove original Python code

® Or reuse in unit test, comparing the results of the two versions

® |Integrate into application

Wednesday, August 17, 2011

A
. _r:}‘ i
Typical release cycle

Run automatic multi-platform build & tests
Manually check the results

Tell co-workers about problems

Wait for fixes

Rerun until all problems are resolved

Regenerate the online documentation

Release (trivial operation)

Wednesday, August 17, 2011

L :’3\)
Maintainability

® “Redundancy is the worst enemy of long-term development.”

® “Each time you copy-and-paste more than three lines without
modifying at least two you are making a mistake.”

® Redundancy leads to code inflation

® Severe problem for large projects
® cctbx sizes after about ten years of development:

® ca. 600k lines (20+ MB) source code

® (ca.’3 unit test code)

Wednesday, August 17, 2011

\

rreereer |m

Tutorials

Central cctbx types

=

composition
—3 crystal.symmetry
inheritance
min _distance svm equiv anomalous_flag
composition composition

miller.set

special position settings

inheritance inheritance bool

int
array Of P VN {18254 34 array of- double
complex_double

.e s hendrickson_lattman
composition composition

xray.structure miller.array

Wednesday, August 17, 2011

Acknowledgment :rm Fﬁ
cknowledgments

® | uc Bourhis
® Phenix developers

® Paul Adams, Pavel Afonine, Nathaniel Echols, Richard Gildea,
Jeffrey Headd, Tom loerger, Airlie McCoy, Nigel Moriarty, Nicholas
Sauter, Tom Terwilliger, Peter Zwart

CCP4 (Martyn Win, Kevin Cowtan)
David Abrahams (Boost.Python)
NIH

DOE

Phenix industrial consortium members

Wednesday, August 17, 2011

