
direct_methods_light.py

Overview 
The direct_methods_light.py Python example is designed to read two CIF files 
from the Acta Crystallographica Section C web page as inputs: 

• required: reduced X-ray diffraction data: vj1132Isup2.hkl 
• optional: the corresponding refined structure: vj1132sup1.cif 

The iotbx.acta_c module is used to convert the diffraction data to a 
cctbx.miller.array object; this is supported by James Hester's PyCifRW library. 
Normalized structure factors ("E-values") are computed, and the largest E-values are 
selected for phase recycling with the Tangent Formula. 

The Miller indices of the largest E-values are used to construct index triplets h = k + 
h-k with the cctbx.dmtbx.triplet_generator. The Tangent Formula is repeatedly 
applied to recycle a phase set, starting from random phases. After a given number of 
cycles, the resulting phase set is combined with the E-values. The resulting Fourier 
coefficients are used in a Fast Fourier Transformation to obtain an "E-map". The E-
map is normalized and a symmetry-aware peak search is carried out; i.e. the resulting 
peak list is unique under symmetry. 

If the CIF file with the coordinates is given, it is first used to compute structure 
factors f_calc. The correlation with the diffraction data is shown. Next, the CIF 
coordinates are compared with the E-map peak list using the Euclidean Model 
Matching procedure (Emma) implemented in the cctbx. The resulting output can be 
used to quickly judge if the structure was solved with the simple Tangent Formula 
recycling procedure. 

[Complete example script] [Example output] [cctbx downloads] [cctbx front page] 
[Python tutorial] 

Recommended reading 
The unit_cell_refinement.py example introduces some important basis concepts. 

Processing of vj1132Isup2.hkl
The first step is to get hold of the file name with the reduced diffraction data. The file 
name has to be specified as the first command-line argument: 

 
iotbx.python direct_methods_light.py vj1132Isup2.hkl 
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In the example script, the command line argument is extracted from the sys.argv list 
provided by Python's standard sys module (libtbx.help sys): 

 
import sys 
reflection_file_name = sys.argv[1] 

The reflection_file_name is used in the call of the cif_as_miller_array() 
function provided by the iotbx.acta_c module: 

 
from iotbx import acta_c 
miller_array = 
acta_c.cif_as_miller_array(file_name=reflection_file_name) 
miller_array.show_comprehensive_summary() 

The iotbx.acta_c module makes use of the PyCifRW library to read CIF files. 
PyCifRW returns the CIF data items as plain strings. The cif_as_miller_array() 
function extracts the appropriate strings from the object tree returned by PyCifRW to 
construct an instance of the cctbx.miller.array class, which is one of the central 
types in the cctbx source tree. The miller.array class has a very large number of 
methods (libtbx.help cctbx.miller.array), e.g. the show_comprehensive_summary() 
method used above to obtain this output: 

 
Miller array info: vj1132Isup2.hkl:F_meas,F_sigma 
Observation type: xray.amplitude 
Type of data: double, size=422 
Type of sigmas: double, size=422 
Number of Miller indices: 422 
Anomalous flag: False 
Unit cell: (12.0263, 6.0321, 5.8293, 90, 90, 90) 
Space group: P n a 21 (No. 33) 
Systematic absences: 0 
Centric reflections: 83 
Resolution range: 6.01315 0.83382 
Completeness in resolution range: 1 
Completeness with d_max=infinity: 1 

We can see that the miller_array contains data and sigmas, both of type double. It 
also contains Miller indices, an anomalous flag, a unit cell and a space_group object. 
These are the primary data members. The observation type is an optional annotation 
which is typically added by the creator of the object, in this case the 
cif_as_miller_array() function. The information in the last five lines of the output 
is calculated on the fly based on the primary information and discarded after the 
show_comprehensive_summary() call is completed. 

Two other cctbx.miller.array methods are used in the following statements in the 
script: 

 
if (miller_array.is_xray_intensity_array()): 
  miller_array = miller_array.f_sq_as_f() 

http://www.phenix-online.org/cctbx/cctbx_web.cgi?target_module=libtbx_help&query=sys
http://phenix-online.org/cctbx_sources/iotbx/iotbx/acta_c.py
http://www.ansto.gov.au/natfac/ANBF/CIF/
http://cctbx.sourceforge.net/siena2005/cctbx_central_types.pdf
http://cctbx.sourceforge.net/siena2005/cctbx_central_types.pdf
http://www.phenix-online.org/cctbx/cctbx_web.cgi?target_module=libtbx_help&query=cctbx.miller.array


If the miller_array is an intensity array, it is converted to an amplitude array. The 
f_sq_as_f() method ("sq" is short for "square") returns a new cctbx.miller.array 
instance. At some point during the evaluation of the statement the old and the new 
instance are both present in memory. However, after the miller_array = 
miller_array.f_sq_as_f() assignment is completed, the old miller_array 
instance is deleted automatically by the Python interpreter since there is no longer a 
reference to it, and the corresponding memory is released immediately. 

It is very important to understand that most miller.array methods do not modify the 
instance in place, but return new objects. The importance of minimizing the number 
of methods performing in-place manipulations cannot be overstated. In large systems, 
in-place manipulations quickly lead to unforeseen side-effects and eventually 
frustrating, time-consuming debugging sessions. It is much safer to create new 
objects. In most cases the dynamic memory allocation overhead associated with 
object creation and deletion is negligible compared to the runtime for the actual core 
algorithms. It is like putting on seat belts before a long trip with the car. The 10 
seconds it takes to buckle up are nothing compared to the hours the seat belts protect 
you. 

[Complete example script] [Example output] [cctbx downloads] [cctbx front page] 
[Python tutorial] 

Computation of E-values 
Having said all the things about the dangers of in-place operations, the next statement 
in the script happens to be just that: 

 
miller_array.setup_binner(auto_binning=True) 

However, the operation does not affect the primary data members of the 
miller_array (unit cell, space group, indices, data, sigmas). The setup_binner() 
call initializes or re-initializes a binner object to be used in subsequent calculations. 
The binner object is understood to be a secondary data member and its state only 
affects the results of future calculations. In situations like this in-place operations are 
perfectly reasonable. 

The result of the setup_binner() call is shown with this statement: 

 
miller_array.binner().show_summary() 

The output is: 

 
unused:        - 6.0133 [ 0/0 ] 
bin  1: 6.0133 - 1.6574 [57/57] 
bin  2: 1.6574 - 1.3201 [55/55] 
bin  3: 1.3201 - 1.1546 [55/55] 
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bin  4: 1.1546 - 1.0496 [45/45] 
bin  5: 1.0496 - 0.9747 [55/55] 
bin  6: 0.9747 - 0.9175 [55/55] 
bin  7: 0.9175 - 0.8717 [48/48] 
bin  8: 0.8717 - 0.8338 [52/52] 
unused: 0.8338 -        [ 0/0 ] 

This means we are ready to calculate quasi-normalized structure factors by computing 
f_sq / <f_sq/epsilon> in resolution bins: 

 
all_e_values = 
miller_array.quasi_normalize_structure_factors().sort(by_valu
e="data") 

This statement performs two steps at once. First, the 
quasi_normalize_structure_factors() method creates a new 
cctbx.miller.array instance with the same unit cell, space group, anomalous flag 
and Miller indices as the input miller_array, but with a new data array containing 
the normalized structure factors. The sort() method is used immediately on this 
intermediate instance to sort the E-values by magnitude. By default, the data are 
sorted in descending order (largest first, smallest last). This is exactly what we want 
here. To convince yourself it is correct, insert all_e_values.show_array(). 

[Complete example script] [Example output] [cctbx downloads] [cctbx front page] 
[Python tutorial] 

Generation of triplets 
In direct methods procedures it is typical to generate the h = k + h-k Miller index 
triplets only for the largest E-values. In the example script, the largest E-values are 
selected with this statement: 

 
large_e_values = all_e_values.select(all_e_values.data() > 
1.2) 

Again, this statement combines several steps into one expression. First, we obtain 
access to the array of all E-values via all_e_values.data(). This array is a 
flex.double instance, which in turn has its own methods (libtbx.help 
cctbx.array_family.flex.double). One of the flex.double methods is the overloaded 
> operator; in the libtbx.help output look for __gt__(...). This operator returns a 
flex.bool instance, an array with bool values, True if the corresponding E-value is 
greater than 1.2 and False otherwise. The flex.bool instance becomes the 
argument to the select() method of cctbx.miller.array, which finally returns the 
result of the whole statement. large_e_values is a new cctbx.miller.array 
instance with the same unit cell, space group and anomalous flag as all_e_values, 
but fewer indices and corresponding data. Of the 422 E-values only 111 are selected, 
as is shown by this print statement: 
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print "number of large_e_values:", large_e_values.size() 

At this point all the information required to generate the triplets is available: 

 
from cctbx import dmtbx 
triplets = dmtbx.triplet_generator(large_e_values) 

The triplet_generator is based on the cctbx::dmtbx::triplet_generator C++ class 
which uses a very fast algorithm to find the Miller index triplets (see the references 
near the top of triplet_generator.h). The triplets object manages all internal arrays 
automatically. It is not necessary to know very much about this object, but is is 
informative to print out the results of some of its methods, e.g.: 

 
from cctbx.array_family import flex 
print "triplets per reflection: min,max,mean: %d, %d, %.2f" % 
( 
  flex.min(triplets.n_relations()), 
  flex.max(triplets.n_relations()), 
  flex.mean(triplets.n_relations().as_double())) 
print "total number of triplets:", 
flex.sum(triplets.n_relations()) 

Here the general purpose flex.min(), flex.max(), flex.mean() and flex.sum() 
functions are used to obtain summary statistics of the number of triplet phase relations 
per Miller index. triplets.n_relations() returns a flex.size_t() array with 
unsigned integers corresponding to the ANSI C/C++ size_t type. However, the 
flex.mean() function is only defined for flex.double arrays. Therefore 
n_relations() has to be converted via as_double() before computing the mean. 

[Complete example script] [Example output] [cctbx downloads] [cctbx front page] 
[Python tutorial] 

Tangent Formula phase recycling 
Starting with RANTAN, the predominant method for initiating Tangent Formula 
phase recycling is to generate random phases. In principle this is very easy. E.g. the 
flex.random_double() function could be used: 

 
random_phases_rad = 
flex.random_double(size=large_e_values.size())-0.5 
random_phases_rad *= 2*math.pi 

However, centric reflections need special attention since the phase angles are 
restricted to two values, phi and phi+180, where phi depends on the space group and 
the Miller index. A proper treatment of the phase restrictions is implemented in the 
random_phases_compatible_with_phase_restrictions() method of 
cctbx.miller.array: 

http://cctbx.sourceforge.net/current_cvs/c_plus_plus/classcctbx_1_1dmtbx_1_1triplet__generator.html
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input_phases = 
large_e_values.random_phases_compatible_with_phase_restrictio
ns() 

The underlying random number generator is seeded with the system time, therefore 
the input_phases will be different each time the example script is run. 

The Tangent Formula recycling loop has this simple design: 

 
result = input 
for i in xrange(10): 
  result = function(result) 

In the example script the actual corresponding code is: 

 
tangent_formula_phases = input_phases.data() 
for i in xrange(10): 
  tangent_formula_phases = triplets.apply_tangent_formula( 
    amplitudes=large_e_values.data(), 
    phases_rad=tangent_formula_phases, 
    selection_fixed=None, 
    use_fixed_only=False, 
    reuse_results=True) 

In this case function() is the apply_tangent_formula() method of the triplet 
object returned by the cctbx.dmtbx.triplet_generator() call. The function call 
looks more complicated than the simplified version because it requires a number of 
additional arguments customizing the recycling protocol. It may be interesting to try 
different settings as an exercise. See cctbx::dmtbx::triplet_generator for details. 

[Complete example script] [Example output] [cctbx downloads] [cctbx front page] 
[Python tutorial] 

E-map calculation 
Another cctbx.miller.array method is used to combine the large_e_values with 
the tangent_formula_phases obtained through the recycling procedure: 

 
e_map_coeff = large_e_values.phase_transfer( 
  phase_source=tangent_formula_phases) 

The phase_transfer() returns a flex.complex_double array of Fourier 
coefficients. A general proper treatment of phase restrictions is automatically 
included, although in this case it just corrects for rounding errors. 

Given the Fourier coefficients, an E-map could be obtained simply via 
e_map_coeff.fft_map(). However, we have to think ahead a little to address a 
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technical detail. A subsequent step will be a peak search in the E-map. For this we 
will use a peak search algorithm implemented in the cctbx.maptbx module, which 
imposes certain space-group specific restrictions on the gridding of the map. For all 
symmetry operations of the given space group, each grid point must be mapped 
exactly onto another grid point. E.g. in space group P222 the gridding must be a 
multiple of 2 in all three dimensions. To inform the fft_map() method about these 
requirements we use: 

 
from cctbx import maptbx 
e_map = 
e_map_coeff.fft_map(symmetry_flags=maptbx.use_space_group_sym
metry) 

The resulting e_map is normalized by first determining the mean and standard 
deviation ("sigma") of all values in the map, and then dividing by the standard 
deviation: 

 
e_map.apply_sigma_scaling() 

Since maps tend to be large and short-lived, this is implemented as an in-place 
operation to maximize runtime efficiency. The statistics() method of the e_map 
object is used to quickly print a small summary: 

 
e_map.statistics().show_summary(prefix="e_map ") 

This output is of the form: 

 
e_map max 11.9224 
e_map min -2.68763 
e_map mean -2.06139e-17 
e_map sigma 1 

Due to differences in the seed for the random number generator, the max and min will 
be different each time the example script is run. However, the mean is always very 
close to 0 since the Fourier coefficient with index (0,0,0) is zero, and sigma is always 
very close to 1 due to the prior use of apply_sigma_scaling(); small deviations are 
the accumulated result of floating-point rounding errors. 

[Complete example script] [Example output] [cctbx downloads] [cctbx front page] 
[Python tutorial] 

Peak search 
Given the normalized e_map, the peak search is initiated with this statement: 
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peak_search = 
e_map.peak_search(parameters=maptbx.peak_search_parameters( 
  min_distance_sym_equiv=1.2)) 

The only purpose of the maptbx.peak_search_parameters class is to group the 
fairly large number of parameters (libtbx.help 
cctbx.maptbx.peak_search_parameters). This approach greatly simplifies the 
argument list of functions and methods involving peak search parameters. It also 
accelerates experimentation during the algorithm development process. Parameters 
can be added, deleted or renamed without having to modify all the functions and 
methods connected to the peak search. 

In the example, the minimum distance between symmetry-related sites is set to 1.2 A. 
This instructs the peak search algorithm to perform a cluster analysis. The underlying 
distance calculations are performed for symmetry-related pairs and pairs of peaks 
unique under symmetry ("cross peaks"). If the min_cross_distance peak search 
parameter is not specified explicitly (as in the example), it is assumed to be equal to 
the min_distance_sym_equiv parameter. 

The cluster analysis begins by adding the largest peak in the map as the first entry to 
the peak list. All peaks in a radius of 1.2 A around this peak are eliminated. The 
largest of the remaining peaks is added to the peak list, and all peaks in a radius of 1.2 
A around this peak are eliminated etc., until all peaks in the map are considered or a 
predefined limit is reached. The example uses: 

 
peaks = peak_search.all(max_clusters=10) 

to obtain up to 10 peaks in this way. The peaks are printed in this for loop: 

 
for site,height in zip(peaks.sites(), peaks.heights()): 
  print "  (%9.6f, %9.6f, %9.6f)" % site, "%10.3f" % height 

See the unit_cell_refinement.py example for comments regarding the standard Python 
zip() function. The Python tutorial section on Fancier Output Formatting is useful to 
learn more about the print statement. 

[Complete example script] [Example output] [cctbx downloads] [cctbx front page] 
[Python tutorial] 

Processing of vj1132sup1.cif
Since it is not easy to quickly judge from the peak list if the structure was solved, the 
vj1132sup1.cif file is used for verification purposes. It is processed in very much 
the same way as the vj1132Isup2.hkl file before: 

 
coordinate_file_name = sys.argv[2] 
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xray_structure = acta_c.cif_as_xray_structure( 
  file_name=coordinate_file_name, 
  data_block_name="I") 

The cif_as_xray_structure() call requires the name of the CIF data block name in 
addition to the file name. This is because Acta C coordinate CIF files may contain 
multiple structures (and because the iotbx.acta_c module is not sophisticated 
enough to simply "do the right thing" if the CIF file contains only one structure). The 
result is an instance of another central type in the cctbx source tree, 
cctbx.xray.structure. The xray_structure object is best understood by asking it 
for a summary: 

 
xray_structure.show_summary() 

The output is: 

 
Number of scatterers: 13 
At special positions: 0 
Unit cell: (12.0263, 6.0321, 5.829, 90, 90, 90) 
Space group: P n a 21 (No. 33) 

We can also ask it for a list of scatterers: 

 
xray_structure.show_scatterers() 

The result is: 

 
Label, Scattering, Multiplicity, Coordinates, Occupancy, Uiso 
O1   O      4 ( 0.5896  0.4862  0.6045) 1.00 0.0356 
O2   O      4 ( 0.6861  0.2009  0.7409) 1.00 0.0328 
C2   C      4 ( 0.6636  0.2231  0.3380) 1.00 0.0224 
H2   H      4 ( 0.7419  0.1804  0.3237) 1.00 0.0270 
C1   C      4 ( 0.6443  0.3133  0.5818) 1.00 0.0222 
C3   C      4 ( 0.5923  0.0216  0.2916) 1.00 0.0347 
H3A  H      4 ( 0.6060 -0.0308  0.1387) 1.00 0.0520 
H3B  H      4 ( 0.5153  0.0605  0.3069) 1.00 0.0520 
H3C  H      4 ( 0.6104 -0.0930  0.3997) 1.00 0.0520 
N1   N      4 ( 0.6395  0.3976  0.1659) 1.00 0.0258 
H1A  H      4 ( 0.6815  0.5160  0.1942) 1.00 0.0390 
H1B  H      4 ( 0.5680  0.4351  0.1741) 1.00 0.0390 
H1C  H      4 ( 0.6544  0.3463  0.0261) 1.00 0.0390 

Instead of writing: 

 
xray_structure.show_summary() 
xray_structure.show_scatterers() 

we can also write: 

http://cctbx.sourceforge.net/siena2005/cctbx_central_types.pdf


 
xray_structure.show_summary().show_scatterers() 

This approach is called "chaining". The trick is in fact very simple: 

 
class structure: 
 
  def show_summary(self): 
    print "something" 
    return self 
 
  def show_scatterers(): 
    print "more" 
    return self 

Simply returning self enables chaining. 

[Complete example script] [Example output] [cctbx downloads] [cctbx front page] 
[Python tutorial] 

Correlation of F-obs and F-calc 
Given the amplitudes F-obs as miller_array and the refined coordinates as 
xray_structure, F-calc amplitudes are computed with this statement: 

 
f_calc = abs(miller_array.structure_factors_from_scatterers( 
  xray_structure=xray_structure, 
  algorithm="direct").f_calc()) 

This expression can be broken down into three steps. The first step is: 

 
miller_array.structure_factors_from_scatterers( 
  xray_structure=xray_structure, 
  algorithm="direct") 

This step performs the structure factor calculation using a direct summation algorithm 
(as opposed to a FFT algorithm). The result is an object with information about the 
details of the calculation, e.g. timings, or memory requirements if the FFT algorithm 
is used. If the details are not needed, they can be discarded immediately by extracting 
only the item of interest. In this case we use the f_calc() method to obtain a 
cctbx.miller.array instance with the calculated structure factors, stored in a 
flex.complex_double array. The outermost abs() function calls the __abs__() 
method of cctbx.miller.array which returns another new cctbx.miller.array 
instance with the structure factor amplitudes, stored in a flex.double array. 

The correlation of F-obs and F-calc is computed with this statement: 
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correlation = flex.linear_correlation(f_calc.data(), 
miller_array.data()) 

flex.linear_correlation is a C++ class (libtbx.help 
cctbx.array_family.flex.linear_correlation) which offers details about the correlation 
calculation, similar in idea to the result of the 
structure_factors_from_scatterers() above. We could discard all the details 
again, but the correlation coefficient could be undefined, e.g. if all values are zero, or 
if all values in one of the two input arrays are equal. We ensure the correlation is well 
defined via: 

 
assert correlation.is_well_defined() 

It is good practice to insert assert statements anywhere a certain assumption is made. 
The cctbx sources contain a large number of assert statements. They prove to be 
invaluable in flagging errors during algorithm development. In most situations errors 
are flagged close to the source. Time-consuming debugging sessions to backtrack 
from the point of a crash to the source of the problem are mostly avoided. Once we 
are sure the correlation is well defined, we can print the coefficient with confidence: 

 
print "correlation of f_obs and f_calc: %.4f" % 
correlation.coefficient() 

It is amazingly high (0.9943) for the vj1132 case. 

[Complete example script] [Example output] [cctbx downloads] [cctbx front page] 
[Python tutorial] 

Euclidean Model Matching (Emma) 
Our goal is to match each peak site with a site in the vj1132sup1.cif file. To make 
this section less abstract, we start with an example result: 

 
Match summary: 
  Operator: 
       rotation: {{-1, 0, 0}, {0, -1, 0}, {0, 0, -1}} 
    translation: {0.5, 0, -0.136844} 
  rms coordinate differences: 0.85 
  Pairs: 8 
    O1 peak01 0.710 
    O2 peak09 1.000 
    C2 peak03 0.896 
    C1 peak02 0.662 
    C3 peak04 0.954 
    H3B peak07 0.619 
    H3C peak08 0.979 
    H1C peak06 0.900 
  Singles model 1: 5 
    H2   H3A   N1   H1A   H1B 
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  Singles model 2: 2 
    peak00   peak05 

This means, peak01 corresponds to O1 in the CIF file with a mismatch of 0.710 A, 
peak09 corresponds to O2 with a 1.000 A mismatch, etc. The match is obtained after 
inverting the hand of the peaks (the rotation) and adding {0.5, 0, -0.136844} to 
the coordinates (the translation). Some sites in the CIF files have no matching 
peaks (e.g. N1) and some peaks have no matching site in the CIF file (e.g. peak00). 
The overall RMS (root-mean-square) of the mismatches is 0.85. I.e. this match is not 
very good, except as a bad example. 

In general, the comparison of two coordinate sets via pair-wise association of sites is 
quite complex due to the underlying symmetry of the search space. In addition to the 
space group symmetry, allowed origin shifts and a change of hand have to be taken 
into consideration. This is described in detail by Grosse-Kunstleve & Adams (2003). 

The cctbx.euclidean_model_matching module is available for computing the pairs 
of matching sites. The search algorithm operates on specifically designed 
cctbx.euclidean_model_matching.model objects. I.e. we have to convert the 
xray_structure instance and the peaks to 
cctbx.euclidean_model_matching.model objects. Converting the 
xray_structure object is easy because the conversion is pre-defined as the 
as_emma_model() method: 

 
reference_model = xray_structure.as_emma_model() 

Converting the peaks object is not pre-defined. We have to do it the hard way. We 
start with assertions, just to be sure: 

 
assert 
reference_model.unit_cell().is_similar_to(e_map.unit_cell()) 
assert reference_model.space_group() == e_map.space_group() 

This gives us the confidence to write: 

 
from cctbx import euclidean_model_matching as emma 
peak_model = 
emma.model(special_position_settings=reference_model) 

special_position_settings is a third central type in the cctbx source tree. It 
groups the unit cell, space group, and the min_distance_sym_equiv parameter which 
defines the tolerance for the determination of special positions. emma.model inherits 
from this type, therefore we can use the reference_model (which is an emma.model 
object) anywhere a special_position_settings object is required. This is more 
convenient than constructing a new special_position_settings objects from 
scratch. 

http://cci.lbl.gov/%7Erwgk/my_papers/iucr/ba5051_reprint.pdf
http://cctbx.sourceforge.net/siena2005/cctbx_central_types.pdf


At this stage the peak_model object does not contain any coordinates. We add them 
with this loop: 

 
for i,site in enumerate(peaks.sites()): 
  peak_model.add_position(emma.position(label="peak%02d" % i, 
site=site)) 

The loop construct is a standard idiom (libtbx.help enumerate, Looping Techniques). 
label="peak%02d" % i creates a label of the form peak000, peak001, etc. The label 
and the site are used to construct an emma.position object which is finally added to 
the peak_model via the add_position() method. 

The emma.model_matches() function computes a sorted list of possible matches: 

 
matches = emma.model_matches( 
  model1=reference_model, 
  model2=peak_model, 
  tolerance=1., 
  models_are_diffraction_index_equivalent=True) 

The tolerance determines the maximum distance for a pair of a site in model1 and a 
site in model2. The models_are_diffraction_index_equivalent parameter is 
used in the determination of the symmetry of the search space and has to do with 
indexing ambiguities. It is always safe to use 
models_are_diffraction_index_equivalent=False, but the search may be 
slower. If it is certain that the models are derived from the same diffraction data 
models_are_diffraction_index_equivalent=True can be used to reduce the 
runtime. In this case we are sure because the correlation between F-obs and F-calc is 
almost perfect. 

[Complete example script] [Example output] [cctbx downloads] [cctbx front page] 
[Python tutorial] 

Exercise (not very hard) 
Run the example script several times. Each time the results will be different due to 
different random seeds. You will observe that Emma is often mislead by the 
hydrogens in the CIF file. To solve this problem, modify the script to remove the 
hydrogens from the reference model. 

Hint: Find the implementation of cctbx.xray.structure.as_emma_model() 
(cctbx/cctbx/xray/__init__.py). Note that scatterer has a scattering_type 
attribute. 

[Complete example script] [Example output] [cctbx downloads] [cctbx front page] 
[Python tutorial] 

http://www.phenix-online.org/cctbx/cctbx_web.cgi?target_module=libtbx_help&query=enumerate
http://docs.python.org/tut/node7.html#SECTION007600000000000000000
http://phenix-online.org/cctbx_sources/iotbx/iotbx/examples/direct_methods_light.py
http://cctbx.sourceforge.net/siena2005/direct_methods_light.out
http://cci.lbl.gov/cctbx_build/
http://cctbx.sourceforge.net/
http://docs.python.org/tut/
http://phenix-online.org/cctbx_sources/iotbx/iotbx/examples/direct_methods_light.py
http://cctbx.sourceforge.net/siena2005/direct_methods_light.out
http://cci.lbl.gov/cctbx_build/
http://cctbx.sourceforge.net/
http://docs.python.org/tut/


Exercise (harder) 
Compute the correlation between all_e_values and a cctbx.xray.structure 
constructed with the top 6 peaks, using "const" as the scattering_type. 

Hint: Study iotbx/iotbx/acta_c.py to see how the xray_structure is constructed 
from the CIF file. However, use peak_structure = 
xray.structure(special_position_settings=xray_structure). Study 
cctbx.xray.structure.__init__() to see why this works. 

[Complete example script] [Example output] [cctbx downloads] [cctbx front page] 
[Python tutorial] 

Exercise (advanced) 
Refactor the example script by splitting it up into functions and possibly classes. 
Compute random starting phases a given number of times and repeat the Tangent 
formula recycling for each. Avoid duplicate work. I.e. don't read the inputs multiple 
time, don't create the Emma reference model multiple times. 

[Complete example script] [Example output] [cctbx downloads] [cctbx front page] 
[Python tutorial] 
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