

Data for Crystallisation – Answers are in the distance

Janet Newman, CSIRO Collaborative Crystallisation Centre October, 2018

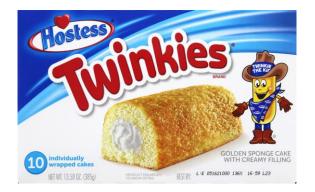
www.csiro.au

Growing crystals

For crystallisation:

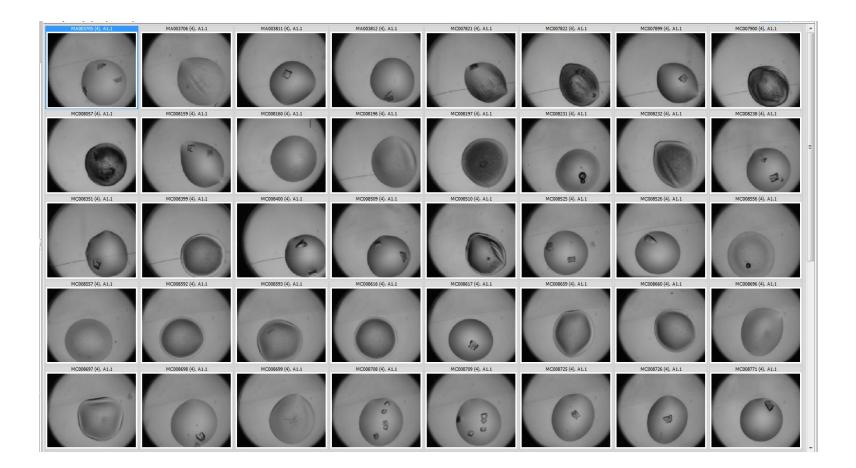
- Need supersaturation
- Need nucleation

For proteins


• Need gentle methods

Data, information, knowledge

- Need data (need to clean it up)
- Data understanding it gives information
- Information understanding it gives knowledge

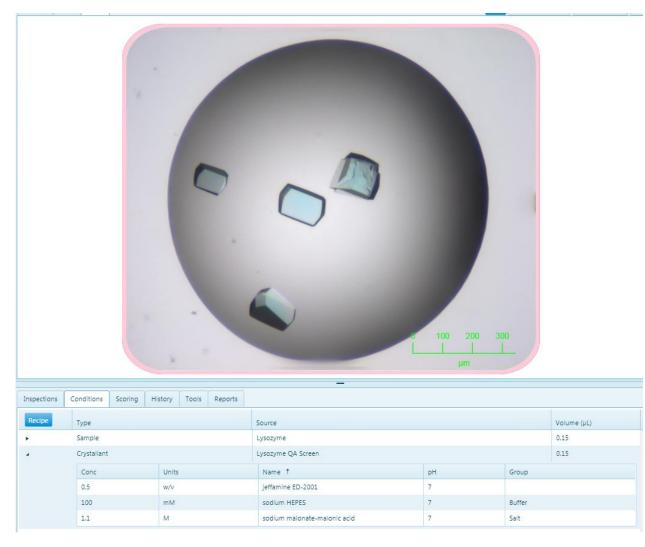

Playing battleships – looking for ships

- 20 billion point grid
- <nobody> knows where the ships are
- Not all the ammunition is live

	X X	X		K X	X									1.1	
X			1	< X	X				•						•
	XXX	X		X						٠					
	XX									•					
(X	XX	X	1.1	K X				•	•					٠	1
A	X	X	X	< X	X				1.6		-5		2		
X	XX	X		<	· · ·										
K X		XX		<											1
	XX	1		X											•
	X	X		X											
K X X	ХХХ	XX		ĸΧ		٠	•	•			•	٠	•		
	X	1913		X	X		1.44	1						123	

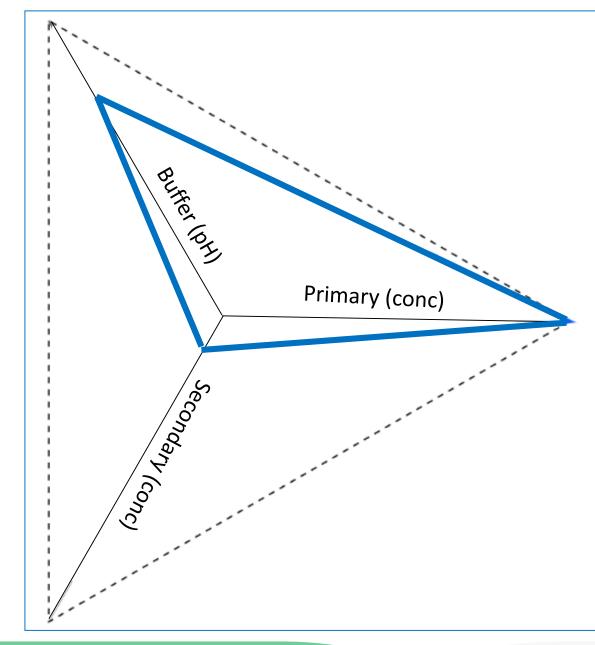
Crystallisation is *stochastic*

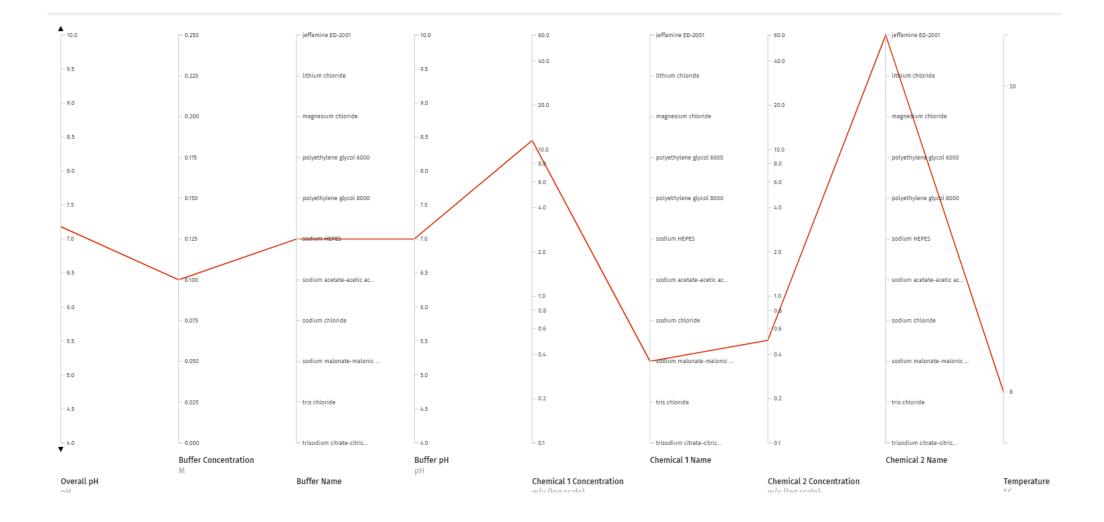
4th inspection of drop A1:1 from lysozyme QC plates with 0.3 µL drops set up after Jan 2013


Playing Battleships – sinking the ship

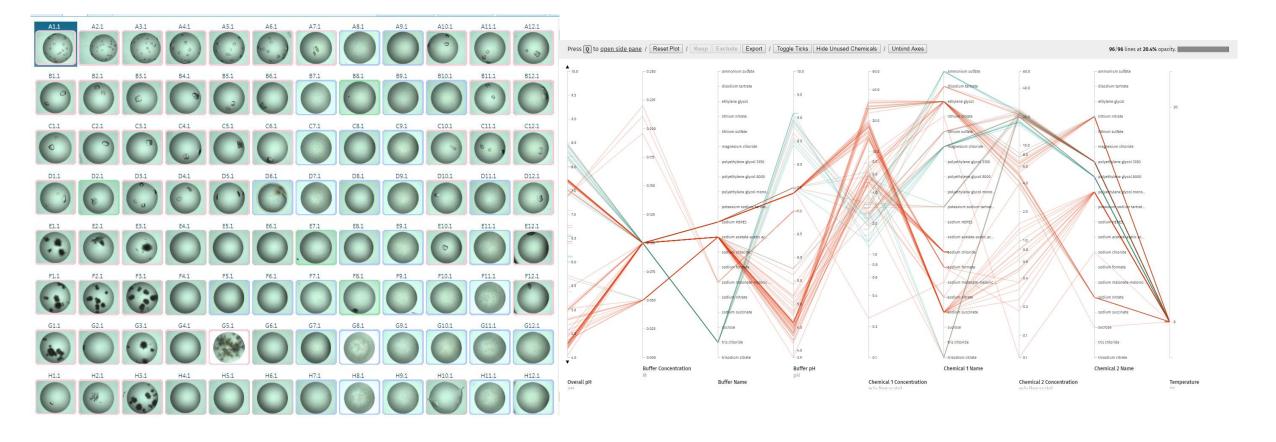
- How big is the ship?
- How close are the gridpoints?
- How much can we trust the hit?

X X X X X X X X X X 0 0		1.1
X X X X X X • • •		
XX		
x x x x x x x • • •		٠
X X X X X X		•
X XXX X		•
X X X X X		٠
XXXX		
X X X X		
X X X X X X X X X • • •		
X X X		

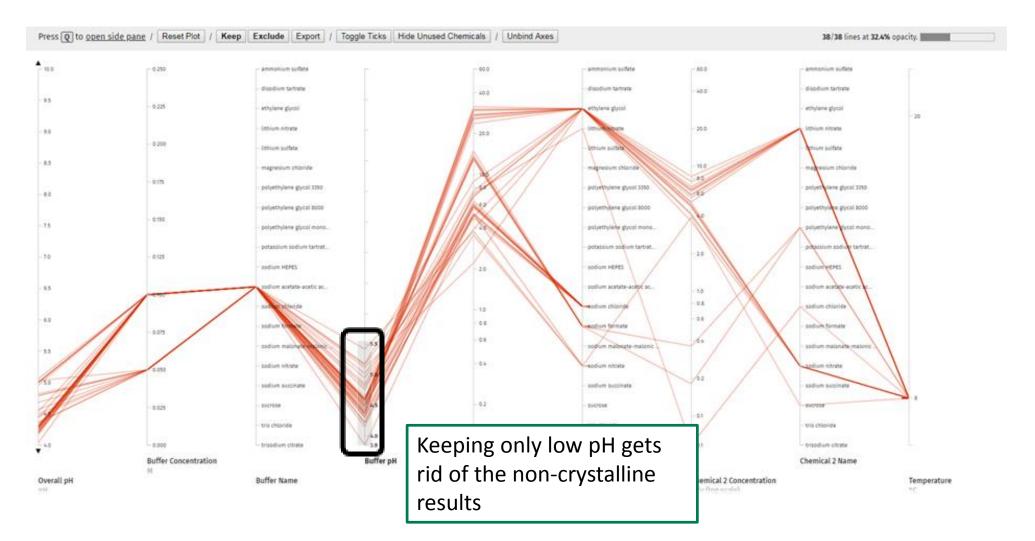

A crystallisation experiment


Spiderview

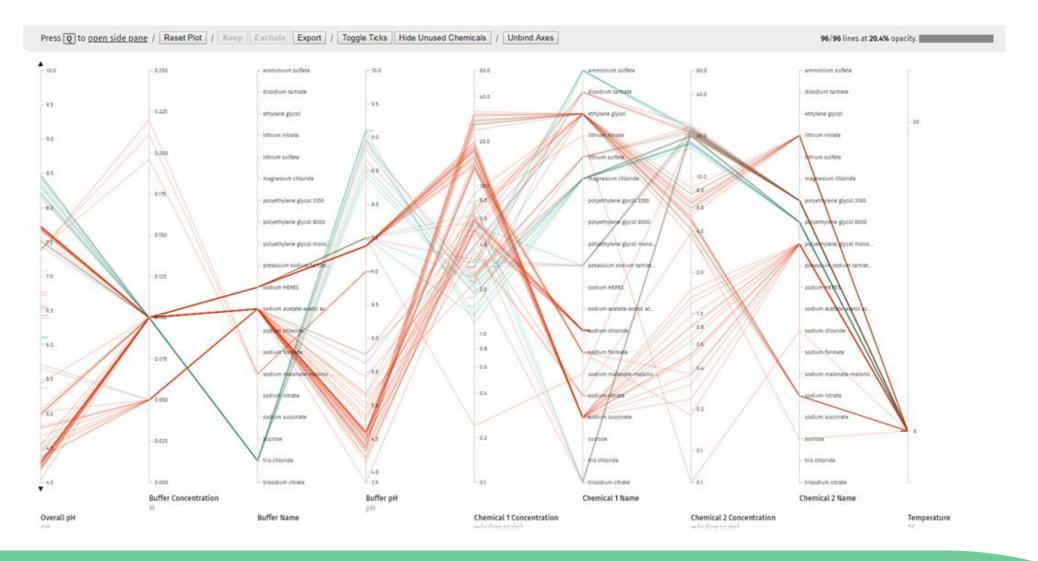
- Each axis is a chemical
- Distance along axis is concentration or pH
- Positive X-axis is primary factor
- Clockwise for concentration factors
- Anticlockwise for buffering factors



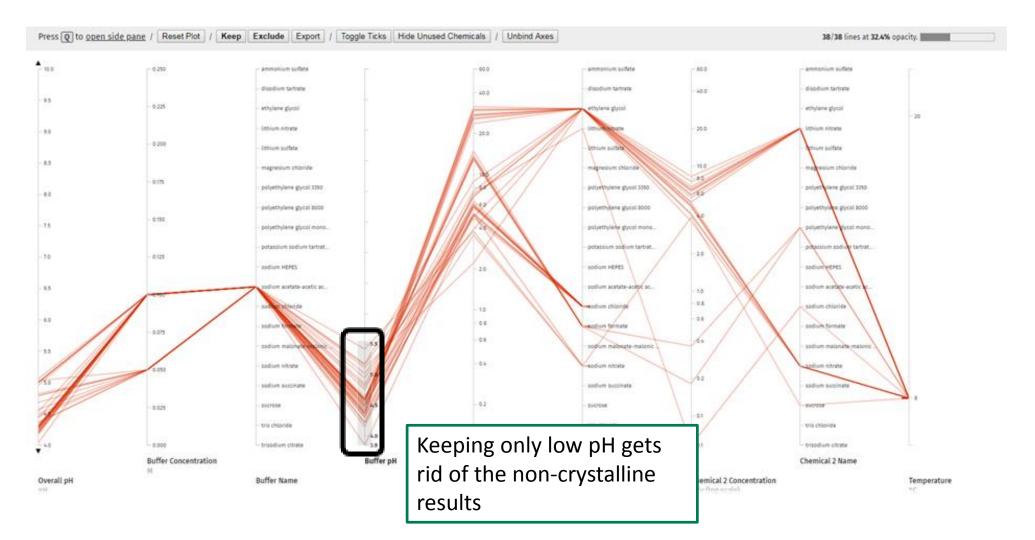
Parallel axis plots



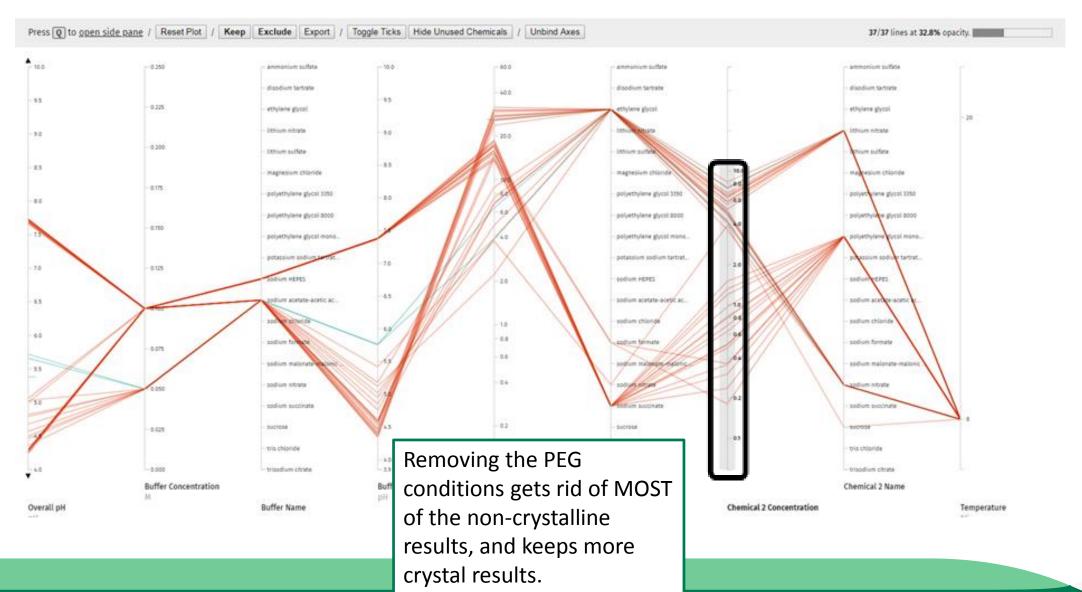
Many crystallisation experiments



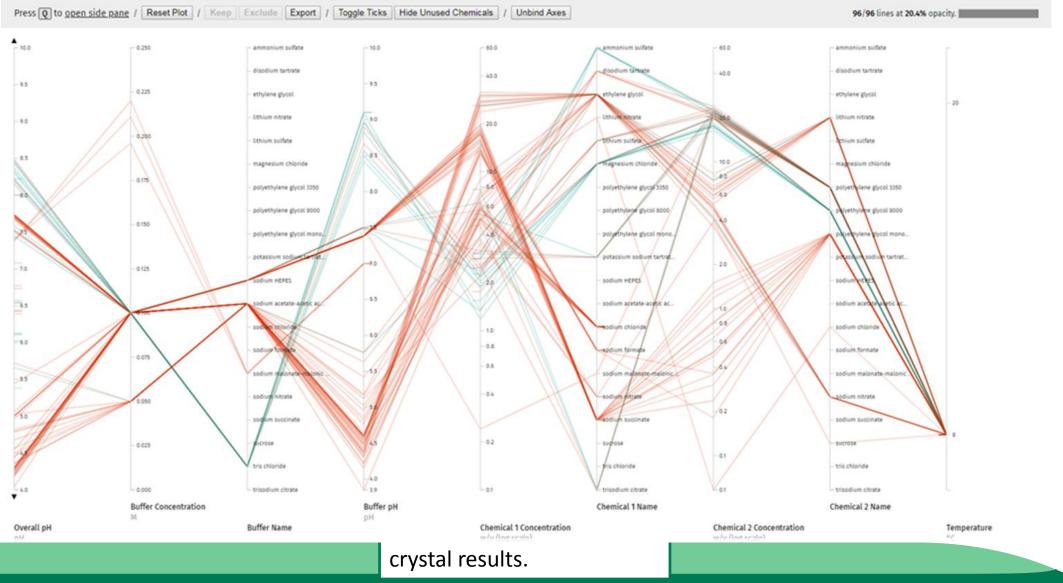
Hypothesizing



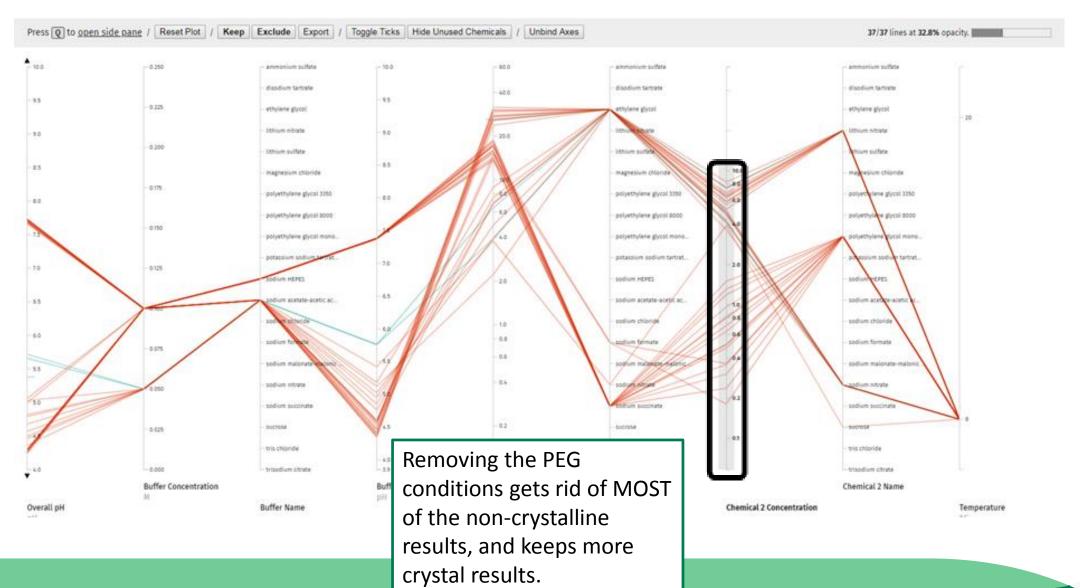
Hypothesizing



Hypothesizing



Or maybe?



Or maybe?

Or maybe?

What needs to be in place?

- Description of the experiment
 - Complete
 - Consistent
- Description of the results
 - Complete
 - Consistent

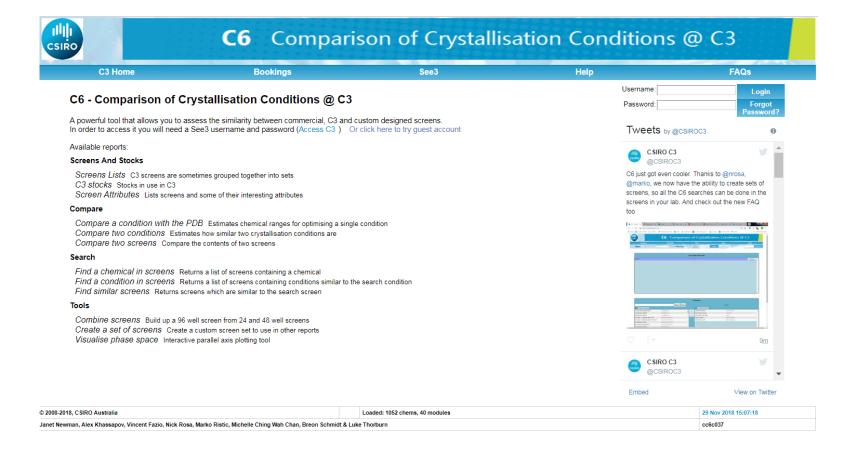
Complete-ish: Crystallisation cocktail, protein formulation, PTM, geometry, cryo, freezing method etc

Consistent and unambiguous naming

Complete-ish: Clear, Precipitate, Crystal, Other (OR not AND, skin, oil etc)

MARCO

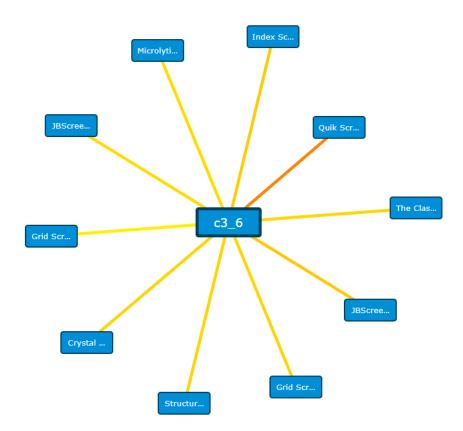
Consistent and unambiguous naming


- Consider two conditions:
 - 100mM citric acid pH5
 - 200mM MgSO4•7H2O
 - 25w/v MPEG 5000

- 25% PEG MME 5K
- 0.1M sodium citrate pH 5.0
- 0.2M magnesium sulfate
- Data standards
 - Naming
 - Spelling
 - Units
 - Ordering

Given clean data

- Search
- Sort
- Compare



C6 (Comparison of Crystallisation Conditions @ C3)

Four categories of reports

- Lists
- Compare
- Search
- Tools

Lists

- Screens
- Stocks
- Attributes

Report:	Screens Lists 🔹
Group:	Commercial Screens
Vendor:	Select 🔻
	Select
	ALL
	Anatrace
	Axygen
	Community
	Fluidigm
	Hampton Research

Jena Bioscience

Molecular Dimensions

KeraFAST

Omscientia Qiagen

Sigma XtalQuest

Rigaku Reagents

Group:
dor:

Screens (COMMERCIA	L Anatrace) Gr	oup Stats	Export: CSV-ROW CSV-CELL TEXT XML MMCIF RE				
Screen Name(a↑)	Screen Owner	Create date	Barcodes	Comments			
Analytic Crystallizer	Anatrace	-					
Microlytic MCSG1	Anatrace	-					
Microlytic MCSG2	Anatrace	-					
Microlytic MCSG3	Anatrace	-					
Microlytic MCSG4	Anatrace	-					
Microlytic PurePegs	Anatrace	-					
Microlytic SuperCombi	Anatrace	-					
Microlytic Top96	Anatrace	-					
PurePEG48	Anatrace	-					
XZ Screen	Anatrace	-					

1-propanol	propan(1)ol (80% v/v)	80	v/v
2,2,2-trifluoroethanol	2,2,2-trifluoroethanol (40% v/v)	40	v/v
2,5-hexanediol	2,5-hexanediol (50% v/v)	50	v/v
2-ethoxyethanol	ethoxyethanol (100% w/v)	100	v/v
2-methyl-2,4-pentanediol	2-methyl-2,4-pentanediol (100% v/v)	100	v/v
2-propanol	propan(2)ol (80% v/v)	80	v/v
6-aminocaproic acid	6-aminocaproic acid (30% w/v)	30	w/v
acetate-ADA-bicine	acetate-ADA-bicine pH 4.0 (100% v/v)	100	v/v
acetate-ADA-bicine	acetate-ADA-bicine pH 9.0 (100% v/v)	100	v/v
acetic acid	acetic acid (1M)	1	М
ADA	ADA pH 5.5 (0.5M)	0.5	М
ADA	ADA pH 7.5 (0.5M)	0.5	М
alanine	L-alanine (1M)	1	М
ammonium acetate	ammonium acetate (5M)	5	М
ammonium chloride	ammonium chloride (1M)	1	М
ammonium chloride	ammonium chloride (3M)	3	М
ammonium chloride	ammonium chloride (5M)	5	M
ammonium dihydrogen phosphate	ammonium dihydrogen phosphate (2.5M)	2.5	М
ammonium fluoride	ammonium fluoride (1M)	1	М
and a second			

Same screen, two ways

Screen (click for stats)	Shotgun
Export as	CSV-ROW CSV-CELL TEXT XML MMCIF RECIPE
Owner	c3@csiro.au
Create date	2018-10-26
Description	This is a collection of the 96 most successful commercial conditions as determined by mining the PDB
Barcodes	Z0002230, Z0002229, Z0002218, Z0002217
Well count	96
Number of distinct chemicals	50
Internal diversity (mean dist)	0.912

Well(a [†])	Concentration Units Chemical, pH	pH	Recipe
A1 (1)	0.2 M magnesium chloride; 30 w/v polyethylene glycol 4000; 0.1 M tris chloride, pH=8.5;	8.1	 > A1 200.0 ul of: magnesium chloride (1M) 600.0 ul of: poly(ethylene glycol) 4000 (50% w/v) 21.2 ul of: tris chloride pH 7.0 (1M) 78.8 ul of: tris chloride pH 9.0 (1M) 100.0 ul of: H2O
A2 (2)	2 M ammonium sulfate;	5.7	> A2 571.4 ul of: ammonium sulfate (3.5M) 428.6 ul of: H2O
A3 (3)	20 w/v polyethylene glycol 3350; 0.2 M sodium acetate;	7.3	> A3 400.0 ul of: poly(ethylene glycol) 3350 (50% w/v) 200.0 ul of: sodium acetate (1M) 400.0 ul of: H2O
A4 (4)	2 M ammonium sulfate; 0.1 M tris chloride, pH=8,5;	7.9	> A4 21.2 ul of: tris chloride pH 7.0 (1M) 571.4 ul of: ammonium sulfate (3.5M) 78.8 ul of: tris chloride pH 9.0 (1M) 328.6 ul of: H2O
A5 (5)	20 w/v polyethylene glycol 3350; 0.2 M trisodium citrate;	8.1	> A5 400.0 ul of: poly(ethylene glycol) 3350 (50% w/v) 125.0 ul of: (tri)sodium citrate (1.6M) 475.0 ul of: H2O

Number of	Name of chemical	Units	Concentration				pH					
conditions	Name of chemical	Units	Mean	Mode	Min	Max	StdDev	Mean	Mode	Min	Max	StdDev
42	polyethylene glycol 3350	w/v	22.3	20	20	25	2.5					
22	ammonium sulfate	M	1	0.2	0.2	2	0.749					
16	sodium HEPES	M	0.1	0.1	0.1	0.1	0	7.5	7.5	7.5	7.5	0
14	bis-tris chloride	M	0.1	0.1	0.1	0.1	0	6	5.5	5.5	6.5	0.5
10	sodium acetate	М	0.19	0.2	0.1	0.2	0.064					
10	polyethylene glycol 8000	w/v	21.8	20	10	30	7.5					
8	magnesium chloride	М	0.2	0.2	0.2	0.2	0					
8	polyethylene glycol 4000	w/v	25.4	30	8	30	9.4					
8	tris chloride	М	0.1	0.1	0.1	0.1	0	8.5	8.5	8.5	8.5	0
6	lithium sulfate	М	0.55	0.2	0.2	1.5	0.64					
6	sodium cacodylate	M	0.1	0.1	0.1	0.1	0	6.5	6.5	6.5	6.5	0
6	sodium acetate-acetic acid	М	0.1	0.1	0.1	0.1	0	4.6	4.6	4.6	4.6	0
5	sodium MES	М	0.1	0.1	0.1	0.1	0	6.4	6.5	6	6.5	0.292
4	trisodium citrate	М	1.1	0.2	0.2	1.6	0.536					

Attributes

- By screen
- pH, pH range
- % PEG
- % Salt
- Internal diversity

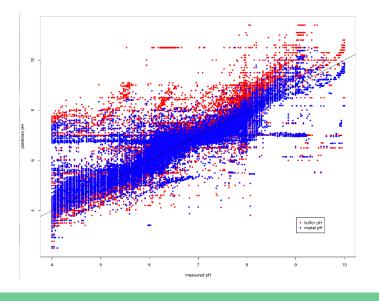


Table of Screen attributes Right click and 'Save link as...' to download a csv file

Internal diversity estimates the difference between the conditions within a screen: 0 if all conditions are identical, 1 if all conditions are completely different. % PEG gives percentage of conditions where the primary factor is a polyethylene glycol

% Salt gives percentage of conditions where the primary factor is a salt

Screen Name	Owner Name	Internal Diversity	% PEG	% Salt	Av. pH	Wells within Av. pH +/- 1	Distinct chemicals
The Classics Lite Suite	Qiagen	0.95	34	35	6.8	37	55
Wizard Classic 4	Rigaku Reagents	0.961	21	54	6.7	18	52
JBScreen Wizard 2	Jena Bioscience	0.935	38	40	6.8	24	30
Wizard Cubic LCP	Rigaku Reagents	0.894	26	0	6.6	52	17
The Berkeley Screen	Community	0.928	14	69	6.7	42	40

Compare

- condition to the PDB
- 2 conditions

• 2 screens

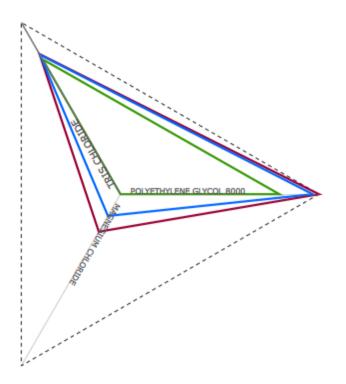
$$D_{ij} = 1 \text{ (no species in common)}$$

$$D_{ij} = \frac{1}{(T+3)} \left(\left(\left(\sum_{t=1}^{T} \frac{|[s_{ti}] - [s_{tj}]|}{\max[s_t]} \right) + \left(\frac{|E(pH_i) - E(pH_j)|}{gul(pH) - gll(pH)} \right) \right)$$

$$+ \min \left(1, \left[\left(\frac{|[ion_i] - [ion_j]|}{(\max[ion_i] + \max[ion_j])} \right) + 0.3 \right] \right)$$

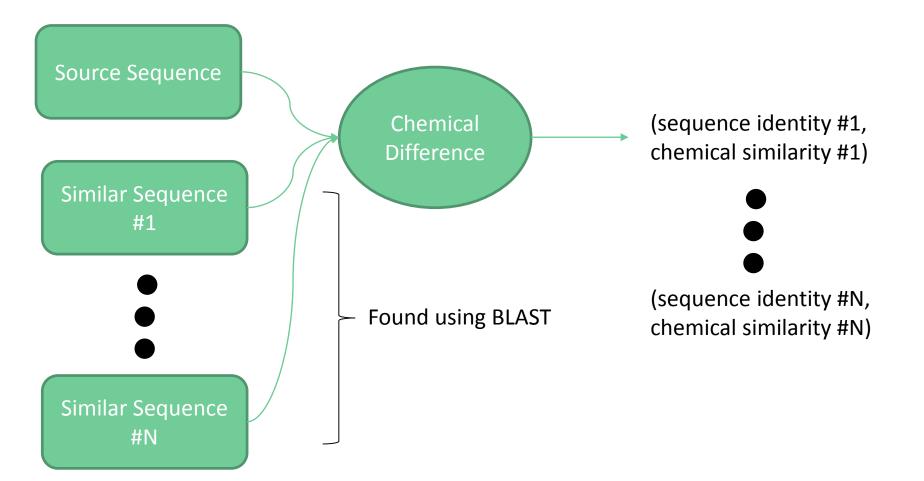
$$+ \min \left(1, \left[\left(\frac{|[PEG_i] - [PEG_j]|}{(\max[PEG_i] + \max[PEG_j])} \right) + 0.2 \right] \right) \right)$$

$$score_{s,t} = \frac{1}{2} \left(\frac{1}{cond_s} \sum_{i=1}^{cond_s} \min_{j \in (1, cond_t)} (D(c_{si}, c_{tj})) + \frac{1}{cond_t} \sum_{i=1}^{cond_t} \min_{j \in (1, cond_s)} (D(c_{ti}, c_{sj})) \right)$$

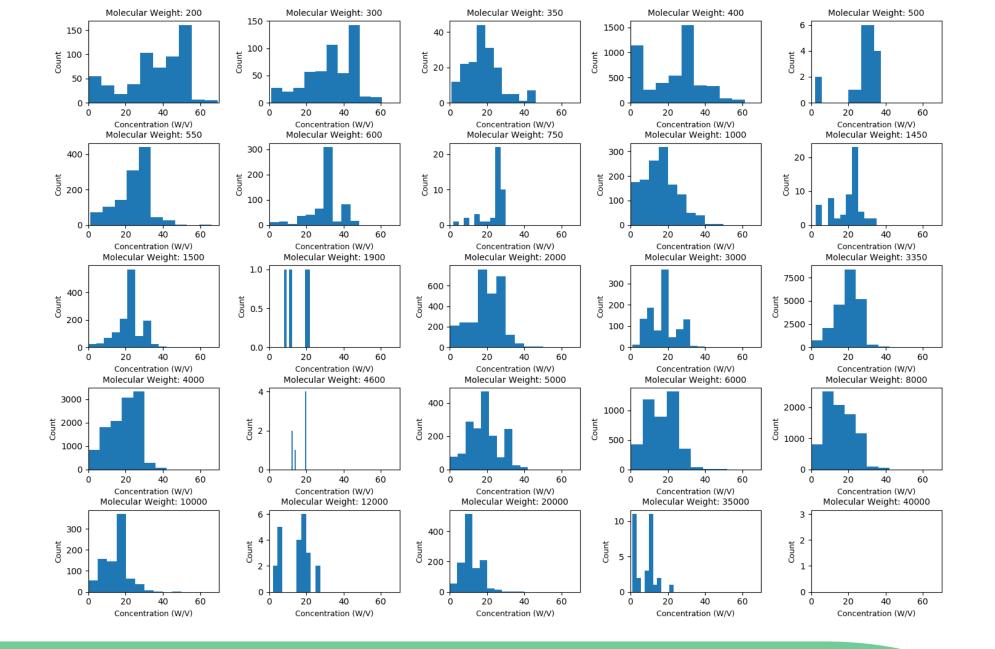


A condition to the PDB

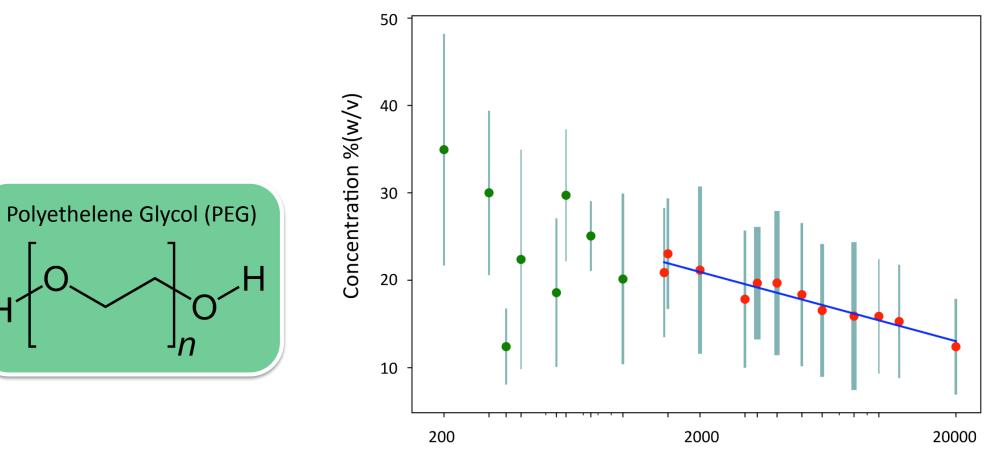
Lysozyme QA Screen (Well: A7)								
Chemical	Concentration	Units	pН	Orig. Name				
magnesium chloride	0.2	М	-	magnesium chloride				
tris chloride	0.1	М	8.5	tris chloride				
polyethylene glycol 8000	20	w/v	-	polyethylene glycol 8000				


PDB Comparison table							
Chemical	Value	Lower Value †	Upper Value †	Variable			
polyethylene glycol 8000	20	8	23.7	w/v			
magnesium chloride	0.2	0	0.331	M			
tris chloride	8.5	7.4	8.7	pН			

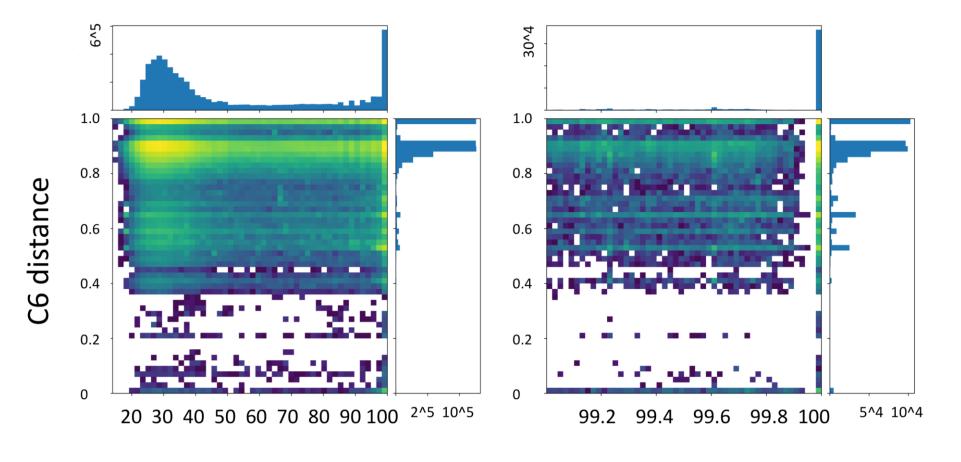
- these values are extracted from the crystallisation conditions eposited in the PDB (Protein Data Bank) <u>www.wwpdb.org</u>



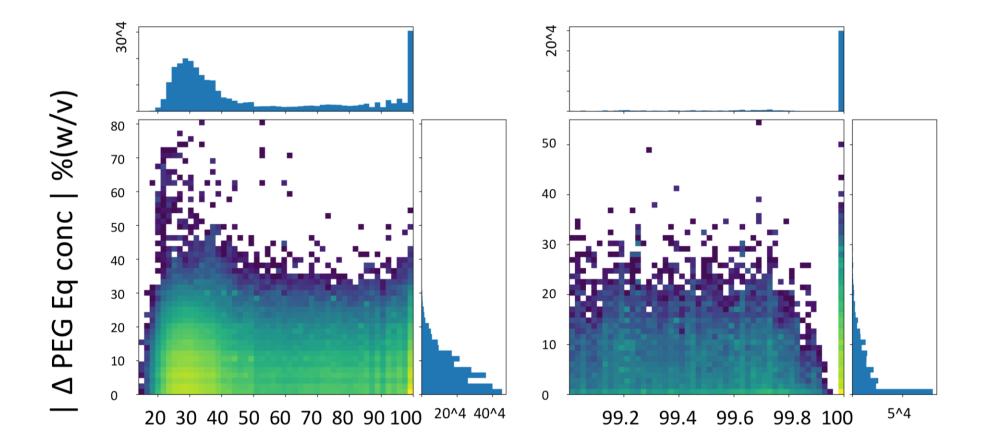
BLASTing



BLASTing: PEG Eq

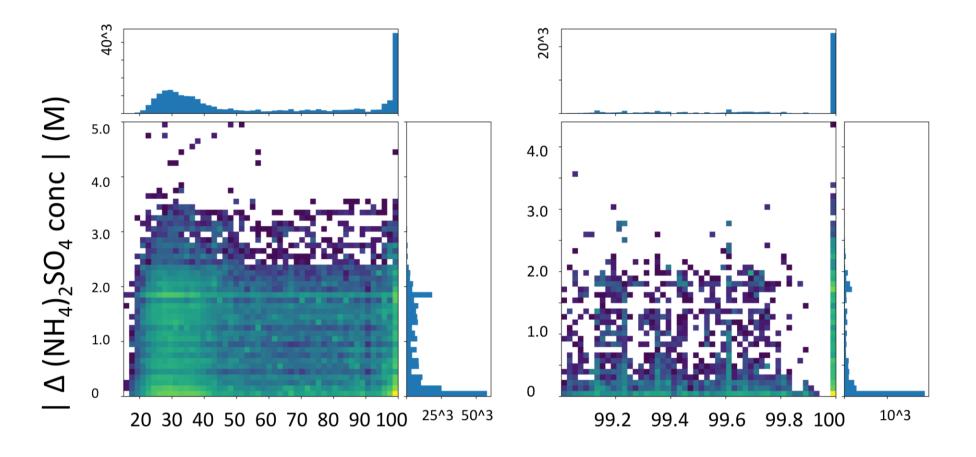

Н

Polyethylene glycol MW


BLASTing: C6 (5.5 million pairs)

Sequence identity

BLASTing: PEG Eq (2.3 million pairs)



Sequence identity

BLASTing: (NH₄)₂SO₄ (0.25 million pairs)

Sequence identity

- No correlation between sequence identity and chemical score (C6 or PEG Eq).
- Attempting to use sequence similarity to determine crystallisation conditions entry point does not appear likely to be a useful endeavour
- PEG Eq could provide a new way of comparing crystallisation conditions which is useful for optimisation

Acknowledgements

- Alex Khassapov
- Nick Rosa
- Marko Ristic
- Luke Thorburn
- Breon Schmidt
- Michelle Chan
- Vincent Fazio
- Brian Lawson
- Gabi Abrahams

