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Series Preface 

The long-term aim of  the Commission on Crystallographic Teaching in 
establishing this pamphlet  programme is to produce a large collection of 
short statements each dealing with a specific topic at a specific level. The 
emphasis is on a particular teaching approach and there may well, in time, 
be pamphlets giving alternative teaching approaches to the same topic. It 
is not the function of  the Commission to decide on the 'best '  approach but 
to make all available so that teachers can make their own selection. Similarly, 
in due course, we hope that the same topics will be covered at more than 
one level. 

The first set of  ten pamphlets,  published in 1981, and this second set of  
, nine represent a sample of  the various levels and approaches and it is hoped 

that they will stimulate many more people  to contribute to this scheme. It 
does not take very long to write a short pamphlet ,  but its value to someone 
teaching a topic for the first time can be very great. 

Each pamphlet  is prefaced by a statement of  aims, level, necessary 
background, etc. 

C. A. Taylor 
Editor for the Commission 

The financial assistance of UNESCO, ICSU and of the International Union of Crystallog- 
raphy in publishing the pamphlets is gratefully acknowledged. 



Teaching Aims 

To introduce research students with no previous experience to the basic 
ideas of  the use of  the powder  method for the study of metals and alloys. 

Level 

No advanced mathematics or theory is assumed. 

Background 
An interest in, and desire to know more about, the phase structures of  

alloys, and also to know what the different structures are. 

P rac t i ca l  Resources  

Reasonable,  but not necessarily advanced, computing resources. 

T ime  Required  for  Teach ing  

Depending upon the depth of the lectures, anything from 3-4 lectures 
up to a full term of 10 could be used. 



The Study of Metals and Alloys by X-ray 
Powder Diffraction Methods 

H. L i p s o n  

1. Introduction 

Classically, the two main ways of studying metals and alloys were metal- 
lography (the examination of polished and etched surfaces) and cooling 
curves (looking for discontinuities that indicated some sort of  phase change). 
Both these methods involved considerable skill and experience, and the 
results were not always unambiguous.  The introduction of X-ray diffraction 
provided a much clearer, simpler and more objective way of investigation. 

The methods also led to an understanding of atomic arrangements and 
so they are more fundamental ;  they led to the present-day theory of  the 
nature of  the solid state, but this article will not be concerned with this 
subject. 

2. The Method 

The simplest method involves the use of a Debye-Scherrer camera. This 
consists essentially of  a light-tight cylindrical enclosure which holds a strip 
of  X-ray film (Fig. 1) accurately on its perimeter. The specimen has a 
diameter of  about 0.3 mm, must be accurately on the axis of  the cylinder, 
and must be rotated about  its axis so that the randomness of  the particles 
of  powder shall be as great as possible and also because Laue spots should 

Incident 
X-rays 

viated 
Powder l ine X-rays 

Fig. 1. Fig. 4.3 (p. 50)from Lipson and Steeple (Interpretation of X-ray Diffraction Patterns, 
MacMillan (1970)). Film in X-ray powder camera. 



not occur. The specimen should be made by filing or otherwise grinding 
the metal to a fine powder (<0.1 mm), and then annealing it to eliminate 
the effects of cold work; it is then filled into a fine tube of boro-silicate 
glass. Alternatively, it can be made into a paste with an adhesive such as 
Canada  balsam and spread on a weighted hair. 

A fine beam of X-rays is produced by passing the beam through a metal 
tube about 0.5 mm in diameter. Much shorter exposures can be obtained 
by using rectangular holes about 2 mm x 0.5 ram; along the centre line of 
the film, this does not give appreciably broader  lines than a circular hole. 
The slit system must be thin enough to allow the observation of  lines up 
to Bragg angles of  85 °. 

Several types of Debye-Scherrer  cameras are commercially available. 
Much present-day work uses counter diffractometers instead of film, as 

these give more quantitative results. It is however wise to use photographic 
methods first, as a complete survey of a diffraction pattern may be more 
informative than a diffractometer trace. This article will be concerned only 
with photographic methods. 

There are also other photographic methods available, such as the Guinier 
focusing camera, but these should be used only in special circumstances. 

3. Measurement of Debye-Scherrer Photographs 

The pattern of  lines on a photograph (Fig. 2) represents possible values 
of  the Bragg angles Ohk~ which satisfy Bragg's equation 

A = 2dhkl sin 0~,kl. (1) 

Here A is the wavelength of the X-rays and dhkz is the spacing of the planes 
(hkl). (Note that the usual symbol n is missing; the second order of  reflection 
from the ( I l l )  planes is designated 222.) We require to derive the values 
of  0hkt from the photograph. 

Three methods are illustrated in Fig. 3. For the Bradley-Jay method, the 
exposed part  of  the film is limited by knife-edges, corresponding to a Bragg 
angle, Ok, of about 85 ° (Section 2). This angle must be accurately known; 
it can most conveniently be found by centring the camera on the table of  
an optical spectrometer and focusing the cross-wire of a fixed microscope 
on one of the edges; the camera can then be rotated until the other knife 
edge coincides with the cross-wire. If  the angle through which the camera 

centre hole 
/ 

ll lll t c J i l l  ll:l 
Fig. 3. Film from powder camera laid flat. 
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Fig. 3. Fig. 4.1 I, p. 87from Lipson and Steeple. 77~ree methods of mounting films. (a) Bradley-Jay, 
(b) Van Arkel, (c) Straumanis. 

is rotated is 4~, then 

Ok = 90 ° -  ¼ ~b. (2) 

To find a Bragg angle 0 for any pair of lines, we measure the distance S 
between the lines and the distance Sk between the knife-edge shadows; then 

0 = OkS/Sk. (3) 

The second method-- the  van-Arkel method-- is  rather better for high- 
angle lines ; these are closer together than with the Bradley-Jay method and 
so less influenced by possible irregularities in the film. 

We now have 

0 = 90 ° -  O S / S K  (4) 

where 0 is one quarter of the angle subtended by the knife edges. 
The third method-- the  Straumanis method--has  the advantage that no 

calibration is required; the positions on the film corresponding to 0 = 0  ° 
and 0 = 90 ° can be found from the measurements of pairs of lines. This 
advantage however is somewhat illusory. Calibration need be carried out 
only once for the other two methods, whereas it has to be carried out each 
time for the asymmetric method; moreover, the calibration then depends 
upon the quality of the lines on the film and so extra errors may be 

introduced. 



All three methods take account equally well of  changes in film dimensions 
during processing. It has to be assumed that changes--usual ly  shr inkage- -  
are uniform and this is probably true to a reasonable accuracy. Only the 
first two methods are r ecommended- - the  first for ordinary interpretive work 
(Section 4) and the second for high accuracy in lattice spacings (Section 5). 

4. Interpretation of Powder Photographs 

We must first have the values of  0 for all lines on a powder photograph,  
and, if the number  is large, assigning indices hkl  to them all may be difficult. 
Fortunately, many metal and alloy structures are so simple that their powder  
pattern can be recognized at a glance. Our first task is thus to familiarize 
ourselves with these patterns. 

The three most common structures are called face-centred cubic (f.c.c.), 
body-centred cubic (b.c.c.) and hexagonal close-packed (h.c.p.). They are 
illustrated in Fig. 4. The sequence of l ines-- in position and intensity--is  
characteristic of  each structure and the scale of  the pattern gives the 
dimensions of  the unit cell; the smaller the scale of the pattern, the larger 
is the unit cell. Therefore there are more lines for a larger unit cell. 

4.1. Cubic structures 

For a cubic structure only one quantity is involved, the cell edge or the 
lattice parameter.  

Equation (1) can be expressed in the form 

h 2 
sin 20hk, = 4a----5_ (h 2 + k 2 + 12). (5) 

From the observed values of  0, a table of values of  sin 2 0 should be prepared. 
For a cubic structure these should be in simple numerical proportion. The 
highest common factor should be A2/4a 2, and hence a can be derived. 
(There is an exception to this rule which will be discussed later.) 

N ' ' ~  3 do- 8 II t,~. 16 1 9 2 0  

C.. t  " 

1 {(( 
Fig. 4. Powder patterns of  three common types of  simple crystal structures. (a) face-centred cubic, 
(b) body-centred cubic, (c) hexagonal close-packed. For (c) the exact sequence will depend upon 

the axial ratio. Relative intensities are not represented. 
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Not  all values of  h-' + k  2 +l-', which we shall call N, are possible. For  
example,  there are no three numbers  whose square add up to 7, or, in 
general,  to p2(Sq-1) where p and q are integers. Numbers  such as 7, 15, 
23, 28, 60 are said to be forbidden.  The absences o f  numbers  such as 
these are useful in checking the correctness o f  indexing for a large unit  

cell. 
For  small values o f  N, the values o f  h, k and l are easily deduced.  

Thus N =  1 corresponds  to 100, 2 to 110 and 3 to 111. For  some values 
of  N, more  than one set o f  indices exists: 9 is both  300 and 221. For  
values o f  N (up to 100) see Lipson and Steeple (1970) Table 5. 

The intensities o f  the lines depend upon  the ar rangement  of  atoms in the 
unit cell, but  they also depend upon  the number  o f  possible ways o f  
combining the ind ices - - the  multiplicity factor. For  simple structures, this 
factor  is dominant .  Thus 100 includes 010, 001,100, 070, 001; the multiplicity 
factor  is 6, cor responding  to the six faces o f  a cube. For N = 14 (321) 
however  there are 48 arrangements ,  and line 14 will usually be much stronger 
than line 1, even if the decrease in intensity with 0 is allowed for. 

I f  the lattice is not  primitive, some values o f  N are not possible. For  the 
lattice F (face-centred), the indices must  be all odd  or all even: thus the 
first few lines are N = 3 ( l l l ) ,  4(200), 8(220), 11(311), 12(222), 16(400) . . . .  
These are shown diagrammatical ly  in Fig. 4. For  the body-centred  lattice, 
I (Innenzentiert) ,  N must  be even, and so the possible lines are 2(110), 
4(200), 6(211), 8(220), 10(310) . . . .  

This raises the difficulty ment ioned earlier: for a body-centred structure 
the c o m m o n  factor is 2A2/4a 2 and not h ' - /4a  2. We can make use o f  the 
forb idden numbers'  to deal with this problem: if a line appears  to have 
N = 7 ,  we know that it is not  so;  the line is probably  14 and the structure 
body-centred.  

4.2. Tetragonal and hexagonal structures 
For tetragonal and hexagonal  structures an extra var iab le - - the  axial ratio, 

c / a - - i s  involved and therefore the problem is more complicated.  For  
tetragonal structures, eq. (5) is replaced by 

sin 2' 0hkt = ~SaZ h 2 + k 2 + l'- . (6) 

N o w  no precise rules can be given, but the values o f  sin 2 0 may give some 
hints. For  example, if l = 0, the values o f  sin 2 0 are in the ratios 1, 2, 4, 5 . . .  
cor responding  to indices 100, 110, 200, 210 . . . .  I f  we find a set o f  values 
in these ratios we can assume that the indices are as shown, and then we 
have to find I from the lines that  are not in this sequence. The ratio 1:2 
part icularly should be looked for. 



For hexagonal structures, or trigonal structures referred to hexagonal 
axes, eq. (5) is modified to 2) 

sin 20hk, = ~ h 2 + hk  + k 2 +_a_~ l 2 (7) 
c-  

and the dominant  factor is 1 : 3. Again, if some of the simpler lines can be 
accounted for in this way, trial-and-error can be applied to the others. 
Graphical  and numerical methods have been applied to these problems;  a 
summary  is given by Lipson and Steeple (1970). 

4.3. Systems of lower symmetry 

Equations for orthorhombic,  monoclinic and triclinic systems are more 
complicated. A general method for dealing with them has been devised by 
Ito and is amenable to treatment by digital computers;  a description of it 
is given by Lipson and Steeple (1970). But there is no method that can be 
guaranteed to give an unequivocal answer; some lines may overlap and so 
cannot be measured accurately, and there will always be odd coincidences 
which will mislead. The only safe way is to try to obtain a single crystal, 
deduce the cell dimensions from it and calculate all the possible values of  
sin 2 0. 

5. Accurate Cell Dimensions 

Having found the unit cell, for many purposes in the study of alloys we 
need to know the cell dimensions as accurately as possible. It is fortunate 
that such accuracy is possible with remarkably few precautions. For very 
sharp lines, the separation of an a doublet  (Kot t, and Kce2) can be measured 
to about  1 per cent, and since the separation itself is about 0.25% of  the 
wavelength, an accuracy of  about  25 p p m  should be attainable. This arises 
because the accuracy depends upon sin 0, which varies very slowly near 
0 = 90°; it is for this reason that lines with 0 near to 90 ° should be observable 
(Section 2). 

We can derive the value of a cubic crystal from any line, by means of 
eq. (5). The answer would not however turn out to be constant because of 
certain systematic errors, but the error, as we have seen, will be less for 
lines with high 0. We can make use of  this phenomenon by finding the 
values of  a0 from all the lines in a photograph and extrapolating the results 
to 0 = 90 °. The only problem is to decide what function of 0 should be used 
to give a straight-line extrapolation. 

Several funct ions--0  itself, sin 2 0, sin 2 0/cos 0 - -have  been suggested, but 
it is now generally accepted that the Nelson-Ri ley  function (cos ' -0 /0  + 
cos-" 0/sin 0) gives the best results. It is tabulated by Lipson and Steeple. 
A typical example is given in Fig. 5. It cannot be too strongly emphasized 
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Fig. 5. Fig. 6.3 (p. 167)from Lipson and Steeple. Extrapolation method for lattice parameter of 
aluminium at 298°C. (Note that I pm (picometre)=0.01 A.) 

that at least one line should have 0 > 80°; extrapolation over a large range 
is unreliable. It may even be necessary to find a K s  radiation that gives 
such a line. 

Cubic crystals are the easiest to deal with. For lower symmetries extra 
problems arise. Complete rules cannot be given here, but basically the 
principle is to use lines with high h index for a, high k index for b, and 
high l index for c. Complete details of  suggested procedures are given by 
Lipson and Steeple. 

6. Phase Diagrams of Binary Alloys 

We now come to the main purpose of this ar t ic le-- the application of  the 
foregoing methods to the study of phase diagrams. 

A binary alloy can have four different types of  constitution: 
(a) A mixture of two immiscible phases (fortunately this is rare). 
(b) A single phase in which atoms of  both sorts occupy positions on the 

same la t t ice--a  solid solution. 



(c) A phase with structure different from that of  either of the con- 
stituents--an intermetallic compound. 

(d) An intimate mixture of  two phases--a  two-phase alloy. 
There cannot be more than two phases in equilibrium in general. 
Solid solutions are very common. If they include one of the elements 

they are said to be primary ; otherwise they are secondary. If  the two elements 
have the same structure, such as copper and nickel, the solid solution may 
extend from one to the other. But most systems have a succession of solid 
solutions and intermetallic compounds,  as exemplified in Fig. 6. The ranges 
of the various phase fields almost always vary with temperature. 

Figure 6 is called a phase diagram. The two elements are designated A 
and B, and near to A we can see that a solid solution ~ of B in A is formed; 
at temperature T, this extends from C to D. At D a is saturated with B, 
and more of metal B causes a second phase/3 to form ; the two-phase region 
a +/3 extends from D to E. Between E and F only/3 is present, and from 
F to G there is another two-phase region /3 + 7- Finally, there is another 
solid solution, 7, of A atoms in B. 

The region /3 may be so narrow that no variation of composition is 
observable;/3 is almost a chemical compound. The various phase fields-- 
single-phase and two-phase--usually vary with temperature and sometimes 
another structure appears at higher temperatures. The liquid L is such a 
phase, but we shall not deal with this phenomenon here; X-ray methods 
are of little use in dealing with liquids. 

The object of metallographic research is to measure the extents of  the 
various single-phase and two-phase regions at different temperatures. 

The first step in examining alloys of  two metals is to establish the structures 
of  these metals; this is usually easy as metals often have one of the structures 
whose patterns are shown in Fig. 4. Then we examine how far the regions 
of solid solution extend. This we can do by taking photographs of 

T 

A 3 

Fig. 6. A binary phase diagram showing two primary solid solutions ct and y and one secondary 
solid solution, ~. 



alloys of  different composit ion near to the elements and seeing when extra 
lines of  a new phase appear.  

This however is only rough. T,o find accurately a point such as D, we 
plot a graph of lattice parameter  a against composit ion (assuming that the 
structure is cubic), then measure the lattice parameter  of  the same phase 
in any two-phase alloy; in a two-phase region the compositions of  the two 
phases are fixed and only the proportions change. The boundary point D is 
given by the point on the graph where the two-phase lattice parameter  lies 
(Fig. 7). 

To find the equivalents of  the point D at different temperatures we must 
heat the alloy in bulk until equilibrium is attained. (The time needed would 
have to be found by trial and er ror - - tha t  is, by finding times that give 
consistent results.) Powder is then taken from the alloy, and this has to be 
annealed again at the same temperature to remove the effects of  cold work 
(Section 1). The powder  should be in a small container that can be suddenly 
plunged into cold water (quenched), with the hope that the high-temperature 
structure is preserved. No precise rules can be given as much depends upon 
the properties of  the alloy system considered. 

A more straightforward method is to take photographs at the required 
temperatures,  but this requires specialized high-temperature cameras which 
may not be available. The quenching procedure should always be tried first. 

There are many problems in this type of work, and no account can deal 
adequately with all of  them. Finding the right conditions is usually a research 
in itself and X-ray methods can often help to shorten the time of  investiga- 
tion. For example, lack of  equilibrium usually leads to broadened lines. 

For alloys other than cubic the work is more complicated but the principles 
are the same. For a hexagonal structure two lattice parameters can be used 
and one can act as a check on the other. (It is hoped that they give the 
same answer!) 

7. Ternary Phase Diagrams 

For ternary alloys, two parameters  are needed to define each composit ion 
and composition diagrams are therefore two-dimensional;  no extra 
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Fig. 7. Finding the solubility o f  B in A. 



dimension is available for representing temperature. We therefore have 
to represent ternary results by a succession of  diagrams, one for each 
temperature. 

Compositions can be represented in an equilateral triangle: each corner 
represents an element, and each side a binary system; ternary compositions 
are represented by points within the triangle, the relative proportions of the 
elements being given by the lengths of the perpendiculars from the given 
point to the side of the triangle opposite the appropriate element (Fig. 8). 
In this figure the point O represents an alloy of 20% A, 30% B and 50% C. 

This device is possible because the sum of  such perpendiculars is indepen- 
dent of the position of the point, such as O (Fig. 8). We can see this by 
drawing l ines--OS and OT---from O parallel to the sides. The length of 
AS is clearly (2/.,[3)0Q and of BT is (2/~/5)OR The triangle OST is 
equilateral and therefore TS is equal to (2/~/3)0R. The total length OP + 
OQ + OR is thus equal to -,/-3/2(AS + S T  + TB) = AB, which is a constant. 

In ternary alloys, one, two or three phases can be in equilibrium at a 
general temperature. (At certain specific temperatures four can be in equili- 
brium.) Figure 9 shows three solid solut ions--a,  fl and y---based upon 
elements A, B and C respectively and another solid solution, 8, based upon 
a binary compound of  A and B; it also shows four two-phase regions and 
two three-phase regions. 

Within the two-phase regions only specific compositions can be in equili- 
brium; the lines joining these compositions are known as tie lines. The lines 
can be found by lattice-parameter methods similar to those used for binary 
alloys, but now it is necessary to find the variation of  lattice parameter 
along the sides of  the single-phase regions; measurement of the lattice 
parameters in a two-phase alloy should then give the compositions of phases 
in equilibrium. 

There is no reason why tie-lines should behave a s regularly as those 
shown in the region fl + 7  in Fig. 9; they can be irregular. There are 
thermodynamic reasons for supposing that this type of behaviour is more 
general. 

C 

A S /~ T 25 

Fig. 8. Representation of  the composition of a ternary alloy. 0 represents an alloy containing 
20% of  A, 30% of  B and 50% of  C. 
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A 

Fig. 9. Ternary phase diagram showing four solid solutions c~, ~, 3~ and 8, five two-phase regions, 
and two three-phase regions. 

The boundaries between two-phase and three-phase regions must be 
straight lines, since they are tie lines; if they were not straight, points within 
the bows of the curves could not represent phases in equilibrium. Thus 
three-phase regions must be triangular, the corners representing composi- 
tions that are in equilibrium. The lattice parameters of the phases within 
three-phase regions must therefore be constant; only the proportions of the 
phases differ from point to point. This provides one way of checking that 
an alloy is three-phase, even if one of the phases is vanishingly small. 

Diagrams are usually much more complicated than that shown in Fig. 9. 
Phases can occur that are not present in any of the binary systems and so 
will be represented by regions that do not reach the sides of the triangle. 
Thus, although it is necessary to begin an investigation of a ternary system 
by exploring the three binary systems, one must always be prepared to find 
new powder patterns arising. 

8. Quaternary and Other Systems 

It is not possible to represent more than three components on a phase 
diagram and therefore quaternary and higher systems cannot be simply 
dealt with. No general rules can be given here, and each system will have 
to be studied separately. It is hoped however that the principles stated here 
will be helpful, but they cannot be more than that. 

9. Miscellaneous Problems 

When X-ray methods were first introduced, it was hoped that they would 
clear up most of the problems raised by classical metallurgy. To a large 
extent they did so, but they exposed so many others that one eminent 
metallurgist said that they 'raised more problems than they solved'. This 
was intended as a criticism but it was really a compliment; X-rays were 
giving us a deeper insight into the solid state. 

11 



One early important result was the identification of the structures of  iron. 
Cooling curves (Section 1) had shown discontinuities at 77_0°C, 910°C and 
1380°C and thus it was deduced that there were four solid phases, which 
were called a (the lowest range), fl, ~; and 6. X-ray diffraction showed 
however that a and /3 were ident ical--body-centred c u b i c - t h e  discon- 
tinuity between them being caused by the change from ferromagnetism (a)  
to paramagnet ism (fl) at the Curie point. The a lbhase is called ferrite, 7 
is called austenite (face-centred cubic) and 6 is body-centred cubic again. 
This work was carried out with an iron wire as a specimen, heated by an 
electric current; the 3' phase in pure iron cannot be retained by quenching 
(Section 6 ) .  

An unexpected effect was that produced by the diffusion of atoms into 
regular posi t ions-- the  superlattices. Most solid solutions have atoms dis- 
tributed at random on the available lattice positions, but sometimes after 
annea l ing- -or  even at room tempera ture- - the  atoms distribute themselves 
in a regular way. Thus an alloy of composition AuCu3 is face-centred cubic 
with gold and copper  atoms sharing the lattice positions at random; but 
during annealing the atoms move so that no two gold atoms are neighbours 
and the structure can be described as having gold atoms at cube corners 
and the copper  atoms at face centres. The structure is now essentially simple 
cubic and the exclusion rules (Section 4.1) no longer apply. Lines 1, 2, 5, 
6 . . .  are now possible; these are called superIattice lines (Fig. 10a). They 
are weaker than the main lines because their intensities depend upon the 
difference between the scattering factors of  Cu and Au. 

Superlattices are also possible in body-centred structures such as NiA1, 
the nickel atoms being at the comers  and the aluminium atoms at the centres 
of  the unit cell. The sequence of  lines is shown in Fig. 10b. 

Superlattice lines are sometimes much broader  than the main lines, 
suggesting that regions over which the superlattice is perfect are quite small. 
This effect has been studied for over fifty years: AuCu3 is probably easily 
the most photogenic X-ray specimen! 

When the two atoms have nearly equal atomic numbers the superlattice 
lines are very weak; for CuZn (29 and 30) they would be impossible to 

, 2_ ~ 91~ Id¢~. JTtg 2~ 2 Z  

)) )1)) I ,rl[ l (((11(( 
L 3 :7 

) I , J l ' [  [ ( 
Fig. lO. Superlattice lines for (a) face-centred, Co) body-centred cubk structures. The superlattice 
numbers are at the top and the main-lattice numbers at the bottom of  each pattern. Relative 
intensities are not represented, but the superlattice lines are drawn more finely than the main lines. 
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detect. To find whether such a superlattice exists, Zn radiation was used; 
this depresses the scattering factor of  Cu and makes the superlattice lines 
just detectable. 

Sometimes a solid solution at high temperatures will break down into 
two solid solutions at lower temperatures,  possibly one having a superlattice; 
this is called a solubility gap. This effect can be detected only by X-ray 
methods. Even then, it is not.always obvious because the two phases must 
have the same structure and can be detected only by their different lattice 
parameters.  The ability to detect small lattice parameter  changes by high- 
angle lines (Section 5) is then very important.  

Sometimes, a high-temperature structure will change into a related struc- 
ture of  lower symmetry as the temperature falls. (It is a general rule, rarely 
disobeyed, that a high-temperature structure cannot be of  lower symmetry 
than a low-temperature structure.) This, again, can often be recognized only 
in the high-angle lines. For example, if a cubic structure becomes tetragonal, 
line 16 (400) will divide into two components  (400 and 004) with slightly 
different spacings. Thus line 16 becomes double, with one component  
stronger than the other because 400 and 040 have the same spacing. 

Lack of equilibrium is indicated by broadened lines, and this effect must 
always be eliminated, if possible, by annealing in the ingot form or in the 
powder. The ingot may not be uniform (coring) or the powder may have 
strains in it. Annealing may not always be effective, presumably because 
the ideal equilibrium reactions take place at temperatures too low for 
adequate diffusion to take place. It is thought that this is the reason why 
the Fe-Ni  system has never been established, either by classical methods 
or by X-ray diffraction. 

There are many other problems that could be discussed, and doubtless 
others that have not yet been uncovered. It is therefore necessary to keep 
a flexible mind to cope with any new phenomena  that may arise; the general 
principles can.be described as this article has at tempted to show, but t he r e  
is still room for completely new ideas to emerge. 
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