AIC Commission on Crystallographic Teaching

AIC International Crystallography School 2019

RYSTALLOGRAPHIC

NFORMATION

www.cristallografia.org/aicschool2019

30 August 3 September 2019

Naples, Italy

SPACE-GROUP SYMMETRY

International Tables for Crystallography, Volume A

Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

Crystal Symmetry

Real crystal

Real crystals are finite objects in physical space which due to static (impurities and structural imperfections like disorder, dislocations, etc) or dynamic (phonons) defects are not perfectly symmetric.

Ideal crystal (ideal crystal structures)

Infinite periodic spatial arrangement of the atoms (ions, molecules) with no static or dynamic defects

Crystal pattern:

A model of the ideal crystal (crystal structure) in point space consisting of a strictly 3-dimensional periodic set of points

An abstraction of the atomic nature of the ideal structure, perfectly periodic

SPACE GROUPS

Space group G:

The infinite set of all translations that are symmetry operations of the crystal pattern

Point group of the space groups P_G:

The factor group of the space group G with respect to the translation subgroup $T: P_G \cong G/H$

$$(W,w) \longrightarrow W P_G = \{W | (W,w) \in G\}$$

INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY VOLUME A: SPACE-GROUP SYMMETRY

Extensive tabulations and illustrations of the 17 plane groups and of the 230 space groups

- •headline with the relevant group symbols;
- diagrams of the symmetry elements and of the general position;
- specification of the origin and the asymmetric unit;
- •list of symmetry operations;
- •generators;
- •general and special positions with multiplicities, site symmetries, coordinates and reflection conditions;
- symmetries of special projections;

Space-group symmetry
Edited by Mois I. Aroyo
Sixth edition

GENERAL LAYOUT: LEFT-HAND PAGE

① Cmm2

 $C_{2\nu}^{11}$

mm2

Orthorhombic

2 No. 35

Cmm2

Patterson symmetry Cmmm

3

- 4 Origin on mm2
- **5** Asymmetric unit $0 \le x \le \frac{1}{4}$; $0 \le y \le \frac{1}{2}$; $0 \le z \le 1$
- 6 Symmetry operations

For (0,0,0) + set (1) 1

(2) 2 0,0,z

(3) $m \ x, 0, z$

(4) m = 0, y, z

General Layout: Right-hand page

1 CONTINUED No. 35 Cmm2

2 Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); $t(\frac{1}{2},\frac{1}{2},0)$; (2); (3)

3 Positions

Multiplicity, Wyckoff letter, Site symmetry

 $4 \quad e \quad m \dots$

 $4 \quad d \quad .m$

 $4 \quad c \quad \dots 2$

Coordinates

 $(0,0,0)+ (\frac{1}{2},\frac{1}{2},0)+$

8 f 1

(1) x, y, z

0, y, z

x,0,z

 $\frac{1}{4}, \frac{1}{4}, Z$

 $0, \frac{1}{2}, z$

(2) \bar{x}, \bar{y}, z

 $0, \bar{y}, z$

 $\bar{x}, 0, z$

 $\frac{1}{4}, \frac{3}{4}, Z$

(3) x, \bar{y}, z

(4) \bar{x} , y, z

Reflection conditions

General:

hkl: h+k=2n

0kl: k = 2n

h0l: h=2n

hk0: h+k=2n

h00: h = 2n

0k0: k = 2n

Special: as above, plus

no extra conditions

no extra conditions

hkl: h = 2n

no extra conditions

no extra conditions

 $2 \quad a \quad m m 2 \qquad 0, 0, z$

4 Symmetry of special projections

Along [001] c 2mm $\mathbf{a}' = \mathbf{a}$ $\mathbf{b}' = \mathbf{b}$ Origin at 0, 0, z

b mm2

Along [100] $p \, 1 \, m \, 1$ $\mathbf{a}' = \frac{1}{2} \mathbf{b}$ $\mathbf{b}' = \mathbf{c}$ Origin at x, 0, 0

Along [010] $p \, 1 \, 1 \, m$ $\mathbf{a}' = \mathbf{c}$ $\mathbf{b}' = \frac{1}{2} \mathbf{a}$ Origin at 0, y, 0

HEADLINE BLOCK

HERMANN-MAUGUIN SYMBOLISM FOR SPACE GROUPS

Hermann-Mauguin symbols for space groups

The Hermann-Mauguin symbol for a space group consists of a sequence of letters and numbers, here called the constituents of the HM symbol.

- (i) The first constituent is always a symbol for the conventional cell of the translation lattice of the space group
- (ii) The second part of the full HM symbol of a space group consists of one position for each of up to three representative symmetry directions. To each position belong the generating symmetry operations of their representative symmetry direction. The position is thus occupied either by a rotation, screw rotation or rotoinversion and/or by a reflection or glide reflection.
 - (iii) Simplest-operation rule:

14 Bravais Lattices

crystal family	Lattic <i>P</i> I	e types F C R
triclinic	$C_{A}^{O_{A} B}$	
monoclinic	β_a	
orthorhombic		
tetragonal		
hexagonal	c	
cubic		

Symmetry directions

A direction is called a **symmetry direction** of a crystal structure if it is parallel to an axis of rotation, screw rotation or rotoinversion or if it is parallel to the normal of a reflection or glide-reflection plane. A symmetry direction is thus the direction of the geometric element of a symmetry operation, when the normal of a symmetry plane is used for the description of its orientation.

Hermann-Mauguin symbols for space groups

Directions that belong to the same set of equivalent symmetry directions are collected between braces. The first entry in each set is taken as the representative of that set.

	Symmetry direction (position in Hermann– Mauguin symbol)		
Lattice	Primary	Secondary	Tertiary
Triclinic	None		
Monoclinic*	[010] ('uniqu [001] ('uniqu		
Orthorhombic	[100]	[010]	[001]
Tetragonal	[001]	{ [100] } [010] }	$\left\{ \begin{bmatrix} 1\bar{1}0\\ 110 \end{bmatrix} \right\}$
Hexagonal	[001]	$ \left\{ \begin{bmatrix} 100 \\ 010 \\ \hline 110 \end{bmatrix} \right\} $	$ \left\{ \begin{bmatrix} 1\bar{1}0\\ 120\\ \bar{2}\bar{1}0 \end{bmatrix} \right\} $
Rhombohedral (hexagonal axes)	[001]	$ \left\{ \begin{bmatrix} 100 \\ 010 \\ \hline{1}10 \end{bmatrix} \right\} $	
Rhombohedral (rhombohedral axes)	[111]	$ \left\{ \begin{bmatrix} 1\bar{1}0\\ 01\bar{1}\\ \bar{1}01 \end{bmatrix} \right\} $	
Cubic	{ [100] [010] } [001] }	$ \left\{ \begin{bmatrix} 1111 \\ 11\overline{1} \end{bmatrix} \\ \begin{bmatrix} 111 \end{bmatrix} \\ \begin{bmatrix} 111 \end{bmatrix} \right\} $	$ \left\{ \begin{bmatrix} 1\bar{1}0 & [110] \\ 01\bar{1} & [011] \\ [\bar{1}01] & [101] \end{bmatrix} \right\} $

PRESENTATION OF SPACE-GROUP SYMMETRY OPERATIONS

IN INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY, VOL.A

Symmetry Operations

KIND of the symmetry operation

TYPE of the symmetry operation

SCREW/GLIDE component

ORIENTATION of the geometric element

LOCATION of the geometric element

Kinds of Symmetry Operations

Symmetry operations of 1st kind (proper):

chirality (handedness) preserving

Symmetry operations of 2nd kind (improper):

chirality (handedness) non-preserving

Chirality is the geometric property of a rigid object of being non-superposable on its mirror image. An object displaying chirality is called **chiral**; the opposite term is **achiral**.

Crystallographic symmetry operations

Crystallographic restriction theorem

The rotational symmetries of a crystal pattern are limited to 2-fold, 3-fold, 4-fold, and 6-fold.

Matrix proof:

Rotation with respect to orthonormal basis

$$R = \begin{bmatrix} \cos\theta & -\sin\theta \\ \\ \sin\theta & \cos\theta \end{bmatrix}$$

Rotation with respect to lattice basis

R: integer matrix

In a lattice basis, because the rotation must map lattice points to lattice points, each matrix entry—and hence the trace—must be an integer.

 $u = 360^{\circ}/\Delta$

Δ /o\

Tr $R = 2\cos\theta = i$	integer
--------------------------	---------

m	$m/2 = \cos \theta$	0()	$n = 300 / \Theta$
0	0	90	Fourfold
1	1/2	60	Sixfold
2	1	0 = 360	Identity (onefold)
-1	-1/2	120	Threefold
-2	-1	180	Twofold

 $\mu \mu/2 = \cos A$

Crystallographic symmetry operations

characteristics:

fixed points of isometries $(W,w)X_f=X_f$ geometric elements

Types of isometries preserve handedness

identity:

the whole space fixed

translation t:

no fixed point

$$\tilde{\mathbf{x}} = \mathbf{x} + \mathbf{t}$$

rotation:

one line fixed rotation axis

$$\phi = k \times 360^{\circ}/N$$

screw rotation:

no fixed point screw axis

screw vector

Types of isometries

do not preserve handedness

roto-inversion:

centre of roto-inversion fixed roto-inversion axis

inversion:

centre of inversion fixed

reflection:

plane fixed reflection/mirror plane

glide reflection:

no fixed point glide plane

glide vector

QUIZ

Referred to an 'orthorhombic' coordinated system ($a \neq b \neq c$; $\alpha = \beta = \gamma = 90$) two symmetry operations are represented by the following matrix-column pairs:

Determine the images X_i of a point X under the symmetry operations (W_i , w_i) where

Can you guess what is the geometric 'nature' of (W_1, w_1) ? And of (W_2, w_2) ?

Hint:

A drawing could be rather helpful

Characterization of the symmetry operations:

What are the fixed points of (W_1,w_1) and (W_2,w_2) ?

Description of isometries: 3D

coordinate system: $\{O, \mathbf{a}, \mathbf{b}, \mathbf{c}\}$

$$\{O,\mathbf{a},\mathbf{b},\mathbf{c}\}$$

isometry:

$$\begin{array}{ccc}
X & & & \widetilde{X} \\
\begin{pmatrix} x \\ y \\ z \end{pmatrix} & & \widetilde{\chi} = & F_{1}(x,y,z) & \begin{pmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{z} \end{pmatrix}$$

$$\tilde{x} = W_{11} x + W_{12} y + W_{13} z + w_1
\tilde{y} = W_{21} x + W_{22} y + W_{23} z + w_2
\tilde{z} = W_{31} x + W_{32} y + W_{33} z + w_3$$

Matrix formalism

$$\begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{pmatrix} = \begin{pmatrix} W_{11}W_{12}W_{13} \\ W_{21}W_{22}W_{23} \\ W_{31}W_{32}W_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$$

linear/matrix part

translation column part

$$\tilde{\boldsymbol{x}} = \boldsymbol{W} \boldsymbol{x} + \boldsymbol{w}$$

$$\tilde{\boldsymbol{x}} = (\boldsymbol{W}, \boldsymbol{w}) \boldsymbol{x} \text{ or } \tilde{\boldsymbol{x}} = \{\boldsymbol{W} | \boldsymbol{w}\} \boldsymbol{x}$$

matrix-column pair

Seitz symbol

Short-hand notation for the description of isometries

notation rules:

- -left-hand side: omitted
- -coefficients 0, + I, I
- -different rows in one line

examples:

QUICK QUIZ

Construct the matrix-column pair (W,w) of the following coordinate triplets:

(1)
$$x,y,z$$
 (2) $-x,y+1/2,-z+1/2$

(3)
$$-x,-y,-z$$
 (4) $x,-y+1/2, z+1/2$

Space group Cmm2 (No. 35)

How are the symmetry operations represented in ITA?

Diagram of symmetry elements

Symmetry operations

For (0,0,0) + set

(1) 1

(2) 2 0,0,z

(3) m x, 0, z

(4) m = 0, y, z

For $(\frac{1}{2}, \frac{1}{2}, 0)$ + set

(1) $t(\frac{1}{2},\frac{1}{2},0)$

(2) 2 $\frac{1}{4}, \frac{1}{4}, z$

(3) $a x, \frac{1}{4}, z$ (4) $b \frac{1}{4}, y, z$

Diagram of general position points

General Position

Coordinates

$$(0,0,0)+(\frac{1}{2},\frac{1}{2},0)+$$

f1 (1) x, y, z

(2) \bar{x}, \bar{y}, z

(3) x, \bar{y}, z

(4) \bar{x}, y, z

General position

- (i) coordinate triplets of an image point X of the original point $X = \begin{bmatrix} x \\ y \end{bmatrix}$ under (W,w) of G
 - -presentation of infinite image points \widetilde{X} under the action of (W,w) of G
- (ii) short-hand notation of the matrix-column pairs (W,w) of the symmetry operations of G
 - -presentation of infinite symmetry operations of G $(W,w) = (I,t_n)(W,w_0), 0 \le w_{i0} < I$

Space Groups: infinite order

Coset decomposition G:T_G

General position

Factor group G/T_G

isomorphic to the point group P_G of GPoint group $P_G = \{I, W_2, W_3, ..., W_i\}$

Example: PI2/mI

inversion centres (T,t):

Coset decomposition G:T_G

Point group
$$P_G = \{1, 2, \overline{1}, m\}$$

General position

$$(1,0)$$
 $(2,0)$ $(\overline{1},0)$ $(m,0)$

$$(l,t_1)$$
 $(2,t_1)$ $(\overline{1},t_1)$ (m,t_1)

$$(1,t_2)$$
 $(2,t_2)$ $(\overline{1},t_2)$ (m,t_2)

...
$$(1,t_j)$$
 ... $(2,t_j)$... $(1,t_j)$... (m,t_j)

- I			nı	_	n _I /2	
	-1		n ₂		n ₂ /2	
		-1	n ₃		n ₃ /2	

EXAMPLE

Coset decomposition P12₁/c1:T

Point group !

General position

(1)
$$x, y, z$$

(1)
$$x, y, z$$
 (2) $\bar{x}, y + \frac{1}{2}, \bar{z} + \frac{1}{2}$

(3)
$$\bar{x}, \bar{y}, \bar{z}$$

(4)
$$x, \bar{y} + \frac{1}{2}, z + \frac{1}{2}$$

$$(I,0)$$
 $(2,0 \frac{1}{2} \frac{1}{2})$ $(\overline{I},0)$ $(m,0 \frac{1}{2} \frac{1}{2})$

$$(I,t_1)$$
 $(2,0 \frac{1}{2} \frac{1}{2}+t_1)$ (\overline{I},t_1) $(m,0 \frac{1}{2} \frac{1}{2}+t_1)$

$$(I,t_2)$$
 $(2,0 \frac{1}{2} \frac{1}{2} + t_2)$ (I,t_2) $(m,0 \frac{1}{2} \frac{1}{2} + t_2)$

$$(I,t_j)$$
 $(2,0 \frac{1}{2} \frac{1}{2} + t_j)$ (\overline{I},t_j) $(m,0 \frac{1}{2} \frac{1}{2} + t_j)$

inversion centers

$$(\overline{I},pqr)$$
: \overline{I} at p/2,q/2,r/2

2₁screw axes

$$(2,u \frac{1}{2}+v \frac{1}{2}+w)$$

$$(2,0 \frac{1}{2}+v \frac{1}{2})$$

$$(2,u \frac{1}{2} \frac{1}{2}+w)$$

Symmetry Operations Block

GEOMETRIC INTERPRETATION OF THE MATRIX-COLUMN PRESENTATION OF THE SYMMETRY OPERATIONS

TYPE of the symmetry operation

SCREW/GLIDE component

ORIENTATION of the geometric element

LOCATION of the geometric element

International Tables for Crystallography (2006). Vol. A, Space gro

Space group $P2_1/c$ (No. 14)

$$P2_1/c$$

 C_{2h}^5

2/m

No. 14

 $P12_1/c1$

Patterson sy:

UNIQUE AXIS b, CELL CHOICE 1

EXAMPLE

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3)

Positions

Multiplicity, Wyckoff letter, Site symmetry

Coordinates

Matrix-column presentation

Geometric

interpretation

(1) x, y, z

(2) $\bar{x}, y + \frac{1}{2}, \bar{z} + \frac{1}{2}$

(3) $\bar{x}, \bar{y}, \bar{z}$

(4) $x, \bar{y} + \frac{1}{2}, z + \frac{1}{2}$

Symmetry operations

(1) 1

(2) $2(0,\frac{1}{2},0)$ $0,y,\frac{1}{4}$

 $(3) \bar{1} 0,0,0$

(4) $c x, \frac{1}{4}, z$

Example: Space group $P2_1/c$ (14)

BCS: GENPOS

Space-group symmetry operations

General Positions of the Group 14 ($P2_1/c$) [unique axis b]

Click here to get the general positions in text format

short-hand notation

$$\begin{array}{ll} \text{matrix-column} \\ \text{presentation} \end{array} \begin{pmatrix} W_{11}W_{12}W_{13} \\ W_{21}W_{22}W_{23} \\ W_{31}W_{32}W_{33} \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$$

Geometric interpretation

Seitz symbols

No	(v v v) form	Matrix form	Symmetry operation	
No.	(x,y,z) form	Matrix form	ITA	Seitz
1	x,y,z	$\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$	1	{1 0}
2	-x,y+1/2,-z+1/2	$ \left(\begin{array}{ccccc} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \end{array}\right) $	2 (0,1/2,0) 0,y,1/4	{ 2 ₀₁₀ 0 1/2 1/2 }
3	-x,-y,-z	$\left(\begin{array}{cccc} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{array}\right)$	-1 0,0,0	{-1 0}
4	x,-y+1/2,z+1/2	$ \left(\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & 1 & 1/2 \end{array}\right) $	c x,1/4,z	{ m ₀₁₀ 0 1/2 1/2 }

General positions

(1) x, y, z

(2) $\bar{x}, y + \frac{1}{2}, \bar{z} + \frac{1}{2}$ (3) $\bar{x}, \bar{y}, \bar{z}$

(4) $x, \bar{y} + \frac{1}{2}, z + \frac{1}{2}$

Symmetry operations

- (1) 1
- (2) $2(0,\frac{1}{2},0)$ $0,y,\frac{1}{4}$ (3) $\bar{1}$ 0,0,0

SEITZ SYMBOLS FOR SYMMETRY OPERATIONS

Seitz symbols { R | t }

short-hand description of the matrix-column presentations of the symmetry operations of the space groups

rotation (or linear) part R

- specify the type and the order of the symmetry operation;
- orientation of the symmetry element by the direction of the axis for rotations and rotoinversions, or the direction of the normal to reflection planes.

1 and $\overline{1}$	identity and inversion
m	reflections
2, 3, 4 and 6	rotations
$\overline{3}$, $\overline{4}$ and $\overline{6}$	rotoinversions

translation part t

translation parts of the coordinate triplets of the *General* position blocks

EXAMPLE

Seitz symbols for symmetry operations of hexagonal and trigonal crystal systems

	ITA description							
No.	coord. triplet	type	orien- tation	Seitz symbol				
1)	x, y, z	1		1				
2)	$\overline{y}, x-y, z$	3+	0, 0, z	3+001				
3)	$\overline{x} + y, \overline{x}, z$	3-	0, 0, z	3-001				
4)	$\overline{x}, \overline{y}, z$	2	0, 0, z	2 ₀₀₁				
5)	$y, \overline{x} + y, z$	6	0, 0, z	6_001				
6)	x-y,x,z	6+	0, 0, z	6+001				
7)	y, x, \overline{z}	2	<i>x</i> , <i>x</i> , 0	2,110				
8)	$x-y, \overline{y}, \overline{z}$	2	x,0,0	2 ₁₀₀				
9)	$\overline{x}, \overline{x} + y, \overline{z}$	2	0, y, 0	2 ₀₁₀				
10)	$\overline{y}, \overline{x}, \overline{z}$	2	$x, \bar{x}, 0$	2,110				
11)	$\overline{x} + y, y, \overline{z}$	2	x,2x,0	2 ₁₂₀				
12)	$x, x-y, \overline{z}$	2	2x, x, 0	2210				

	ITA descr	iption		Seitz
No.	coord. triplet	type	orien- tation	symbol
13)	$\overline{x}, \overline{y}, \overline{z}$	ī		<u>1</u>
14)	$y, \overline{x} + y, \overline{z}$	<u>3</u> +	0, 0, z	3+
15)	$x-y,x,\overline{z}$	3-	0, 0, z	3 ₀₀₁
16)	x, y, \overline{z}	m	x, y, 0	<i>m</i> ₀₀₁
17)	$\overline{y}, x-y, \overline{z}$	6 -	0, 0, z	$\overline{6}_{001}^{-}$
18)	$\overline{x} + y, \overline{x}, \overline{z}$	6 +	0, 0, z	6+001
19)	$\overline{y}, \overline{x}, z$	m	x, \overline{x}, z	<i>m</i> ₁₁₀
20)	$\overline{x} + y, y, z$	m	x, 2x, z	<i>m</i> ₁₀₀
21)	x, x-y, z	m	2x, x, z	<i>m</i> ₀₁₀
22)	y, x, z	m	x, x, z	m ₁₁₀
23)	$x-y, \overline{y}, z$	m	x, 0, z	<i>m</i> ₁₂₀
24)	$\overline{x}, \overline{x} + y, z$	m	0, y, z	m ₂₁₀

Glazer et al. Acta Cryst A 70, 300 (2014)

Space group P2₁/c (No. 14)

$$P2_1/c$$

$$C_{2h}^5$$

2/m

No. 14

 $P12_{1}/c1$

Patterson sy:

UNIQUE AXIS b, CELL CHOICE 1

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3)

Positions

Multiplicity, Wyckoff letter, Site symmetry

Coordinates

Matrix-column presentation

(1) x, y, z

(2) $\bar{x}, y + \frac{1}{2}, \bar{z} + \frac{1}{2}$

(3) $\bar{x}, \bar{y}, \bar{z}$

(4) $x, \bar{y} + \frac{1}{2}, z + \frac{1}{2}$

Geometric interpretation **Symmetry operations**

(1) 1

(2) $2(0,\frac{1}{2},0)$ $0,y,\frac{1}{4}$

 $(3) \bar{1} 0,0,0$

(4) $c x, \frac{1}{4}, z$

Seitz symbols

(1) $\{110\}$ (2) $\{2_{010}101/21/2\}$ (3) $\{\overline{1}10\}$ (4) $\{m_{010}101/21/2\}$

NOT in ITA

SPACE-GROUPS DIAGRAMS

Diagrams of symmetry elements

three different settings

permutations of **a,b,c**

Diagram of general position points

The various rotation and screw axes and their symbol

printed symbol	symmetry axis	graphic symbol	nature of the screw translation	printed symbol	symmetry axis	graphic symbol	nature of the screw translation
1	Identity	none	none	4	Rotation tetrad	♦	none
1	Inversion	0	none	41		*	c/4
2	Rotation diad or twofold rotation axis	(⊥ paper) (// paper)	110110	4 ₂	Screw tetrads	*	2 <i>c</i> /4 3 <i>c</i> /4
	Screw diad	6	c/2	4	Inverse tetrad	•	none
21	or twofold	y (⊥ paper)		6	Rotation hexad	•	none
	screw axis	(// paper)	<i>a</i> /2 or <i>b</i> /2	61			<i>c</i> /6
3	Rotation triad	⊥ paper ▲	none	62			2 <i>c</i> /6 3 <i>c</i> /6
3 ₁		À	<i>c</i> /3	6 ₃	Screw hexads		4 <i>c</i> /6
32	Screw triad		2 <i>c</i> /3	6 ₅			5 <i>c</i> /6
3	Inverse triad	Δ	none	6	Inverse hexad	(a)	none

The various symmetry planes and their symbol

nnintad		graphica	symbol	
printed symbol	symmetry plane	normal to plane of projection	parallel to plane of projection	nature of glide translation
m	reflection plane (mirror)			none
a, b	axial		$\longrightarrow \longleftarrow$	a/2 or b/2
С	glide plane		none	c/2
n	diagonal glide plane (<i>net</i>)			(a+b)/2, (b+c)/2 or (c+a)/2; OR (a+b+c)/2 for t and c systems
d	"diamond" glide plane	- ← · - · - ·	$\frac{\frac{1}{8}}{\frac{3}{8}}$	(a±b)/4, (b±c)/4 or (c±a)/4; OR (a±b±c)/4 for t and c systems

EXAMPLE

Space group Cmm2 (No. 35)

6 Symmetry operations

For (0,0,0) + set

(1) 1

- (2) 2 0,0,z
- (3) m x, 0, z
- (4) m = 0, y, z

For $(\frac{1}{2}, \frac{1}{2}, 0)$ + set

(1)
$$t(\frac{1}{2}, \frac{1}{2}, 0)$$

(2) 2
$$\frac{1}{4}, \frac{1}{4}, z$$

(3)
$$(a \ x, \frac{1}{4}, z)$$

(4)
$$b = \frac{1}{4}, y, z$$

glide plane, $\mathbf{t} = 1/2\mathbf{a}$ at y=1/4, $\perp \mathbf{b}$ glide plane, $\mathbf{t}=1/2\mathbf{b}$ at $\mathbf{x}=1/4$, $\perp \mathbf{a}$

Geometric

interpretation

General Position

Coordinates

$$(0,0,0)+(\frac{1}{2},\frac{1}{2},0)+$$

Matrix-column presentation of symmetry operations

8 f 1

(2)
$$\bar{x}, \bar{y}, z$$

(3)
$$x, \bar{y}, z$$

(4)
$$\bar{x}, y, z$$

Example: P4mm

(1) 1

Diagram of symmetry elements

Diagram of general position points

(2) \bar{x}, \bar{y}, z

(6) \bar{x}, y, z

(3) \bar{y}, x, z

(7) \bar{y}, \bar{x}, z

(4) y, \bar{x}, z

(8) y, x, z

(1) x, y, z

(5) x, \bar{y}, z

Symmetry elements

Symmetry element +

Geometric

Fixed points

+ Element set Symmetry operations that share the same geometric element

Examples

Rotation axis

| St, ..., (n-1)th powers + all coaxial equivalents

All rotations and screw rotations with the same axis, the same angle and sense of rotation and the same screw vector (zero for rotation) up to a lattice translation vector.

Glide plane

plane

defining operation+ all coplanar equivalents

All glide reflections with the same reflection plane, with glide of d.o. (taken to be zero for reflections) by a lattice translation vector.

Symmetry operations and symmetry elements

Geometric elements and Element sets

Name of symmetry element	Geometric element	Defining operation (d.o)	Operations in element set
Mirror plane	Plane A	Reflection in A	D.o. and its coplanar equivalents*
Glide plane	Plane A	Glide reflection in $A; 2\nu \pmod{\nu}$ a lattice translation	D.o. and its coplanar equivalents*
Rotation axis	Line b	Rotation around b , angle $2\pi/n$ $n=2,3,4$ or 6	1st,, $(n-1)$ th powers of d.o. and their coaxial equivalents [†]
Screw axis	Line b	Screw rotation around b , angle $2\pi/n$, $u=j/n$ times shortest lattice translation along b , right-hand screw, $n=2,3,4$ or $6,j=1,\ldots,(n-1)$	1st,, $(n-1)$ th powers of d.o. and their coaxial equivalents [†]
Rotoinversion axis	$\begin{array}{c} \text{Line } b \\ \text{and point} \\ P \text{ on } b \end{array}$	Rotoinversion: rotation around b , angle $2\pi/n$, and inversion through P , $n=3$, 4 or 6	D.o. and its inverse
Center	Point P	Inversion through P	D.o. only

Example: P4mm

Element set of (00z) line

Symmetry operations that share (0,0,z) as geometric element

Ist, 2nd, 3rd powers + all coaxial equivalents

All rotations and screw rotations with the same axis, the same angle and sense of rotation and the same screw vector (zero for rotation) up to a lattice translation vector.

Element set of (0,0,z) line

2	-x,-y,z		
4+	-y,x,z		
4-	y,-x,z		
2(0,0,1)	-x,-y,z+I		
•••	•••		

Example: P2

Diagram of symmetry elements

Diagram of general position points

Symmetry element diagram (left) and General position diagram (right) of the space group P2, No. 3 (unique axis b, cell choice 1).

Example: $la\overline{3}d$ (No. 230)

Diagrams of general position points

Polyhedron centre at 0, 0, 0

Polyhedron centre at $\frac{1}{8}, \frac{1}{8}, \frac{1}{8}$

Example: la3d (No. 230)

General-position diagrams in perspective projection

Polyhedron centre at 0, 0, 0

polyhedra (twisted trigonal antiprism) centres at (0,0,0) and its equivalent points, site symmetry .-3.

Polyhedron centre at $\frac{1}{8}$, $\frac{1}{8}$, $\frac{1}{8}$

polyhedra (twisted trigonal antiprism) centres at (1/8,1/8,1/8) and its equivalent points, site symmetry .32.

ORIGINS AND ASYMMETRIC UNITS

Space group Cmm2 (No. 35): left-hand page ITA

Cmm2

No. 35

 $C_{2\nu}^{11}$

Cmm2

mm2

Orthorhombic

Patterson symmetry Cmmm

Origin on mm2

Origin statement

The site symmetry of the origin is stated, if different from the identity.

A further symbol indicates all symmetry elements (including glide planes and screw axes) that pass through the origin, if any.

Space groups with two origins

For each of the two origins the location relative to the other origin is also given.

Example: Different origins for Pnnn

Pnnn

 D_{2h}^2

mmm

Orthorhombic

No. 48

 $P \ 2/n \ 2/n \ 2/n$

Patterson symmetry Pmmm

ORIGIN CHOICE 1

Origin at 222, at $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{4}$ from $\overline{1}$

ORIGIN CHOICE 2

Origin at $\overline{1}$ at nnn, at $-\frac{1}{4}$, $-\frac{1}{4}$, $-\frac{1}{4}$ from 222

Example: Asymmetric unit Cmm2 (No. 35)

ITA:

Asymmetric unit
$$0 \le x \le \frac{1}{4}$$
; $0 \le y \le \frac{1}{2}$; $0 \le z \le 1$

Surface area: green = inside the asymmetric unit, red = outside Basis vectors: a = red, b = green, c = blue

```
Number of facets: 6
Number of vertices: 8
  0, 1/2, 0
                             x \ge 0
                             x \le 1/4 [y \le 1/4]
  0, 1/2, 1
  1/4, 1/2, 1
                             y>=0
  1/4, 0, 1
                             y <= 1/2
  0, 0, 0
                             z \ge 0
  1/4, 1/2, 0
  0, 0, 1
  1/4, 0, 0
                           Guide to notatio
```

(output cctbx: Ralf Grosse-Kustelve)

An asymmetric unit of a space group is a (simply connected) smallest closed part of space from which, by application of all symmetry operations of the space group, the whole of space is filled.

Example: Asymmetric units for the space group P121


```
Number of vertices: 8
0, 1, 1/2
1, 1, 0
1, 0, 0
0, 0, 1/2
1, 0, 1/2
0, 0, 0
0, 1, 0
1, 1, 1/2

| Number of facets: 6
| x>=0
| x<1
| y>=0
| y<1
| z>=0 [x<=1/2]
| z<=1/2 [x<=1/2]
| Cuide to notation]
```


(output cctbx: Ralf Grosse-Kustelve)

GENERAL AND SPECIAL WYCKOFF POSITIONS SITE-SYMMETRY

Group Actions

Actions A group action of a group \mathcal{G} on a set $\Omega = \{\omega \mid \omega \in \Omega\}$ assigns to each pair (g, ω) an object $\omega' = g(\omega)$ of Ω such that the following hold:

- (i) applying two group elements g and g' consecutively has the same effect as applying the product g'g, i.e. $g'(g(\omega)) = (g'g)(\omega)$
- (ii) applying the identity element e of G has no effect on ω , i.e. $e(\omega) = \omega$ for all ω in Ω .

Orbit and Stabilizer

The set $\omega^{\mathcal{G}} := \{g(\omega) \mid g \in \mathcal{G}\}\$ of all objects in the orbit of ω is called the *orbit of* ω *under* \mathcal{G} .

The set $S_{\mathcal{G}}(\omega) := \{g \in \mathcal{G} \mid g(\omega) = \omega\}$ of group elements that do not move the object ω is a subgroup of \mathcal{G} called the *stabilizer* of ω in \mathcal{G} .

Equivalence classes

Via this equivalence relation, the action of \mathcal{G} partitions the objects in Ω into equivalence classes

General and special Wyckoff positions

Orbit of a point X_o under $G: G(X_o) = \{(W,w)X_o,(W,w) \in G\}$ Multiplicity

Site-symmetry group $S_o = \{(W, w)\}$ of a point X_o $(W, w)X_o = X_o$

Multiplicity: |P|/|S_o|

General position X_o

$$S=\{(I,o)\}\simeq 1$$

Multiplicity: |P|

Special position X_o

$$S>1 = \{(I,o),...,\}$$

Multiplicity: |P|/|S_o|

Site-symmetry groups: oriented symbols

General position

- (i) coordinate triplets of an image point X of the original point $X = \prod_{x} under (W,w)$ of G
 - -presentation of infinite image points \widetilde{X} under the action of (W,w) of G: $0 \le x_i < I$

- (ii) short-hand notation of the matrix-column pairs (W,w) of the symmetry operations of G
 - -presentation of infinite symmetry operations of G $(W,w) = (I,t_n)(W,w_0), 0 \le w_{i0} < I$

General Position of Space groups

As coordinate triplets of an image point X of the original point $X = \begin{bmatrix} x \\ y \end{bmatrix}$ under (W,w) of G

General position

-presentation of infinite image points X of X under the action of (W,w) of G: $0 \le x_i < I$

Example: Calculation of the Site-symmetry groups

Group P-I

Positions

Multiplicity, Wyckoff letter, Site symmetry

Coordinate

$$(1) x, y, z$$

$$(2) \ \bar{x}, \bar{y}, \bar{z}$$

$$h$$
 $\bar{1}$

$$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$$

$$1 \quad g \quad \overline{1}$$

$$0, \frac{1}{2}, \frac{1}{2}$$

$$1 \quad f$$

$$\frac{1}{2}, 0, \frac{1}{2}$$

$$1 \quad e \quad \overline{1}$$

$$\frac{1}{2}, \frac{1}{2}, 0$$

$$1 \quad d$$

$$\frac{1}{2}, 0, 0$$

$$1 \quad c$$

$$0, \frac{1}{2}, 0$$

$$0,0,\frac{1}{2}$$

$$S_f = \{(1,0), (-1,000)X_f = X_f\}$$

 $S_f = \{1,-1\}$ isomorphic

QUIZ: Calculation of the Site-symmetry groups

Group P-I

Determine the site symmetry group of the point Xo=

$$X_0 = \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix}$$

Positions

Multiplicity, Wyckoff letter, Site symmetry

2 i 1

(1) x, y, z

(2) $\bar{x}, \bar{y}, \bar{z}$

Coordinate

 $h = \overline{1}$

 $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$

 $1 g \bar{1}$

 $0, \frac{1}{2}, \frac{1}{2}$

 $1 \quad f$

 $\frac{1}{2}, 0, \frac{1}{2}$

 $1 \quad e \quad \overline{1}$

 $(\frac{1}{2},\frac{1}{2},0)$

 $1 \quad d \quad \bar{1}$

 $\frac{1}{2}, 0, 0$

1 *c*

 $0, \frac{1}{2}, 0$

1 *b*

 $0,0,\frac{1}{2}$

 \boldsymbol{a}

0,0,0

 $S=\{(W,w), (W,w)X_o = X_o\}$

Space group P4mm

Site symmetry groups of special Wyckoff positions

- (1) x, y, z
- (2) \bar{x}, \bar{y}, z
- (3) \bar{y}, x, z
- (4) y, \bar{x}, z

- (5) x, \bar{y}, z
- (6) \bar{x}, y, z (7) \bar{y}, \bar{x}, z
- (8) y, x, z

.m.

- $x, \frac{1}{2}, z$ $\bar{x}, \frac{1}{2}, z$
- $\frac{1}{2}, x, z$
- $\frac{1}{2}$, \bar{x} ,z

.m.

- x,0,z
- $\bar{x},0,z$
- 0,x,z
- $0,\bar{x},z$

. . m

- x, x, z
- \bar{x}, \bar{x}, z
- \bar{x}, x, z
- x, \bar{x}, z

- 2mm.
- $0, \frac{1}{2}, z$

- \boldsymbol{b} 4 m m
- $\frac{1}{2}, \frac{1}{2}, Z$
- a 4mm
- 0, 0, z

Symmetry operations

(1) 1

(2) 2 0,0,z

- $(3) 4^+ 0,0,z$
- $(4) 4^{-} 0,0,z$

(5) $m \ x, 0, z$

(6) m = 0, y, z

- (7) $m x, \bar{x}, z$
- (8) m x, x, z

CO-ORDINATE TRANSFORMATIONS IN CRYSTALLOGRAPHY

Co-ordinate transformation

3-dimensional space

 $(\mathbf{a}, \mathbf{b}, \mathbf{c})$, origin O: point X(x, y, z)

 $(\mathbf{a}', \mathbf{b}', \mathbf{c}')$, origin O': point X(x', y', z')

Transformation matrix-column pair (P,p)

(i) linear part: change of orientation or length:

$$(\mathbf{a}',\mathbf{b}',\mathbf{c}')=(\mathbf{a},\mathbf{b},\mathbf{c})P$$

$$= (\mathbf{a}, \mathbf{b}, \mathbf{c}) \begin{pmatrix} P_{11} & P_{12} & P_{13} \\ P_{21} & P_{22} & P_{23} \\ P_{31} & P_{32} & P_{33} \end{pmatrix} = (P_{11}\mathbf{a} + P_{21}\mathbf{b} + P_{31}\mathbf{c}, P_{12}\mathbf{a} + P_{22}\mathbf{b} + P_{32}\mathbf{c}, P_{13}\mathbf{a} + P_{23}\mathbf{b} + P_{33}\mathbf{c}).$$

(ii) origin shift by a shift vector $\mathbf{p}(p_1,p_2,p_3)$:

$$O' = O + p$$

the origin O' has coordinates (p_1,p_2,p_3) in the old coordinate system

QUICK QUIZ

$$(a',b',c') = (a,b,c)$$

$$(a,b,c) = (a',b',c')$$

$$X' = ($$
?

X = (3/4, 1/4, 0)

Write "new in terms of old" as column vectors.

QUICK QUIZ

$$q = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$$

$$X = (3/4, 1/4, 0)$$

$$X' = ($$
?

Linear parts as before.

Transformation matrix-column pair (P,p)

$$(P,p) = \begin{pmatrix} 1/2 & 1/2 & 0 \\ -1/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$a=a'+b'$$
 $b=-a'+b'$
 $c=c'$
 $-\frac{1}{4}$
 $-\frac{3}{4}$
 0

Short-hand notation for the description of transformation matrices

Transformation matrix:

(a,b,c), origin O

$$(P,p) = \begin{pmatrix} P_{11} & P_{12} & P_{13} & p_1 \\ P_{21} & P_{22} & P_{23} & p_2 \\ P_{31} & P_{32} & P_{33} & p_3 \end{pmatrix}$$

(a',b',c'), origin O'

notation rules:

- -written by columns
- -coefficients 0, + I, I
- -different columns in one line
- -origin shift

example:

I	-1		-1/4
I	I		-3/4
		Ι	0

$$\longrightarrow$$
 { a+b, -a+b, c;-1/4,-3/4,0

Transformation of the coordinates of a point X(x,y,z):

special cases

-origin shift (**P=I**):

-change of basis ($m{p}=m{o}$) : $m{x}'=m{P}^{-1}m{x}$

$$oldsymbol{x}' = oldsymbol{x} - oldsymbol{p}$$

$$oldsymbol{x}' = oldsymbol{P}^{-1}oldsymbol{x}$$

EXAMPLE

$$X' = (P,p)^{-1}X = \begin{pmatrix} \begin{vmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} -1/4 \\ -3/4 \\ 0 \end{vmatrix} \begin{pmatrix} 3/4 \\ 1/4 \\ 0 \end{vmatrix} = \begin{vmatrix} 1/4 \\ 1/4 \\ 0 \end{vmatrix}$$

QUICK QUIZ

Determine the coordinates X' of a point X = with respect to the new basis(a',b',c') = (a,b,c)P, with P = c,a,b.

0,70
0,31
0,95

Hint

$$(X')=(P,p)^{-1}(X)$$

Covariant and contravariant crystallographic quantities

direct or crystal basis

$$(a',b',c')=(a, b, c)P=(a, b, c)$$

P₁₁ P₁₂ P₁₃
P₂₁ P₂₂ P₂₃
P₃₁ P₃₂ P₃₃

reciprocal or dual basis

covariant to crystal basis: Miller indices (h',k',l')=(h,k,l)P

contravariant to crystal basis: indices of a direction [u]

Transformation of symmetry operations (W,w)

i.
$$\tilde{m{x}}'=(m{W}',m{w}')m{x}'$$

ii. $\tilde{m{x}}'=(m{P},m{p})^{-1}\tilde{m{x}}=(m{P},m{p})^{-1}(m{W},m{w})m{x}=(m{P},m{p})^{-1}(m{W},m{w})(m{P},m{p})m{x}'$

$$(W',w')=(P,p)^{-1}(W,w)(P,p)$$

QUIZ

The following matrix-column pairs (W,w) are referred with respect to a basis (a,b,c):

(1)
$$x,y,z$$
 (2) $-x,y+1/2,-z+1/2$

(3)
$$-x,-y,-z$$
 (4) $x,-y+1/2, z+1/2$

Determine the corresponding matrix-column pairs (W',w') with respect to the basis $(\mathbf{a'},\mathbf{b'},\mathbf{c'})=(\mathbf{a},\mathbf{b},\mathbf{c})\mathbf{P}$, with $\mathbf{P}=\mathbf{c},\mathbf{a},\mathbf{b}$.

Hint
$$(W',w')=(P,p)^{-1}(W,w)(P,p)$$

Problem: SYMMETRY DATA ITA SETTINGS

530 ITA settings of orthorhombic and monoclinic groups

Monoclinic descriptions

		abc	cba					Monoclinic axis b
	Transf.			abc	$\mathrm{ba}ar{\mathrm{c}}$			Monoclinic axis c
						abc	ācb	Monoclinic axis a
		C12/c1	A12/a1	A112/a	B112/b	B2/b11	C2/c11	Cell type 1
HM	C2/c	A12/n1	C12/n1	B112/n	A112/n	C2/n11	B2/n11	Cell type 2
		I12/a1	I12/c1	I112/b	I112/a	I2/c11	I2/b11	Cell type 3

Orthorhombic descriptions

No.	HM	abc	ba c	cab	c ba	bca	a c b
33	$Pna2_1$	$Pna2_1$	$Pbn2_1$	$P2_1nb$	$P2_1cn$	$Pc2_1n$	$Pn2_1a$

METRIC TENSOR

3D-unit cell and lattice parameters

lattice basis: {a, b, c}

unit cell:
the parallelepiped
defined by the
basis vectors

primitive P and centred unit cells: A,B,C,F, I, R

number of lattice points per unit cell

Lattice parameters

lengths of the unit translations:

a

b

C

angles between them:

$$\alpha = (\overrightarrow{b}, \overrightarrow{c})$$

$$\beta = (\widehat{c}, \widehat{a})$$

$$\gamma = (\widehat{\vec{a}}, \widehat{\vec{b}})$$

Lattice parameters (3D)

An alternative way to define the metric properties of a lattice L

Given a lattice L of V^3 with a lattice basis: $\{a_1, a_2, a_3\}$

Definition (D 1.5.3) The quantities

$$a_1 = |\mathbf{a}_1| = +\sqrt{(\mathbf{a}_1\,,\,\mathbf{a}_1)}, \qquad a_2 = |\mathbf{a}_2| = +\sqrt{(\mathbf{a}_2\,,\,\mathbf{a}_2)}, \ a_3 = |\mathbf{a}_3| = +\sqrt{(\mathbf{a}_3\,,\,\mathbf{a}_3)},$$

$$\alpha_1 = \arccos(|\mathbf{a}_2|^{-1}|\mathbf{a}_3|^{-1}(\mathbf{a}_2, \mathbf{a}_3)), \qquad \alpha_2 = \arccos(|\mathbf{a}_3|^{-1}|\mathbf{a}_1|^{-1}(\mathbf{a}_3, \mathbf{a}_1)),$$
 and $\alpha_3 = \arccos(|\mathbf{a}_1|^{-1}|\mathbf{a}_2|^{-1}(\mathbf{a}_1, \mathbf{a}_2))$

are called the *lattice parameters* of the lattice.

Remark: the lengths of basis vectors are measured in $nm (lnm=10^{-9} \text{ m}) \quad \text{Å} (l\text{Å}=10^{-10} \text{ m}) \quad pm (lpm=10^{-12} \text{ m})$

Metric tensor **G** in terms of lattice parameters

$$G = \begin{pmatrix} \mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{c} \\ \mathbf{b} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} & \mathbf{b} \cdot \mathbf{c} \\ \mathbf{c} \cdot \mathbf{a} & \mathbf{c} \cdot \mathbf{b} & \mathbf{c} \cdot \mathbf{c} \end{pmatrix} G = \begin{pmatrix} a^2 & ab \cos \gamma & ac \cos \beta \\ ab \cos \gamma & b^2 & bc \cos \alpha \\ ac \cos \beta & bc \cos \alpha & c^2 \end{pmatrix}$$

Crystal families, crystal systems, lattice systems and Bravais lattices in 3D

				No. of	Conventional coordinate system		
Crystal family	Symbol*	Crystal system	Crystallographic point groups†	space groups	Restrictions on cell parameters	Parameters to be determined	Bravais lattices*
Triclinic (anorthic)	a	Triclinic	1, 🗓	2	None	$a,b,c,\ lpha,eta,\gamma$	аР
Monoclinic	m	Monoclinic	2, m, 2/m	13	<i>b</i> -unique setting $\alpha = \gamma = 90^{\circ}$	<i>a, b, c</i> β‡	mP mS (mC, mA, mI)
					c -unique setting $\alpha = \beta = 90^{\circ}$	$a,b,c,$ $\gamma \ddagger$	mP mS (mA, mB, mI)
Orthorhombic	o	Orthorhombic	222, mm2, mmm	59	$lpha=eta=\gamma=90^\circ$	a, b, c	oP oS (oC, oA, oB) oI oF
Tetragonal	t	Tetragonal	$4, \overline{4}, \overline{4/m}$ $422, 4mm, \overline{4}2m,$ 4/mmm	68	a = b $\alpha = \beta = \gamma = 90^{\circ}$	a, c	tP tI
Hexagonal	h	Trigonal	$3, \overline{3}$ $32, 3m, \overline{3}m$	18	$a=b$ $\alpha=\beta=90^{\circ}, \ \gamma=120^{\circ}$	a, c	hP
				7	$a = b = c$ $\alpha = \beta = \gamma$ (rhombohedral axes, primitive cell) $a = b$ $\alpha = b$ $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$ (hexagonal axes,	a, α	hR
					triple obverse cell)		
		Hexagonal	6, 6, 6/m 622, 6mm, 62m, 6/mmm	27	a = b $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	a, c	hP
Cubic	С	Cubic	23, m3 432, 43m, m3m	36	$a = b = c$ $\alpha = \beta = \gamma = 90^{\circ}$	a	cP cI cF

Crystallographic calculations: Volume of the unit cell

Volume of the unit cell:

The volume V of the unit cell of a crystal structure, i.e. the body containing all points with coordinates $0 \le x_1, x_2, x_3 < 1$, can be calculated by the formula

$$\det(\mathbf{G}) = V^2$$
.

Scalar product of arbitrary vectors:

$$(r,t)=r^{T}Gt$$

Transformation properties of **G** under basis transformation

$${a'_1, a'_2, a'_3} = {a_1, a_2, a_3} P$$

$$G'=P^TGP$$

QUIZ

Body-centred cubic cell

A body-centred cubic lattice (cl) has as its conventional basis the conventional basis (**a**_P,**b**_P,**c**_P) of a primitive cubic lattice, but the lattice also contains the centring vector $1/2a_P+1/2b_P+1/2c_P$ which points to the centre of the conventional cell.

Calculate the coefficients of the metric tensor for the body-centred cubic lattice: (i) for the conventional basis (**a**_P,**b**_P,**c**_P);

(ii) for the primitive basis:

$$\mathbf{a}_{l} = 1/2(-\mathbf{a}_{P} + \mathbf{b}_{P} + \mathbf{c}_{P}), \mathbf{b}_{l} = 1/2(\mathbf{a}_{P} - \mathbf{b}_{P} + \mathbf{c}_{P}), \mathbf{c}_{l} = 1/2(\mathbf{a}_{P} + \mathbf{b}_{P} - \mathbf{c}_{l})$$

(iii) determine the lattice parameters of the primitive cell if a_P =4 Å

Hint

metric tensor transformation

$$G'=P^tGP$$