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SPACE-GROUP SYMMETRY



Crystal Symmetry

Real crystal Real crystals are finite objects in physical space which due 
to static (impurities and structural imperfections like 
disorder, dislocations, etc) or dynamic (phonons) defects 
are not perfectly symmetric.

Crystal pattern: A model of the ideal crystal (crystal structure) in 
point space consisting of a strictly 3-dimensional 
periodic set of points  

Infinite periodic spatial arrangement of the 
atoms (ions, molecules) with no static or 
dynamic defects

Ideal crystal
(ideal crystal structures)

An abstraction of the atomic nature of the ideal 
structure, perfectly periodic 



SPACE GROUPS

Space group G: 

The set of all symmetry 
operations (isometries) 
of a crystal pattern

The infinite set of all translations that 
are symmetry operations of the 
crystal pattern Point group of the 

space groups PG: 

The factor group of the space group G with 
respect to the translation subgroup T: PG ≅ G/H

(W,w)—>W PG={W|(W,w)∈G}

Translation subgroup T: 
T     G   



INTERNATIONAL TABLES FOR 
CRYSTALLOGRAPHY

VOLUME A: SPACE-GROUP SYMMETRY

•headline with the relevant group symbols;
•diagrams of the symmetry elements and of the 
  general position;
•specification of the origin and the asymmetric 
  unit;
•list of symmetry operations;
•generators;
•general and special positions with multiplicities, 
  site symmetries, coordinates and reflection 
  conditions;
•symmetries of special projections;

Extensive tabulations and illustrations
 of the 17 plane groups and 

of the 230 space groups



GENERAL  LAYOUT: LEFT-HAND PAGE



General Layout: Right-hand page



HEADLINE BLOCK



Number of 
space group 

Schoenflies 
symbol

Full Hermann-
Mauguin symbol

Crystal class
(point group) Crystal 

system

Patterson
symmetry

Short Hermann-
Mauguin symbol



HERMANN-MAUGUIN 
SYMBOLISM FOR SPACE 

GROUPS



Hermann-Mauguin symbols for space groups

The Hermann–Mauguin symbol for a space group consists of a sequence of 
letters and numbers, here called the constituents of the HM symbol.

(i) The first constituent is always a symbol for the conventional cell of the 
translation lattice of the space group 

(ii) The second part of the full HM symbol of a space group consists of one position 
for each of up to three representative symmetry directions. To each position belong 
the generating symmetry operations of their representative symmetry direction. The 
position is thus occupied either by a rotation, screw rotation or rotoinversion and/
or by a reflection or glide reflection. 

(iii) Simplest-operation rule: 
pure rotations > screw rotations;
pure rotations > rotoinversions
reflection m > a; b; c > n

‘>’ means 
‘has priority’



14 Bravais Lattices

crystal family



Symmetry directions

A direction is called a symmetry direction of a crystal 
structure if it is parallel to an axis of rotation, screw 
rotation or rotoinversion or if it is parallel to the normal 
of a reflection or glide-reflection plane.  A symmetry 
direction is thus the direction of the geometric element of 
a symmetry operation, when the normal of a symmetry 
plane is used for the description of its orientation. 



Hermann-Mauguin symbols for space groups



Hermann-Mauguin symbols for space groups

primary
direction

tertiary
direction

secondary
direction

Example: 
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Symmetry Operations 

TYPE of the symmetry operation

ORIENTATION of the geometric element

LOCATION of the geometric element

SCREW/GLIDE component

KIND of the symmetry operation



Kinds of Symmetry Operations

chirality (handedness)
preserving

Symmetry operations of 1st kind (proper):  

Symmetry operations of 2nd kind (improper):  

chirality (handedness)
non-preserving

Chirality is the geometric property of a rigid object of being non-superposable on its 
mirror image. An object displaying chirality is called chiral; the opposite term is achiral. 



Crystallographic symmetry operations

Crystallographic restriction theorem
The rotational symmetries of a crystal pattern 
are limited to 2-fold, 3-fold, 4-fold, and 6-fold.

Matrix proof:
cosθ -sinθ

sinθ cosθ
Rotation with respect 
to orthonormal basis R=

Rotation with respect 
to lattice basis R: integer matrix In a lattice basis, because the rotation must map 

lattice points to lattice points, each matrix entry — 
and hence the trace — must be an integer. 

Tr R = 2cosθ= integer



Crystallographic symmetry operations

fixed points of isometries characteristics:

identity:

Types of isometries

translation t:

the whole space fixed

                                        no fixed point x̃ = x + t

rotation: one line fixed
rotation axis 

φ = k × 360
◦/N

screw rotation: no fixed point
screw axis 

preserve handedness

screw vector

(W,w)Xf=Xf
geometric elements 



roto-inversion:

Types of isometries

inversion:

centre of roto-inversion fixed
roto-inversion axis

reflection: plane fixed
reflection/mirror plane 

glide reflection: no fixed point
glide plane 

do not
preserve handedness

glide vector

centre of inversion fixed



-1

1

-1

1/2

0

1/2

Referred to an ‘orthorhombic’ coordinated system (a≠b≠c; 
α=β=γ=90) two symmetry operations are represented by the 
following matrix-column pairs: 

(W2,w2)=

Determine the images Xi of a 
point X under the symmetry 
operations (Wi,wi) where

-1

1

-1

0

0

0

(W1,w1)=

0,70

0,31

0,95

X=

Can you guess what is the 
geometric ‘nature’ of (W1,w1)? 
And of (W2,w2)? 

A drawing could be rather helpful  
Hint: 

( ) ( )

QUIZ



Characterization of the symmetry operations: 

-1

1

-1
  det( )  = ?

-1

1

-1

tr( )  = ?

What are the fixed points of (W1,w1) and (W2,w2) ? 

-1

1

-1( ) xf

yf

zf

1/2

0

1/2

xf

yf

zf

  = 

QUIZHINTS



Description of isometries: 3D

coordinate system: {O,a,b, c}

isometry:
X X

~

=  F1(x,y,z)~x



Matrix formalism

linear/matrix
 part

translation
column part

matrix-column
pair

Seitz symbol



Short-hand notation for the description 
of isometries

isometry: X X
~

-left-hand side: omitted 
-coefficients 0, +1, -1
-different rows in one line

notation rules:

examples: -1

1

-1

1/2

0

1/2

-x+1/2, y, -z+1/2

(W,w)

x+1/2, y, z+1/2{



QUICK QUIZ

Construct the matrix-column pair (W,w) of the 
following coordinate triplets:

(1) x,y,z (2) -x,y+1/2,-z+1/2

(3) -x,-y,-z (4) x,-y+1/2, z+1/2



Space group Cmm2 (No. 35)

Diagram of symmetry elements

0 b

a

Diagram of 
general position points

General Position

How are the symmetry 
operations 

represented in ITA ?



coordinate triplets of an image point X of 
the original point X=     under (W,w) of G

short-hand notation of the matrix-column pairs 
(W,w) of the symmetry operations of G

-presentation of infinite symmetry operations of G
(W,w) = (I,tn)(W,w0), 0≤wi0<1

(i)

(ii)

General position

~

x

y

z

-presentation of infinite image points X under the 
action of (W,w) of G

~



Space Groups: infinite order

Coset decomposition G:TG

(I,0)     (W2,w2)     ...   (Wm,wm)       ...   (Wi,wi)

(I,t1)     (W2,w2+t1) ...  (Wm,wm+t1)  ...   (Wi,wi+t1)
(I,t2)     (W2,w2+t2) ...  (Wm,wm+t2)  ...   (Wi,wi+t2)

(I,tj)     (W2,w2+tj) ...   (Wm,wm+tj)  ...    (Wi,wi+tj)
...               ...        ...         ...           ...       ...

...               ...        ...         ...           ...       ...

Factor group G/TG

isomorphic to the point group PG of G

Point group PG = {I, W2, W3,…,Wi}

General position



General position

(I,0)     (2,0)     (  ,0)    (m,0)

(I,t1)     (2,t1)    (  , t1)  (m, t1)

(I,t2)     (2,t2)    (  , t2)  (m,t2)

(I,tj)      (2,tj)     (  , tj)   (m, tj)
...         ...          ...         ...

...           ...        ...         ...    

1̄

1̄

1̄

1̄

TG TG 2 TG TG m1̄

Coset decomposition G:TGExample: P12/m1

Point group  PG = {1, 2, 1, m}

n1/2

n2/2

n3/2

n1

n2

n3

-1

-1

-1inversion centres (1,t):

1 at



inversion
centers

Coset decomposition P121/c1:T

(I,t1)     (2,0 ½ ½+t1)    ( ,t1)     (m,0 ½ ½ +t1)
(I,t2)     (2,0 ½ ½ +t2)   ( ,t2)     (m,0 ½ ½ +t2)

(I,tj)     (2,0 ½ ½ +tj)    ( ,tj)       (m,0 ½ ½ +tj)
...               ...        ...      ...           ...       ...

...               ...        ...                 ...           ...       ...

(I,0)     (2,0 ½ ½)        (1,0)     (m,0 ½ ½)

1

1
1

( ,p q r):    at p/2,q/2,r/21

21screw
axes (2,u ½+v ½ +w)

1
(2,0 ½+v ½)

(2,u ½ ½ +w)

General position

EXAMPLE

Point group ?



Symmetry Operations Block

TYPE of the symmetry operation

ORIENTATION of the geometric element

LOCATION of the geometric element

GEOMETRIC INTERPRETATION OF  THE MATRIX-
COLUMN PRESENTATION OF
THE SYMMETRY OPERATIONS

SCREW/GLIDE component



EXAMPLE

Geometric 
interpretation

Matrix-column 
presentation

Space group P21/c (No. 14)



Space-group
symmetry operations

Geometric interpretation

ITA
data

Example: Space group P21/c (14)

short-hand notation

matrix-column 
presentation

Seitz symbols

General positions

BCS: GENPOS



short-hand description of the matrix-column presentations of 
the symmetry operations of the space groups

translation part t

- specify the type and the order of the symmetry 
operation; 

- orientation of the symmetry element by the direction of 
the axis for rotations and rotoinversions, or the direction 
of the normal to reflection planes.

translation parts of the coordinate triplets of the General 
position blocks

identity and inversion
reflections
rotations
rotoinversions

1 and 1
m

 2, 3, 4 and 6
3, 4 and 6

Seitz symbols { R | t }

rotation (or linear) 
part R

SEITZ SYMBOLS  FOR  SYMMETRY OPERATIONS 



Seitz symbols for symmetry 
operations of hexagonal and 

trigonal crystal systems

EXAMPLE

Glazer et al. Acta Cryst A 70, 300 (2014)



EXAMPLE

Geometric 
interpretation

Matrix-column 
presentation

Seitz symbols (1) {1|0}   (2) {2010|01/21/2 }   (3) {1|0}    (4) {m010|01/21/2}  

NOT in ITA



SPACE-GROUPS 
DIAGRAMS 



Diagrams of symmetry elements

Diagram of general 
position points

three different 
settings

permutations
 of a,b,c

0 b

a

0

0

a

b

c

c







Space group Cmm2 (No. 35)

General Position

at y=1/4, ⊥b
glide plane, t=1/2a

at x=1/4, ⊥a
glide plane, t=1/2b

x+1/2,-y+1/2,z -x+1/2,y+1/2,z

EXAMPLE

Matrix-column 
presentation 
of symmetry 
operations

Geometric 
interpretation

0 b

a



Diagram of general 
position points

Diagram of symmetry 
elements

Example: P4mm

⎬⎫ ⎭



Symmetry elements

Symmetry operations 
that share the same 
geometric element

All rotations and screw rotations 
with the same axis, the same 
angle and sense of rotation and 
the same screw vector (zero for 
rotation) up to a lattice translation 
vector.

1st, ..., (n-1)th powers + 
all coaxial equivalents 

}
Examples

Element set

Symmetry
 elements

Geometric 
element

Fixed points

+

Rotation axis
line}

}
All glide reflections with the same 
reflection plane, with glide of d.o. 
(taken to be zero for reflections) by 
a lattice translation vector. 

defining operation+ 
all coplanar equivalents 

Glide plane
plane}



Geometric elements and Element sets

Symmetry operations and symmetry elements

P. M. de Wolff et al.  Acta Cryst (1992) A48 727 



Diagram of symmetry elements
Example: P4mm

Symmetry operations 
that share (0,0,z) as 
geometric element

2 -x,-y,z

4+ -y,x,z

4- y,-x,z

2(0,0,1) -x,-y,z+1

... ...

A l l r o ta t i ons and sc rew 
rotations with the same axis, 
the same angle and sense of 
rotation and the same screw 
vector (zero for rotation) up to 
a lattice translation vector.

1st, 2nd, 3rd powers + 
all coaxial equivalents }

Element set of (0,0,z) line

Element set of (00z) line



Diagram of general 
position points

Diagram of symmetry 
elements

Example: P2



Diagrams of general 
position points

Example: Ia3d (No. 230)



Example: Ia3d (No. 230) General-position diagrams in 
perspective projection

polyhedra (twisted trigonal antiprism) centres 
at (0,0,0) and its equivalent points, 

site symmetry .-3.

polyhedra (twisted trigonal antiprism) centres 
at (1/8,1/8,1/8) and its equivalent points, 

site symmetry .32.



ORIGINS 
AND

ASYMMETRIC UNITS  



Space group Cmm2 (No. 35): left-hand page ITA

The site symmetry of the origin is stated, 
if different from the identity. 
A further symbol indicates all symmetry 
elements (including glide planes and 
screw axes) that pass through the origin, if any. 

Origin statement

For each of the two origins the location 
relative to the other origin is also given.

Space groups with two origins



 Example: Different origins for Pnnn



(output cctbx: Ralf Grosse-Kustelve)

ITA:

An asymmetric unit of a space group is a (simply connected) 
smallest closed part of space from which, by application of all 
symmetry operations of the space group, the whole of space is filled.

ITA:

 Example: Asymmetric unit Cmm2 (No. 35)



(output cctbx: Ralf Grosse-Kustelve)

Asymmetric units for the space group P121

c

a

b

 Example:



GENERAL 
AND 

SPECIAL WYCKOFF 
POSITIONS  

SITE-SYMMETRY



Group Actions
Group

Actions

Orbit and Stabilizer

Equivalence classes



Site-symmetry group So={(W,w)} of a point Xo 

General position Xo 

Site-symmetry groups: oriented symbols 

Multiplicity: |P|/|So|

 General and special Wyckoff positions

Multiplicity: |P| Multiplicity: |P|/|So|

Orbit of a point Xo under G: G(Xo)={(W,w)Xo,(W,w)∈G} 
Multiplicity

Special position Xo 

(W,w)Xo = Xo

=
a b c

d e f

g h i

x0

y0

z0

x0

y0

z0

w
1w
2w
3

( )
S={(1,o)}≃ 1 S> 1 ={(1,o),...,}



coordinate triplets of an image point X of 
the original point X=     under (W,w) of G

short-hand notation of the matrix-column pairs 
(W,w) of the symmetry operations of G

-presentation of infinite symmetry operations of G
(W,w) = (I,tn)(W,w0), 0≤wi0<1

(i)

(ii)

General position

~

x

y

z

-presentation of infinite image points X under the 
action of (W,w) of G: 0≤xi<1

~



General Position of Space groups

(I,0)X     (W2,w2)X     ...   (Wm,wm)X       ...   (Wi,wi)X

(I,t1)X     (W2,w2+t1)X ...  (Wm,wm+t1)X  ...   (Wi,wi+t1)X
(I,t2)X     (W2,w2+t2)X ...  (Wm,wm+t2)X  ...   (Wi,wi+t2)X

(I,tj)X     (W2,w2+tj)X ...   (Wm,wm+tj)X  ...    (Wi,wi+tj)X
...               ...        ...         ...           ...       ...

...               ...        ...         ...           ...       ...

General position

As coordinate triplets of an image point X of 
the original point X=     under (W,w) of Gx

y

z

~

-presentation of infinite image points X of X under 
the action of (W,w) of G: 0≤xi<1

~



S={(W,w), (W,w)Xo = Xo}
0

0

0

-1

-1

-1

0

0

0

Group P-1

=
0

0

0( )
Sf={(1,0), (-1,000)Xf = Xf}
Sf≃{1, -1} isomorphic

 Example: Calculation of the Site-symmetry groups 



S={(W,w), (W,w)Xo = Xo}

1/2

0

1/2

Group P-1

QUIZ: Calculation of the Site-symmetry groups 

Determine the
site symmetry group 

of the point Xo=



 Site symmetry groups of special Wyckoff positions

QUICK QUIZ Space group P4mm



CO-ORDINATE 
TRANSFORMATIONS 

IN 
CRYSTALLOGRAPHY



Also, the inverse matrices of P and pare needed. They are

Q ! P"1

and

q! "P"1p!

The matrix qconsists of the components of the negative shift vector
q which refer to the coordinate system a#, b#, c#, i.e.

q ! q1a# $ q2b# $ q3c#!

Thus, the transformation (Q, q) is the inverse transformation of
(P, p). Applying (Q, q) to the basis vectors a#, b#, c# and the origin
O#, the old basis vectors a, b, c with origin O are obtained.

For a two-dimensional transformation of a# and b#, some
elements of Q are set as follows: Q33 ! 1 and
Q13 ! Q23 ! Q31 ! Q32 ! 0.

The quantities which transform in the same way as the basis
vectors a, b, c are called covariant quantities and are written as row
matrices. They are:

the Miller indices of a plane (or a set of planes), (hkl), in direct
space and

the coordinates of a point in reciprocal space, h, k, l.

Both are transformed by

%h#, k#, l#& ! %h, k, l&P!

Usually, the Miller indices are made relative prime before and after
the transformation.

The quantities which are covariant with respect to the basis
vectors a, b, c are contravariant with respect to the basis vectors
a', b', c' of reciprocal space.

The basis vectors of reciprocal space are written as a column
matrix and their transformation is achieved by the matrix Q:

a'#

b'#

c'#

!

"#

$

%& ! Q

a'

b'

c'

!

"#

$

%&

!
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

!

"#

$

%&
a'

b'

c'

!

"#

$

%&

!
Q11a' $ Q12b' $ Q13c'

Q21a' $ Q22b' $ Q23c'

Q31a' $ Q32b' $ Q33c'

!

"#

$

%&!

The inverse transformation is obtained by the inverse matrix

P ! Q"1:

a'

b'

c'

!

#

$

& ! P
a'#

b'#

c'#

!

#

$

&!

These transformation rules apply also to the quantities covariant
with respect to the basis vectors a', b', c' and contravariant with
respect to a, b, c, which are written as column matrices. They are the
indices of a direction in direct space, [uvw], which are transformed
by

u#

v#

w#

!

#

$

& ! Q
u
v
w

!

#

$

&!

In contrast to all quantities mentioned above, the components of a
position vector r or the coordinates of a point X in direct space
x, y, z depend also on the shift of the origin in direct space. The
general (affine) transformation is given by

x#

y#

z#

!

"#

$

%& ! Q

x

y

z

!

"#

$

%& $ q

!
Q11x $ Q12y $ Q13z $ q1

Q21x $ Q22y $ Q23z $ q2

Q31x $ Q32y $ Q33z $ q3

!

"#

$

%&!

Example

If no shift of origin is applied, i.e. p! q! o, the position vector
r of point X is transformed by

r# ! %a, b, c&PQ
x
y
z

!

#

$

& ! %a#, b#, c#&
x#

y#

z#

!

#

$

&!

In this case, r ! r#, i.e. the position vector is invariant, although
the basis vectors and the components are transformed. For a pure
shift of origin, i.e. P ! Q ! I , the transformed position vector r#
becomes

r# ! %x $ q1&a $ %y $ q2&b $ %z $ q3&c
! r $ q1a $ q2b $ q3c
! %x " p1&a $ %y " p2&b $ %z " p3&c
! r " p1a " p2b " p3c!

Here the transformed vector r# is no longer identical with r.

It is convenient to introduce the augmented %4 ( 4 & matrix !
which is composed of the matrices Q and qin the following manner
(cf. Chapter 8.1):

! ! Q q
o 1

' (
!

Q11 Q12 Q13 q1

Q21 Q22 Q23 q2

Q31 Q32 Q33 q3

0 0 0 1

!

""#

$

%%&

with othe %1 ( 3& row matrix containing zeros. In this notation, the
transformed coordinates x#, y#, z# are obtained by

Fig. 5.1.3.1. General affine transformation, consisting of a shift of origin
from O to O# by a shift vector p with components p1 and p2 and a change
of basis from a, b to a#, b#. This implies a change in the coordinates of
the point X from x, y to x#, y#.

79

5.1. TRANSFORMATIONS OF THE COORDINATE SYSTEM

(a,b, c), origin O: point X(x, y, z)

(a′
,b′

, c′), origin O’: point X(x′
, y

′
, z

′)

3-dimensional space

(P,p)

Co-ordinate transformation

5.1. Transformations of the coordinate system (unit-cell transformations)
BY H. ARNOLD

5.1.1. Introduction

There are two main uses of transformations in crystallography.
(i) Transformation of the coordinate system and the unit cell

while keeping the crystal at rest. This aspect forms the main topic of
the present part. Transformations of coordinate systems are useful
when nonconventional descriptions of a crystal structure are
considered, for instance in the study of relations between different
structures, of phase transitions and of group–subgroup relations.
Unit-cell transformations occur particularly frequently when
different settings or cell choices of monoclinic, orthorhombic or
rhombohedral space groups are to be compared or when ‘reduced
cells’ are derived.

(ii) Description of the symmetry operations (motions) of an
object (crystal structure). This involves the transformation of the
coordinates of a point or the components of a position vector while
keeping the coordinate system unchanged. Symmetry operations are
treated in Chapter 8.1 and Part 11. They are briefly reviewed in
Chapter 5.2.

5.1.2. Matrix notation

Throughout this volume, matrices are written in the following
notation:

As (1 ! 3) row matrices:

(a, b, c) the basis vectors of direct space
(h, k, l) the Miller indices of a plane (or a set of

planes) in direct space or the coordinates
of a point in reciprocal space

As (3 ! 1) or (4 ! 1) column matrices:
x " #x!y!z$ the coordinates of a point in direct space
#a%!b%!c%$ the basis vectors of reciprocal space
(u!v!w) the indices of a direction in direct space
p" #p1!p2!p3$ the components of a shift vector from

origin O to the new origin O &

q" #q1!q2!q3$ the components of an inverse origin
shift from origin O & to origin O, with
q" ' P' 1p

w " #w1!w2!w3$ the translation part of a symmetry
operation ! in direct space

! " #x!y!z!1$ the augmented #4 ! 1$ column matrix of
the coordinates of a point in direct space

As (3 ! 3) or (4 ! 4) square matrices:
P, Q " P' 1 linear parts of an affine transformation;

if P is applied to a #1 ! 3$ row matrix,
Q must be applied to a #3 ! 1$ column
matrix, and vice versa

W the rotation part of a symmetry
operation ! in direct space

" " P p
o 1

! "
the augmented affine #4 ! 4 $ trans-
formation matrix, with o" #0, 0, 0$

# " Q q
o 1

! "
the augmented affine #4 ! 4 $ trans-
formation matrix, with # " "' 1

$ " W w
o 1

! "
the augmented #4 ! 4 $ matrix of a
symmetry operation in direct space (cf.
Chapter 8.1 and Part 11).

5.1.3. General transformation

Here the crystal structure is considered to be at rest, whereas the
coordinate system and the unit cell are changed. Specifically, a
point X in a crystal is defined with respect to the basis vectors a, b, c
and the origin O by the coordinates x, y, z, i.e. the position vector r
of point X is given by

r " xa ( yb ( zc

" #a, b, c$
x

y

z

#

$%

&

'("

The same point X is given with respect to a new coordinate system,
i.e. the new basis vectors a&, b&, c& and the new origin O& (Fig.
5.1.3.1), by the position vector

r& " x&a& ( y&b& ( z&c&"

In this section, the relations between the primed and unprimed
quantities are treated.

The general transformation (affine transformation) of the
coordinate system consists of two parts, a linear part and a shift
of origin. The #3 ! 3$ matrix P of the linear part and the #3 ! 1$
column matrix p, containing the components of the shift vector p,
define the transformation uniquely. It is represented by the symbol
(P, p).

(i) The linear part implies a change of orientation or length or
both of the basis vectors a, b, c, i.e.

#a&, b&, c&$ " #a, b, c$P

" #a, b, c$
P11 P12 P13

P21 P22 P23

P31 P32 P33

#

$%

&

'(

" #P11a ( P21b ( P31c,

P12a ( P22b ( P32c,

P13a ( P23b ( P33c$"

For a pure linear transformation, the shift vector p is zero and the
symbol is (P, o).

The determinant of P, det#P$, should be positive. If det#P$ is
negative, a right-handed coordinate system is transformed into a
left-handed one (or vice versa). If det#P$ " 0, the new basis vectors
are linearly dependent and do not form a complete coordinate
system.

In this chapter, transformations in three-dimensional space are
treated. A change of the basis vectors in two dimensions, i.e. of the
basis vectors a and b, can be considered as a three-dimensional
transformation with invariant c axis. This is achieved by setting
P33 " 1 and P13 " P23 " P31 " P32 " 0.

(ii) A shift of origin is defined by the shift vector

p " p1a ( p2b ( p3c"

The basis vectors a, b, c are fixed at the origin O; the new basis
vectors are fixed at the new origin O& which has the coordinates
p1, p2, p3 in the old coordinate system (Fig. 5.1.3.1).

For a pure origin shift, the basis vectors do not change their lengths
or orientations. In this case, the transformation matrix P is the unit
matrix I and the symbol of the pure shift becomes (I, p).
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5.1. Transformations of the coordinate system (unit-cell transformations)
BY H. ARNOLD

5.1.1. Introduction

There are two main uses of transformations in crystallography.
(i) Transformation of the coordinate system and the unit cell

while keeping the crystal at rest. This aspect forms the main topic of
the present part. Transformations of coordinate systems are useful
when nonconventional descriptions of a crystal structure are
considered, for instance in the study of relations between different
structures, of phase transitions and of group–subgroup relations.
Unit-cell transformations occur particularly frequently when
different settings or cell choices of monoclinic, orthorhombic or
rhombohedral space groups are to be compared or when ‘reduced
cells’ are derived.

(ii) Description of the symmetry operations (motions) of an
object (crystal structure). This involves the transformation of the
coordinates of a point or the components of a position vector while
keeping the coordinate system unchanged. Symmetry operations are
treated in Chapter 8.1 and Part 11. They are briefly reviewed in
Chapter 5.2.

5.1.2. Matrix notation

Throughout this volume, matrices are written in the following
notation:

As (1 ! 3) row matrices:

(a, b, c) the basis vectors of direct space
(h, k, l) the Miller indices of a plane (or a set of

planes) in direct space or the coordinates
of a point in reciprocal space

As (3 ! 1) or (4 ! 1) column matrices:
x " #x!y!z$ the coordinates of a point in direct space
#a%!b%!c%$ the basis vectors of reciprocal space
(u!v!w) the indices of a direction in direct space
p" #p1!p2!p3$ the components of a shift vector from

origin O to the new origin O &

q" #q1!q2!q3$ the components of an inverse origin
shift from origin O & to origin O, with
q" ' P' 1p

w " #w1!w2!w3$ the translation part of a symmetry
operation ! in direct space

! " #x!y!z!1$ the augmented #4 ! 1$ column matrix of
the coordinates of a point in direct space

As (3 ! 3) or (4 ! 4) square matrices:
P, Q " P' 1 linear parts of an affine transformation;

if P is applied to a #1 ! 3$ row matrix,
Q must be applied to a #3 ! 1$ column
matrix, and vice versa

W the rotation part of a symmetry
operation ! in direct space

" " P p
o 1

! "
the augmented affine #4 ! 4 $ trans-
formation matrix, with o" #0, 0, 0$

# " Q q
o 1

! "
the augmented affine #4 ! 4 $ trans-
formation matrix, with # " "' 1

$ " W w
o 1

! "
the augmented #4 ! 4 $ matrix of a
symmetry operation in direct space (cf.
Chapter 8.1 and Part 11).

5.1.3. General transformation

Here the crystal structure is considered to be at rest, whereas the
coordinate system and the unit cell are changed. Specifically, a
point X in a crystal is defined with respect to the basis vectors a, b, c
and the origin O by the coordinates x, y, z, i.e. the position vector r
of point X is given by

r " xa ( yb ( zc

" #a, b, c$
x

y

z

#

$%

&

'("

The same point X is given with respect to a new coordinate system,
i.e. the new basis vectors a&, b&, c& and the new origin O& (Fig.
5.1.3.1), by the position vector

r& " x&a& ( y&b& ( z&c&"

In this section, the relations between the primed and unprimed
quantities are treated.

The general transformation (affine transformation) of the
coordinate system consists of two parts, a linear part and a shift
of origin. The #3 ! 3$ matrix P of the linear part and the #3 ! 1$
column matrix p, containing the components of the shift vector p,
define the transformation uniquely. It is represented by the symbol
(P, p).

(i) The linear part implies a change of orientation or length or
both of the basis vectors a, b, c, i.e.

#a&, b&, c&$ " #a, b, c$P

" #a, b, c$
P11 P12 P13

P21 P22 P23

P31 P32 P33

#

$%

&

'(

" #P11a ( P21b ( P31c,

P12a ( P22b ( P32c,

P13a ( P23b ( P33c$"

For a pure linear transformation, the shift vector p is zero and the
symbol is (P, o).

The determinant of P, det#P$, should be positive. If det#P$ is
negative, a right-handed coordinate system is transformed into a
left-handed one (or vice versa). If det#P$ " 0, the new basis vectors
are linearly dependent and do not form a complete coordinate
system.

In this chapter, transformations in three-dimensional space are
treated. A change of the basis vectors in two dimensions, i.e. of the
basis vectors a and b, can be considered as a three-dimensional
transformation with invariant c axis. This is achieved by setting
P33 " 1 and P13 " P23 " P31 " P32 " 0.

(ii) A shift of origin is defined by the shift vector

p " p1a ( p2b ( p3c"

The basis vectors a, b, c are fixed at the origin O; the new basis
vectors are fixed at the new origin O& which has the coordinates
p1, p2, p3 in the old coordinate system (Fig. 5.1.3.1).

For a pure origin shift, the basis vectors do not change their lengths
or orientations. In this case, the transformation matrix P is the unit
matrix I and the symbol of the pure shift becomes (I, p).
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(i) linear part: change of orientation or length:

(ii) origin shift by a shift vector p(p1,p2,p3): 

the origin O’ has 
coordinates (p1,p2,p3) in 
the old coordinate system 

O’ = O + p

Transformation matrix-column pair (P,p)



QUICK QUIZ



QUICK QUIZ



1/2 1/2 0

-1/2 1/2 0

0 0 1

1/2

1/4

0

(P,p)=( ) 1 -1 0

1 1 0

0 0 1

-1/4

-3/4

0

(P,p)-1=( )
Transformation matrix-column pair (P,p)

a’=1/2a-1/2b
b’=1/2a+1/2b

c’=c

O’=O+

a=a’+b’
b=-a’+b’
c=c’

1/2

1/4

0

O=O’+
-1/4

-3/4

0



Short-hand notation for the description 
of transformation matrices

Transformation matrix:

-coefficients 0, +1, -1
-different columns in one line 

notation rules:

example: 1 -1

1 1

1

-1/4

-3/4

0

a+b, -a+b, c;-1/4,-3/4,0{

Also, the inverse matrices of P and pare needed. They are

Q ! P"1

and

q! "P"1p!

The matrix qconsists of the components of the negative shift vector
q which refer to the coordinate system a#, b#, c#, i.e.

q ! q1a# $ q2b# $ q3c#!

Thus, the transformation (Q, q) is the inverse transformation of
(P, p). Applying (Q, q) to the basis vectors a#, b#, c# and the origin
O#, the old basis vectors a, b, c with origin O are obtained.

For a two-dimensional transformation of a# and b#, some
elements of Q are set as follows: Q33 ! 1 and
Q13 ! Q23 ! Q31 ! Q32 ! 0.

The quantities which transform in the same way as the basis
vectors a, b, c are called covariant quantities and are written as row
matrices. They are:

the Miller indices of a plane (or a set of planes), (hkl), in direct
space and

the coordinates of a point in reciprocal space, h, k, l.

Both are transformed by

%h#, k#, l#& ! %h, k, l&P!

Usually, the Miller indices are made relative prime before and after
the transformation.

The quantities which are covariant with respect to the basis
vectors a, b, c are contravariant with respect to the basis vectors
a', b', c' of reciprocal space.

The basis vectors of reciprocal space are written as a column
matrix and their transformation is achieved by the matrix Q:

a'#

b'#

c'#

!

"#

$

%& ! Q

a'

b'

c'

!

"#

$

%&

!
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

!

"#

$

%&
a'

b'

c'

!

"#

$

%&

!
Q11a' $ Q12b' $ Q13c'

Q21a' $ Q22b' $ Q23c'

Q31a' $ Q32b' $ Q33c'

!

"#

$

%&!

The inverse transformation is obtained by the inverse matrix

P ! Q"1:

a'

b'

c'

!

#

$

& ! P
a'#

b'#

c'#

!

#

$

&!

These transformation rules apply also to the quantities covariant
with respect to the basis vectors a', b', c' and contravariant with
respect to a, b, c, which are written as column matrices. They are the
indices of a direction in direct space, [uvw], which are transformed
by

u#

v#

w#

!

#

$

& ! Q
u
v
w

!

#

$

&!

In contrast to all quantities mentioned above, the components of a
position vector r or the coordinates of a point X in direct space
x, y, z depend also on the shift of the origin in direct space. The
general (affine) transformation is given by

x#

y#

z#

!

"#

$

%& ! Q

x

y

z

!

"#

$

%& $ q

!
Q11x $ Q12y $ Q13z $ q1

Q21x $ Q22y $ Q23z $ q2

Q31x $ Q32y $ Q33z $ q3

!

"#

$

%&!

Example

If no shift of origin is applied, i.e. p! q! o, the position vector
r of point X is transformed by

r# ! %a, b, c&PQ
x
y
z

!

#

$

& ! %a#, b#, c#&
x#

y#

z#

!

#

$

&!

In this case, r ! r#, i.e. the position vector is invariant, although
the basis vectors and the components are transformed. For a pure
shift of origin, i.e. P ! Q ! I , the transformed position vector r#
becomes

r# ! %x $ q1&a $ %y $ q2&b $ %z $ q3&c
! r $ q1a $ q2b $ q3c
! %x " p1&a $ %y " p2&b $ %z " p3&c
! r " p1a " p2b " p3c!

Here the transformed vector r# is no longer identical with r.

It is convenient to introduce the augmented %4 ( 4 & matrix !
which is composed of the matrices Q and qin the following manner
(cf. Chapter 8.1):

! ! Q q
o 1

' (
!

Q11 Q12 Q13 q1

Q21 Q22 Q23 q2

Q31 Q32 Q33 q3

0 0 0 1

!

""#

$

%%&

with othe %1 ( 3& row matrix containing zeros. In this notation, the
transformed coordinates x#, y#, z# are obtained by

Fig. 5.1.3.1. General affine transformation, consisting of a shift of origin
from O to O# by a shift vector p with components p1 and p2 and a change
of basis from a, b to a#, b#. This implies a change in the coordinates of
the point X from x, y to x#, y#.
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P11 P12 P13

P21 P22 P23

P31 P32 P33

p1

p2

p3

(P,p)=

(a,b,c), origin O

(a’,b’,c’), origin O’

( )
-written by columns

-origin shift 



Transformation of the coordinates of a point X(x,y,z):

-origin shift (P=I): 

-change of basis (p=o) : 

special cases 

=
P11 P12 P13

P21 P22 P23

P31 P32 P33

p1

p2

p3
( )(X’)=(P,p)-1(X)

           =(P-1, -P-1p)(X)

-1
x´

y
z

1 -1 0

1 1 0

0 0 1

-1/4

-3/4

0
X’=(P,p)-1X=( )3/4

1/4

0

1/4

1/4

0

=

EXAMPLE

x

y

z



Determine the coordinates X’ of a  point 
with respect to the new basis 
(a’,b’,c’)= (a,b,c)P, with P=c,a,b. 

0,70

0,31

0,95

X=

(X’)=(P,p)-1(X)Hint

QUICK QUIZ



Covariant and contravariant crystallographic quantities

=
P11 P12 P13

P21 P22 P23

P31 P32 P33
( )-1a*’

b*’
c*’

P11 P12 P13

P21 P22 P23

P31 P32 P33
( )(a’,b’,c’)=(a, b, c)P =(a, b, c)

a*
b*
c*

= P-1
a*
b*
c*

direct or crystal basis

reciprocal or dual basis

covariant to crystal basis: Miller indices

contravariant to crystal basis: indices of a direction [u]

(h’,k’,l’)=(h, k, l)P

u

v

w

u´

v´
w´

P11 P12 P13

P21 P22 P23

P31 P32 P33

-1)(=



Transformation of symmetry operations (W,w)

original
coordinates

new
coordinates

(W’,w’)=(P,p)-1(W,w)(P,p)



The following matrix-column pairs (W,w) are 
referred with respect to a basis (a,b,c):

(1) x,y,z (2) -x,y+1/2,-z+1/2
(3) -x,-y,-z (4) x,-y+1/2, z+1/2

Determine the corresponding matrix-column pairs 
(W’,w’) with respect to the basis (a’,b’,c’)= (a,b,c)P, 
with P=c,a,b.  

(W’,w’)=(P,p)-1(W,w)(P,p)Hint

QUIZ



abc cb̄a Monoclinic axis b
Transf. abc bac̄ Monoclinic axis c

abc ācb Monoclinic axis a
C12/c1 A12/a1 A112/a B112/b B2/b11 C2/c11 Cell type 1

HM C2/c A12/n1 C12/n1 B112/n A112/n C2/n11 B2/n11 Cell type 2
I 12/a1 I 12/c1 I 112/b I 112/a I 2/c11 I 2/b11 Cell type 3

No. HM abc bac̄ cab c̄ba bca ac̄b

33 Pna21 Pna21 Pbn21 P21nb P21cn Pc21n Pn21a

Monoclinic descriptions

Orthorhombic descriptions

530 ITA settings of orthorhombic 
and monoclinic groups

Problem: SYMMETRY DATA 
ITA SETTINGS



METRIC  TENSOR



3D-unit cell and lattice parameters

lattice basis: 
{a, b, c} 

unit cell: 
the parallelepiped 

defined by the 
basis vectors 

primitive P and 
centred unit cells:

A,B,C,F, I, R

A

C
B

number of 
lattice points 
per unit cell



Lattice parameters (3D)

Metric tensor G in terms of lattice parameters

Given a lattice L of V3 with a lattice basis: {a1, a2, a3} 

 the lengths of basis vectors are measured inRemark:
Å (1Å=10-10 m) pm (1pm=10-12 m)nm (1nm=10-9 m)

An alternative way to define the metric properties of a lattice L 



Crystal families, crystal systems, lattice systems and Bravais lattices in 3D



Crystallographic calculations:  Volume of the unit cell

Transformation properties of G under basis transformation

  G´=PT G P

 {a’1, a’2, a’3}= {a1, a2, a3} P

Scalar product of arbitrary vectors:

 (r,t)=rTGt

Volume of the unit cell:



Calculate the coefficients of the metric tensor for the body-centred 
cubic lattice: (i) for the conventional basis (aP,bP,cP);

(ii) for the primitive basis: 
aI=1/2(-aP+bP+cP), bI=1/2(aP-bP+cP), cI=1/2(aP+bP-cP) 

A body-centred cubic lattice (cI) has as its 
conventional basis the conventional basis 
(aP,bP,cP) of a primitive cubic lattice, but the 
lattice also contains the centring vector 
1/2aP+1/2bP+1/2cP which points to the 
centre of the conventional cell. 

(iii) determine the lattice parameters of the primitive 
cell if aP=4 Å

  G´=Pt G Pmetric tensor 
transformationHint

Body-centred cubic cellQUIZ


