Reusing raw data for machine learning in MX

Melanie Vollmar

ARISE fellow/EMBL fellow/ Marie Curie fellow EMBL-EBI

ARISE project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 945405.

Content

- Problem statement
- Proposed solution
- Contacting users
- User responses
- Likely reason for low response rate
- Raw data usage

Problem statement

Grant proposal for

Analysis-driven data acquisition

"rapid processing and communication to ensure optimal, problem-driven use of synchrotron beamtime"

Idea was to

Develop improved metrics for data utility Develop feed-forward and feed-backfard information flow to/from structure solution Develop tools to evaluate and steer crystallographic experiments Ideally in real time

Based on quality of electron density maps and intermediate success metrics

Suggested solution

Use user data to do data analysis and identify relevant metrics or if necessary create novel metrics

Do this analysis at different key points along the structure solution process, e.g. at data integration, during phasing and when refining

Try out how much data is needed to get reliable results

Check whether these metrics can reliably be used to predict likely structure solution success

Train a machine learning application on reliable metrics to predict the chances of success at different structure solution key points

Use the prediction outcome to decide next steps in the analysis workflows

How did we contact users and what did we ask for

- Through CCP4 mailing lists
- Approaching possible users at meetings and conferences
- Asking for help at the end of a presentation

- Structure in the PDB
- Data collected at Diamond
- Which beamline
- What date
- Directory structure and filename
- Image numbers that resulted in a structure
- Willingness to serve as an assessor for the predictions

How did users respond

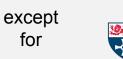
Arnaud Baslé

Frank von Delft

Now at: <u>https://proteindiffraction.org/</u>

All their data made public for download

~800 datasets



Vewcastle University

Volunteered; Served as assessor

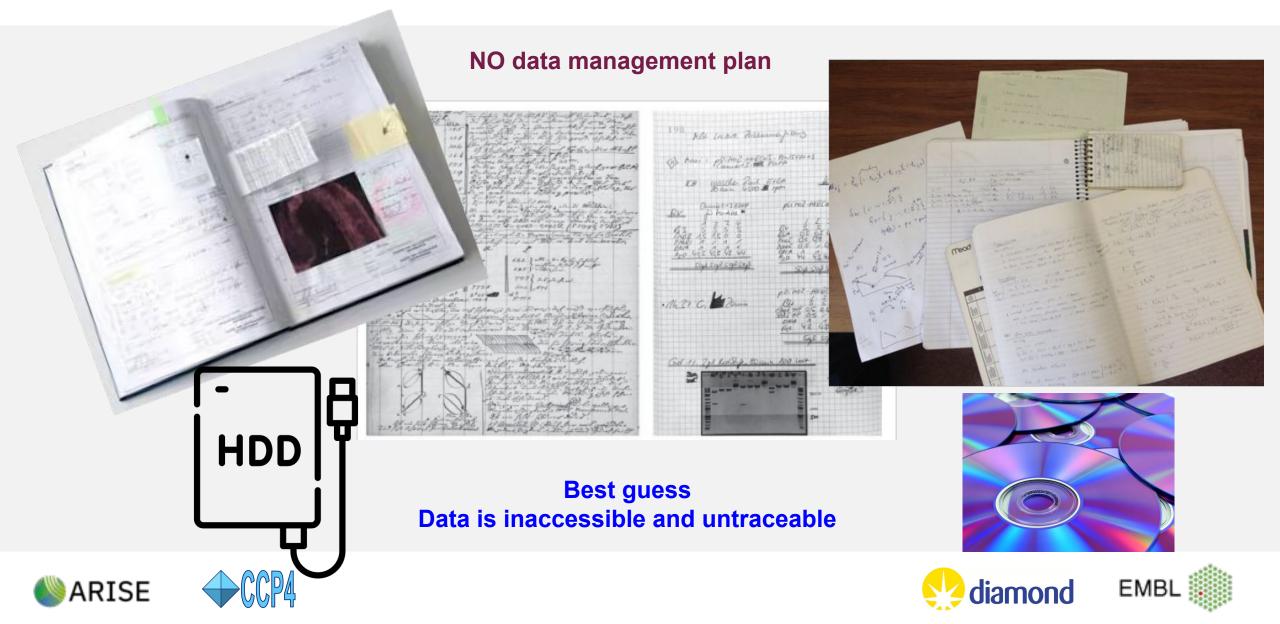
~20 datasets

Through personal contacts Querying their database

SGC

~400 datasets

Likely reason for low response rate



Training an experimental phasing predictor

JCSG507 structuresSGC303 structuresNewcastle24 structures (independent validation set)

Phasing method:

S/MAD446 (positive data)Native364 (negative data)

Resolution range: 1.05 – 3.8Å

Detector type: CCD, PAD

X-Ray source: Synchrotron, in-house

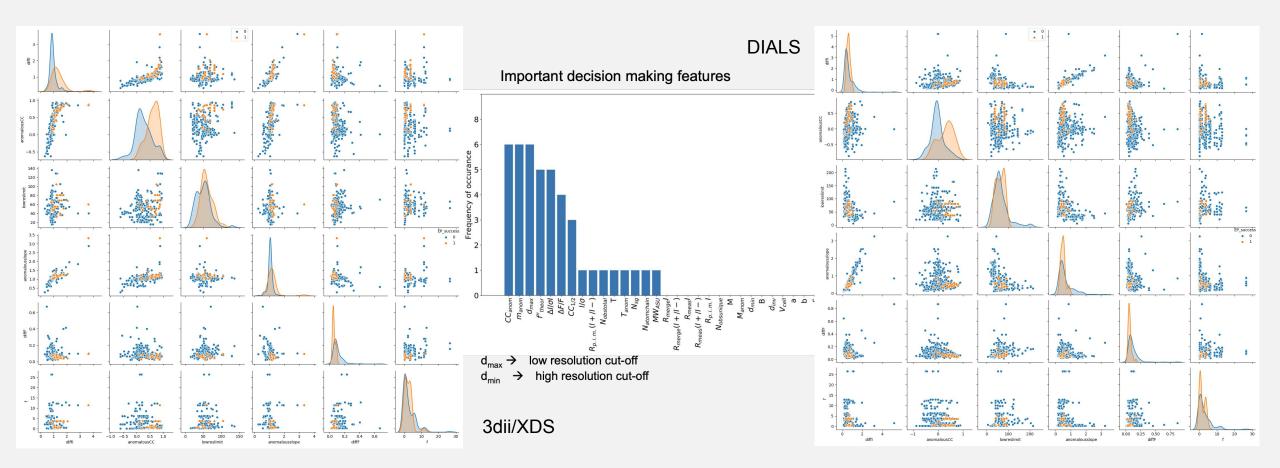
Protein: 6 – 100kDa

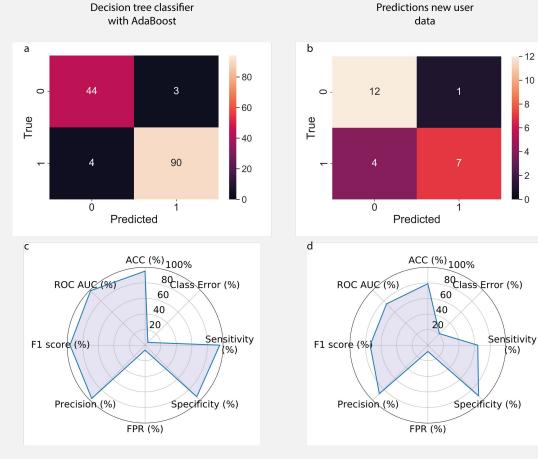
Pre-assessment tried Linear Pearson's correlation coefficients Recursive feature elimination

Classifiers tried Support vector machine with linear kernel Support vector machine with RBF kernel Decision tree Decision tree with Bagging Decision tree with AdaBoost Random forest Extreme random forest

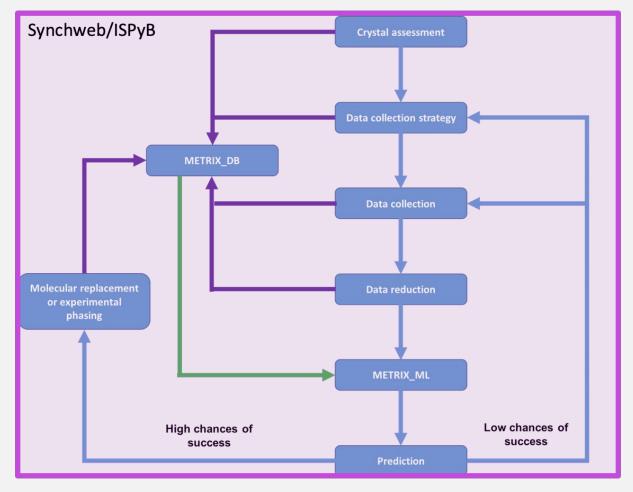
703 samples (after processing)stratified test-train split (20/80)3-fold cross-validation (20/80 split)

Training an experimental phasing predictor





Training an experimental phasing predictor



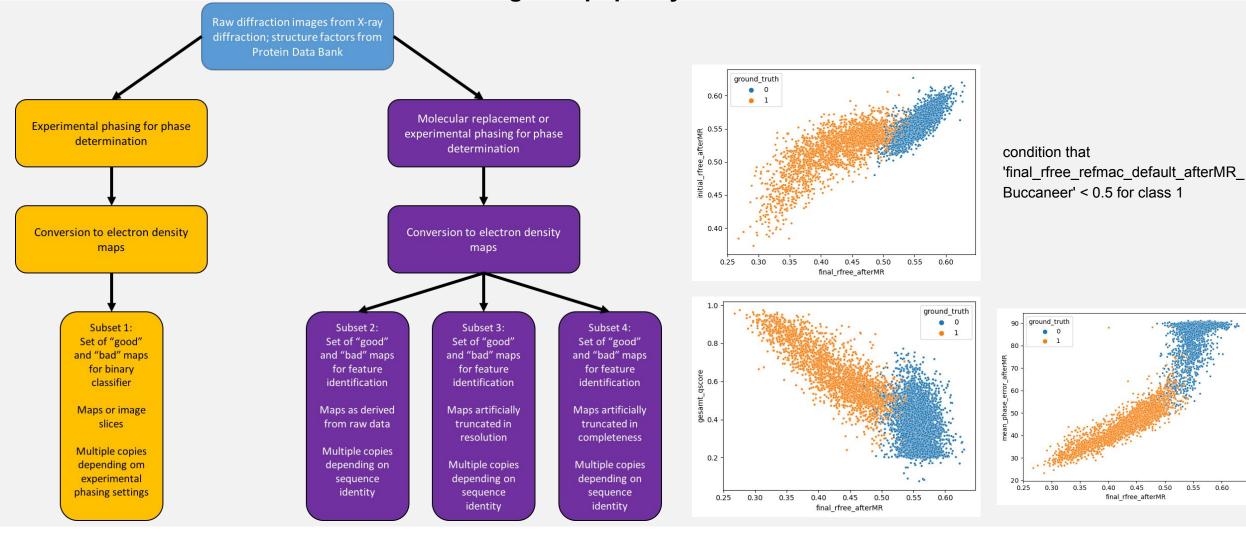
Vollmar et al., IUCrJ, 2019

9-months evaluation –

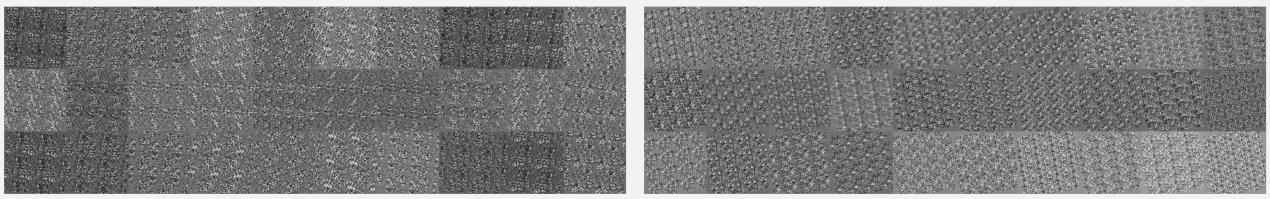
run1_2020 to run4_2020

			—		-	
	Very poor		XIA2-3c	dii (XDS)	XIA2	-DIALS
	performance in run1; most samples in		run1	run2/3/4	run1	run2/3/4
Diamond data analysis pipelines	opposite class	Class accuracy (%)	23	54	24	61
	Improved performance for run	Class error (%)	77	46	76	39
	2/3 after training with run1 data	Sensitivity (%)	19	70	0	9
	3dii (XDS) – run2/3/4	Specificity (%)	24	43	30	94
	 70% of positive samples correct 	False-positive rate (%)	76	57	70	6
	 43% of negative 	Precision (%)	7	46	0	46
	samples correctToo optimistic	F1-score (%)	10	56	0	15
	DIALS – run2/3/4	TP	5	284	0	19
	 9% of positive samples correct 	TN	23	252	25	327
	 94% of negative 	FP	71	330	58	22
	samples correctToo pessimistic	FN	22	119	21	198
	All samples have been	Р	27	403	21	217
	run through BigEP pipeline; predictor	Ν	94	582	83	349
	itself runs on every	total	121	985	104	566
MARISE CCP4	sample with an anomalous scatterer	👥 dia	anone	E	MBL	

Training a map quality assessor



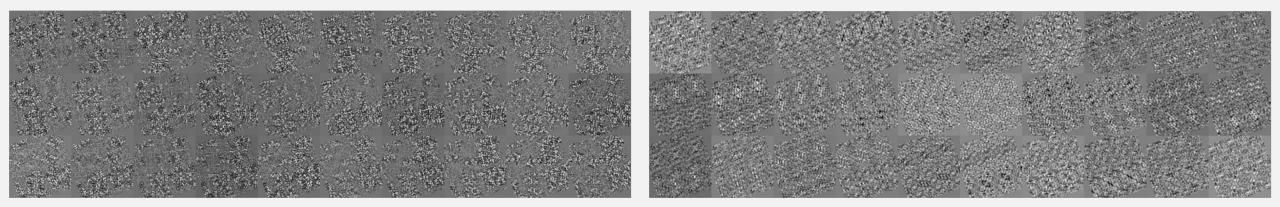
Training a map quality assessor



normalised map for class 1 (phased); Refmac after MR

normalised map for class 1 (phased); Refmac after MR

normalised map for class 0 (not phased); Refmac after MR



normalised map for class 0 (not phased); Refmac after MR

Acknowledgement

Diamond

James Parkhurst Jenna Elliott (summer student 2018) Tim Guite Dominic Jaques (summer student 2016) Gwyndaf Evans Irakli Sikharulidze CCP4 David Waterman Eugene Krissinel

University of Newcastle Arnaud Baslé

MRC-LMB Garib Murshudov Rob Nicholls

Supported by Diamond Light Source and BBSRC grants BB/L007398/1, BB/S006699/1 to GE

arise@embl.org

ARISE - Career Accelerator for Research Infrastructure Scientists

ARISE project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 945405.