
GUI Design

New interface designs for small

molecule crystallography

Horst Puschmann

UI Design

Some general considerations in User

Interface Design

Horst Puschmann

Introduction

Age Concern

Age Concern

! Modern Crystallographic Program

» Based on the cctbx

» Toolbox – not a program!

! Modern User Interface

» An accessible GUI

smtbx

Olex2

The cctbx

cctbx

mmtbx smtbx pdtbx?

scitbx iotbx cctbx

Olex2

Context

Age Concern & Olex2
(I should have done)

Some Reading:

Donald A Norman:

The Design of Everyday Things
(Basic Books, 1988/2002)

Joel Spolsky:

User Interface Design for Programmers
(Apress, 2001)

User Interfaces

History of Interfaces

! First programs weren’t interactive at all.

! Command line: Now what do I do? Whatever you

want! Need to memorize all the frequently used

commands, or continuously look things up.

! Then ‘questions and answer’ model appeared.

Combination of a manual with the program itself.

! More and more choices made this very messy.

Menus appeared.

Disagreement from the start…

! From early 1970’s (when interactive systems first

appeared): each generation of interface designers

collectively changes its mind about whether users

need to be …

» guided through a program or whether they

should be

» le! alon" to control the program as they see fit.

GUI? Not interesting! Why bother?

! Programmers generally hate UI programming.

! Good programmers usually think they don’t have the

skills to do good GUI design.

! Programmers often assume that all their users know as

much as they do.

! Scientific programmers often assume that only fully

qualified scientists who have a complete understanding

of the underlying scientific theory will be using the

product.

Command line gives you
everything!

! This is true, but you also need to know everything.

The Game

8 1 6

3 5 7

4 9 2

! " !

" " !

!

Rules of the Game: Start with the nine numbers

1,2,3,4,5,6,7,8 and 9. You and your opponent

alternate turns, each time taking a number. Each

number can be taken only once, so if your opponent

has selected a number, you cannot also take it. The

first person to have any three numbers that total 15

wins the game.

O1 3 -0.18442 1.61018 0.71265 11.00000 0.02053

O2 3 0.20459 0.96059 0.81032 11.00000 0.03684

O3 3 0.24860 1.26972 0.73009 11.00000 0.02790

O4 3 -0.45934 1.46881 0.82724 11.00000 0.03420

O5 3 0.12001 1.47031 0.52921 11.00000 0.02879

O6 3 -0.29425 1.38739 0.42580 11.00000 0.02676

O7 3 -0.21554 1.16046 1.08135 11.00000 0.03223

O8 3 -0.58960 1.60863 0.47748 11.00000 0.02803

O9 3 -0.14266 0.89018 0.84892 11.00000 0.04408

O10 3 -0.13210 1.30678 0.87714 11.00000 0.02191

O11 3 -0.31756 1.13676 0.95402 11.00000 0.06115

C1 1 -0.26586 1.62771 0.45127 11.00000 0.29967

C2 1 -0.10887 1.36023 0.67237 11.00000 -0.00173

C3 1 -0.37042 1.64390 0.67731 11.00000 0.02206

C4 1 0.06538 1.07009 0.78497 11.00000 0.02366

C5 1 0.04275 1.57556 0.60321 11.00000 0.02692

C6 1 0.13330 1.23279 0.81191 11.00000 0.01828

C7 1 -0.44461 1.53900 0.56589 11.00000 0.02179

C8 1 -0.12950 1.51578 0.62467 11.00000 0.01809

C9 1 -0.28609 1.51429 0.50749 11.00000 0.01939

C10 1 -0.01383 1.34727 0.80072 11.00000 0.01783

C11 1 -0.05729 1.03322 0.87461 11.00000 0.02227

C12 1 -0.20696 1.15586 0.85976 11.00000 0.02403

C13 1 -0.45217 1.62315 0.78923 11.00000 0.02996

O1 3 -0.18442 1.61018 0.71265 11.00000 0.02053

O2 3 0.20459 0.96059 0.81032 11.00000 0.03684

O3 3 0.24860 1.26972 0.73009 11.00000 0.02790

O4 3 -0.45934 1.46881 0.82724 11.00000 0.03420

O5 3 0.12001 1.47031 0.52921 11.00000 0.02879

O6 3 -0.29425 1.38739 0.42580 11.00000 0.02676

O7 3 -0.21554 1.16046 1.08135 11.00000 0.03223

O8 3 -0.58960 1.60863 0.47748 11.00000 0.02803

O9 3 -0.14266 0.89018 0.84892 11.00000 0.04408

O10 3 -0.13210 1.30678 0.87714 11.00000 0.02191

O11 3 -0.31756 1.13676 0.95402 11.00000 0.06115

C1 1 -0.26586 1.62771 0.45127 11.00000 0.29967

C2 1 -0.10887 1.36023 0.67237 11.00000 -0.00173

C3 1 -0.37042 1.64390 0.67731 11.00000 0.02206

C4 1 0.06538 1.07009 0.78497 11.00000 0.02366

C5 1 0.04275 1.57556 0.60321 11.00000 0.02692

C6 1 0.13330 1.23279 0.81191 11.00000 0.01828

C7 1 -0.44461 1.53900 0.56589 11.00000 0.02179

C8 1 -0.12950 1.51578 0.62467 11.00000 0.01809

C9 1 -0.28609 1.51429 0.50749 11.00000 0.01939

C10 1 -0.01383 1.34727 0.80072 11.00000 0.01783

C11 1 -0.05729 1.03322 0.87461 11.00000 0.02227

C12 1 -0.20696 1.15586 0.85976 11.00000 0.02403

C13 1 -0.45217 1.62315 0.78923 11.00000 0.02996

The Listing File

User Model and Program Model

What did they expect?

! The User Model: The mental understanding of

what the program will do for them.

! The Program Model: Set in stone. The Law.

The GUI

The User Model

The System Model

So, what did they expect?

! How do you find out what they DO expect?

! You ask.

! You watch.

A good interface

“A use r interface is well d e s i gned when

the p rog ram mod e l confor ms to the us e r

model .”

or, in other words:

“A use r interface is well d e s i gned when

the p rog ram behav e s exactly how the

us e r thought it would.”

The Design Process

Small annoyances do!ruin your
day!!

! Sticky key space bar?

! Make the same mistake over and over?

! Flickering monitor?

A Rubbish Example

For example, designing an outside rubbish bin

requires a number of choices between conflicting

requirements.

! It needs to be heavy, so it isn’t blown away. It need so to be

light, so it can be emptied.

! It needs to be large to hold a lot of rubbish. It needs to be

small so it doesn’t get in the way.

! It needs to be open, so that people can put things in. It needs to

be shut so that things don't blow away.

Options, Choices & Preferences

“Every time you provide and opt ion, yo u are asking the

us e r to make a dec is ion”

! Design is the art of making choices.

! If you are designing and you try to put the burden of

making choices onto the user, you are not doing your

job.

Process of designing a product

! Activity-based design: Come up with a list of

things that users might want to do.

! Imaginary users: Come up with an imaginary

user for each potential group of users.

Who are we designing for?

! At a superficial level we think we’re designing for

us e rs, but no matter how hard we try, we are

designing for who we think the us e r is, and that

means that we are designing for ours e l v e s .

! Until we make the shift and let the users tell us how

our software works, it simply can’t be usable.

Who are we designing for?

! We think we’re designing for us e rs.

! But really we are designing for who we think the

us e r is.

! And that means that we are designing for ours e l v e s .

! Until we make the shift and let the users tell us how

our software works, it simply can’t be usable.

People make mistakes

! The same processes that make us creative and insightful

by allowing us to see relationships between seemingly

unrelated things also lead to…

» Slips: Form an appropriate goal, but mess up in the

performance. Slips are almost always small things

and are usually easy to discover.

» Mistakes: Form the wrong goal, and you’ve made a

mistake. Mistakes are difficult or impossible to detect

– after all, all actions performed are appropriate for

the goal.

How many ‘goes’ do you get?

It usually takes five or six attempts to get a product

right. This may be acceptable in an established product,

but consider what it means in a new one. The problem is

that if the product is truly revolutionary, it is unlikely

that anyone will quite know how to design it right the

first time. But if a product is introduced into the

marketplace and fails, well that's is it. Perhaps it could

be introduced a second time, or maybe even a third

time, but after that it is dead: everyone believes it to be

a failure.

How many ‘goes’ do you get?

! It takes five or six attempts to get a product right.

! If it’s truly new, nobody quite knows how to design it.

! If it’s introduced to ‘The World’ and fails, that’s it.

! Maybe you get a second or third chance, but after

that, everyone will believe it’s a failure.

GUI design Considerations

Consistency

! Consistency helps people learn your program.

! Before GUIs, everyone invented the very

fundamentals of the user interface

» :q!

» C-x C-c

» F7

! Ctrl+C, Ctrl+V etc....

! make the program model match the user model!

Just Because Microsoft Does It...

... doesn’t mean it’s right!

But at least consider:

! Whether it’s right or not, if they are doing it in
popular programs then millions of people will think
it's right – and at least know it.

! Don’t be too sure that it’s not right. They spend
more money on usability testing than you do. They
did it that way because more people can figure out
how to do use it that way.

Creativity

! Don't be creative: to make a user interface easy

to use, you are going to have to channel your

creativity into some other area.

! Before you design anything from scratch, you

absolutely must look at what other popular programs

are doing and emulate this as closely as possible.

People Can’t Read

! Users don’t have a manual, and if they did, they

wouldn't read it.

! In fact, users can’t read anything, and if they could,

they wouldn’t want to.

! So, knowledge that is required for the process, needs

to be ‘ in the world’ - i.e. the GUI to augment what is

in the head of the user already.

People Can’t Use Input Devices

! Keyboard

! Mice

! Colour blindness

! Touch screen

! Trackballs

! Pens

People Can’t Remember

! Precise behaviour can emerge from imprecise

knowledge for these four reasons:

1. Information is in the world

2. Great precision is not required

3. Natural constraints are present

4. Cultural constraints are present

Metaphors & Icons

! Icons and descriptions have to be meaningful!

Automation & Heuristics

! Do something automatically that the user probably

wants to get done.

! Example: if the user types ‘teh’, there is a very high

chance that they actually meant ‘the’.

! Use automation with care, but use it where it is

beneficial. Make sure it’s easy to undo!

Days are Seconds

! It takes days to design a small fragment or aspect of

complex software.

! The user experiences this in a matter of seconds.

» Watch out for things that the user is supposed to

work out within seconds that took the

designer/programmer days and days to think about

and create!

Months are Minutes

! Software packages can take months or years from

initial conception to shipping the final bits.

! During this time you will have learned a lot about

your own program, how it works and the underlying

principles.

! For you the learning curve of various aspects of your

program may not appear to be very steep.

! The user has to figure all of this out within the first

few minutes of using the software.

Features and Complications

Try to notice if yo u are adding complicat ions o r

removing complicat ions.

Seconds are Hours

! Your program needs to be responsive. Boredom sets

in immediately when nothing happens.

! Always respond immediately to a user request.

! Break up long operations, do them in the background

etc.

! Collect long operations into one really long one.

Six steps to good software design

1. Invent some users.

2. Figure out the important activities.

3. Figure out the user model–how will each of your. imaginary

users expect to accomplish those activities?

4. Sketch out the first draft of the design.

5. Iterate over your design again and again, making it easier and

easier until it’s well within the capabilities of your imaginary

users.

6. Watch real humans trying to use your software. Note the

areas where people have trouble, which are probably areas

where the program model isn't matching the user model.

Explorable Systems

Explorable System: Visibility

! In each state of the system, the user must readily see

and be able to do the allowable actions. The visibility

acts as a suggestion, reminding the user of

possibilities and inviting the exploration of new ideas

and methods.

Explorable Systems: Feedback

! The effect of each action must be both visible and

easy to interpret. This allows users to learn the effects

of each action and to develop a good mental model of

the system.

Explorable Systems: No Risk

! Actions should be without cost. When an action has

an undesirable result, it must be readily reversible.

Usability Tests

Usability tests

! You don’t need to test with a lot of users.

! You don’t really care about statistics - the purpose of

usability testing is to find flaws in your design.

! Five to six users is all that’s required.

! We are digging for truffles here! Three or four pigs in a

forest will most likely find the same number of truffles

as will 1,000 of them.

! Usability tests are a measure of learnability, not

usability.

Programmers play, while others...

! Programmers tend to download and play with a lot of software

and are not afraid of it.

! Ordinary people tend to not do something until they think they

understand it fully.

! Programmers are born without a lot of sympathy for how

much trouble ordinary people have using software.

! Programmers can keep 19 things in their short-term memory;

normal people can keep five. Programmers are exceedingly

rational and logical, to the point of exasperation; normal

people are emotional and say things like “My computer hates

me”.

The Best Reason for Usability
Tests:!

! YOU

! They are a great way to educate programmers about

the real world. During these tests, the programmer

will experience some reality about the real-world

humans and how they use their product.

The End

Putting the User in Charge

! No interface

! Command line

! Questions and Answer

! Menus

Seven stages of action

Forming the goal Goal

Forming the intention

Specifying the action

Executing the action

Execution

Perceiving the state of the world

Interpreting the state of the world

Evaluating the outcome

Evaluation

