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Series Preface 

The long-term aim of the Commission on Crystallographic Teactiing in 
establishing this pamphle t  programme is to produce a large collection of 
short statements each dealing with a specific topic at a specific level. The 
emphasis is on a particular teaching approach and there may well, in time, 
be pamphlets  giving alternative teaching approaches to the same topic. It 
is not the function of  the Commission to decide on the 'best '  approach but 
to make all available so that teachers can make their own selection. Similarly, 
in due course, we hope that the same topics will be covered at more than 
one level. 

The first set of  ten pamphlets,  published in 1981, and this second set of 
nine represent a sample of  the various levels and approaches and it is hoped 
that they will stimulate many more people to contribute to this scheme. It 
does not take very long to write a short pamphlet ,  but its value to someone 
teaching a topic for the first time can be very great. 

Each pamphlet  is prefaced by a statement of  aims, level, necessary 
background, etc. 

C. A. Taylor 
Editor for the Commission 

The financial assistance of UNESCO, ICSU and'of the International Union of Crystallogra- 
phy in publishing the pamphlets is gratefully acknowledged. 



Teaching Aims 

To help students, with some basic knowledge of Crystallography, to 
understand the principle of  direct methods. 

Level 

This course is suitable for the first years of undergraduate s t u d y  in any 
direction of science. 

Background 

Students should have understanding of Fourier Analysis of  the electron 
density, and some knowledge of  the structure factor equation. 

Practical Resources 

No particular resources are needed. 

Time required for Teaching 

This course may occupy 2-5 hours of  teaching. 



An Introduction to Direct Methods. 
The Most Important Phase Relationships and their 

Application in Solving the Phase Problem, 

..<.;c,'-.'\ 
,L~ ' . .  4 " H. Schenk  . . . . ~ x  ~k. ; ~  

Laboratory for Crystallography, U n i v e ~ ~ ~  7 

Introduction 

The term 'direct methods '  is applied to that class of  methods which seek 
directly to solve the phase problem by the use of  phase relationships based 
on the observed intensities. 

The object of  this pamphlet  is to familiarize the reader with the phase 
relationships used in Direct Methods, and to explain why they work and 
how they are used in practice. Some prior knowledge of the phase problem, 
the structure-factor equation and the application of Fourier theory in 
crystal-structure analysis is assumed. 

Notation 

H = Laue indices h k I of  a reflection 
K = Laue indices hj k~ l~ of another reflection 

OH = Bragg angle of  a reflection H 
I .  =intensi ty of  a reflection H (I.alFH[ 2) 

F .  = the structure ractor of  H. In this work F .  will be 
corrected for thermal motion and brought onto on 
absolute scale. 

EH = normalised structure factor of  H 
UH = unitary structure factor of  H 
GH = structure factor of  H based on the squared structure 
~bn = phase of reflection H 
N = number  of  atoms in the unit cell 

= scattering factor of  atom j 
Zj = atomic number  of  atom j 
rj = position of atom j in vector notation 

xi, yj, zj = position of atom j in Cartesian coordinates 
e ,  = N- I e . e k e  . _  K I 
E4 = N-'IEHEKEt.E-H-K-t.] 



Strong and weak Structure Factor Magnitudes FH 

If, in a crystal structure, atoms lie in the neighbourhood of a set of  planes 
H, as indicated in Fig. l a, then reflection by planes H is strong and hence 
the intensity I H is large. Of  course, the converse is also true: if one observes 
a large intensity In, then the atoms lie near planes as indicated in Fig. la. 
This statement follows also from the structure-factor expression: 

N 

FH = IFHI exp (i4,H) = r £  exp 27ri(hxj +kyj +lzj)i 

A large FH will be found if (hx~ + ky j  + lz~) rood I is approximately constant 
for all j ;  or, in other words, if all atoms lie near one of the planes H. The 
phase 4'n depends on the value of the constant and changes with the origin. 

Conversely, a structure-factor magnitude IF.I is small, if the atoms are 
randomly distributed with respect to the planes H, as shown in Fig. lb. 

Fig. I. A reflected beam H has is strong when the atoms lie in the neighbourhood o f  the set o f  
planes H (a) and low when the atoms are spread out with respect to the planes H (b). 



The electron density can be thought of as a superposition of density 
waves parallel to lattice planes, the amplitudes of which are the [FH [-values, 
the relative phases being given by the <bH-values. We will see later that 
these density waves afford a physical picture of the phase relationships hsed 
in Direct Methods. 

N o r m a l i z e d  S t r u c t u r e  F a c t o r s  EH 

Note: in this text FH designates the structure factor corrected for thermal 
motion and brought to an absolute scale; generally this is done using a 
Wilson plot. Since the scattering factor of any atom decreases for larger 
reflection angle 0, and the expected intensity ([F[2)o of a reflection is given 
by 

N 

(lF[2)o = ~ f~.(8) (1) 
j = l  

reflections measured at different 8-values can not be compared directly. 
Expression (I) can be used to calculate the so called normalized structure 
factor 

le.12-Z~, f} (2) 

It is obvious from a comparison of (1) and (2) that (E~)  = 1 for all values 
of  O. 

The structure-factor expression in terms of the normalized structure factor 
is then: 

1 N 
EH - (E ~ J¢~)' J~,= £ exp 2 zri(hxj: + kyj + lzj). (3) 

If the form factor fj has the same shape for all atoms (fj = Z J ) ,  expression 
(3) can be written as 

1 N 
EH ( ~ t  f~)½j~=I fi exp 27ri(hxi +kyj +lzJ)" (3) 

This is clearly the structure factor formula of a point atom structure, because 
no 0-dependent factors are present any more. 

In order to find the maximum value of [E I, let us consider an equal atom 
structure for which the structure factor (4) further reduces to 

I N 
Eu - ( NZ2) ,_ Z ~. exp 2zri(hx s + ky s + Izs) 

j = l  

| N 

=--~-~r, Z t ~ - =  exp 27ri(hxj +ky  i +lzj). 

(5) 



The maximum possible value of ]EH] is N/N"-= N". 
-The unitary structure factor U was used extensively in the early literature 

on Direct Methods: 

IF~,I I u .  I - Zj~, £ (6) 

The denominator represents the maximum possible value of FH and thus 
Ut.t varies between 0 and 1. In the equal atom case the relation between 
U .  and I E .  l is given by 

IE.  I" = NIu.I  2. (7) 

which can easily be verified by the reader from (6) and (2). 

The ]El's of  H and 2H:  The ~1 Relationship 

The Et relation is the first phase relationship which will be considered 
here; it estimates in centrosymmetric space groups the phase of reflection 
2H on the basis of the magnitudes [EH I and IEzH [. To start with, geometrical 
considerations will be applied to reflections with simple indices. 

In a centrosymmetric crystal only phases of 0 and ~- Occur; provided that 
the phase of the 110 reflection is 0 the maxima of the associated electron 
density wave are found at the lines I of Fig. 2 and the minima at the lines 

Fig. 2. Lines o f  equal contribution to the electron density o f  the reflections hho. E.g. f o r  reflections 
110 with d~ l ~ o = 0 the contribution to the electron density is m a x i m u m  at lines I, m in imum at lines 

II and zero at lines I lL  



II.  I f  the phase  of  I 10 is rr, the max ima  and min ima  are in terchanged.  The 
lines where  the electron densi ty wave has 0-value are marked  with I I I .  Thus  
in the event ]E~,o[ is large and 05t,o=0, the electron density is mainly  
concent ra ted  in the shaded  areas o f  Fig. 3. For the electron density, wave 
associa ted  with the 220 reflection the m a x i m a  are found  at both  lines I and 
II in Fig. 2 in the case its phase  is 0 and the min ima  at the lines I I I .  Thus,  
when IE2,_ol is large and 05220 = 0 the a toms must  lie in shaded  areas in Fig. 4. 
A similar  drawing can be made  for 0522o ='Tr. 

The  combina t ion  of  the tWO electron densi ty waves,  associa ted with the 
reflections 110 and 220 leads: to Fig. 5, in which in the areas I "ma.xima are 
found  of  both  density waves. In the areas I I . the  m a x i m u m  of  220 cdincide 
with the min imum of  I I0, result ing in a low density.  In the event ,  tha t  both 
reflections have a large IE[-value it is likely that  the a toms are Corlcentrated 
in the double  shaded  area.  : .: " 

In case the phase  052,_0 = ~r,' the vertically shaded  area 's  shift ro the b lank 
regions of  Fig. 5 and then thei-e is no over lap  be tween  the h 'orizontal ly (1 I0) 
and verffcally (220) shaded  areas;  this impl!es that  no posi t ion for  the a toms 
can be found  in which they contr ibute  s trongly to bo th . s t ruc ture  factors.  
As a result for  05220 = ~r and 05, ~o = 0 it is not  likely that  bo th  s tructure factor  
magni tudes  I.E,,ol and [E22o1 are large. 

In conclusion,  for large s tructure factors ]E,,o[ and IE_,,.ol, it is likely that  
052,_0 = 0 ;  this re la t ionship is known as the Y.~ relation. 

_=- 

Fig. 3. In case/El lo / is  large and dgtt a = 0  the atoms are likely to be found in the shaded areas. 



i i l '  ,lil IllI ,:!1 Ill" ,Ill IIJ" 

ii~, , I1" ~ I1~ '~ 

Fig. 4. For/Eeeo/large and cb,, o = 0 the electron density is more likely to be present in the uerticaUy 
shaded areas. 

rl ' 
Fig. 5. Superposition of  Figs. 3 and 4. In the area's I the shaded areas from the 110 and 220 

reflections coincide. In case both reflections are large this is a rather likely situation. 



H '/":il ......... 

Fig,. 6. The drawn line H gives the electron density wave for  (b~s = O, and its dotted mirror image 
the wave for  c~ H = rr. The maximum of  the dashed line 2H  coincides with the maxima o f  the drawn 
!irte H in P and with the maxima of  the dotted one in Q. T h u s  i f  /EH/ and /E2,  / are large, it is 

likely that d~eH = 0 whatever the phase o f  H. 

Up to now no attention is;paid to the situation qS~o = rr; the reader is 
invited to show that this gives no change in the formulation of the ~.~ relation. 

The comparison of H and 2 H  can be considered as a one-dimensional 
problem which can beunde r s tood  by looking along line A in Fig. 2. In Fig. 
6 the situation along this line is sketched with ~bH = ~b2H = 0 while in Fig. 7. 

~bH = 0 and ~bzH = ~r. Areas labelled P in Fig. 6 denote regions of  consider- 
able positive overlap, whereas in Fig. 7 only regions of  minor positive 
overlap are seen. The implication is that for large I E .  I and IE2H I the situation 
depicted in Fig. 6 is more prgbably true and thus ~b2, = 0. When ffH = ~', 
as denoted by the dotted line in Fig. 6 the overlag areas marked Q show 
that  052H is still zero. 

H 2H 

Fig. 7. Here the unlikely situation is depicted that for  strong reflections H and 2H dp H = 0 and 
.~,-H = rr. There is no positive overlap and therefore i f  /Eu/ and /E,H/ are both large this situation 

is much more unlikely to exist that the situation of  Fig. Z 



The El -Re la t ion  f rom a H a r k e r - K a s p e r  Inequal i ty  

In 1948 Iqarker and Kasper published their paper on inequality relation- 
ships, which actually opened the field of direct methods. They applied the 

Cauchy inequality: 

a~ ~ E lajl ~ 2 Ibjl'- (8) 
j = I  j = l  j = l  

to the structure factor equation. For instance the partitioning of the unitary 

structure-factor equation in P1 into: 

Uu = Z nj cos 2wH" r =  ~2 ajbs (9) 
j = l  j = l  

such that a s = n)/'- and b~ = nJ/'- cos 27rH" r leads to 

U ~  (j~,  nj)(j_~_, njcos 2 2~rH" r ) .  (10) 

From the definition of the unitary structure factor it follows that 

N (11) 
, ~ n j = l  

j=l  

and the second factor can be reduced as follows 

n~ cos'- 2~rH" r = ~ ½n~(1 + cos 27r2H" r) 
j=l j=l (12) 

=~(l + u, , ) .  

These results used in (10) give 
u, ,  -< -',(1 + u,_,). (13) 

In case U ~ > ~  then U2H/>0 or in other words the sign of reflection 2H is 
positive whatsoever its IU2HI-value is. Note that the sign of H may have 

") I both values. In practice Ui~ > ~ does not often occur. However, when I U2HI 
is large, expression (13) requires the sign of 2H to be positive even if UH 
is somewhat smaller than ½. Moreover, when [UHI and IU2H l are reasonably 
large, but at the same time (13) is fulfilled for both signs of 2H, it is still 
more likely that S2H = + than that S_,H = - .  For example, for IUHI=0.4 
and IU2H[=0.3, Sz,  = + leads in 13 to 0.16<~0.5 +0-3 which is certainly 
true, and S2H = - to 0.16~<0.5 -0 .3  which is also true. Then probability 
arguments indicate that still SzH = + is the more likely sign. The probability 
is a function of the magnitudes IUHI and IU,_H[ and in this example the 
probability of SzH = + being correct is > 90%. In conclusion the mathemati- 
cal treatment leads to the same result as the graphic explanation from the 

preceding paragraph: the ~'~ relationship. 

8 



Large IE.I, IEKI and IE-H-KI: The Triplet Relationship 

I f  two reflections H and K are both strolag then the electron density is 
likely to be found in the neighbourhood of the two sets of  equidistant planes 
defined by H and K. That  is to say the electron density will be found near 
the lines of  intersection of the planes H and K as indicated in projection 
in Fig. 9. A large IEI for reflection - H - K  as well implies that the electron 

Fig. 8. A few large terms (I:Ft<FH_K: H:FK,FH_K,: etc) from the right hand side o f  expression 
(27) in a phase diagram. It can be seen that their phases (l:dp K "I-chH_K: 2:CkK. +~bH-K,: etc) are 

approximately equal to 4~H. 

\ 

Fig. 9. I f  the reflections H and K are both strong, then the electron density will likely lie in the 
neighbourhood o f  the intersecting lines o f  the two sets o f  equidistant planes defined by H and K. 



density will also peak in planes lying d - H - K  apart. It is therefore most 
likely that these planes run through the lines of intersection of the planes 
H and K, in other words that the three sets of  planes have their lines of 
intersection in common (see Fig. lOa) Then by choosing an origin at an 

H 

- K  

Fig. 10. When H and K are strong and - H - K  is strong as well it is more likely that the planes 
o f  high density o f - H - K  run through the lines of  intersection (a) than just in between (b). 

I0 



arbitrary point the triplet phase relationship can be found from a planimetric 
theorem, proved in Fig. l I: 

A O / A D + B O / B E + C O / C F = 2  ' (14) 

which is equivalent to 

~b-H-K + &H + ~b~: +2 • 21r = 0 (modulo 2rr). (15) 

Because the choice of the origin is arbitrary it is obvious that expression (15) 
is independent of the position of the origin: relations of  this type are usually 
called 'structure invariants', although a more logical name would be 'origin 
invariants'. 

In Fig. 10a the ideal situation is sketched and of  course a small shift of 
the planes of  largest density of - H - K  does not affect the reasoning given 
above. However, the most unlikely position for these planes is the one 
indicated in Fig. 10b; here the planes - H - K  of largest electron density 
keep clear of the lines of intersection of  H and K. The triplet relationship 
therefore has a probability character and this is emphasised by formulating 
it as 

~'~H "~ ~)K "I- ~--H--K "~" 0 (16) 

for large values of E3 = N-I/21EHEKE_H_KI. The ~-sign means that the 
most probable value of the triplet phase sum is O. Clearly, the triplet product  
E3 is large when all three reflections H, K and - H - K  have large ]El-values. 

A 

B D Q C 

Fig. I1. In an arbitra~ triangle ABC an origin 0 has been arbitrarily. Theorem: A O / A D +  
BO/BE +CO/CF=2.  Proof." A O / A D = A P / A C ; C O / C F = C R / A C ;  B O / B E = B Q / B C =  

AS /AC;  because RP=SC, AP+CR +AS=2AC.  

II 



The Tr ip le t  Rela t ion f r o m  S a y r e ' s  Equat ion 

The earliest formulation of the triplet-relation (10) for the centro- 
symmetric case was via Sayre's equation (Sayre, 1952). This equation can 
be derived from Fourier theory as follows. 

The electron density can be written as 

1 
p(r)---~Z p .  e×p ( -2~ i . .  r) (17) 

and upon squaring this function becomes 

1 
(18) 

(18) is rewritten by setting H = L+L' and K = L' to 

1 
P2(r) =-~2 ~ ~ FK FH-K exp (-2~iH. r). (19) 

Because p2(r) is also a periodic function it can be written, by analogy with 
(17), as 

1 
p 2(r) = ~ Z GH exp (-27rill. r) (20) 

in which G .  is the structure factor of the squared structure. Comparing 
(19) and (20) it follows that 

1 c .  

The structure factor GH is: 

N 

GH = Z gj exp 2Tri(H. r2) (22) 
j = l  

in which gj is the form factor of  the squared atoms. For equal atoms (22) 
reduces to 

N 

GH = g 2 exp 27ri(H. 5)" (23) 
j = l  

The normal structure factor for equal atoms is 

N 

Fn = f  ~ exp 2~ri(g.  r j). (24) 
j = l  

12 



Thus from 23 and 24 we obtain 

g F. .  (25) 
G .  = f  

Finally from 21 and 25 it follows that 

f l  V.=gV~ FKF,-K (26) 

which is known as Sayre's Equation. It is emphasised that, given an equal- 
atom structure, Sayre's equation is exact. The summation (26) contains a 
large number of terms; however, in general it will be dominated by a smaller 
number of large IFKF,-K[. Rewriting (26) to 

IV.lexp,e,.= ZlF.V.-.lexP'( . (27) 
and considering a reflection with large IFHI it can therefore be assumed 
that the terms with large IFKFH-KI have their angular part approximately 
equal to the angular part of IFHI itself, illustrated in Fig. 8. For one strong 

IFKFHi_KI this leads to: 

exp i~6H ~ exp i (~K + q~H-K) (28) 

or ~b. ~ ~bK +~b.-K (29) 
o r  

4~-. +4~K + ~ . - K  ~0 .  

Relation (29) is identical to (16), the triplet relation. Thus by introducing 
the obvious argument that the most important terms in Sayre's equation 
(27) must reflect the phase &H the triplet relation is found. 

In the event that only a number of larger terms in (27) are available the 
scaling constant f/gV has no meaning. Nevertheless most likely the phase 
information included in these terms is correct and thus an expression such 

a s  

Ek IF~:F.-KI exp i(qSK + 4 . - K )  (29) 
exp iq~. = lY.K IFKF.-~I exp i(05K + 4 . - K ) I  

in which K ranges over a limited number of terms may be very helpful. 
The so called tangent formula (Katie and Hauptman, 1956) 

Y.K E3 sin (OSK + ~b.-K). (31) 
tan q~. =Y.K E., cos (4~K +4~,-~:) 

in which the signs of  numerator and denominator are used to determine 
the quadrant of the phase ~b., is closely related to (30). This formula is used 

in almost all direct method procedures. 

13 



The  Positive Quartet Relation 

The triplet relation, although a two-dimensional phase relation, is very 
successful in solving three-dimensional crystal structures. Nevertheless, it 
may be more appropriate to try to solve structures with three-dimensional 
phase relationships, the quartet relations. 

The positive quartet relation is formulated as: 

~bH +~b,~ +4,t +~b_H_~_t = 0  (32) 

for large E 4 : N -l [EnEKELE-H-r-LI .  
Analoguous to the treatment of the triplet relation now three strong 

reflections H, K and L are combined and the electron density must be 
found in the sets of planes of  Fig: 12. As a result the electron density will 
be found near the points of  intersection of the three planes which are 
indicated for only a few planes from the sets in Fig. 13. For a strong reflection 
- H - K - L  it is much more likely that its plane of  maximum electron 
density will run through the points of  intersection (Fig. 14a) than that it 
will clear these points (Fig. 14b). From Fig. 14a the quartet relation (32) 
follows as straightforward as the triplet relation from Fig. 10a (Schenk, 
1981). 

This quartet relation, however, is not as strong as the triplet relation 
because of the factor N -z in E4. It will be recalled that in E3 a term N-~ 

J 

I 
I 

Fig. 12. I f  the reflections H, K and L are strong, the electron density will probably lie in the 
neighbourhood of  the three sets o f  equidistant planes defined by H, K and L. 

14 



Y 
Fig. 13. The electrondensity will be found near the points of intersection of the three sets of planes 

H, K and L. 

appears.  The reliability is improved by combining the quartet with an 
identical one constructed from two triplets: 

q~. +4~K + q~- .-K ~ 0  

, ~b.+ 6 - . - K - L + 4 ~ . + K  = 0  
-1- ~b. +~bK +~bL +~b-n--K--L ~0 (33) 

which holds for large E. and large IEn+K]. This can be understood by 
drawing the H + K  reflection in Fig. 13, as indicated in Fig. 1ha. Reflection 
H + K  strong indicates that the electron density will be found near the 
intersection of H and K and thus a large [EH÷K[ is an additional indication 
that quartet (32) is true. In Figs. 15b and 15c similar situations are sketched 
for the other two cross terms H + L and K + L, which both leads to sums 
of triplets analogous to (33) involving the phases 4~H+t. and q~K÷L respec- 
tively. So in conclusion a large value of E4 and large le .+KI,  IZ.+LI and 
[EK+L[ are indications that the positive quartet relation (32) is likely to be 
true, and thus positive quartets are controlled by the magnitudes of  7 
structure factors. 

The Negative Quartet Relation 

In the event that the sum of the four phases is equal to  ~: 

(J)H 2C (~K 4-C~L + ( / ) - H - K - L :  "71" (34) 

the resulting relationship is 4 referred to as the negative quartet relation 

15 
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Fig. 14. I f  reflection - H -  K -  L has also a large intensity, it is more likely that its planes of  
maximum intensity run through the points of intersection of  H, K and L (a) than that they run 

clear of  them (b). 

and such relationship exist for reasonably strong intensities for H, K, L 
and - H  - K - L. 

The planes of maximum for the 4 reflections involved in relation (34) are 
indicated in Fig. 16. It can be seen that for all indicated positions three out 
of four planes intersect. If  atoms are located at these points the resulting 
unitary structure factors of H, K, L and - H - K -  L will be 0.5, because 
three atoms lie in the planes and one lies halfway between. Thus for a 
negative quartet relation the reflections H, K, L and - H - K - L  will in 

16 



N. 

I i i  
I II 

i; 11 

i/ I,,' eN 

I 

Fig. 15. l f  H, K, L and - H -  K - L are strong and the electron density will be found near their 
points of intersecting, the H + K reflection, indicated in (a) with a dotted line, is expected to be 
strong, conuersely a large /EH.K/ supports the quartet relation (II). Fig.'s (b) and (c) give the 

analogous situations with respect to the H + L and K + L reflections. 
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Fig. 16. In the case of the negative quartet relation the planes of  maximum electron density of  
H, K, L and - H - K - L  run as indicated here. At  distinct positions three planes intersect and 

there most likely the electron density will be found. 

general not be found amongst  the very strongest. The next question to be 
answered is: what is the intensity of  reflection H + K, if the electron density 
is located near the market points of  Fig. 16. From Fig. 17 it can be easily 
seen that H + K will have a small [El-magnitude: equal numbers o f  points 
of  electron density concentration lie on the H + K-planes and halfway in 
between. As the same holds for the other cross terms it can be stated that 
the negative quartet relation (34) is likely to be true for reasonably large 
values of  E4 and small IE,+KI, IEH+~[ and IEK+,.I. 

S 
i • 

/ i t 

• - .... "-~" _'~_._~'Jl 

"--. 
.......... "-® ' ~  _~ 

, ~ ,  - -~  _ 

Fig. 17. [s fig. 16 with the reflection H + K indicated by means of dotted lines. It is easily checked 
that this reflection is weak, because the electron density is distributed in equal amounts on and 

between the planes. 
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How Numerous are the Reliable Triplets and Q u a r t e t s  

In the following table numbers of  relations are given together with their 
percentage of correct indications for triplets, quartets and negative quartets 
above variable thresholds of  respectively the triplet product  E3 and a quartet 
product E* (Schenk, 1973). The numbers are given for a a~za-steroid with 
N = 40, in space group P]'. 

Triplets 

% Positive quartets Negative quartets 
nr correct 

E~ relations relations E4 nr % nr % 

6.0 21 100 6.0 185 100 
4.0 143 100 4.0 1213 I00 
3.0 353 100 3.0 3295 100 I I00 
2.5 583 99.8 2.5 5813 99.8 2 100 
2.0 980 99.7 2.0 10,006 99.5 17 I00 
1.5 1823 99.2 1.5 13,114 98.8 38 I00 
1.0 3395 96.9 

As can be seen many relations are available to solve this small N = 40 
structure. As a rule the number  of  useful tn.'plets, and quartets diminishes 
as N increases; this effect is quite noticeabl'e for quartets. : 

One comment  regarding the use of  negative quartets. If  phase relationships 
such as the triplet relation 

4~H +q~K + ~ - H - K  = 0 .  

are used exclusively and there is no translational symmetry, the trivial 
solution with all phases ~H = 0 is the most consistent one. To find phases 
equal to ~" (e.g. in space group P1) it is necessary to use relations of  the type 

: ~bH +~bK + . . . ~  ~'. 

Thus relations such as negative quartets (34), although few in number,  play 
an important  role in these Structure determinations. 

Direct Methods in Action 

The first direct method, by means of  which structures were solved, was 
the symbolic addition method. This method originates from Gillis (1948), 
however, due to the work of Karle and Karle (1966) it developed to a 
standard method. The problem can be defined as how do we find rn phases, 
provided there are n phase relationships (n >> m). In the first place a few 
(~< 3) phases can be chosen to fix the origin and then, using phase relation- 
ships, new phases can be derived from these three. In general it will not be 
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possible to phase all reflections in this way and hence a suitable reflection 
(large ]E[, many relationships with large E3) is given a symbolic phase and 
again the relationships are used to find new phases in terms of  the already 
known ones. Usually it will be necessary to choose several symbols in order 
to phase most of the strong reflections. Finally the numerical values of  the 
symbols are determined (e.g. by using negative quartet relations) and from 
the known phases a Fourier map can be calculated. This process is known 
as the symbolic addition method. Most structures are now solve d by multi: 
solution tangent refinement procedures, which use many starting sets of 
numerical phases and the tangent formula (31) to extend and refine the 
phases. The correct solution may then be selected by using figures of merit, 
based e.g. on the internal consistency of the triplet-relations, or on the 
negative quartets. 

Additional Literature 

In the preceding chapters the main object was to clarify the basis of the 
present direct methods. In this chapter a brief guide to additional literature 
is given. 

This triplet relation originates from the early fifties and was implicitly 
present in the important papers by Harker and Kasper (1948), Karle and 
Hauptman (1950) and Sayre (1952). For the centrosymmetric case it was 
explicitly formulated by Sayre (1952), Cochran (1952), Zachariasen (1952) 
and Hauptman and Karle (1953). The latter authors gave it its probability 
basis, which was independently derived by Kitaigorodsky (1954) as well. 
The noncentrosymmetric case was formulated first by Cochran (1955). 
Another useful expression related to the Y-2 relation is the tangent formula 
(31) derived by Karle and Hauptman (1956). 

A very important development was the use of symbols for tackling the 
set of  triplet relations (1) in order to lind the phases. Symbols are assigned 
to unknown phases such that a successful phase extension can be carried 
out. Later in the process in most cases the numerical values of  the symbols 
can be determined. The use of  symbols was first introduced by Gillis (1948) 
and later successfully applied by Zachariasen (1952) and Rumanova (1954), 
but due to the work of Karle and Karle (1963, 1966) the method could 
develop to a standard technique in crystallography. In particular the first 
structure determination of  a non-centrosymmetric structure (Karle and 
Karle, 1964) proved the value of direct methods. The method has recently 
been described in detail by J. Karle (1974) and Schenk (1980a). The latter 
gives also some exercises. For centrosymmetric structures the symbolic 
addition procedure has been automized amongst others by Beurskens (I 965), 
Germain and Woolfson (1968), Schenk (I 969), Ahmed (I 970), Dewar (1970), 
and Stewart (1970). 
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In noncentrosymmetric structures the programming problems are much 
greater and therefore the number of successful automatic program systems 
is smaller, examples are the systems of Dewar (1970) and: the interactive 
system SIMPEL (Overbeek and Schenk, 1978). 

Nowadays most of the structures are solved by multisolution tangent 
refinement procedures, which use many sets of numerical phases to start 
with and the tangent refinement (31) to extend and refine the phases. Th'e 
most widely used procedure of this sort is the computer package MULTAN 
(Germain and Woolfson, 1968; Main, 19:78; Main, 1980). 

The positive seven-magnitude quartet relationship (32) was first formu- 
lated by Schenk (1973) and at the same time a two-dimensional analog}~ 
of the negative quartet relationship proved to be useful. (Schenk and d~e, 
Jong, 1973; Schenk, 1973b). The negative quartet in theory and practice" 
was then published by Hauptman (1974) and Schenk (1974). In the latter 
paper the first Figure of Merit based on negative quartets was successfully 
formulated and tested. Theories concerning 7 magnitude-quartets were 
developed later, among which the one of Hauptman (1975 :) is best estab- 
lished. Applications of quartet.s include their use in starting set procedures 
and figures of merit, further brief details of which can be found in a recent 
review article (Schenk, 1980b). 

a~'" 

!. 
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