ANSTO

Clayton | VIC

Australian Synchrotron

Lucas Heights | NSW

Main campus

OPAL multi-purpose reactor
Australian Synchrotron

A research facility
- Particle accelerator with 216m circumference
- Beam available 24 hours, 6 days a week

A user focused facility
- 5500+ visits per year
- 10 (+2) operating experimental end stations (beamlines)
- 586 Journal Publications in 2022
- Generate 1.5 PB of data each year
A growing facility (BRIGHT program)

- 10 original beamlines
- 8 new beamlines
- 3 already operating

- Opportunity to “refresh” software
The Scientific Computing Team

Scientific Computing founded in June 2017

Support Science and Users
- Experiment Control
- Data Acquisition
- Data Processing
- Data Analysis

Our Team
- 1 manager
- 19 members
 - 1 principal engineer
 - 10 PhDs
 - 47% gender split

Beamline Groups
- Imaging
- Spectroscopy
- Scattering
- Crystallography
- Diffraction
- Microscopy

Cross-functional teams (3 to 4 members)
- Hardware control
- Backend
- Frontend
- Processing
The Data Journey

Before Beamtime
Sample information
Proposal information

During Beamtime
Raw Data
Metadata
Processed Data

After Beamtime
Data Analysis
Data Download
Sample Management

Management
- Implementation depends on beamline
- Users enter sample details prior to experiment
- Provides crucial metadata

Typical Features
- Generate shipping labels
- Assign samples to sample holder
- Associate sample with experiment and data
Data Collection Architecture

Hardware

Run Engine

Metadata

Data Streaming

Data Collection

Local Storage

Data Product
Data Processing

High performance computing

- Computing system
 - Comprised of 50+ physical servers
 - GPU nodes for image processing

- Beamline specific implementation
 - Heavily depends on beamline
 - Off-the-shelf and in-house tools
 - Heavy use of frameworks (e.g. ITK, Prefect)
 - Runs in Docker containers on Kubernetes
Data Analysis & Visualisation (ASCI)

Remote analysis platform

- Remote desktop environment in browser
- User starts session with tools pre-installed and data mounted
The Data Product

Concept of Data Product
- Raw + Metadata in as few files as possible
- Target users

HDF5 is our standard container
- Schema depends on Beamline
 - MX beamline use NeXus NXmx
 - MCT uses custom format inspired by NeXus
 - Other beamlines still in discussion
- Defined through models
 - H5Pydantic Python library under development
Data Lifecycle

- Experiment starts
- Experiment collects data
- Experiment ends
- Dataset is registered
- Data is available on ASCI/SFTP
- Data expiration clock starts
- Data expires
- Data extension can be granted
- Data is deleted
- Users take copy of data
- 1 or 3 years later
- Users are notified
Data Page for Users

- Users can check the state of their datasets
 - Shows expiration dates, title, EPN, data size
 - Can sort by various criteria

- Includes FAQ
 - Explains website
 - Explains lifecycle
Data Retention
- Users responsible for long term data storage
- Local copy of data deleted after 1 or 3 years

Focus on Data Product
- Described and verifiable
- Rich Metadata
- Informed by processing and analysis tools
- Follow community standards where possible
Questions?
Data Retention Policy

Guidelines
This document outlines the conditions of access to and retention of raw and other experimental data by Users at ANSTO Clayton Campus, the site of the Australian Synchrotron.

Data Strategy
Users of the Australian Synchrotron shall have access to raw and reduced experimental data, and relevant metadata collected during an experiment (collectively 'data') under the following conditions:

(a) It is the User’s responsibility to ensure that they take a copy of the data collected during an experiment.
(b) ANSTO will apply “best-efforts” for data access, retention and security; however, ANSTO makes no guarantees to retain or protect data collected from experiments.
(c) ANSTO will endeavour to retain data collected from experiments, for up to 3 years for low data-rate beamlines, or for 12 months in the case of high data-rate beamlines.
(d) Users may bring portable storage devices to the beamlines to download the data collected from experiments to these devices. ANSTO may also support the downloading of data via remote access.
(e) ANSTO will endeavour to provide remote data access capability for Users to download data collected during experiments to a machine of their choice. Currently, this capability is provided through a web interface however ANSTO may change how such services are provided at its discretion.
(f) ANSTO may restrict access to data to Users that are either named on the Experiment Authorisation form for the experiment, or as modified by the Principal Investigator using an administrative process approved by ANSTO.
(g) If third party data storage systems are used, ANSTO accepts no responsibility for data security or integrity.
(h) When data has been archived for more than 3 years after its collection for low data-rate beamlines, or for 12 months in the case of high data-rate beamline experiments, it may be deposited in a public access archive, or deleted, at the discretion of ANSTO.
(i) Users must write to the Australian Synchrotron User Office if they do not wish data collected from experiments to be deposited in a public archive.

Definitions
Low data-rate beamlines - Any beamline at the Australian Synchrotron that generates modest data rates – typically less than one terabyte per experiment. At the time of producing this document, low data-rate beamlines include IRM, PD, SAXS/WAXS, SXR, Thz/Far-IR, XAS, XFM and offline instruments.

High data-rate beamline - Any beamline at the Australian Synchrotron that generates high data rates – typically more than one terabyte of data per experiment. At the time of producing this document, high data-rate beamlines include: IMBL, MX1 and MX2, however this may include other beamlines in the future.

IMBL – Imaging and Medical beamline
IRM – Infrared Microscopy beamline
MX1 – Macromolecular Crystallography beamline
MX2 – Microscopy beamline
PD – Powder Diffraction beamline
SAXS/WAXS – Small and Wide Angle Scattering beamline
SXR – Soft X-ray Spectroscopy beamline
Thz/Far-IR – Terahertz and Far-Infrared beamline
XAS – X-ray Absorption Spectroscopy beamline
XFM – X-ray Fluorescence Microscopy beamline
User – A researcher that uses the beamlines or other facilities at the Australian Synchrotron.