
Data Processing in Macromolecular Crystallography
Andrew J. Howard

Department of Biological, Chemical, and Physical Sciences
Illinois Institute of Technology    Chicago IL 60616 USA

ahoward@harry.csrri.iit.edu

Abstract

Data processing in macromolecular crystallography
is the effort by which a user converts a set of raw
diffraction data into a list of Bragg reflections with
measured intensities. With modern crystallographic
hardware the raw data consists of a set of two-
dimensional detector images, each collected at a
particular orientation of the crystal. Data processing
may be broken down into four steps: calibration,
determination of the unit cell, measurement of the
integrated intensities, and merging and scaling the
integrated data. Algorithms for each of these steps
have been derived and validated, and are
implemented in several commercially available
software packages. In recent years these packages
have become more flexible and easier to use.
Software developed for monochromatic laboratory
experiments must be modified or even replaced when
the user is performing more exotic experiments,
particularly Laue diffraction experiments.

1  Introduction
Macromolecular crystallography is a relatively
mature science in that the procedures used, at least
for monochromatic experiments, are well-defined and
well-validated through thirty-five years of experience
in several hundred laboratories. The fundamental
experiment is little different from that performed by
John Kendrew in the 1950’s to solve the myoglobin
structure. In this basic experiment, a respectable-
sized single crystal of the macromolecule is grown
and mounted on a rotation stage in front of an X-ray
source; the crystal is exposed to X-rays as it is rotated
about an axis, and some sort of detector is placed
where it can intercept the diffracted X-ray beams; the
scientist determines the indices (hkl) of the Bragg
diffraction spots in the pattern; the background-
subtracted intensity of the spots is determined;
various corrections are applied to these
measurements; the intensity measurements of the
current sample are compared or combined with those
from related experiments to derive phase
information; and the intensity measurements are
combined with the phase information to provide input
to a Fourier transform from which the electron
density can be visualized and interpreted.

The data processing procedures used routinely today
are somewhat newer than these experimental
techniques, but even in this realm there is increasing
agreement among practitioners about goals and
approaches. This convergence of methodology has
arisen not because of intentional collusion among
software developers, but rather by a realization that
there are optimal ways of addressing the basic
problems of data processing. The software packages
available today differ in their user interfaces and in
their relative applicability to different styles of data
collection (e.g., one might be better suited to wide-
slice data collection protocols, and another might be
better-suited to narrow-slice protocols), but there is a
substantial degree of unanimity about what the
software needs are and how to address them.

This paper summarizes the procedures required for
processing macromolecular diffraction data. I will
draw most examples from my own X-GEN software,
but some discussion of other packages will be
provided as well. Almost all of this discussion centers
on processing of data from electronic detectors (both
digital and analog) and image plates. Data processing
for single-counter diffractometry has been covered in
extensive detail in previous IUCr Schools (1) and
elsewhere (2). Film processing has also been
carefully discussed in other venues (3), but the
discussion of “wide-slice” image-plate data
processing below applies to screenless oscillation
photography with the understanding that some of the
errors in film are worse than with image plates. The
goal of data processing, as defined here, is to obtain
appropriately corrected estimates for the intensities of
the Bragg reflections contained in a set of two-
dimensional detector images.

2  Historical background
In the 1950’s and 1960’s, macromolecular
crystallographic data were collected either by
precession methods onto film or by single-counter
diffractometry. The former allowed for simultaneous
observation of numerous Bragg spots (usually within
a single layer) but suffered from the built-in
limitations of film, viz. limited dynamic range, film
fog, film shrinkage, and the necessity of a time-
consuming development step subsequent to data
acquisition. By the 1960’s diffractometry was at least
partially automated, allowed more accurate
measurements than were possible with film, and
provided for a wide dynamic range, but has a huge



limitation with respect to medium-sized to large
proteins: it can only measure one Bragg peak at a
time. The accuracy of diffractometry and its ease of
use made it the method of choice on the small
(typically less than 34 kDa per asymmetric unit)
proteins that were the targets of crystallographic
studies in the period. Film methods rallied in
popularity with the advent of screenless precession
(4) and screenless oscillation (5) methods, which
allowed more efficient data collection and simpler
apparatus, but the limitations of film remained
evident. It was clear that users would benefit from the
development of a method that would provide the
efficiency of film and the accuracy and automaticity
of diffractometry. The “best of both worlds” would
thus be a method of electronic detection that
combined the advantages of both existing techniques.

Thus the crystallographic community exhibited
substantial enthusiasm for the first efforts to develop
area detectors. The flat multiwire proportional
chambers developed at UC San Diego (6) and the
University of Virginia (7), the spherical drift
chambers developed at MIT (8) and LURE (9) and
the SIT tube television detectors developed at
Cambridge (10) and Brandeis(11) provided
performances approaching the “best of both worlds”
goals delineated above. It was recognized from the
outset that the rapidity and accuracy of the data
collection hardware would provide little help to the
user unless substantial resources were devoted to
software development, both for data acquisition and
control and for data processing. In order for an area
detector to be useful there needed to be a way of
extracting useful information from the raw data it
generated, and that depends on software. Thus most
of the groups mentioned above developed complete
software packages for processing data from their
detectors. In most cases there was little distinction
made between data acquisition code and data
processing code; the packages were set up to provide
for both. Since the coupling between conducting the
experiment and deriving intensity information from it
was high, there was little need to separate the
software into separate components.

In the mid- to late-1980’s several of these detector
designs were commercialized, and structure-
determination laboratories, as distinct from
instrument-development groups, began to use them.
Shortly thereafter, researchers recognized that the
scope and requirements for data processing on all
these detector systems were fairly similar, and that it
would pay off to write detector-independent data
processing code. The concept of separate packages
for data acquisition and data processing arose in the
same period: under some circumstances users were
able to acquire their data with the expectation that the

data could be processed using more than one
package--an option not available if the data
acquisition and data processing are indissolubly
linked. Comprehensive packages that accomplish
both data acquisition and data processing are still
viable, but most users of area detectors employ
separate software for the two tasks.

Software packages developed during this period
included MADNES, a package originally developed
by James Pflugrath and Albrecht Messerschmidt at
the Max-Planck Institut in Martinsried (12) and
subsequently incorporated into a European
Community-supported software initiative under the
direction of Gerard Bricogne (13). MADNES was
originally applied to data from the Enraf-Nonius
“FAST” SIT-tube detector system, and has since
been used on several other analog and digital detector
systems. During the same period I developed
XENGEN  (14), a package for processing data from
the Xentronics (subsequently Nicolet and then
Siemens) Area Detector. Wolfgang Kabsch
developed XDS (15) for processing Xentronics data,
and his software was subsequently used on other
systems. MADNES, XENGEN , and XDS employ
explicitly three-dimensional data processing
paradigms; reflections are expected to extend over
several consecutive detector images, and the images
are assumed to cover contiguous ranges of scanning
angle. Thus in this “narrow-slicing” paradigm,
reflection positions can be calculated as centroids in
scanning-angle w as well as detector position (X,Y),
and integrated intensities can be calculated by
summation over ranges of scanning angle as well as
detector position. All of these packages employ some
form of three-dimensional profile analysis: the
expected three-dimensional profile of each Bragg
reflection is determined and compared with the actual
background-subtracted profile, and the shape of the
model profile is used to help inform the intensity
measurement.

The appearance of storage-phosphor detectors or
image plates in the 1980’s led to further software
refinements. Most image-plate users collect data over
fairly wide oscillation ranges (> 1 degree per image),
so that most Bragg reflections are entirely recorded
on a single image. The data resemble those from
screenless oscillation photography; indeed, image
plates function as “electronic film”. Thus software
originally developed for film processing were applied
with modest modifications to the task of processing
image plate data. Corrections for partiality (16)
originally developed for film processing were
extended to this type of data. Zbyszkek Otwinowski’s
DENZO (17) is the most successful of these “two-
dimensional” or “wide-slice” data processing
packages. The two-dimensional profile-fitting



techniques developed by Rossmann (16) and others
for film work were adapted in DENZO and similar
software to the image-plate application.

In the 1990’s even the distinction between two-
dimensional and three-dimensional data collection
was seen to permit further merging of concepts. With
some care one can treat two-dimensional profile-
fitting as a special case of three-dimensional profile-
analysis, and the conceptual differences between
wide-slice and narrow-slice data collection can be
rendered unimportant. My X-GEN package can be
used comfortably for processing both wide-
oscillation and narrow-oscillation data, and other
recent packages have similar capabilities. Meanwhile
the importance of providing graphics support for the
underlying algorithmic functions was recognized, and
several packages were expanded to incorporate
graphics. Thus HKL, the successor to DENZO; X-
GEN, the successor to XENGEN ; D*Trek, the
successor to MADNES; and the packages offered by
the detector manufacturers all provide graphical user
interfaces and (generally) flexible utilities for
viewing detector images and visual clues to the
quality of the processed data. Increasingly the
algorithms described in the next section are employed
in all the major software packages. The differences
are in the user interfaces, the relative emphases on
two- and three-dimensional approaches, and the
number of choices the user is allowed or required to
make in processing the data.

3  Methods
The steps required in deriving a set of intensity
estimates for Bragg reflections are as follows:
 (1) calibration of the experimental arrangement;
 (2) determining the sample’s unit cell;
 (3) determining the integrated intensities of the
Bragg spots;
 (4) merging and scaling the integrated data;
Each of these steps comprises several sub-tasks, as
set forth below.

3.1 Calibration
Electronic and image-plate detectors do not offer
perfectly uniform responses to the X-ray beams that
impinge on them, and the purpose of the calibration
is to characterize this response so that the raw
detector images can be appropriately massaged
before any intensity measurements are made.
Detectors vary widely in the degree to which these
nonuniformities affect the data, and the corrections
assume varying significances depending on the
detector type.

The first type of calibration to consider is correction
for spatial distortion. Most electronic detectors, with
the exception of the San Diego Multiwire Systems

instrument, show substantial geometrical distortions.
Thus the mapping from pixel position (X,Y) to a
Cartesian position (x,y) measured in centimeters from
a reference point on the detector face may involve a
complex transfer function

(x,y) = T(X,Y) (1)
With most electronic detectors the form of the
function T is derived from an experiment in which a
metal plate is attached to the front of the detector and
X-rays are trained upon the detector from a point
source. The plate has n small holes (i = 1,2,...n)
drilled in it in a known pattern, and the centroids
(Xi,Yi) of the spots produced as X-rays travel
through the holes onto the detector face are recorded.
The Cartesian positions (xi,yi) of the holes is known
in advance, so as long as one can identify which
centroid corresponds to which Cartesian position, the
mapping from (xi,yi) to (Xi,Yi) is well-defined. The
transfer function T is simply the inverse of this
mapping, appropriately interpolated. In some
software packages the function T is calculated as a
polynomial expansion to several orders; in others,
including X-GEN, a simple lookup table is stored and
the interpolation is performed with a two-
dimensional spline.

The second type of calibration to consider is for
nonuniformity of response to X-rays. With some
detectors, particularly SIT-tube systems and the
recently introduced charged-coupled device systems,
the signal produced on the detector face when an X-
ray photon arrives varies substantially from point to
point across the face. We can separate the
nonuniformity of response into a local component
and a regional component. The local component
characterizes the difference in response between two
pixels close together on the face; the regional
component describes variations over large fractions
of the detector area. In principle one could correct for
both local and regional variations by collecting a long
flood-field image of the detector, compensating for
variations in the distance from the source to each
pixel, and then defining the nonuniformity of
response to be proportional to the observed count at
each pixel in the flood field. There are two
difficulties with this approach. First, the time
required to achieve adequate counting statistics in
each pixel may be inconveniently long: with typical
point sources it may take as long as one day to
accumulate enough X-ray photons in each pixel (e.g.,
10000 counts per pixel to derive a correction that is
accurate to 1%) to derive a useful correction. Second,
the local efficiency nonuniformity is, in this
approach, convoluted with a nonuniformity in the
effective pixel size from pixel to pixel, and the
measured count in a pixel may be affected more by
this spatial nonuniformity than it is by the response
nonuniformity. Both of these problems disappear if



we focus only on the regional nonuniformity. In this
case the counting statistics even in a brief flood field
are adequate if we compute moving averages of the
flux over regions of the detector face, and the local
variations in pixel size will average out. Therefore a
regional correction is reasonably easy to derive.
Success in performing local corrections has been
achieved in some packages (not including X-GEN),
but regional corrections are probably more important
in any case.

A third type of calibration is a determination of the
active area of the detector. In most experiments some
fraction of the pixels on the detector face are
unavailable for data integration, either because there
is no way for X-rays to produce counts in a region or
because an occlusion blocks the path from the sample
to the region. On the Siemens Multiwire or MAR
Research detectors, for example, the detector face is
actually round, but the electronic recording area is
rectangular; thus the corners are outside the active
area. In most experiments the shadow of the
beamstop and the hanger from which it is suspended
appear on the detector image, so those areas are
unavailable for data collection. In some experiments
the shadows of goniostat motors can occlude portions
of the detector face for at least portions of data runs.
The easiest way to detect these inactive areas of the
detector is to obtain one or more detector images,
remove the Bragg reflections from them, and then
determine where the low counts (counts well below
the mean) appear. Thus if after removing reflections
from a series of images a summed “background”
image C(X,Y) is obtained, we can determine the
mean background:

<C> = Σ C(X,Y) / N (2)
where N is the number of pixels summed. Then a
pixel (X,Y) is defined as inactive if

C(X,Y) < Z * <C> (3)
In X-GEN, Z is a user-adjustable constant, but it
generally lies around 0.4. X-GEN and some other
packages provide for manual adjustment of the active
area with a command-driven or graphical interface.
These manual adjustments can permit elimination of
regions where the count is unusually high rather than
low, e.g. when a deliberately leaky beamstop is
employed; they also allow for special experiments,
such as experiments in which a portion of the
detector needs to be excluded from consideration.

3.2 Determining the Sample’s Unit Cell
In the early days of area detectors users tended to
study the same protein for many months, and their
knowledge of the unit cell and the orientation of the
crystal was sufficiently intimate that an auto-indexing
capability was seen as unnecessary. But as more
laboratories began using area detectors, and more
attention to automation and convenience was given,

the need for auto-indexing capabilities arose. Even
before auto-indexing became routine, though,
software needed to be used to refine manually
determined orientation matrices and unit cell values.
These required methods of gathering lists of bright
spots to be used as input to the refinement. These
same lists of bright spots were used in auto-indexing,
once the latter was implemented in software packages
like XENGEN , MADNES, and DENZO.

In order to obtain the data necessary for auto-
indexing and refinement, we must obtain a list of
centroids in detector position (X,Y) and in scanning
angle ω for some reflections. In DENZO and HKL,
as in other film-based packages, the centroids are
obtained very precisely in (X,Y) and the expectation
is that indexing will be accomplished with only one
image. The potential ambiguity associated with all
the scanning angle values being equal is avoided
because the curvature of reciprocal space is sufficient
to provide all three basis vectors for the complete unit
cell. In X-GEN and other three-dimensional
packages, full three-dimensional centroids are
obtained and used in calculating diffraction vectors
all referenced to a common origin in reciprocal space.
If the sample goniostat includes more than one
rotatable axis, the sample data can even be taken
from more than one range of the non-scanned
goniostat angles. Thus an orientation matrix
computed over an omega range with chi and phi set
to particular values can be made even more accurate
if an additional set of data collected at different chi
and phi values is included in the determination.

These facilities for finding bright spots function in
fairly similar ways. Typically the detector is divided
into moderate-sized regions, and estimates of the
background in each region are obtained from the
mean, the median, or even the mode of the counts in
the region. Then places where the count is
substantially above that background are identified.
Groups of neighboring pixels that are all above
background are assumed to be parts of the same
reflection; an isolated bright pixel is assumed to be an
error and is ignored. The centroid in (X,Y) is then
obtained for these groups of pixels. In packages like
MADNES and X-GEN, the two-dimensional centroid
is extended to three dimensions by examining the
neighborhood in omega of any (X,Y) centroid and re-
doing the centroid calculation in a three-dimensional
summation box. Spots with oddly-shaped profiles are
filtered out, as are spots that are too close to excluded
regions of the detector or too close to the rotation
axis.

Methods for auto-indexing developed for small-
molecule crystallography depend on recognizing the
integer-like behavior (“graininess”) of the diffraction



vectors associated with the individual reflections.
Thus if we define s = (sx, s y, s z) as the diffraction
vector associated with the reflection h = (h,k,l), then
if A is the reciprocal-space unit cell matrix for the
sample, then

( a*x  b* x   c* x  )
A = ( a* y   b* y   c* y  ) (4)

( a* z  b* z  c* z )
and

s = λ A * h, (5)
where λ is the wavelength at which the data were
collected. Thus in small-molecule methods the
diffraction vectors s for a set of reflections are
calculated, and the indices for a few (three or four) of
these reflections are guessed. If we use three
reflections (h 1, h2, h3), then the orientation matrix A*
associated with any guess of the indices can be
computed by converting the equation above into a
3x3 matrix equation:

S = λ A * H, (6)
where H = (h 1, h2, h3) and S = (s1, s2, s3). This matrix
equation can be inverted if H is nonsingular to obtain
A, and the results can be used to index all other
reflections. If the indices of the resulting reflections
are close to integers, then A* is probably correct, and
we can proceed to refinement. If the indices are not
close to integers, a different assignment of the guess
H can be chosen until a success arises.

This method has difficulty with macromolecular data
because the density of spots in reciprocal space is
high. The low-resolution spots, for which the
integerness of the reflections would be easy to
recognize, are often unavailable because they are
obscured by the beamstop or because their profiles
are too broad in omega or (X,Y). Thus a modest
modification of the method is used, in which the
diffraction vectors s are replaced with the differences
between nearby diffraction vectors u = s - s’ and
three small difference vectors are chosen as
references: S = (u1 u2 u3). This has the advantage
that small errors in the reflection centroids, as
expressed in their diffraction vectors, tend to be
subtractive rather than additive or small distances on
the detector face. Thus the u  vectors are actually
more accurate than the s  vectors, and the chance of
finding a valid solution is substantial. Of course the
resulting orientation matrix A* may be correct even
if all of the computed indices are off by constant
offset vector dh; this can arise in the common
situation in which the user does not know where the
beam center position is, and estimates it incorrectly
so that all the k indices (for example) are one unit too
high or too low. These problems generally can be
discovered after the fact. This method of examining
differences between diffraction vectors rather than
the diffraction vectors is known as the “difference
vector” method, and it is implemented in most

macromolecular packages. Some offer a choice of a
traditional diffraction-vector or “Sparks” algorithm or
the difference-vector algorithm.

Problems with auto-indexing in macromolecular
crystallography are generally traceable to one of four
sources: (a) incorrect choice of reference spots, either
because the centroids are mis-measured or because
two neighboring reflections are merged by the
software to create a bogus reflection somewhere
between the two; (b) translational offsets that allow
the difference vector algorithm to succeed but do not
produce correct indexings of the spots because of a
constant offset; and (c) the presence of spots that
belong to other lattices, typically from a small
crystallite of the same macromolecule that is oriented
a few degrees away from the principal crystal.
Problem (a) can usually be resolved by adjusting
parameters in the software to prevent miscalculations
of the centroid. Problem (b) can be overcome after
the difference-vector auto-indexing is complete, often
by trial and error. Problem (c) can be addressed by
using only a higher-resolution subset of the data,
wherein the smaller crystallite contributes no
reflections. In an extreme case of this method, I once
indexed a severely cracked subtilisin sample in which
two lattices, one diffracting to 1.8 Å and one only to
2.4 Å, were both diffracting. By indexing the data
from 2.2 Å to 1.8 Å, I was able to determine the
primary crystallite’s unit cell. Then by eliminating
from the set of sample data all reflections that indeed
could be indexed as integers by the primary
orientation matrix, I was able to index the other
crystallite as well. We then proceeded to integrate the
data from both crystals and successfully refined the
structure.

Recognition of a correct solution in auto-indexing
depends on the integerness of the computed (hkl)
values for the observed reflections or difference
vectors. The most obvious way to recognize
integerness is by a low value of an integerness
residual:

Σ (h - [h])2 + (k - [k]) 2  + (l - [l])  2 (7)
where [x] means “integer closest to x”. Bricogne has
suggested a more sophisticated metric, namely,
minimization of a Fourier expression

Σ exp(-2πih)* Σ exp(-2πik)) * Σ exp(-2πil) (8)
This formulation has been implemented in recent
versions of MADNES and offers some advantages
over the previous formulations.

Once the auto-indexing effort has succeeded, the user
is presented with an approximate set of unit cell
lengths and angles. The unit cell obtained from the
auto-indexing may not be the Delauny reduced cell; it
may not even be the crystallographically



conventional unit cell. Several packages, including
XDS and DENZO, provide tools for recognizing and
installing the crystallographically conventional cell
rather than the cell that the auto-indexing effort
happens to find. In some cases the probabilities that
the cell and symmetry operators are correct are
presented to the user. In other packages, including X-
GEN, the user must supply some crystallographic
know-how to recognize the proper unit cell.

The unit cell will be expressed as unit cell lengths
and angles, plus three angular values that describe the
orientation of the cell with respect to the laboratory.
These latter angles are expressed differently in
different packages. In XENGEN  and X-GEN the
Euler angles of a fictitious goniostat, sometimes
aligned with the real goniostat and sometimes aligned
with such that the fictitious (ω=0,χ=0,φ=0) position
corresponds with the start of the data run, are
calculated such that a view down the Z axis of the
fictitious goniostat with X vertical and Y horizontal
will display the real-space a axis along X and the
real-space b along Y (assuming γ = 90•). In several
other packages a nominal zero position of the crystal
is determined and a set of offset angles (RotX, RotY,
RotZ) are calculated from the orientation matrix.
Since both of these methods involve, in effect,
finding the eigenvectors of a 3x3 rotation matrix,
their behavior is computationally very similar. Each
has some advantages in visualizing the relationship
between the sample and the laboratory axes.

Following the auto-indexing and the cell conversion,
if any, the user will need to improve the unit cell
estimates by refinement. Typically the refinement
takes the form of a minimization of differences
between observed and calculated values of the spot
positions in (X,Y) and in scanning angle, or by
minimizing the non-integerness of the reflection
indices. These minimizations can be performed by
analytical calculation of first derivatives of the target
functions with respect to the refinable parameters and
conventional linear least-squares, or by a non-
derivative based method like Simplex.

Thus in the conventional least-squares technique for
integerness, we assume that the integer closest to an
index is actually its correct value, and write

h = R * s (9)
where h is the (hkl) vector of the reflection, s is its
scattering vector, and R is the real-space unit cell
matrix. Note that R-1  = λA by our earlier discussion.
The diffraction vector can be calculated from the
(X,Y) position of the spot on the detector, together
with its scanning-angle position, provided that we
know the position of the detector in space and the
transfer function T described above. Then if in fact
the integer version of h, [h], is correct, then

h - [h] = err(h) = Σi  (δ(pi) * ∂(R*s)/∂pi (10)
where the parameters pi are the refinable parameters
and ∂(R*s)/∂pi  is the partial derivative of R*s  with
respect to the parameter pi . The unit cell parameters
a,b,c,α,β,γ, and the rotation angles only affect R,
whereas the detector parameters (see below) only
affect the mapping from observed (X,Y,ω) positions
to diffraction vectors, so they only affect s . By the
chain rule, we may separate these in simple ways.
Both the linear least-squares and the Simplex options
are available in X-GEN, where the integerness
residual can be minimized by conventional least-
squares, and the scanning-angle and (X,Y) residuals
are minimized by Simplex. The latter methods are
slower but tend to avoid false minima. More
sophisticated approaches allow for rescaling of the
least-squares normal matrix so that metrics can
remain balanced, or  they provide for eigenvalue
filtering to prevent non-physical excursions of highly
correlated parameters. In practice the simpler
methods can avoid these same problems if the user
recognizes the correlations and “turns off”
simultaneous refinement of highly correlated
parameters.

The parameters available for refinement are the cell
lengths and angles; the orientation angles (Eulerian or
rotation); and some parameters describing the
position and orientation of the detector. In MADNES
and D*Trek these parameters are all treated in a
comprehensive vectorial notation (19), but in most
other packages the physical parameters (e.g. the
distance from the sample to the detector) are called
out more explicitly. In X-GEN five detector
parameters are used: the sample-to-detector distance;
two offsets describing the translation of the detector
relative to an origin in its plane; a rotation of the
detector axes with respect to the sample goniostat’s
rotation axis; and the “two-theta” angle between a
normal to the detector face through the sample and
the direct beam. At least two other angular
parameters could in principle be refined: the angle
between the direct beam and the rotation axis, and the
angle between the normal to the detector face and the
rotation axis. In most experiments these angles are
close to 90• degrees, and the errors introduced in the
problem by their deviation from 90• are small except
over wide scanning ranges. Since we expect to refine
orientation parameters during integration “on the fly”
(see below), this causes few problems.

3.3 Determining integrated intensities

Once the sample’s unit cell and orientation are
determined and refined, the user can measure
intensities for the Bragg spots expected within the
range of detector images for which data are available.
This task is the heart of the processing effort because



the most important result of data processing--the
measurement of the I(hkl) values--arises from it.
During data processing, moreover, some of the
operational parameters relevant to the integration
must be tracked so that we can follow time-
dependent or scanning-angle-dependent changes in
the state of the experiment. Thus the integration step
is probably the most algorithmically complex as well
as the most important. The sub-steps involved in
reflection integration therefore include (a) pre-
determining the positions of the spots to be
integrated; (b) defining the range of pixels over
which the summation or profile analysis is to be
performed; (c) defining the two- or three-dimensional
model profile with which each reflection’s own
background-subtracted profile is to be compared; (d)
estimating the background under each pixel in the
relevant range; (e) performing the sums necessary for
the integration; (f) applying pre-determined
multiplicative corrections to the sum; (g) updating
dynamic estimates, including the model profiles, the
background estimates, and the unit cell and
orientational parameters.

The positions (X,Y,ω) of the reflections can be pre-
determined, so that the summations that lead to the
intensity determinations can extend only over the
neighborhoods of the reflections. The count values
(or analog-to-digital-unit values, on analog detectors)
for pixels that lie between the Bragg reflections are
not necessarily ignored: they are used in estimating
backgrounds under neighboring reflections. But the
pixels distant from the spots escape the intense
scrutiny to which the pixels near the predicted spot
positions are subjected. The pre-calculation of the
spot centroid positions involves straightforward
diffraction geometry for oscillation data (18). For
Weissenberg and other non-standard data collection
schemes the geometry is more complex, but remains
tractable. HKL, for example, provides for
Weissenberg data.

For each reflection to be measured, the data
processing program must identify the range of pixels,
surrounding the centroid, over which the summation
or profile analysis will be performed. The simplest
approach to this task is to choose a rectangular
;arallelpiped in (X,Y,ω) large enough to include all
the pixels immediately surrounding the centroid.
Thus if we expect that spots will begin two images
before the peak, end two images after the peak, and
extend for four pixels to the left, right, above, and
below the reflection, then a summing box that is
11x11x7 pixels will be sufficient to “catch” all the
pixels required for integration. This approach has at
least two disadvantages. First, by including pixels in
the corners of the parallelpiped, outside the area we
actually expect the reflection to inhabit, we degrade

the signal-to-noise ratio of the intensity measurement.
Second, we increase the likelihood of incorporating
pixels that belong to other reflections in the
summation box of the current reflection.Therefore a
better approach is to identify the actual perimeter of
the reflection by analyzing the three-dimensional or
two-dimensional profiles of previously-analyzed
reflections and use only a very limited number of
pixels outside this perimeter to allow for
mismeasurement of the spot centroid. Once the range
of pixels has been defined, we can begin to use the
data within the range.

Any processing program that performs profile
analysis must include provision for defining the two-
or three-dimensional model profile that is expected to
apply to a given reflection. These profiles could in
principle be derived from an a priori  calculation
based on a detailed knowledge of the properties of
the crystal, the beam, and the sample goniostat. Such
a theoretical approach has been avoided in XENGEN ,
X-GEN, XDS, MADNES, and most other packages
that employ profile analysis. Instead, these programs
provide for division of the detector into a modest
number of (perhaps overlapping) regions, and the
centered profiles of a group of bright reflections in
each region are added up to produce a model profile
appropriate to that region. The model applied to any
reflection is either taken as the normalized model for
the region in which it resides or a weighted average
of that model with those of neighboring regions. In
XENGEN  and X-GEN it has proven helpful with
strong reflections to further modify the model by
comparing its second moments in X,Y, and ω with
those of the observed profile. Large deviations of the
model’s moments from the corresponding moments
of the observed profile suggest that the profile is
globally too flat or too peaked in the direction
indicated. An exponential sharpening or flattening
function is then applied to the model to increase its
match to the observed profile without completely
obliterating the shape of the model. The way the
model is actually used in integration is discussed
below.

The background under a given intensity measurement
is often a large fraction of the raw count in its
component pixels. To obtain accurate intensity
measurements it is absolutely crucial that a properly
computed and experimentally appropriate
background-estimation scheme be employed. Weak
reflections, whose intensities play such a crucial role
in high-resolution studies, are particularly sensitive to
errors in background measurement. X-ray
background in the conventional sense and legitimate
intensity are only two of the sources of “counts” that
appear in a pixel. With analog detectors, particularly
SIT-tube and CCD detectors, analog-to-digital



increments appear in each pixel’s histogramming
counter even in the absence of incident X-rays due to
electronic or optical events in the phosphor and the
components between the phosphor and the counter.
Such “dark current” is mostly thermal, and can be
reduced and rendered more time-independent by
cooling theoptical train, but it will still need to be
removed from the observed count values “before” the
software begins to treat X-ray background. X-ray
background, arising from Compton scattering and
elastic but non-Bragg scattering in and around the
sample, can be reduced at the detector by careful
attention to the environment of the sample, but again
it cannot be eliminated. It can also be reduced
somewhat by moving the detector farther back: most
of the sources of background fall off on a pixel-by-
pixel basis as the square of the sample-to-detector
distance, whereas the number of pixels that must be
summed to measure the intensity grows somewhat
less rapidly than the square. But whatever remains in
a given experiment must be accurately estimated.

With multiwire detectors the properties of the
instrument and the nature of the experiment dictate
that the background under any pixel be estimated as
an average over other images of the counts at the
current pixel position. The images to be averaged
should be those in which the pixel does not lie within
any reflection’s profile. Thus in this scheme

B(X,Y,ω) = Σω’ w ω’C(X,Y,ω’) / Σ ω’ wω’
(11)

where the images ω’ being summed are those in
which (X,Y) lies outside all reflections and the
weight factors wω’ vary so that the images closest to
the current image ω carry higher weight than those
farther away. A version of this approach, pioneered
by Xuong in San Diego, computes a running average
for each pixel:

{ (1-z)B(X,Y, ω-1) + zC(X,Y,ω)
B(X,Y,ω) = { (12)

{ B(X,Y,ω-1)
where the lower choice applies if (X,Y,ω) is
contained in a reflection and the upper choice if it is
not. In Xuong’s original implementation z is a
constant (1/16); in XENGEN and X-GEN this
approach is one of the background schemes available,
and the value of z is an adjustable parameter. The
advantage of this technique is that it provides a
simple way of defining the background at any stage
of the integration, and the background associated
with a given reflection is dominated by the ten or so
images that precede the current one. Furthermore,
unexpected excursions in the count value can be
filtered out. If

| C(X,Y,ω) - B(X,Y,ω-1) | > Nσ(B), (13)
we can choose not to update. The most common
circumstance where this arises is the presence of an
unpredicted reflection, e.g. a spot arising from a

different crystallite. The value of N in this inequality
is set to 4 in X-GEN but could be made user-
adjustable.

The appropriateness of this “updating” technique
derives from the fact that multiwire detector pixels
can vary widely in their effective pixel area and the
fact that the stepsize between images on these
detectors is usually small. Thus the background under
a pixel (X,Y,w) may be distinctly different from that
under a neighboring pixel, whereas the background at
(X,Y) will change only slowly from image to image.

This “updating” approach to background estimation
is inappropriate to image-plate data and other film-
like data collection schemes. There the stepsize is
usually large, so the background under a pixel may
change substantially from one image to the next;
further, the backgrounds under adjacent pixels within
a single image are likely to be very similar, since the
effective area of neighboring pixels on image plates
(and film) are equal. Thus for these systems a
backgrounding scheme that averages over pixels
within an image is more appropriate. The technique
advocated by Rossmann (16) involves computing a
least-squares plane:

B(X,Y) = a0 + a1X + a2Y (14)
where a0 , a 1, and a2 are estimated by least-squares
calculations extended over pixels near to but outside
the current reflection in the current image. This
algorithm is implemented in X-GEN and is the
default for image-plate systems.

There are intermediate cases where it is unclear
whether averaging across images within a pixel or
averaging within an image across pixels would be
better. Charged-coupled devices are a case in point.
They often have a substantial degree of geometrical
nonlinearity and nonuniformity of response. These
properties would argue for averaging across images
within a pixel; but will that be the right answer if a
broad stepsize between images is used? X-GEN
allows the user to select which approach is employed
with a given set of data, so there is an opportunity to
test this question with real instruments and real data.
To my knowledge no such tests have been performed.

With an adequate estimate of the background in hand,
the intensity can be calculated in various ways. The
simplest would be to sum the background-subtracted
counts for reflection j in the pre-selected pixels of the
profile:

Ij = Σi g ij (15)
where i indexes the pixels (X,Y,ω) and

gij  ≡ Ci - Bi = C(X,Y,ω) - B(X,Y,ω), (16)
but this takes no advantage of our knowledge of the
expected profile shape. In profile-analysis, this
simple summation is replaced by the following



analysis. If the normalized  model profile is expressed
as fi  = f(X,Y,ω), then we expect that it will resemble
the observed profile apart from an overall scale factor
kj , so that the quantity k j * fi  - g ij  will be small
throughout the reflection. Thus

kj * Σi  f i  ≈ Σi g ij   = Ij (17)
but since the model f i is normalized the sum on the
left is unity and

kj = I j, (18)
i.e. the scale factor relating the observed profile to the
model is in fact the intensity. Thus if we can compute
k by least squares, we will arrive at an estimate of Ij .
We do the least-squares calculation in a typical way:

min Σi  [(kj fi   - g ij ) uij ]2 (19)
with solution

Ij = k j = Σi (f i g ij  )uij  2/ Σi (f i u ij  )2 (20)
Note that for uniform weights uij  and a “top-hat”
model f i , i.e. f i = 1 / M (M = number of pixels), this
equation for kj  reduces to

kj = Σi g ij  (21)
so that simple summation becomes a special case of
profile-fitting. In X-GEN both the simply-summed
and the profile-fitted intensities are computed, and
the user is free to choose either for further
computations. The summation intensity is rendered
more accurate by the recognition that if some portion
of the profile g ij  is unavailable due to overlap with
another spot or occlusion by the beamstop, the
intensity estimated from the model profile for those
unavailable pixels can be substituted for direct
observations. This can be done by replacing eqn. (15)
with

Ij = [Σi g ij ] / [Σi  f ij ] (22)
where the sum extends over all available pixels. Thus
if all pixels are available the denominator is unity and
eqn. (22) reduces to eqn. (15); if pixels are missing
their contributions are implicitly included in (22)
because the denominator will be less than one. This
in fact is the only use to which profile analysis is put
in XDS and MADNES; in X-GEN it is used for the
summation intensities, and the full-blown analysis
implied by eqn. (20) is provided as an alternative. In
X-GEN the weight factors uij  in eqn. (20) are unity;
other authors (13) have proposed alternatives.

Note that the profile-analysis approach automatically
gives us a way to gradually modify the model profiles
fi to accommodate small changes in the models. In
this approach, we compute the model profile pixel-
by-pixel for a group of reflections j = 1, 2, ... n:

min Σj [(kj f i  - g ij  ) uij )2 (23)
with solution

fi = Σj (kj gij  )uij  2/ Σi (kj uij  )2 (24)

As with background updating, the usable values of fi
are computed by weighted averages of this “new”
value of fi  and the previous one.

A variety of multiplicative corrections must be
applied to the intensities measured either by profile
fitting or summation. The most obvious are the
Lorentz correction, which measures the velocity of
the Bragg spot through the finite thickness of the
Ewald sphere, and the polarization correction, which
is a physical property of diffraction geometry. An
additional correction that can be applied is a
correction for absorption of the diffracted beam by
the medium between the sample and the detector; if
this medium is helium or vacuum the correction is
probably unnecessary, but if the medium is air the
difference in path length between spots measured
near the detector’s normal to the sample and the those
measured far from that normal may be substantial.
Thus the actual intensity is computed not from eqns.
(20) or (22) but rather from

Ij = (C j/p j)Σi(1/Lij)f igijuij  2/ Σi (f iuij )2 (25)
or from

Ij = (C j/p j)[Σi (1/L ij)gij ] / [Σi  f ij ] (26)
where C j is the path-absorption correction for
reflection j, p j is the polarization correction for
reflection j, and 1/Lij is the Lorentz correction for
pixel i of reflection j. The Lorentz factor can change
by as much as 20% across the extent of a Bragg
reflection that is close to the rotation axis, so it can be
dangerous to assume that the Lorentz factor for the
entire reflection can be treated as equivalent.

For simple diffraction geometries and conventional
X-ray sources these corrections are straightforward.
The path absorption is simply

Cj = exp(-αxj) (27)
where α is the absorption coefficient of the medium
(~0.01 cm-1  for air with 8KeV X-rays) and x is the
distance from the sample to the point on the detector
where the spot is visualized. For simple rotation
geometries (with the direct beam along z and the
rotation axis along x) the Lorentz factor is also
simple:

Lij = |s ijy| (28)
where s ijy is the y component of the diffraction vector
of the spot, measured at pixel i of reflection j.
Precession, Weissenberg, and other geometries
produce more complicated Lorentz formulas. For
conventional X-ray sources without single-crystal
monochromators the input X-rays are unpolarized, so
the only polarization to correct for is that produced
by the sample itself:

pj  = (1 + cos22θj ) / 2 (29)
With a single-crystal monochromator the X-rays
become polarized by the monochromator crystal



itself, so the polarization takes on other forms. These
are described in detail by Azaroff (20). For
synchrotrons the X-rays emanating from the source
are already polarized before any beamline optics
come into play, so the polarization correction
becomes a complex formula involving the initial
beam’s properties, thetype and geometry of
monochromator, and the sample’s own effects.

Macromolecular crystallographic experiments extend
over fairly long time intervals (minutes to weeks) and
wide ranges of scanning angles, even within a single
data run. The parameters that characterize both the
sample and the experimental arrangement may
change over the course of the run. Thus the unit cell
parameters may change by a few tenths of a percent
over a data run; the orientation angles may change by
a degree or more; the model profiles for the spots
may change, either due to time or because different
projections of the lattice produce differently-shaped
profiles; and the background measurements may vary
distinctly as a function of scanning angle. Also, if the
software does not explicitly correct for all forms of
geometrical misalignment in the experimental
system, the parameters that can compensate for these
misalignments may assume values that provide for
good matches between predicted and observed
reflection locations over a narrow range of scanning
angle, but the compensations fail at scanning angles
far removed from the starting point. For all these
reasons it is useful to update the operating parameters
of the integration effort as it proceeds.

Some of these updates have already been discussed.
Updating the background estimates is
straightforward. The backgrounding method
embodied in eqn. (12) has updating built into it,
whereas the Rossmann-style background algorithm of
eqn. (14) retains no memory of previous images.
Updating the model profiles using eqn. (24) has also
been described.

Updating the unit cell, orientation, and detector
parameters is a bit more complex. X-GEN and other
packages have facilities for refining these parameters
based on differences between observed and predicted
spot positions in (X,Y,ω) as data processing
proceeds, and they are generally successful in
tracking slow changes in sample orientation or unit
cell parameters. In X-GEN these on-the-fly
refinements are accomplished with a Simplex
algorithm that minimizes a residual that includes
weighted contributions from errors in (X,Y), errors in
ω, and non-integerness of the spot indices of the
observed centroids:

min wxE(x) + wyE(y) + wωE(ω) + whE(h) (30)
with

wx + w y + wω + wh = 1, (31)

E(x) = Σ (Xjo  - Xjc)
2, (32)

E(y) = Σ (Yjo  - Yjc)
 2 , (33)

E(ω) = Σ (ωjo  - ωjc)
 2 , (34)

E(h) = Σ (h jc - [h jc])
 2  + (k jc - [k jc])

 2  + (l jc - [ljc])
 2 ,

(35)

where Xjo , etc. are the observed values for
observation j and Xjc, etc. are the computed values.
The user can choose which parameters are to be
refined in this scheme. In principle only the
orientational parameters and perhaps the unit cell
lengths angles should be allowed to vary, since the
detector parameters should not shift during the run,
but in practice due to unmodeled instrumental
misadjustments (see above) it is often useful to allow
the detector’s translational offsets to vary during
refinement as well. The refinements serve the
calculational purpose of ensuring that the calculated
centroids track the observed centroids, and they also
provide a diagnostic role: if non-plausible shifts arise
(e.g. large changes in the detector’s translational
offsets, or 2% changes in unit cell), it is generally a
sign that something is wrong with the data and
requires further attention.

A large, discontinuous shift (e.g., a sudden two-
degree rotation of the sample about the rotation axis)
will result in a complete mismatch between the
predicted pattern and the observed pattern, so the
refinement would never get any bright reflections to
work from; in this case the on-the-fly refinement will
fail. One could envision implementing an on-the-fly
auto-indexing capability that would take over in these
extreme cases, but to my knowledge no current
package does this. Discontinuous changes currently
require manual intervention.

3.4. Merging and Scaling the Integrated Data

Even having made multiplicative corrections to the
raw diffraction intensities, we find a certain amount
of massaging is necessary to actually use the intensity
measurements derived from the integration step. The
user is likely to need a single intensity estimate for
all  symmetry-related observations of a given
reflection, rather than separate measurements for
each observation; so observations must be grouped
and formatted internally so that appropriate means
can be computed. Corrections for decay and sample
absorption generally are applied after integration, and
faulty observations are deleted from the data.

Grouping is a straightforward operation, provided
that the symmetry of the crystal is known before it
begins. In that case one can simply reformat and sort
the integrated data so that symmetry-related



observations appear together. In most packages,
including X-GEN, Friedel mates retain their identity,
so that anomalous analyses can be readily carried out.
It is also useful to retain enough information about
the original reflection that the raw reflection indices
and the diffraction-vector properties of the reflection
can be extracted if necessary.

Corrections for systematic error in macromolecular
crystallography are rarely based on morphological
analyses of the sample. Methods that rely on
differential intensity measurements as the crystal is
rotated around the diffraction vector of a reference
reflection (21) can be employed with single-counter
diffractometers, but they are inconvenient with area
detectors and are rarely used. Consequently most
software packages rely on the high degree of
redundancy obtained in area-detector data collection
to generate a systematic-error model, and this
redundancy-based model is used to correct the
intensity measurements.
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