
1

Object-oriented Programming in Crystallography
D. S. Moss

Crystallography Department, Birkbeck College, Malet Street, London WC1E 7HX, UK
d.moss@mail.cryst.bbk.ac.uk

http://www.cryst.bbk.ac.uk/~ubcg05m

W. R. Pitt
Crystallography Department, Birkbeck College, Malet Street, London WC1E 7HX, UK

w.pitt@mail.cryst.bbk.ac.uk
http://www.cryst.bbk.ac.uk/~ubcg08l

Abstract

An object-oriented class library, designed for use in
bioinformatics and molecular modeling is being
developed at Birkbeck College. Although the library is not
targeted directly at crystallographers, the methods
provided are useful to anyone analyzing molecular
structures and sequences. The library can be used to
convert a Protein Data Bank (PDB) format file into
Protein and Atom objects. Once converted, methods of the
Protein and Atom classes can be applied to the data. For
instance, one can calculate the internal geometry of a
protein structure and perform transformations on its
atomic coordinates. The library is in the early stages of
development but will serve to introduce crystallographers
to the object-oriented programming paradigm and how it
can be applied to biocomputing.

1 Introduction

In the late 1950s crystallographers were among the first
scientists to make use of computers. In fact much of the
crystallographic computing software that we use today has
its origins in the 1960s when 32k was a typical core
memory size of computers. Since then there have been
increases of several orders of magnitude in both the
memory size and speed of computers. Crystallographic
software has taken advantage of these developments which
have, for example, permitted electron density maps to be
stored in central memory

Developments in software engineering have also taken
place, particularly in the past ten years. Arguably the most
significant development has been the object-oriented
approach to software construction and its support in new
programming languages such as C++ and Java. However,
crystallographic computing with its large base of legacy
code, is only just beginning to exploit these new
developments.

Many other changes in software development have taken
place over the last decade. In the 1980’s, scientific
programming was done almost exclusively in Fortran, file
formats were relatively simple, graphical user interfaces
had not emerged as an important issue and the explosive
growth of macromolecular crystal structures had only just
started. Today C has become one of the most widely used
languages for scientific computing and the Internet and the
World Wide Web have transformed the way in which the
scientific community can participate in software
development and gain access to the results.

Object technology has recently gained widespread
acceptance in software development, not just because of
code reusability, but because it takes advantage of a new
generation of object-oriented environments. These
environments and associated tools are rapidly becoming
standardized. A draft ISO/ANSI C++ standard1 has been
published and the Standard Template Library (STL)2,
which forms part of it, is likely to influence programming
paradigms for years to come. The Common Object
Request Broker Architecture (CORBA)3, which allows the
distribution of objects across disparate systems, is
becoming an industry standard and the Object Database
Management Group (ODMG)4 has set a standard for
object databases. On the World Wide Web, the Java5

language which is almost exclusively object-oriented, is
already having an important impact on the engineering of
Web software.

1.1 Previous Work

An early application of Object-oriented programming
(OOP) to biomolecular computing was published in 19906.
Gray et al. created an object-oriented database for protein
structure analysis. To this day, protein structure data is
mainly stored either in unstructured files or in relational
databases. Gray et al. discuss the short fallings of these
more conventional methods of storing data when applied
to sequentially structured data which is likely to be subject
to complex and unpredictable queries. Their database

overcomes these short fallings but has not been made
widely available and can only be queried using the little
known programming languages PROLOG and Daplex.

A more recent application of OOP to the analysis of
protein structure data7 uses the more widely adopted
language C++. The product of this work is a
macromolecular class library called PDBlib. This library
is similar to the one being developed at Birkbeck College.
The two libraries differ in that the Birkbeck version is
designed for sequence as well as three dimensional
molecular structure analysis. Significantly, PDBlib
predates the release of the draft ISO/ANSI standard for
C++.

2 Object-Oriented Programming Explained
in Brief

OO programs manipulate abstract representations of the
entities that are being modeled. These representations are
the objects. A class defines one type of object. Objects
contain data (member data) and the methods (member
functions) that can be used to manipulate this data. This
binding together of data and methods within an object is
called encapsulation.

One possible class is a unit cell which could have cell
dimensions, space-group and molecules as data members.
Member functions of the unit cell class could be written to
calculate the volume and density or to carry more
complicated procedures such as an energy minimisation of
its contents.

Objects can contain, or have, other objects. For instance, a
unit cell object can contain molecule objects which in turn
can contain atom objects, and so on. The relationship
between the unit cell class and the molecule class and
between molecule class and the atom class is called an
association. This is hierarchical structure makes its easy to
create intuitive abstract models of biological molecules.

 Molecule

 1

 *

 Atom

Association: A Molecule can have one or more Atoms8

Possibly the most attractive feature of OOP to software
library developers is that is specially designed to ease the
generation of reusable code. It does this by providing the
means whereby classes can be written that are intended to

be used as given and left unchanged by users of a library.
Developers of applications should only change such
classes by extend their behavior. This restriction means
that classes can be created that behave in a reliable
manner.

Users who wish to add their own data and functions to a
class should do so by creating a new class and which
inherits from the original. If, for example, a molecule class
existed in a library and a user wanted to add features to
this class that are specific to protein molecules, then they
could create a new class called protein which inherits from
the molecule class. In this way the new class will have all
the features of the molecule class plus what ever protein
specific functions and data that user wants to add. In this
case the molecule class is the base class and protein class
is the subclass. A protein object is a molecule object but
the reverse is not true.

 Molecule

 Protein

Inheritance: A Protein is a Molecule8

A user of a well designed class library only has access to
the member functions of an object and can only access the
data members via these functions. This restriction prevents
users from carrying out inappropriate operations on the
data and thus makes the library more stable. It also means
that the authors of the library are free to change the
underlying data structures and algorithms without users of
the library having to change their programs.

3 A Class Library for Biomolecular
Computing

It is our aim to provide software developers in the field of
biomolecular computing with a well tested, efficient and
useful library of reusable software. This software will
carry out certain basic operations such as reading in files
of various common formats and calculating molecular
geometry, freeing a the developer to concentrate on less
mundane tasks. The library will also include tried and
tested algorithms such as PROCHECK9. Thus, the library
will facilitate the combination of hitherto disparate
applications and allow the user customize these
applications.

3.1 The Choice of Programming Language

The aims described above are best fulfilled by the use of
OOP as this programming paradigm is designed for the
production of reusable and extensible code. It also enables
the production of code that is more intuitive to scientists
who are not experienced programmers.

There are a number of OOP languages available, the most
commonly used ones are C++, Java, Smalltalk, Delphi and
Eiffel. Two of these, C++ and Java, are by far the most
commonly used in biocomputing.

Because of its provenance, C++ has significant non object-
oriented content. Java, however, is an almost pure OO
language. With this language, small applications (applets)
can be written that can be downloaded via the Internet and
executed within an Internet browser. This provides the
means whereby applications written in Java can be made
extremely accessible and user friendly. However, no
international standard exist for Java and execution speed
was not a high priority in its design. Standards are
important if packages written in a language are to be
portable across many platforms. Execution speed is
important in biocomputing where long, central processing
unit (CPU) intensive computing jobs are common.

We decided that the best language to use is C++ as it is
still probably the most widely used OOP language
amongst scientists. C++ is an extension of C, which is a
language a large number of scientific programmers
currently use. It is easy to learn C++, given a knowledge
of C. Also, one can write extremely efficient code in
C/C++. Perhaps the most important reason for choosing
C++ is that a ISO/ANSI draft standard for this language
was released in April last year. This should enable us to
produce code that can be understood by any C++
compiler, so it can be used on practically any hardware
platform.

We do, however, intend to make use of Java in writing
user interfaces to our library and to applications written
using our library. We also intend to publish the design of
our library in the form of language independent class
diagrams. This will make it easy for a version of our
library to be written in Java or some other language,
should the need arise.

3.2 Other Design Issues

Before we started writing any code we created an initial
design for the library using class diagrams. Once we
started implementing this design we discovered
undesirable features in it. These features were removed

and the design altered. In this way the library evolves
through a cycles of design and implementation.

Many design decisions are compromises but here is a list
of our priorities:

1. Ease of use
2. Efficiency of execution
3. Extensibility
4. Modularity
5. Functionality

To make the library easy to use the classes must define
types that are intuitive to users from the biological and
chemical sciences. These classes should also have names
that easily understood. For example, we have classes
called Protein, Atom, TorsionAngle, CovalentBond,
Residue, and AminoAcidResidue.

Although computers are getting faster and faster,
researchers will always push their machines to their limits.
This means that these people demand programs that run as
efficiently as possible. Certain features of C++ can slow
programs down. For example, methods in classes that are
at the bottom of a many layered inheritance tree often do
not execute as quickly as those in classes at the top of a
tree. This has an impact on the design of the library.

For the library to be of widespread use, it must be
designed in such a way that application developers can
extend the behavior of classes. Also, these developers do
not want classes that are weighed down by functions and
data that they do not want to use. This means that we must
carefully consider whether each data member and member
function is absolutely necessary before adding it to a class.
This is especially true for classes high up in an inheritance
tree.

The inclusion of useful functions that are time consuming
or not easily written within a library will obviously make it
more attractive to application developers. However, what
would seem useful to someone writing sequence analysis
program may not be so appealing to an author of
molecular mechanics package. For this reason there should
not be unnecessary interdependencies between classes
within the library.

3.3 The Current Stage of Library Development

Although the library is, at time of writing, in early
development it has reached the stage when it can be of
some use. It can be used to read in a Protein Data Bank
(PDB) format, extract the residue, atom, and bond
information from it and create the appropriate objects.

Once these objects are created, the data read from the file
can be inserted into them. After file processing is
completed, the user can manipulate the objects using their
member functions. The user can then send information
about objects to the screen or write out a new PDB file at
any time.

Currently, relatively few member functions exist. The user
can however perform transformations on the coordinates
of atoms, calculate internal coordinate geometry, and
calculate the root mean squared deviation (RMSD)
between two molecules. These simple calculations would
require considerable effort to write a program from scratch
to carry them out.

At the moment work is concentrated on building the frame
work of the library rather than adding new functionality.
We have decided that library should be split into several
largely independent sub-libraries, these being:

1. A library for manipulating molecules at the
atomic level.

2. A library for manipulating molecules at the
sequence level

3. A specialized mathematics library
4. A library of specialized data structures

Many applications and classes in the library will use more
than one of these sub-libraries, but this modularity should
reduce the inclusion of superfluous functionality to a
minimum.

Most of our library will be made up of the first two sub-
libraries. The following class diagram illustrates the part
of the library that models the internal coordinates of a
molecule.

 Internal
 Coordinate

 Interatomic Torsion Bond
 Arc Angle Angle

 1 1 1
 2 4 3

 Atom

InternalCoordinate Classes and their association with the Atom class8

 Interatomic
 Arc

 Covalent Hydrogen NonBonded
 Bond Bond Interaction

InteratomicArc Classes8

The diagrams above show that the classes InteratomicArc,
TorsionAngle, and BondAngle are subclasses of the
InternalCoordinate class. An InteratomicArc links 2
Atoms, A TorsionAngle links 4 Atoms, and a BondAngle
links 3 Atoms. The class InteratomicArc is the base class
for CovalentBond, HydrogenBond and
NonBondedInteraction classes.

Our math sub-library contains classes for manipulation of
matrices and vectors in ways that are common in
biocomputing. The basic mathematics operations such as
function for calculating square roots and cosines already
exist in the standard C++ math library.

Some very efficient, flexible, reliable and easy to use
classes for storing and manipulating data already exist in
the form of the Standard Template Library (STL). This
class library is part of standard C++ and can be used to
store any sort of data, including objects, in lists and other
containers. The STL also includes generic functions for
searching, sorting and other operations on these
containers. We employ the STL heavily and have very
little need to create our own data structures.

3.4 Future Developments

There is much work to be done to build, test and document
the library. We also intend to write some applications to
illustrate how very powerful programs can be written
using the library with relatively few lines of code.

We hope that the development of the library will become
more of a collaborative effort. The use of existing
programs written in C and Fortran means that the list of
contributors to the library is growing rapidly. However,
when the first version of the library is released, we expect
that researchers will take classes in the library and extend
them, through inheritance, so that they fulfill their specific
needs. It is hoped that these researchers will allow us to
put their new classes into the library. Thus, if all goes to
plan, the library will branch out to cover more and more
specialized areas of biocomputing.

We intend to release the first version of the library in
February 1997. When the current funding of the project
runs out at the end of 1998, training in and maintenance of
the library will be taken over by the CCP11 consortium.
This group is based at Daresbury and exists to foster the
role of bioinformatics within the British academic
community10.

4 Summary and Conclusions

We feel that, given its widespread use in the software
industry sector, OOP will become increasingly popular
amongst scientists. This paper serves to introduce
crystallographers to the concepts of OOP as applied to
biomolecular computing. To help software developers in
this field to develop OO code we are writing a class
library designed specifically for their use. This library will
aid the development of more sophisticated, yet stable
programs by providing well tested and efficient classes
which can be reused and built upon.

References

[1] see http://www-leland.stanford.edu/~iburrell/cpp/std.html
[2] see http://weber.u.washington.edu/~bytewave/STL.html
[3] see http://www.omg.org/corba.htm
[4] see http://www.odmg.org/
[5] see http://java.sun.com/
[6] P. M. D. Gray, N. W. Paton, G. J. L. Kemp, and J. E.

Fothergill, “An object-oriented database for protein
structure analysis” Protein Engineering, Vol. 3, No. 4, pp.
235-243, 1990.

[7] W. Chang, I. N. Shindyalov, C. Pu, and P. E. Bourne,
“Design and application of PDBlib, a C++
macromolecular class library” CABIOS, Vol. 10, No. 6,
pp. 575-586, 1994.

[8] Class diagram in the Unified Notation: G. Booch and J.
Rumbaugh, “The Unified Method for Object-Oriented
Development”, see http://www.rational.com/ot/uml.html

[9] R. A. Laskowski, M. W. Macarthur, D. S. Moss and J. M.
J. Thorton “PROCHECK: a Program to Check the
Stereochemical Quality of Protein Structures” Appl. Cryst.
Vol. 26, pp. 283-291, 1993.

[10] see http://gserv.dl.ac.uk/CCP/CCP11/main.html

