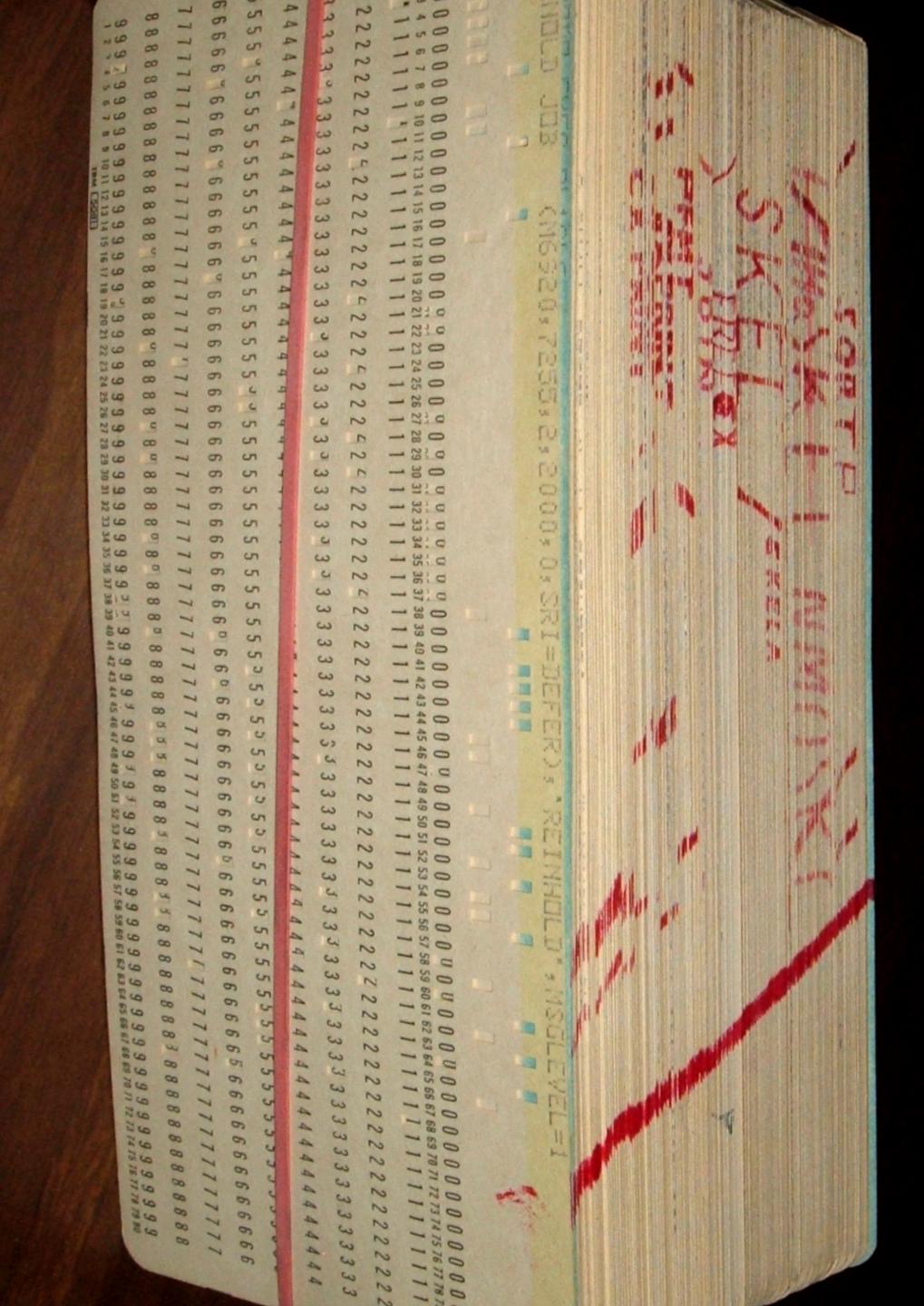
WORKSHOP ON WHEN SHOULD SMALL MOLECULE CRYSTALLOGRAPHERS PUBLISH RAW DIFFRACTION DATA?

DATA ARCHIVE

GRAEME WINTER / DIAMOND LIGHT SOURCE


FUTURE OUTLOOK FOR CURATED

OVERVIEW

- Historical viewpoint archiving in crystallography
- Features of a useful raw data archive
- Curation
- Supporting data archiving cost / benefit
- Conclusions

I am considering biological and chemical crystallography as "the same problem" here

CRYSTALLOGRAPHY AS A DATA SCIENCE

- Crystallography highly data driven -
- Determine results fully from experimental data and prior knowledge
- The "shape" of the data are well known in advance (i.e. not "messy")
- Influence of interpretation much reduced compared to e.g. geology
- Process significantly automated, powerful library of tools used for analysis
- Comparable with radio astronomy as observational / data driven science

ARCHIVING IN CRYSTALLOGRAPHY

Long history of data banks / archives in X-ray crystallography

- CSD 1965
- PDB 1971
- ICSD 1979

Crystallography pioneered open data archives

Computer-based archiving fundamental

<	Biological	Assembly 1	1MB	N		Di Di	splay Files -	O Dow
			The stere	ochemistry of the p	rotein myc	oglobin		
	2		Classificatio	n: OXYGEN STORAGE Physeter catodon				
	5	<u>S</u>	Deposited:	1973-04-05 Released: 19 Author(s): Watson, H.C., I				
			Experiment	al Data Snapshot	wwPDB	Validation	•	3D Report
Ø	3D View: Structu	ure Ligand Interaction	Method: X-R Resolution:	RAY DIFFRACTION 2.00 Å	Ramachand	Metric Clashscore	Percentile	Ranks
		Asymmetric - C1 • try : Monomer - A1			Sidect		elative to all X-ray structure	
Fin	d Similar Assemt	blies	This is vers	ion 1.3 of the entry. See c	complete histo	ory.		
	blogical assembly thors.	1 assigned by						
			Literature	•			Downloa	ad Primary
		e Weight: 17.87 kDa	The Ste	reochemistry of the	e Protein M	lyoglobin		
	 Atom Count: 1 Modelled Resi Deposited Resi Unique proteir 	idue Count: 153 sidue Count: 153	<u>Watson, I</u> (1969) Pro	g Stereochem 4: 299				
C	 Modelled Resi Deposited Resi Unique proteir 	idue Count: 153 sidue Count: 153	(1969) Pro	g Stereochem 4 : 299 Entry: MET/ Formula Search	ALD	Мо	dify Search	New
C	 Modelled Resi Deposited Resi Unique proteir 	idue Count: 153 sidue Count: 153 n chains: 1	(1969) Pro	g Stereochem 4 : 299 Entry: MET/ Formula Search	ALD	Мо	dify Search	New
R	Modelled Resi Deposited Resi Unique protein CCDC Simple Search Your query was: esults Database	idue Count: 153 sidue Count: 153 n chains: 1 CELECTION Structure Search Identifier(s): 1211413 at Deposition	(1969) Pro astructure CSD Unit Cell Search Ind the search return METALD :	g Stereochem 4 : 299 Entry: MET/ Formula Search		-		New
R	Modelled Resi Deposited Res Unique protein CODC Simple Search Your query was: esults	idue Count: 153 sidue Count: 153 n chains: 1	(1969) Pro astructure CSD Unit Cell Search Ind the search return METALD :	g Stereochem 4: 299 Entry: MET Formula Search Metaldehyde oup: I 4 (79), Cell: a 10.40		-		New
R	 Modelled Resi Deposited Resi Unique proteir Unique proteir CCDC Simple Search Your query was: esults Database Identifier METALD 	idue Count: 153 sidue Count: 153 n chains: 1 CELECALSTURE Leibniz Institute for Information Info Structure Search Identifier(s): 1211413 au Deposition Number	(1969) Pro astructure CSD Unit Cell Search Ind the search return METALD : Space Gr	g Stereochem 4: 299 Entry: MET Formula Search Metaldehyde oup: I 4 (79), Cell: a 10.40		-		New
R	 Modelled Resi Deposited Resi Unique proteir Unique proteir CCDC Simple Search Your query was: esults Database Identifier METALD 	idue Count: 153 sidue Count: 153 n chains: 1 CELECTION Leibniz Institute for Information Infra Structure Search Identifier(s): 1211413 at Deposition Number 1211413	(1969) Pro astructure CSD Unit Cell Search Ind the search return METALD : Space Gr	g Stereochem 4: 299 Entry: META Formula Search led 1 record. Metaldehyde oup: I 4 (79), Cell: a 10.40	0Å b 10.40Å c	4.11Å, a 90° p	90° γ 90°	New
R	 Modelled Resi Deposited Resi Unique proteir Unique proteir CCDC Simple Search Your query was: esults Database Identifier METALD 	idue Count: 153 sidue Count: 153 n chains: 1 CELECTION Leibniz Institute for Information Infra Structure Search Identifier(s): 1211413 at Deposition Number 1211413	(1969) Pro astructure CSD Unit Cell Search Ind the search return METALD : Space Gr	g Stereochem 4: 299 Entry: MET Formula Search Metaldehyde oup: I 4 (79), Cell: a 10.40	DÅ b 10.40Å c	-	8 90° γ 90°	

CONTENT OF AN ARCHIVE RECORD

- 3D atomic coordinates
- Report of experiment maybe
- Reference to publication often
- Experimental data (processed) maybe
- Reference to external data maybe

#

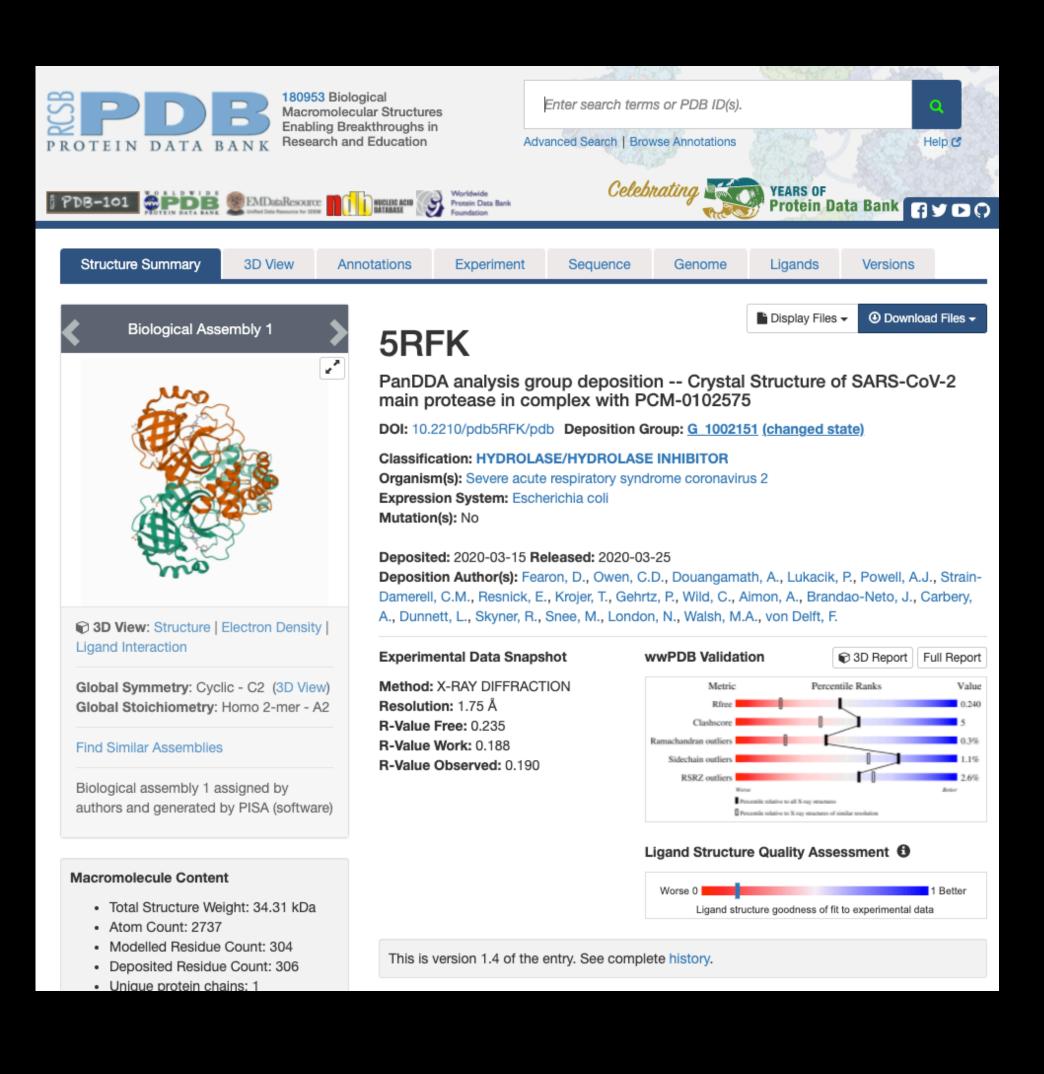
This file contains crystal structure data downloaded from the # Cambridge Structural Database (CSD) hosted by the Cambridge

Crystallographic Data Centre (CCDC).

Full information about CCDC data access policies and citation # guidelines are available at http://www.ccdc.cam.ac.uk/access/V1

Audit and citation data items may have been added by the CCDC.

Please retain this information to preserve the provenance of


this file and to allow appropriate attribution of the data.

data_CAFINE #This CIF has been generated from an entry in the Cambridge Structural Database _database_code_depnum_ccdc_archive 'CCDC 1119028' _database_code_CSD CAFINE loop_ _citation_id _citation_doi _citation_year 1 10.1107/S0365110X58001286 1958 _audit_creation_method 'Created from the CSD' _audit_update_record 2021-08-09 downloaded from the CCDC. _database_code_NBS 504758 'Caffeine monohydrate' _chemical_name_common _chemical_formula_moiety 'C8 H10 N4 02,H2 01' _chemical_name_systematic '1,3,7-Trimethyl-purine-2,6-dione monohydrate' _chemical_properties_biological 'stimulant which increases CNS activity' _chemical_absolute_configuration unk _diffrn_ambient_temperature 295 _exptl_crystal_density_diffrn 1.447 #These two values have been output from a single CSD field. _refine_ls_R_factor_gt 0.146 0.146 _refine_ls_wR_factor_gt _diffrn_radiation_probe x-ray _symmetry_cell_setting monoclinic 'P 21/a' _symmetry_space_group_name_H-M _symmetry_Int_Tables_number 14 '-P 2yab' _space_group_name_Hall loop_ _symmetry_equiv_pos_site_id _symmetry_equiv_pos_as_xyz 1 x,y,z 2 1/2-x,1/2+y,-z 3 -x,-y,-z 4 1/2+x,1/2-y,z _cell_length_a 14.8(1)16.7(1) _cell_length_b _cell_length_c 3.97(3) _cell_angle_alpha 90 97.0(5) _cell_angle_beta _cell_angle_gamma 90 _cell_volume 973.911 _cell_formula_units_Z loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z C1 C 0.24140 0.22250 -0.09980 C2 C 0.10030 0.25330 0.12950 C3 C 0.08410 0.17590 0.19440 C4 C 0.14630 0.11430 0.11550 C5 C -0.01990 0.25200 0.3638 C6 C 0.28910 0.08320 -0.12100 C7 C 0.19590 0.36380 -0.07910 C8 C -0.04640 0.10530 0.45840 0.21960 0.14150 -0.02650 N2 N 0.18010 0.27690 -0.0152 N3 N 0.00200 0.17490 0.33760 N4 N 0.04030 0.30080 0.24400 01 0 0.30630 0.24000 -0.23860 02 0 0.13630 0.04040 0.16160 H1 H -0.08700 0.26100 0.47400 H2 H -0.01300 0.06200 0.59900 H3 H -0.06500 0.06300 0.27800 H4 H -0.10500 0.13700 0.51000 H5 H 0.26300 0.36200 -0.14300 H6 H 0.22800 0.39600 0.10500 H7 H 0.14200 0.37700 -0.21700 H8 H 0.34800 0.10000 -0.22800 H9 H 0.30000 0.03300 0.02200 H10 H 0.25700 0.06000 -0.32400 03 0 0.01840 0.47050 0.27050

CONTENT OF A USEFUL ARCHIVE RECORD

- 3D atomic coordinates
- Report of experiment
- Reference to publication
- Experimental data (processed)
- Reference to external data

ACCESS TO DATA ARCHIVE

- Data are generally freely available in predefined format (CIF, PDB, mmCIF, ...)
- Services may not be freely available e.g. ability to usefully search, links to other data archives
- wwPDB made up of RCSB / EBI (PDBe) and PDBj "competition" between databases, built on the same underlying databank
- CSD funded by CCDC as not for profit company

FEATURES OF USEFUL RAW DATA ARCHIVE

- Easy to search, well integrated with existing data archives (PDB, CSD etc.)
- Inclusive / open to all depositors / open to all users
- Curated
- Funded / sustainable / long lived

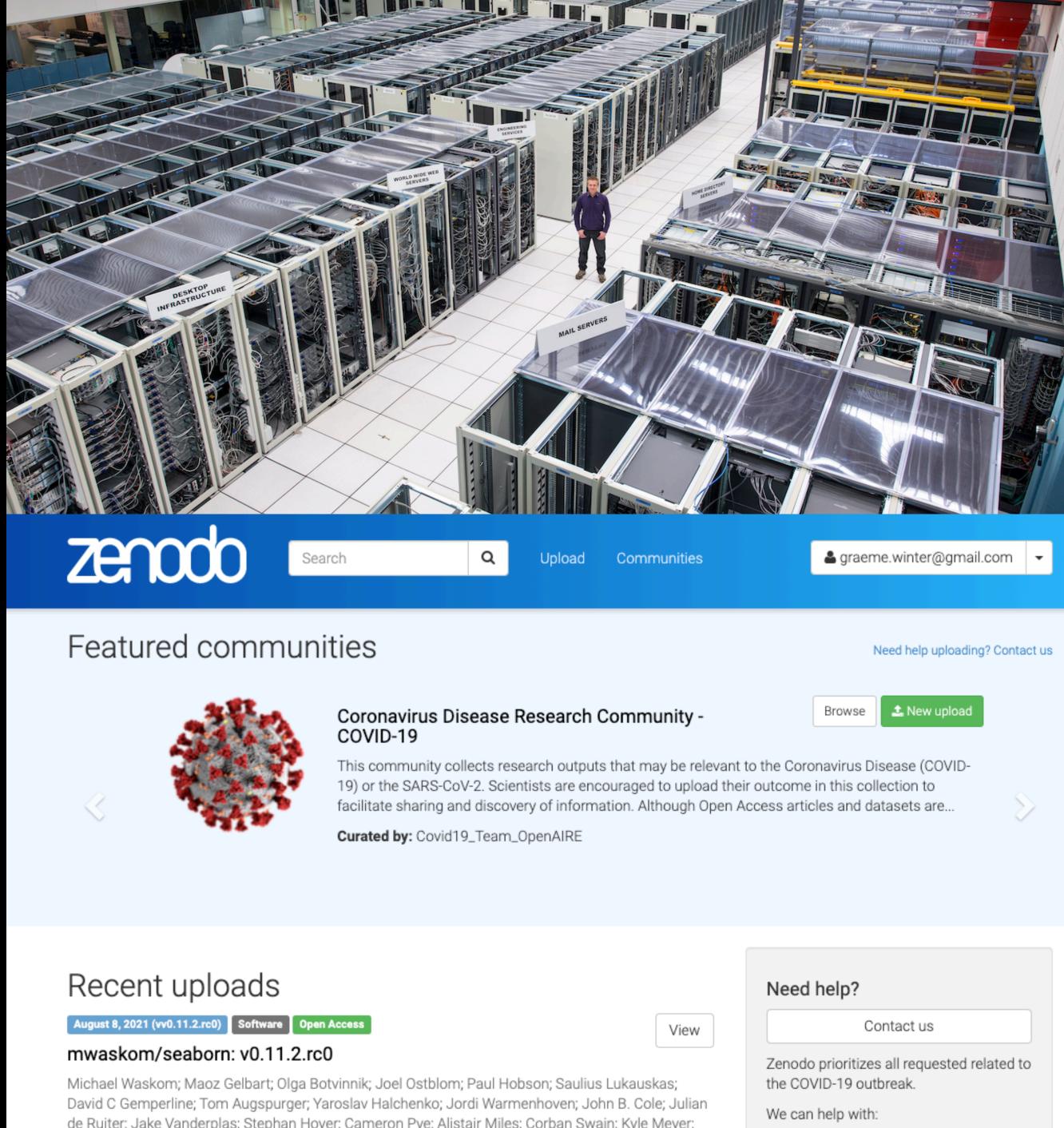
EXAMPLE - ICAT

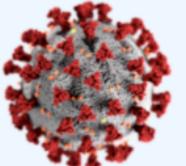
- Designed for STFC facilities -Diamond, ISIS, ...
- Strictly a data archive no metadata, very limited search - but useful
- Data pulled off tape when needed, to staging or for download
- Archive goes back lifetime of Diamond

😒 diamond	Home	About	Contact	Help	🛃 Downloads	Logout (Dr Gra
				Announcement: × This service will be unavailable from 15:00 BST on 13th August until 16th August 12:00 BST due to scheduled maintenance. We apologise for any inconvenience caused.		

My Data

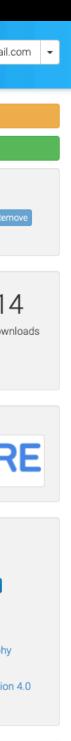
Browse Search


roposal for Testing Summ... / NT24686-7 / VMXi-AB5081/well_178/images

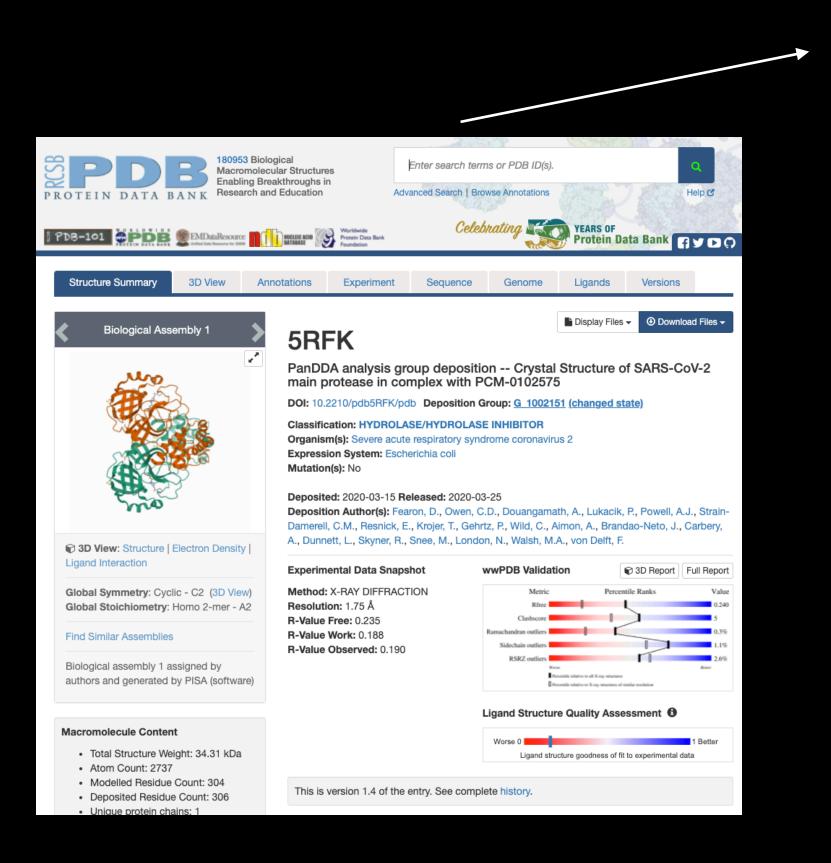

	Name ~	Location ~	File Size ~	Create Time 🝷
	Containing	Containing	Containing	From
				То
0	VMXi-AB5081/well_178/images/snap	/dls/mx/data/nt24686/nt24686-7/VM	4.91 kB	2019-05-20 12:56:53
0	VMXi-AB5081/well_178/images/snap	/dls/mx/data/nt24686/nt24686-7/VM	4.90 kB	2019-05-20 12:56:45
0	VMXi-AB5081/well_178/images/imag	/dls/mx/data/nt24686/nt24686-7/VM	43.57 kB	2019-05-20 12:55:11
0	VMXi-AB5081/well_178/images/imag	/dls/mx/data/nt24686/nt24686-7/VM	47.98 kB	2019-05-20 12:55:11
0	VMXi-AB5081/well_178/images/imag	/dls/mx/data/nt24686/nt24686-7/VM	584 B	2019-05-20 12:55:11
0	VMXi-AB5081/well_178/images/imag	/dls/mx/data/nt24686/nt24686-7/VM	35.88 MB	2019-05-20 12:55:09
0	VMXi-AB5081/well_178/images/imag	/dls/mx/data/nt24686/nt24686-7/VM	152.64 MB	2019-05-20 12:55:09
0	VMXi-AB5081/well_178/images/ref_s	/dls/mx/data/nt24686/nt24686-7/VM	1.56 MB	2019-05-20 12:55:04
0	VMXi-AB5081/well_178/images/snap	/dls/mx/data/nt24686/nt24686-7/VM	256.95 kB	2019-05-20 12:55:04
0	VMXi-AB5081/well_178/images/imag	/dls/mx/data/nt24686/nt24686-7/VM	43.57 kB	2019-05-20 12:55:02
0	VMXi-AB5081/well_178/images/imag	/dls/mx/data/nt24686/nt24686-7/VM	47.98 kB	2019-05-20 12:55:02
0	VMXi-AB5081/well_178/images/imag	/dls/mx/data/nt24686/nt24686-7/VM	584 B	2019-05-20 12:55:02
0	VMXi-AB5081/well_178/images/imag	/dls/mx/data/nt24686/nt24686-7/VM	35.88 MB	2019-05-20 12:55:00
0	VMXi-AB5081/well_178/images/imag	/dls/mx/data/nt24686/nt24686-7/VM	156.07 MB	2019-05-20 12:55:00
0	VMXi-AB5081/well_178/images/ref_s	/dls/mx/data/nt24686/nt24686-7/VM	1.56 MB	2019-05-20 12:54:55
0	VMXi-AB5081/well_178/images/snap	/dls/mx/data/nt24686/nt24686-7/VM	265.13 kB	2019-05-20 12:54:55

EXAMPLE: ZENODO?

- Funded through EU / openAIRE
- Intended to be free at the point of access for depositors and users
- Allows but does not mandate metadata
- Allows curation via communities
- Provides DOI, search facilities etc.
- Provides open API -> very useful


de Ruiter; Jake Vanderplas; Stephan Hoyer; Cameron Pye; Alistair Miles; Corban Swain; Kyle Meyer; Marcel Martin; Pete Bachant; Eric Quintero; Gero Kunter; Santi Villalba; Brian; Clark Fitzgerald;

Uploading your research data.


ZENODO FOR CRYSTALLOGRAPHY?

- General archive so "mandatory data" does not include everything for e.g. CIF - but it could
- Not optimised for our use case no scope for adding structured metadata
- If we started uploading 100,000 raw data sets / year someone would notice
- Great for "one off" type uploads

High resolution limit Low resolution limit Completeness Multiplicity I/sigma Rmerge(I) Rmerge(I+/-) Rmeas(I) Rmeas(I+/-) Rpim(I) Rpim(I) Rpim(I+/-) CC half Wilson B factor Anomalous completeness Anomalous multiplicity	Light Sou	Low 4.42 54.23 98.1 3.4 49.2 0.031 0.027 0.036 0.034	Dataset Open Access Caset Set line i03 from a High 1.63 1.66 52.3 1.6 0.3 1.075 0.922 1.362	
June 9, 2021 Updated Thaumatin tute for DIALS Winter, Graeme Data recorded as part of routine commissioning at Diamond thaumatin standard protein sample. Automated processing with For AUTOMATIC/DEFAULT/NATIVE High resolution limit Low resolution limit Completeness Multiplicity I/sigma Rmerge(I) Rmeas(I) Rmeas(I) Rmeas(I)/ Rmeas(I)/ Rmeas(I)/ Rmeas(I)/ Rmi(I)/ Rpim(I)/ Rpim(I)/ Rpim(I)/ Rpim(I)/ Rpim(I)/ Rpim(I)/ Rpim(I)/ Rpim(I)/ Rpim(I)/ Rpim(I)/ Rpim(I)/ Rpim(I)/ Rpim(I)// Multiplicity	Light Sou with xia2 (0verall 1.63 54.20 91.4 3.2 12.4 0.070 0.063 0.081 0.080 0.040	Low 4.42 54.23 98.1 3.4 49.2 0.031 0.027 0.036 0.034	High 1.63 1.66 52.3 1.6 0.3 1.075 0.922 1.362	New version Communities Macromolecular Crystallography 17 ↓ Remove 14 ↓ download
Updated Thaumatin tute for DIALS Winter, Graeme Data recorded as part of routine commissioning at Diamond thaumatin standard protein sample. Automated processing of For AUTOMATIC/DEFAULT/NATIVE High resolution limit Low resolution limit Completeness Multiplicity I/sigma Rmerge(I) Rmerge(I+/-) Rmeas(I) Rmeas(I)/ Rmeas(I+/-) Rpim(I) Rpim(I)/ Rpim(I+/-) CC half Wilson B factor Anomalous completeness Anomalous multiplicity	Light Sou with xia2 (0verall 1.63 54.20 91.4 3.2 12.4 0.070 0.063 0.081 0.080 0.040	Low 4.42 54.23 98.1 3.4 49.2 0.031 0.027 0.036 0.034	High 1.63 1.66 52.3 1.6 0.3 1.075 0.922 1.362	New version Communities Macromolecular Crystallography 17 ↓ Remove 14 ↓ download
Updated Thaumatin tute for DIALS Winter, Graeme Data recorded as part of routine commissioning at Diamond thaumatin standard protein sample. Automated processing of For AUTOMATIC/DEFAULT/NATIVE High resolution limit Low resolution limit Completeness Multiplicity I/sigma Rmerge(I) Rmerge(I+/-) Rmeas(I) Rmeas(I)/ Rmeas(I+/-) Rpim(I) Rpim(I)/ Rpim(I+/-) CC half Wilson B factor Anomalous completeness Anomalous multiplicity	Light Sou with xia2 (0verall 1.63 54.20 91.4 3.2 12.4 0.070 0.063 0.081 0.080 0.040	Low 4.42 54.23 98.1 3.4 49.2 0.031 0.027 0.036 0.034	High 1.63 1.66 52.3 1.6 0.3 1.075 0.922 1.362	New version Communities Macromolecular Crystallography 17 ↓ Remove 14 ↓ download
For DIALS Winter, Graeme Data recorded as part of routine commissioning at Diamond thaumatin standard protein sample. Automated processing to the sample is a sample of the sample is a sample. Automated processing the sample is a sample of the sample is a sample. Automated processing to the sample is a sample of the sample. Automated processing the sample is a sample. Automated processing the sample is a sample. Automated processing the sample is a sample. Automated processing the sample. Automated processing the sample. Automated processing the sample is a sample. Automated processing the sample is a sample. Automated processing the sample is a sample. Automated processing the sample. Automated processing the sample is a sample. Automated processing the sample. Automated process anomalous multiplicity For AUTOMATIC/DEFAULT/NATIVE (Automated processing the sample. Automated processing the sample. Automated processing the sample. Automated process anomalous multiplicity For AUTOMATIC/DEFAULT/NATIVE (Automated processing the sample. Automated p	Light Sou with xia2 (0verall 1.63 54.20 91.4 3.2 12.4 0.070 0.063 0.081 0.080 0.040	Low 4.42 54.23 98.1 3.4 49.2 0.031 0.027 0.036 0.034	High 1.63 1.66 52.3 1.6 0.3 1.075 0.922 1.362	 Communities Macromolecular Crystallography ★ Remove 17 14 ✓ views 4 download
For DIALS Winter, Graeme Data recorded as part of routine commissioning at Diamond thaumatin standard protein sample. Automated processing to the sample is a sample of the sample is a sample. Automated processing the sample is a sample of the sample is a sample. Automated processing to the sample is a sample of the sample. Automated processing the sample is a sample. Automated processing the sample is a sample. Automated processing the sample is a sample. Automated processing the sample. Automated processing the sample. Automated processing the sample is a sample. Automated processing the sample is a sample. Automated processing the sample is a sample. Automated processing the sample. Automated processing the sample is a sample. Automated processing the sample. Automated process anomalous multiplicity For AUTOMATIC/DEFAULT/NATIVE (Automated processing the sample. Automated processing the sample. Automated processing the sample. Automated process anomalous multiplicity For AUTOMATIC/DEFAULT/NATIVE (Automated processing the sample. Automated processing the sample. Automated processing the sample. Automated processing the sample. Automated process anomalous multiplicity	Light Sou with xia2 (0verall 1.63 54.20 91.4 3.2 12.4 0.070 0.063 0.081 0.080 0.040	Low 4.42 54.23 98.1 3.4 49.2 0.031 0.027 0.036 0.034	High 1.63 1.66 52.3 1.6 0.3 1.075 0.922 1.362	Macromolecular Crystallography Remove
Data recorded as part of routine commissioning at Diamond thaumatin standard protein sample. Automated processing of For AUTOMATIC/DEFAULT/NATIVE (High resolution limit Low resolution limit Completeness Multiplicity I/sigma Rmerge(I) Rmerge(I+/-) Rmeas(I) Rmeas(I) Rmeas(I)/ Rpim(I) Rpim(I) Rpim(I) Rpim(I+/-) CC half Wilson B factor (Anomalous completeness Anomalous multiplicity	Overall 1.63 54.20 91.4 3.2 12.4 0.070 0.063 0.081 0.080 0.040	Low 4.42 54.23 98.1 3.4 49.2 0.031 0.027 0.036 0.034	High 1.63 1.66 52.3 1.6 0.3 1.075 0.922 1.362	Macromolecular Crystallography Remove
Data recorded as part of routine commissioning at Diamond thaumatin standard protein sample. Automated processing of For AUTOMATIC/DEFAULT/NATIVE (High resolution limit Low resolution limit Completeness Multiplicity I/sigma Rmerge(I) Rmerge(I+/-) Rmeas(I) Rmeas(I) Rmeas(I)/ Rpim(I) Rpim(I) Rpim(I) Rpim(I+/-) CC half Wilson B factor (Anomalous completeness Anomalous multiplicity	Overall 1.63 54.20 91.4 3.2 12.4 0.070 0.063 0.081 0.080 0.040	Low 4.42 54.23 98.1 3.4 49.2 0.031 0.027 0.036 0.034	High 1.63 1.66 52.3 1.6 0.3 1.075 0.922 1.362	Crystallography 17 14 ⊚ views ≰ download
thaumatin standard protein sample. Automated processing of For AUTOMATIC/DEFAULT/NATIVE (High resolution limit Low resolution limit Completeness Multiplicity I/sigma Rmerge(I) Rmerge(I+/-) Rmeas(I) Rmeas(I) Rmeas(I+/-) Rpim(I) Rpim(I) Rpim(I+/-) CC half Wilson B factor Anomalous completeness Anomalous multiplicity	Overall 1.63 54.20 91.4 3.2 12.4 0.070 0.063 0.081 0.080 0.040	Low 4.42 54.23 98.1 3.4 49.2 0.031 0.027 0.036 0.034	High 1.63 1.66 52.3 1.6 0.3 1.075 0.922 1.362	17 14 ⊛views ≰download
For AUTOMATIC/DEFAULT/NATIVE () High resolution limit Low resolution limit Completeness Multiplicity I/sigma Rmerge(I) Rmerge(I+/-) Rmeas(I) Rmeas(I+/-) Rpim(I) Rpim(I) Rpim(I+/-) CC half Wilson B factor Anomalous completeness Anomalous multiplicity	Overall 1.63 54.20 91.4 3.2 12.4 0.070 0.063 0.081 0.080 0.040	Low 4.42 54.23 98.1 3.4 49.2 0.031 0.027 0.036 0.034	1.63 1.66 52.3 1.6 0.3 1.075 0.922 1.362	
<pre>High resolution limit Low resolution limit Completeness Multiplicity I/sigma Rmerge(I) Rmerge(I+/-) Rmeas(I) Rmeas(I+/-) Rpim(I) Rpim(I) Rpim(I+/-) CC half Wilson B factor Anomalous completeness Anomalous multiplicity</pre>	1.63 54.20 91.4 3.2 12.4 0.070 0.063 0.081 0.080 0.040	4.42 54.23 98.1 3.4 49.2 0.031 0.027 0.036 0.034	1.63 1.66 52.3 1.6 0.3 1.075 0.922 1.362	
<pre>High resolution limit Low resolution limit Completeness Multiplicity I/sigma Rmerge(I) Rmerge(I+/-) Rmeas(I) Rmeas(I+/-) Rpim(I) Rpim(I) Rpim(I+/-) CC half Wilson B factor Anomalous completeness Anomalous multiplicity</pre>	1.63 54.20 91.4 3.2 12.4 0.070 0.063 0.081 0.080 0.040	4.42 54.23 98.1 3.4 49.2 0.031 0.027 0.036 0.034	1.63 1.66 52.3 1.6 0.3 1.075 0.922 1.362	
Completeness Multiplicity I/sigma Rmerge(I) Rmerge(I+/-) Rmeas(I) Rmeas(I+/-) Rpim(I) Rpim(I+/-) CC half Wilson B factor Anomalous completeness Anomalous multiplicity	91.4 3.2 12.4 0.070 0.063 0.081 0.080 0.040	98.1 3.4 49.2 0.031 0.027 0.036 0.034	52.3 1.6 0.3 1.075 0.922 1.362	
Multiplicity I/sigma Rmerge(I) Rmerge(I+/-) Rmeas(I) Rmeas(I+/-) Rpim(I) Rpim(I+/-) CC half Wilson B factor Anomalous completeness Anomalous multiplicity	3.2 12.4 0.070 0.063 0.081 0.080 0.040	3.4 49.2 0.031 0.027 0.036 0.034	1.6 0.3 1.075 0.922 1.362	
<pre>I/sigma Rmerge(I) Rmerge(I+/-) Rmeas(I) Rmeas(I+/-) Rpim(I) Rpim(I+/-) CC half Wilson B factor Anomalous completeness Anomalous multiplicity</pre>	12.4 0.070 0.063 0.081 0.080 0.040	49.2 0.031 0.027 0.036 0.034	0.3 1.075 0.922 1.362	See more details
<pre>Rmerge(I) Rmerge(I+/-) Rmeas(I) Rmeas(I+/-) Rpim(I) Rpim(I+/-) CC half Wilson B factor Anomalous completeness Anomalous multiplicity</pre>	0.070 0.063 0.081 0.080 0.040	0.031 0.027 0.036 0.034	1.075 0.922 1.362	
<pre>Rmerge(I+/-) Rmeas(I) Rmeas(I+/-) Rpim(I) Rpim(I+/-) CC half Wilson B factor Anomalous completeness Anomalous multiplicity</pre>	0.063 0.081 0.080 0.040	0.027 0.036 0.034	0.922 1.362	
Rmeas(I) Rmeas(I+/-) Rpim(I) Rpim(I+/-) CC half Wilson B factor Anomalous completeness Anomalous multiplicity	0.081 0.080 0.040	0.036 0.034	1.362	
Rmeas(I+/-) Rpim(I) Rpim(I+/-) CC half Wilson B factor Anomalous completeness Anomalous multiplicity	0.080 0.040	0.034		
Rpim(I) Rpim(I+/-) CC half Wilson B factor Anomalous completeness Anomalous multiplicity	0.040		1.247	
Rpim(I+/-) CC half Wilson B factor Anomalous completeness Anomalous multiplicity		0.018	0.817	Indexed in
Wilson B factor 2 Anomalous completeness Anomalous multiplicity		0.021	0.833	
Anomalous completeness Anomalous multiplicity	0.998	0.998	0.392	
Anomalous multiplicity	21.110			OpenAnt
	69.7	91.3	17.6	•
Anomalous convolation	1.9	2.1	1.2	
	-0.025	0.345	-0.308	
Anomalous slope	0.915			
dF/F dI/s(dI)	0.086 0.903			Publication date:
Total observations	0.903 95615	6183	1370	June 9, 2021
Total unique	30248	1818	850	DOI:
Assuming spacegroup: P 41 21 2		2020		DOI 10.5281/zenodo.4916649
Unit cell (with estimated std devs):				Keyword(s):
58.1046(2) 58.1046(2) 150.4201(7)				thaumatin dials tutorial
90.0 90.0 90.0				Communities:
Data consist of 500 x 0.1° rotation images recorded on an Ei	ger 2XE 1	6M detect	or with a 2ms	Macromolecular Crystallography
exposure time (i.e. a total of 1s of exposure time for the full of				License (for files):
facilitate quick processing while being relatively complete th				Creative Commons Attribution 4.0
sample, and are properly recorded i.e. finely sliced.				International
Files (1.5 GB)			~	

ZENODO FOR CRYSTALLOGRAPHY

B Protein Data Bank in Europe Bringing Structure to Biology

PDBe > 5rfk

PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102575

Source organism: Severe acute respiratory syndrome coronavirus 2 Primary publication

Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease

Douangamath A, Fearon D, Gehrtz P, Krojer T, Lukacik P, Owen CD, Resnick E, Strain-Damerell C, Aimon A, Ábrányi-Balogh P, Brandão-Neto J, Carbery A, Davison G, Dias A, Downes TD, Dunnett L, Fairhead M, Firth JD, Jones SP, Keeley A, Keserü GM, Klein HF, Martin MP, Noble MEM, O'Brien P, Powell A, Reddi RN, Skyner R, Snee M, Waring MJ, Wild C, London N, von Delft F, Walsh MA

Nat Commun 11 5047 (2020) PMID: 33028810 🕑

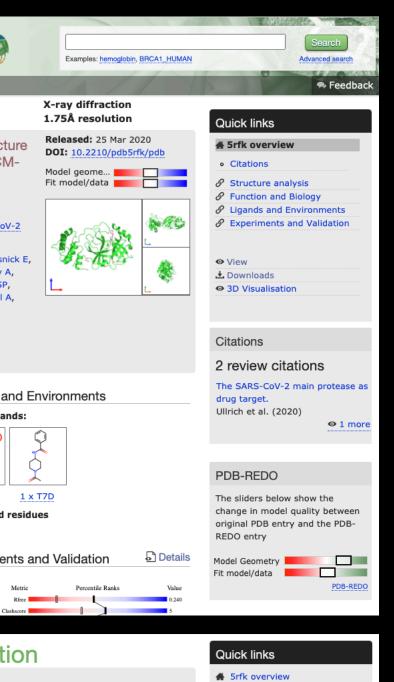
Reac

	Function and Biology	Details	Ligands
R	eactions catalysed:		2 bound lig
	Nucleoside triphosphate + RNA(n) = diphosphate + RNA(n+1)		5
	ATP + H(2)O = ADP + phosphate		3 x DMS
	TSAVLQSGFRK-NH(2) and SGVTFQ the two peptides corresponding to self-cleavage sites of the SARS 30	the two	No modifie
	proteinase are the two most react: peptide substrates. The enzyme ext		Experim

strong preference for substrates containing Gln at Pl position and Leu at P2 positio

5rfk · Experiments and Validation

		e acute respiratory syndrome	Г
solution	-	1.75Å	
eported F	l values:		
	R _{free}	R _{work}	
18	0.23	0.18	


X-ray diffraction


Sample inform	nation
Author description:	PanDDA analysis group deposition Crystal Struc complex with PCM-0102575
Source organism: Expression system:	Severe acute respiratory syndrome coronavirus 2 Escherichia coli
Expression system:	Escherichia coli

Validation information

Metric	Description
Bond angles in protein, DNA, RNA molecules	0 outlier(s) of 3293 (%)
Bond lengths in protein, DNA, RNA molecules	0 outlier(s) of 2422 (%)
Electron density fit in protein, DNA, RNA molecules	11 outlier(s) of 307 (%)
Ramachandran outliers in protein molecules	1 outlier(s) of 305 (%)
Sidechain rotamer outliers in protein molecules	3 outlier(s) of 264 (%)

Experimental information

cture of SARS-CoV-2 main protease in

• 1 more
PDB-REDO
The sliders below show the change in model quality between original PDB entry and the PDB- REDO entry
Model Geometry
Quick links
5rfk overview
Citations
Structure analysis
 Function and Biology Ligands and Environments
Ø Experiments and Validation
 ♥ View ★ Downloads ♥ 3D Visualisation
Experimental raw data

1 Links to raw experimental data

Raw experimental data related to

10.5281/zenodo.3731400 🗹 Dataset type: diffraction

Links and resources Sull validation report

PDB entry 5rfk:

Data DOI:

image data

8 EDS

available for this entry are listed

March 30, 2020

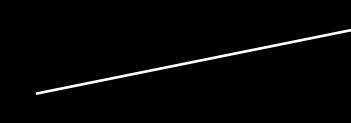
Raw diffraction data for structure of SARS-CoV-2 main protease with PCM-0102575 (ID: mpro-x1351 / PDB: 5RFK)

Dataset Open Acce

Aragao, David; Brandao-Neto, Jose; Carbery, Anna; Crawshaw, Adam; Dias, Alexandre; Douangamath, Alice; Dunnett, Louise; Fearon, Daren; Flaig, Ralf; Gehrtz, Paul; Hall, Dave; Krojer, Tobias; London, Nir; Lukacik, Petra; Mazzorana, Marco; McAuley, Katherine; Owen, David; Powell, Ailsa; Reddi, Rambabu; Resnick, Efrat; Skyner, Rachael; Snee, Matt; Strain-Damerell, Claire; Stuart, Dave; von Delft, Frank; Walsh, Martin; Wild, Conor; Williams, Mark; Winter, Graeme

Raw diffraction data for mpro-x1351 / PDB ID 5RFK (see:

https://www.ebi.ac.uk/pdbe/entry/pdb/5RFK) - SARS-CoV-2 main protease in complex with PCM-0102575 (SMILES:CICC(=0)N1CCC(CC1)NC(=0)c2ccccc2) collected as part of an XChem crystallographic fragment screening campaign on beamline i04-1 at Diamond Light Source. The deposited structure was automatically processed with standard Diamond tools and PanDDA, however the raw data are being made available to allow reanalysis by any interested party. For more details see: https://www.diamond.ac.uk/covid-19/for-scientists/Main-protease-structure-and-XChem.html


Preview	~
🖺 mpro-x1351.zip	×
Mpro-x1351.run Mpro-x1351_1_0001.cbf Mpro-x1351_1_0002.cbf Mpro-x1351_1_0003.cbf Mpro-x1351_1_0004.cbf Mpro-x1351_1_0005.cbf Mpro-x1351_1_0006.cbf Mpro-x1351_1_0007.cbf Mpro-x1351_1_0009.cbf Mpro-x1351_1_0009.cbf Mpro-x1351_1_0010.cbf Mpro-x1351_1_0010.cbf Mpro-x1351_1_0011.cbf Mpro-x1351_1_0012.cbf Mpro-x1351_1_0013.cbf Mpro-x1351_1_0014.cbf Mpro-x1351_1_0015.cbf	4 Bytes 6.2 MB 6.2 MB
Mpro-x1351_1_0016.cbf ☐ Mpro-x1351_1_0017.cbf ☐ Mpro-x1351_1_0018.cbf	6.2 MB 6.2 MB 6.2 MB

New version Communities Coronavirus Disease Research Community - COVID-19 Macromolecular Crystallography

467 views 📥 dow See more details.

Indexed in
OpenAIR
Publication date: March 30, 2020
DOI:
DOI 10.5281/zenodo.3731400
Keyword(s):
COVID-19 SARS-CoV-2 main protease
automated upload PDB:5RFK
Diamond Light Source / MX / XChem
Communities:
Coronavirus Disease Research

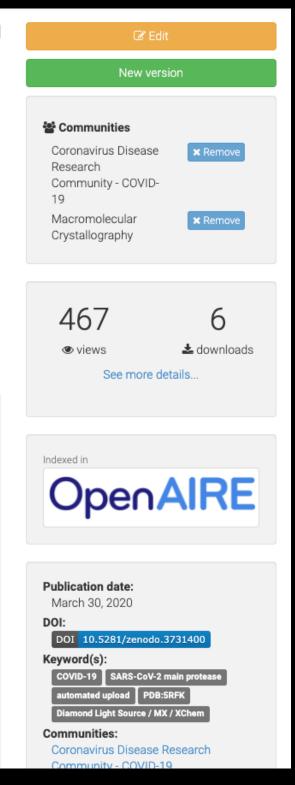
Community COVID 10

nove nove	
) nloads	nove
Noads	nove
3	RE
1	
	1

ZENODO FOR CRYSTALLOGRAPHY

March 30, 2020

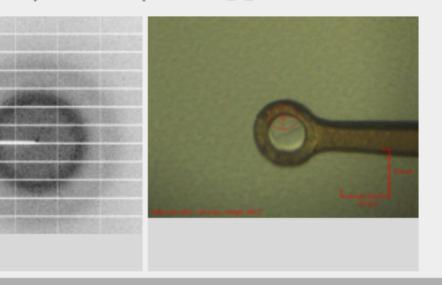
Dataset Open Access

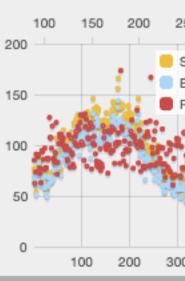

Raw diffraction data for structure of SARS-CoV-2 main protease with PCM-0102575 (ID: mpro-x1351 / PDB: 5RFK)

Aragao, David; Brandao-Neto, Jose; Carbery, Anna; Crawshaw, Adam; Dias, Alexandre; Douangamath, Alice; Dunnett, Louise; Fearon, Daren; Flaig, Ralf; Gehrtz, Paul; Hall, Dave; Krojer, Tobias; London, Nir; Lukacik, Petra; Mazzorana, Marco; McAuley, Katherine; Owen, David; Powell, Ailsa; Reddi, Rambabu; Resnick, Efrat; Skyner, Rachael; Snee, Matt; Strain-Damerell, Claire; Stuart, Dave; von Delft, Frank; Walsh, Martin; Wild, Conor; Williams, Mark; Winter, Graeme

Raw diffraction data for mpro-x1351 / PDB ID 5RFK (see:

https://www.ebi.ac.uk/pdbe/entry/pdb/5RFK) - SARS-CoV-2 main protease in complex with PCM-0102575 (SMILES:CICC(=0)N1CCC(CC1)NC(=0)c2cccc2) collected as part of an XChem crystallographic fragment screening campaign on beamline i04-1 at Diamond Light Source. The deposited structure was automatically processed with standard Diamond tools and PanDDA, however the raw data are being made available to allow reanalysis by any interested party. For more details see: https://www.diamond.ac.uk/covid-19/for-scientists/Main-protease-structure-and-XChem.html


Preview	~
🗄 mpro-x1351.zip	×
Mpro-x1351.run	4 Bytes
 ☐ Mpro-x1351_1_0001.cbf	6.2 MB
Mpro-x1351_1_0002.cbf	6.2 MB
Mpro-x1351_1_0003.cbf	6.2 MB
Mpro-x1351_1_0004.cbf	6.2 MB
Mpro-x1351_1_0005.cbf	6.2 MB
Mpro-x1351_1_0006.cbf	6.2 MB
Mpro-x1351_1_0007.cbf	6.2 MB
Mpro-x1351_1_0008.cbf	6.2 MB
Mpro-x1351_1_0009.cbf	6.2 MB
Mpro-x1351_1_0010.cbf	6.2 MB
Mpro-x1351_1_0011.cbf	6.2 MB
Mpro-x1351_1_0012.cbf	6.2 MB
Mpro-x1351_1_0013.cbf	6.2 MB
Mpro-x1351_1_0014.cbf	6.2 MB
Mpro-x1351_1_0015.cbf	6.2 MB
Mpro-x1351_1_0016.cbf	6.2 MB
Mpro-x1351_1_0017.cbf	6.2 MB
P Mpro-x1351 1 0018 cbf	6.2 MB



1 05-03-2020 20:53:46 - > Mpro/Mpro-x1351/Mpro-x1351_1_####.cbf

Sample: Mpro-x1351	Flux: 3.50e+11
Ω Start: 90.0°	Ω Osc: 0.50°
Ω Overlap: 0°	No. Images: 400
Resolution: 1.80Å	Wavelength: 0.9119Å
Exposure: 0.040s	Transmission: 100.00%
Beamsize: 60x50µm	Type: SAD

Comment: (120006,13,184) Xray centring boxes: ['26.2s (8s)', 45, '19.3s (4s)', 21]. Aperture: 70um

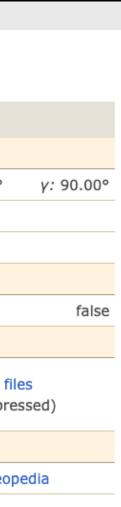
Auto Processi	ing					xia	a2 dials: 2x 🗸	autoPROC:	2x 🗸 🖌 fas	st_dp: 💙 🕠	xia2 3dii: 2x 📢	🖌 autoP	ROC+S	STARANISO: 2
Туре	•	Res	olution	Space	group	Mn <l sig(i)<="" th=""><th>> Rmeas Inner</th><th>Rmeas Outer</th><th>Completene</th><th>ess</th><th>Cell</th><th></th><th></th><th>Status</th></l>	> Rmeas Inner	Rmeas Outer	Completene	ess	Cell			Status
xia2 dials		54.96	6 - 1.75	C 1 2 1		4.9	0.071	2.039	99.7	126.95 5	2.77 111.24 90.	00 159.66 90	0.00 pr	rocessing succe
autoPROC		54.79	9 - 1.85	C 1 2 1		6.0	0.056	2.240	99.9	112.51 5	2.78 44.81 90.0	0 103.10 90.	.00 pr	rocessing succe
fast_dp		29.98	8 - 2.06	C 1 2 1		8.1	0.043	1.223	96.4	112.32 5	2.68 44.74 90.0	0 103.12 90.	.00 pr	rocessing succe
autoPROC		47.5	5 - 1.85	C 1 2 1		6.0	0.056	2.253	99.9	112.51 5	2.78 44.81 90.0	0 103.10 90.	.00 pr	rocessing succe
xia2 3dii		52.73	3 - 1.88	P 1 21	1	3.2	0.074	3.541	99.8	44.77 52	2.73 111.15 90.0	0 99.98 90.0	0 pr	rocessing succe
xia2 dials		54.9	5 - 1.75	C 1 2 1		5.0	0.071	2.036	99.7	112.43 5	2.76 44.79 90.0	0 103.08 90.	.00 pr	rocessing succe
xia2 3dii		54.73	3 - 1.84	C 1 2 1		6.1	0.053	2.180	99.8	112.38 5	2.72 44.77 90.0	0 103.11 90.	.00 pr	rocessing succe
autoPROC+ST	ARANISC	0 47.55	5 - 1.75	C 1 2 1		7.2	0.055	1.042	91.5	112.51 5	2.78 44.81 90.0	0 103.10 90.	.00 pr	rocessing succe
autoPROC+ST	ARANISC	54.79	9 - 1.75	C 1 2 1		7.2	0.055	1.036	91.3	112.51 5	2.78 44.81 90.0	0 103.10 90.	.00 pr	rocessing succe
xia2 dials	auto	PROC	fas	st_dp	auto	PROC	xia2 3dii	xia2 dials	xia2 3dii	autoPRO	OC+STARAN	ISO a	utoPRC	C+STARANI
Dear Centre	v	Y												
Beam Centre	X									Plots	Archive	ද් _ව Logs ව	& Files	Q Lookup (
Start	212.35													
Refined	212.71													
Δ	-0.36	-0.26												
Space Group	A	В	с	α	β	Y								
C 1 2 1	126.95	52.77	111.24	90.00	159.66	90.00								

Shell	Observations	Unique	Resolution	Rmeas	l/sig(l)	CC Half	Completeness	Multiplicity	Anom Completeness	Anom Multiplicity	сс
outerShel	I 3995	1305	1.75 - 1.78	2.039	0.5	0.3	99.3	3.1	84.9	1.7	-0.0
innerShel	4933	1372	4.75 - 54.99	0.071	19.2	1.0	99.7	3.6	95.2	2.0	-0.5
overall	91960	26116	1.75 - 54.96	0.217	4.9	1.0	99.7	3.5	92.4	1.9	-0.2

Downstream Processing

	•
50	
Spots	1.0
Bragg	1.5
Res	2.0
	2.5
12	3.0
	3.5
	4.0
0 400	
0: 2x 🔦	1
s	
locessful	
uccessful	
lccessful	
locessful	
locessful	
uccessful	
iccessful	
uccessful	
lccessful	
ANISO	
up Cell	
C Anom	
.0	
.5	
2	

WHAT DO WE WANT?


- Ability to annotate raw data with processing output, full experiment metadata, sample material etc.
- Link to published structure but not mandatory? Publishing unsuccessful data very interesting
- Validation to ensure that the data correspond to the claimed structure
- Facility to automate publication and update

5rfk redone

Crystallograp	Crystallographic data										
From PDB heade	r										
Spacegroup	C 1 2 1	<i>a:</i> 112.854 Å	<i>b:</i> 52.919 Å	<i>c:</i> 44.942 Å	<i>a:</i> 90.00°	β: 103.14°					
Resolution	1.75 Å	Reflections	25961	Test set	1294 (5.0%)						
R	0.1880	R-free	0.2350								
According to PD	B-REDO										
Resolution	1.75 Å	Reflections	25961	Test set	1294 (5.0%)	Twin					
PDB-REDO files											
Re-refined and rebuilt structure (PDB mmCIF MTZ)		Re-refined (only (PDB M		YASARA (for visualis resu	All f (compre						
Links											
PDBe		RCSB P	РDВ	3D bio	Proteo						

Validation metrics from PDB-REDC

	PDB	PDB-REDO				
Crystallographic refinement						
R	0.1970	0.2014				
R-free	0.2400	0.2387				
Bond length RMS Z-score	0.679	0.376				
Bond angle RMS Z-score	1.025	0.653				
Model quality (raw scores percentiles)						
Ramachandran plot appearance	34	44				
Rotamer normality	67	86				
Coarse packing	34	32				
Fine packing	19	23				
Bump severity	82	92				
Hydrogen bond satisfaction	30	38				
WHAT_CHECK	Report	Report				

CURATION

- as a hobby by folks - but librarian is a vocation / job
- the raw data and the archive
- Critical to ensure the standards are defined
- Critical to ensure the standards are maintained
- Critical to ensure people are helped as users and depositors

Currently zenodo communities have "light touch" curation - largely done

PDB, CSD etc. have professional curators and annotators - adding value to

COSTS

- Disks are cheap, small, portable
- Can buy one for every visit to DLS for a small cost compared with other consumables
- Obviously data not public, but can consider making public if someone asks...

Seagate Portable, 5 TB, External Hard Drive HDD for PC Laptop and Mac and Two-year Rescue Services...

€9999 ✓prime Today by 10PM FREE delivery More buying choices £91.87 (3 used & new offers)

Seagate Portable, 1 TB, External Hard Drive HDD for PC Laptop and Mac and Two-year Rescue Services...

★★★★☆ ~ 11,577

£3899 £40.29

COSTS

Data storage is expensive

- disks die
- technology changes try finding a firewire port in 2021
- failure / accidents happen
- if you have not tried to read the data, assume the worst

COSTS

Data storage is expensive

- disks die
- technology changes try finding a firewire port in 2021
- failure / accidents happen
- if you have not tried to read the data, assume the worst

REAL COSTS -Storage

- Azure as an example probably priced in a realistic manner
- One "visit" / "shift" ~ 4TB
- £2.48 / month cheapest storage cost
 £300 over 10 years
- 10 years time you'll be paying to store 60 visits worth of data... and the data won't be getting smaller

Data storage prices pay-as-you-go


All prices are per GB per month.

	Premium	Hot	Cool	Archive
First 50 terabyte (TB) / month	£0.11180 per GB	£0.0135 per GB	£0.00746 per GB	£0.00074 per G
Next 450 TB/month	£0.11180 per GB	£0.0129 per GB	£0.00746 per GB	£0.00074 per G
Over 500 TB/month	£0.11180 per GB	£0.0124 per GB	£0.00746 per GB	£0.00074 per G

Azure Storage Reserved Capacity

Azure Storage Reserved Capacity helps you lower your data storage cost by committing to one year or three years of Azure Storage. Reserved capacity can be purchased in increments of 100 TB and 1 PB sizes for 1-year and 3-year commitment durations. All prices are per month. For more information, please see <u>documentation</u>.

		3-year reserved				
	Hot	Cool	Archive	Hot	Cool	Archive
100 TB/month	£1,152	£626	£68	£927	£504	£62
1 PB/month	£11,217	£6,096	£658	£8,916	£4,846	£604

REAL COSTS -CURATION

- Different shape to storage up front / one off rather than annual
- Partly amenable to automation but still work to verify the data match the publication etc.
- Highly dependent on the goals of the curated data archive - the higher the value, the higher the staff costs

Team Members

Leaders

Operations Team

r. Jose M. Duarte

Principal Scientific Applic

r. John D. Westbroo

Date & Software Architect Leas

RCSB POB Biocustion Tel wwPOB Global Project Las

X. Yana Rose

cientific Software 2

Ambassador

cientific Application/Web

Dr. Gregg V. Crichlos

Brinda Vallat PDB-Dev Representative brinds valut@rcsb.org

r, Justin W. Flat

WORKED EXAMPLE

- 25 GB data set -> f2 to store for 10 years at cheapest rate
- priority cloud resource)
- People cost to verify data 5 minutes at f_{25} / hour -> f_{25}
- Overall about ± 5 / data set (± 6 / ± 7)
- Taking the data out will cost about £0.75 £1.25 a go...

Processing time to validate - 15 minutes on 16 core machine - £0.2 (low

WHO PAYS?

- Scientist reader traditional manuscript model
- Creator new "open access" model
- Facility (common in e.g. radio astronomy)
- 3rd party

Bistromathics

📌 🔒 VIEW SOURCE | 🚦

Bistromathics is the most powerful computational force known to parascience. A major step up from the **Infinite Improbability Drive**, Bistromathics is a way of understanding the behavior of numbers. Just as Einstein observed that time was not an absolute, but depended on the observer's movement through **space**, so it was realised that numbers are not absolute, but depend on the observer's movement in restaurants.

Nonabsoluteness

The first nonabsolute number is the number of people for whom the table is reserved. This will vary during the course of the first three telephone calls to the restaurant, and then bear no apparent relation to the number of people who actually turn up, or to the number of people who subsequently join them after the show/match/party/gig, or to the number of people who leave when they see who else has turned up.

The second nonabsolute number is the given time of arrival, which is now known to be one of those most bizarre of mathematical concepts, a recipriversexclusion, a number whose existence can only be defined as being anything other than itself. In other words, the given time of arrival is the one moment of time at which it is impossible that any member of the party will arrive. Recipriversexclusions now play a vital part in many branches of maths, including statistics and accountancy and also form the basic equations used to engineer the **Somebody Else's Problem field**.

The third and most mysterious piece of nonabsoluteness of all lies in the relationship between the number of items on the bill, the cost of each item, the number of people at the table and what they are each prepared to pay for. (The number of people who have actually brought any money is only a subphenomenon in this field.)

Numbers written on restaurant checks within the confines of restaurants do not follow the same mathematical laws as numbers written on any other pieces of paper in any other parts of the **universe**.

WHO PAYS? CHALLENGES

- (same as papers)
- what data will be important, also have to support many disciplines
- 3rd party how are we going to persuade someone of the need?

 Scientist - reader - traditional manuscript model - additional expense for hard pressed labs - also implies that publishers have control over your data

Creator - new "open access" model - additional costs again to labs, though not impossible - advantage that it scales - but lab funding is transient

Facility (common in e.g. radio astronomy) - very expensive as we don't know

HYBRID MODEL

- not provide DOI) - need not be specialised for crystallography

Data archive - facility / zenodo / azure (assumed to be reliable, may or may

Metadata archive - with the publication of the structure - has DOI - is curated and contains a reference back to the raw data (build into CSD / PDB) - see e.g. extensions to imgCIF to allow references to HDF5 raw data

SHOULD WE PAY?

- £6 / data set is / is not good value
- How much does it cost to reproduce the data?
- How much value will the data have? Will anyone ever look at it?

CONCLUSIONS

- long the archive should live etc.
- more likely to meet the community need just need to ensure link is bidirectional

Archiving raw experimental data perfectly possible - see Zenodo - easy even

Defining a standard perfectly possible - see achievements in CIF / mmCIF / PDB etc. - making it part of publication process excellent way of encouraging people

Deciding who should do the archiving is hard - and who should pay for it, how

Hybrid model of separating the data archiving from the metadata and curation

ACKNOWLEDGEMENTS

- Diamond / STFC IT folks for keeping ICAT running and useful
- Diamond / STFC staff, users
- Commenters on Twitter for raising useful questions
- NeXus / imgCIF (& Herbert Bernstein) for standards definitions

diamond

rotein Data Bank

CCDC