DAta for PHoton and Neutron Experiments

Bridget Murphy
CAU - Kiel
DAPHNE4NFDI aims

to make the growing volume of valuable measured data FAIR for the DAPHNE4NFDI community, for the whole NFDI and the scientific community.

These key objectives will be achieved within DAPHNE:

Reuse data by:

1. Definition and collection of metadata
2. Databases of data
3. Curated repository of managed software
4. Multidisciplinary data platform
5. Education and training in research data management.
Bring together

- Universities
- Research Institutes
- Users Organisations
- Facilities
DAPHNE4NFDI
Data for Photon and Neutron Experiments

Consortium
Brings together 18 partners:
- University user groups
- Large scale facilities
- In addition: KFN + KFS
- > 60 participants (without funding)

Task Area Leaders:
Anton Barty (DESY, Speaker)
Bridget Murphy (CAU, Speaker)
Astrid Schneidewind (FZJ, Deputy speaker)

Sebastian Busch (Hereon)

Frank Schreiber (U Tübingen)
Wiebke Lohstroh (TUM)
Christian Gutt (U Siegen)
Jan-Dierk Grunwaldt (KIT)
Tobias Unruh (FAU)

Coordinator: lisa.amelung@desy.de
Impacts on global challenges

Impact extends far beyond the physics or materials science community

Society challenges
- Health
- Environment
- Energy
- Materials
- Transport
- Knowledge

Research domains
- Engineering
- Bioscience
- Physics
- Chemistry
- Medicine

Analytic methods
- Neutrons
- X-rays
- Imaging
- Tomography
- Diffraction
- Spectroscopy

DAPHNE links NFDI to other initiatives outside Germany
Research with photons and neutrons in numbers
per year in Germany

3000 participants at facility user meetings
3000 experiments
50 PB data
3000 publications
5500 users
250 patents

8 sources in Germany
33 sources in Europe
94 sources worldwide

Reaching a community of over 50,000
from 50 companies, 100 universities, 115 research institutions

Christian-Albrechts-Universität zu Kiel
Research Data Management strategy

Collect
- Proposal
- Capture
 - metadata
 - Control software
 - Data formats
- Document
 - Workflow
 - Electronic Logbook
 - Measurement
- Parameters
 - Sample
 - Environment
 - Instrument

Curate
- Validate
- Store & Archive
- Metadata & Data

Access
- Share Data
 - Access Controlled
 - or Open Access

Publish
- Data catalogue
 - Federated
 - Searchable
 - Interlinked
 - Reusable

Analyse
- Online
 - Integrate Data
 - Central access
 - Create Output

Evaluate
- Publish Results
- Publish
 - Papers
 - Patents
 - Presentations

Process
- Store Data
- Validate Data

Visualise
- Online
 - Live view
 - Reduction
 - Validate

Online
- Live view
- Reduction
- Validate

Indeterminate
- Accessible
- Interoperable
- Reusable

Online
- Live view
- Reduction
- Validate

Online
- Live view
- Reduction
- Validate
Managing data and metadata collection

Task Area leaders: Wiebke Lohstroh (TUM) and Bridget Murphy (CAU-Kiel), supported by Philipp Jordt (CAU-Kiel)

Instrument and sample data capture

- Capture data and metadata at instrument (sample environment and sample data)
 - Electronic log book
 - Define and capture metadata for catalogue
 - Sample persistent identifier (IGSN)
- Automatic ingestion
- Authentication

High performance data format standards

- NeXus data standards and container deployment
 - MLZ, PETRA III, BESSY, HZDR (openPMD), X-spectrum and EuXFEL
Managing data and metadata collection

Enabling re-use and repeatability of results, ideally searchable

Meta data schemata and vocabulary

- Specification, develop ExPaNDS ontologies
- Automatic ingestion during experiments
- Implementation (use cases)
- Standards – White paper in progress
Persistent Sample Identifiers PID

Joint working group

International Generic sample number (IGSN)

- Tests of IGSN at MLZ and CAU.
 - Identifier needs to be unique and persistent
- Simple to use
- Which (meta)data information is required?
- When to catalogue?
Metadata and data repositories and catalogues
A place to find published data - and in some cases the ability to reprocess data

Repository and catalogue roll-out and development
- Presentation later

(Meta)data standardisation and sample identification
- Focus on which information should be available
 - Overlap with TA1 (joint working group)
- PaNOSC search API
- (Meta)data standardisation and sample identification
 - NeXus/HDF5
 - openPMD (HZDR)
- Insertion of additional (meta)data into repository/catalogue
SciCat - DAPHNE4NFDI standard

Cross TA development with a focus working group

May 2023: new backend

Facilities

- MLZ, DESY, and HZDR installed SciCat
- BESSY(ICAT), EuXFEL (MyMDC)
- Automatic ingestion
- Test user version running at P08 DESY
- Authentication
- User rights difficult at DESY
- keycloak working at MLZ

Universities

- Local installations led by Tübingen
- Currently @ KIT, TUB, BUW, CAU, FAU
- Central IT installations slower

Active in SciCat developers group
Metadata and data repositories and catalogues

Task Area leaders: Sebastian Busch (hereon) and Tobias Unruh (FAU), supported by Jonas Graetz (FAU)

Activities and Achievements

- catalogues,
- (meta-)data formats
- sample databases

- SciCat installation training (DAPHNE4NFDI standard)
- X-ray absorption spectroscopy reference database
- Tests of IGSN sample identifiers at MLZ and CAU.
Metadata and data repositories and catalogues
A place to find published data - and in some cases the ability to reprocess data

Insertion of additional (meta)data into repository/catalogue at a later stage
- X-ray absorption spectroscopy (XANES/EXAFS) database first
 - XFS next phase
 - KIT, Uni. Wuppertal and TU Berlin, ESRF
- Round robin sample
- SciCat as backend

Search data
- Using GID data set as test case (HZDR)
Open infrastructure for data and software re-use
Task area leaders: Frank Schreiber (Uni. Tübingen) and Anton Barty (DESY), supported by Linus Pithan (Uni. Tübingen)

Activities and Achievements
- Infrastructure and training for professional research software engineering practices
- Providing interfaces for machine learning software
- Developing community software for use cases
Open infrastructure for data and software re-use
Community data analysis software and data mining strategies including machine learning

Supporting infrastructure and related developments

- GitLab
- Continuous Integration & Continuous Deployment (CI/CD) platform
- Support for software development. (e.g. CrystFEL use case)
- Data analysis platforms based on the VISA developments of ExPaNDS and PaNOSC
- Interfaces for machine learning using SciCat to access data
- Aim to define common language and file formats
Open infrastructure for data and software re-use
Community data analysis software and data mining strategies including machine learning

Machine learning based software interfaces

- Deep learning 2D data analysis pipeline GIWAXS (Uni. Tübingen)
- Reflectivity organic thin films (Uni Tübingen), liquid samples (CAU Kiel)
- Amortized bayesian inference of of GISAXS (HZDR, XFEL, Uni Siegen)
- Powder diffraction (At RWTH Aachen)

The mlreflect pipeline

Greco et al. J. Appl. Crystallogr., 2022, 55, 362-369
In situ applications of mlreflect

- Real-time parameter prediction useful for in situ experiments
- After training, no human input is necessary
- Results are obtained within <1s per curve
- Ideal for monitoring and feedback loops

Greco et al. J. Appl. Crystallogr., 2022, 55, 362-369

Open infrastructure for data and software re-use

Community data analysis software and data mining strategies including machine learning

Development of scientific software

- Grazing incidence small angle scattering (AIXTAL@RWTH Aachen)
- X/n diffraction and quasielastic neutron scattering (Sassena@MLZ)
- X/n reflectivity (XRR @CAU-Kiel, Made2Reflect@MLZ)
- CrystFEL (DESY)
Dissemination and outreach

Task area leaders: Astrid Schneidewind (FZJ) and Jan-Dierk Grunwaldt (KIT), supported by Paolo Dolcet (KIT)

The NFDI consortium as a role model and educator

- Workshops and community building - (meta)data definition and ontologies
- Discuss and Support use cases
- Data managment as part of the curriculum
- Status meetings and TA meetings
- Webpage/ highlight reports
- University open lecture series
Use Cases

DAPHNE as a role model

- Biomaterials
 - x-ray imaging
 - LMU – Uni Göttingen

- Energy and battery materials, catalysis
 - Tomography
 - TUM – MLZ – BAM – hereon – HZB - KIT

- Amorphous materials for catalysis
 - x-ray absorption spectroscopy
 - KIT – TUB – Uni Wuppertal

- Soft matter and liquid interfaces
 - x-ray reflectivity
 - Uni Kiel – Uni Tübingen

- Proteins & Food science
 - Diffraction (small and wide angle)
 - Spectroscopy
 - FAU– Uni Tübingen – EMBL - Uni Kiel

- Correlated electron systems
 - Spectroscopy
 - KIT – FZJ - MLZ

- Reusable powder refinement
 - Neutron TOF diffraction
 - FZJ – MLZ – ESS - RWTH

- Dynamics
 - Correlation spectroscopy - XPCS
 - Uni Siegen - EuXFEL

- Magnetic structures
 - Ultrafast / Magnetic x-ray scattering
 - DESY – Uni Siegen

- Chemical systems
 - x-ray emission spectra, RIXS etc.
 - KIT – ESRF - DESY

- Electrochemistry & Catalysis
 - High energy x-ray diffraction
 - HZDR – Uni Kiel - DESY
External communication and policy

Christian Gutt (U Siegen) and Astrid Schneidewind (FZJ)

- DAPHNE is embedded in worldwide network > 30,000 synchrotron and neutron users
- Cross-consortia activities – interfaces and interlinkages to other NFDI consortia
- Organizational structures exists: European user organizations and facility organization
- Connects to European open science cloud X-ray and neutron data projects
NFDI Vision

Research data are available in a FAIR* manner

For everyone**

For always***.

• Findable, accessible, interoperable, reusable.
• **depending on access class
• *** Alice; “How long is for ever”
 • White rabbit “sometimes for one second”

York Sure-Vetter Director NFDI association
The main objective of DAPHNE4NFDI is to make the growing volume of valuable measured data FAIR for the DAPHNE4NFDI community, for the whole NFDI and the scientific community.

These key objectives will be achieved within DAPHNE:

1. **Collection of data** and metadata so that the **measured data** is **reusable**
2. **Searchable curated databases** of raw, intermediate and processed data
3. Develop a **curated repository of managed software** >> **re-use** the data
4. **Education** and **training** in research data management
5. Develop **multidisciplinary data platforms** for NFDI and international collaborations

https://www.daphne4nfdi.de
Thank you!