
1

Modification of Crystallographic Codes for Parallel Architectures

M. Ramanadham, B.S. Jagadeesh & R. Chidambaram

Solid State Physics Division & Computer Division
Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

ramu@magnum.barc.ernet.in

Abstract

The use of high-speed computers having large memories
and storage capacities is an essential component of many
present-day scientific and engineering applications. In
recent years, parallel computers have emerged as viable
alternatives to supercomputers, at least for those
applications having inherent parallelism in them, such as
crystal-structure analysis. Two such applications
pertaining to the field of protein crystallography, viz.,
structure optimization and summation of three-
dimensional Fourier series, carried out on ANUPAM, the
BARC-built parallel computing system, are described in
this article.

1 Introduction

 Crystal-structure analysis by the method of single-
crystal x-ray or neutron diffraction is one of the most
computer intensive branches of modern science.
Computers and computations are used at every stage, from
data acquisition to structure presentation. Comprehensive
and accurate studies on the structures of large proteins
and other biological macromolecules by this method have
become possible only with the advent of modern
computers. It is not uncommon to find the use of even
supercomputers for some of the high-end applications
pertaining to the field of macromolecular crystallography.
 Almost all crystallographic computations have inherent
parallelism in them. In many cases, the same series of
calculation steps can be carried out simultaneously on
different portions of the data set. In some other cases,
different calculations, possibly on different data sets can
be carried out simultaneously when the calculations are
independent of one another. Thus, the use of parallel
computers for macromolecular crystallographic
applications seems to be a very attractive proposition. A
variety of parallel architectures have been designed and
built in recent years. ANUPAM, the parallel computing
system [1] built at Bhabha Atomic Research Centre

(BARC), is one such system that belongs to MIMD
(Multiple Instruction, Multiple Data) type of parallel
architecture. During the past few years, it has been
successfully used for calculations pertaining to various
fields of research, such as computational fluid dynamics,
molecular dynamics and Monte Carlo simulations,
electronic structure calculations, weather forecasting and
protein crystallography.

2 Parallelization of Codes on ANUPAM

ANUPAM (A Sanskrit word, meaning incomparable),
designed and built [1] at Bhabha Atomic Research Centre
(BARC), India, is a loosely coupled, message passing
parallel computing system. It uses powerful RISC
processors, interconnected through Multibus II. Each
processor has its own memory. One of the processors,
known as the master or the host, runs the UNIX operating
system, while all the other processors, known as slaves or
nodes, run the monitor (control) programs. Only the host
processor communicates with the external devices. All
the processors, including the host exchange data with one
another with the help of library calls introduced in the
user code at appropriate places. A number of ANUPAM
systems having 8 to 64 processors are operational at
BARC and elsewhere during the past few years.
 The sequential program of the user has to be modified
to make it run on the ANUPM system in the parallel
mode. The first step in this direction is to copy all the
portions of the source code that can run concurrently on
the slave processors into another source file. Hereafter,
the original source code is referred to as the master file,
while the copied code is referred to as the slave file.
Then, the following two lines ,

include ‘mincl.inc’
include ‘sinlcl.inc’

should be inserted in the beginning of the master and slave
files respectively. The following line,

call m_init (no_of_slave-cpus, slave_file_name)

should be inserted as the first executable statement, and
another line,

call m_end ()

should be inserted before the stop statement in the master
file. The slave_file_name is the name of the slave source
file with the extension ‘dump’. Correspondingly, the
following two lines,

call s_init ()
call s_end ()

should be inserted in the slave file. The following
communication calls are to be inserted in the master and
slave source files for exchanging data among the
processors during the program execution. A single data
element, or variable is communicated using the calls

call send_element (var, dest_cpu_id, data_type)
call receive_element (var, source_cpu_id, data_type).

To broadcast a data element from one cpu to all the other
cpus, the following statement is used.

call b_send_element (var, data_type)

Here, var is the variable name, dest_cpu_id and
source_cpu_id are the ID numbers of the cpus, and
data_type is the data type. In ANUPAM, the master
processor is identified either by the integer constant, 0, or
by the symbolic variable, CPU0. The slave processors are
identified either by the integer constants, 1, 2, etc., or by
the symbolic variables, CPU1, CPU2, etc. The cpu ID
number of any processor during execution can be
extracted by the call

id = get_cpu_id ().

Various data types accepted by ANUPAM are; char, int,
s_real, d_real, s_complex, d_complex and user_defined.
If more than one variables are to be communicated, the
following statements,

call send_els (dest_cpu_id, no_of_vars, var1,
data_type, var2, data_type,)
call receive_els (source_cpu_id, no_ov_vars, var1,
data_type, var2, data_type, . . .)
call b_send_els (no_of_vars, var1, data_type, var2,
data_type, . . .)

are to be used. The corresponding calls for communicating
dimensioned variables, or arrays are,

call send_data (array_name, array_size, dest_cpu_id,
data_type)
call receive_data (array_name, array_size,
source_cpu_id, sz_chk, data_type)
call b_send_data (array_name, array_size, data_type)

The variable, sz_chk returns the actual size of the data
received. This should be the same as the value of
array_size. The new variable is introduced for debugging
purposes. There are a few more calls available, but they
are not described here.
 Once the sequential source file is used to create two
separate source files, namely, the master and the slave
files, and all the required calls, explained above, are
inserted in these files at the appropriate places, the code is
ready for compilation, linking, loading and execution.

3 Parallelization of PROLSQ

The function to be minimized in PROLSQ, the
stereochemically restrained least squares refinement
method of macromolecular structures [2] is,

 Φ = ∑ (1/σ2(F)) (Fobs −Fcal)2

 + ∑ (1/σ2(D) (dideal − dmodel)2

 + ∑ ∑ (1/σ2(P)) (m⋅r − d)2

 + ∑ (1/σ2(C)) (V ideal − Vmodel)2

 + ∑ (1/σ4(N)) (dmin − dmodel)2

 + ∑ (1/σ2(T)) (χideal − χmodel)2

 + ∑ (1/σ2(B)) (Borigin − Btarget)2

 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (1)

 The first term in the expression above is the usual
crystallographic term of structure amplitudes, and all the
other terms are due to various stereochemical and other
restraints, directly incorporated into the optimization
algorithm. The summations are over, x-ray structure
amplitudes (First term), inter-atomic distances (second
term), planar groups and atoms in each plane (third term),
chiral volumes (fourth term), non-bonded contact
distances including the hydrogen bonds (fifth term),
conformational torsion angles (sixth term), individual
isotropic thermal vibration parameters (seventh term), etc.
The choice of the necessary and sufficient number of
restraints to be imposed on the model, relative weights

assigned through the σ values to various classes of
restraints, and to various restraints in each class, relative
weights of the experimental observations among
themselves, and scaling of the experimental (the first) term
with respect to all the other terms in the above expression,
are not elaborated here. Differentiating Φ with respect to
each of the parameters to be optimized, and equating the
results to zero, gives rise to the normal equations of the
type

 BP = Q (2)

where, B is the matrix of normal equations, a symmetric
matrix of rank m (number of parameters to be optimized),
P is the column vector of m parameter shifts to be
estimated, and Q is a vector of m known coefficients.
Typical elements of B and Q are,

 B(i,j) = ∑ωn (∂Yn /∂pi) (∂Yn /∂pj) (3)

 Q(j) = ∑ωn (Zn − Yn) (∂Yn /∂pj) (4)

where, Z is one of the observed or ideal quantities, and
Y is the corresponding calculated or model parameter in
the PROLSQ cost function. The summations are over all
the observations. About 97% of the execution time of
PROLSQ is taken up by the calculation of structure
amplitudes and their derivatives with respect to each of the
refinable parameters, and the augmentation of the
elements of B and Q, eventhough only those elements of
B for which restraints make contributions are computed.
 In the first phase of the parallelization of PROLSQ on
ANUPAM, only the structure factor part of the code is
parallelized [3]. First, all the data pertaining to the atomic
parameters and restraints are read by the master
processor, model parameters and their derivatives are
computed, and the elements of B and Q are augmented by
the results in the main processor itself. Then, atomic
parameters and all the other variables necessary for the
structure factor computations are transmitted to all the
slave processors. The structure amplitude data are read
and devided into (k+1) groups, where k is the number of
slave processors used. Any leftovers (at most, k-1
observations) are added to the data in the master
processor. Then, each group of data is sent to one of the
slaves, and the computations are simultaneously carried
out in each processor, including the master. The partial
sums of the elements of B and Q , accumulated in each of
the slave processors are received in the master processor
at the end of the computations, and all the corresponding
data are augmented in it to obtain the final values of B and
Q. Finally, the system of linear simultaneous equations is
solved to obtain the parameter shifts. The time gain was

almost linear (93%) as the number of processors was
increased up to eight processors. Beyond this the
communication time became quite significant, thus leading
to less and less time gain. With the use of vary large data
sets for refining large models, the time response is
expected to remain linear as more and more processors
used.
 This method of parallelization is called the data
parallelization, as the same set of instructions operate
simultaneously on different data sets of the same kind in
different processors. Algorithm parallelisation was
implemented during the next phase of PROLSQ
parallelisation. Atomic parameters and other relevant data
are broadcast to all the slave processors. The data
corresponding to each of the terms in the expression (1),
from the second term onwards, are read in the main
processor, and sent to one of the processors. In each slave
processor, computations pertaining to only one type of
restraints are carried out. Eventhough, the same code
resides in all the slave processors, portions of it can be
skipped using the cpu ID of the processor, extracted as
explained in section 2. This amounts to the algorithm
parallelization, as different sets of instructions of the same
code are activated in different processors, possibly
working on different kinds of data. While the slave
processors are busy with the computations, simultaneously
carried out on each type of restraints in individual
processors, the structure factor data are read in the master
processor, and grouped for the sake of data
parallelization. Once the slave processors are free, the
structure factor data are sent to them, and the
computations are carried out as described earlier.
 the third phase of parallelisation is currently underway,
during which the process of solving the normal equations
by the method of conjugate gradients is being parallelized.

4 Prallelization of Fourier Summation

 The summation of a three-dimensional Fourier series in
space group P1 is taken as an example of the
parallelization of a time consuming and frequently used
crystallographic calculation on ANUPAM. Breaking up
of the three-dimensional series into three one-dimensional
series [4], which itself speeds up the calculations quite
considerably, and its parallelization are discussed in
detail. The use of FFT [5] at this stage , and its
parallelization are expected to speed up the calculations
still further. The methodology employed while developing
a parallel FFT algorithm for a different application [6] has
been of great help while carrying out the work described
here. The electron density in a crystal structure can be
expressed as a three-dimensional Fouried series

ρ(xyz) = (1/V) ∑∑∑ F(hkl) exp[−2πi(hx+ky+lz)] (5)

where, the triple summation is over the entire accessible
reciprocal space. Under the validity of the Friedel law,
one can combine Friedel pairs in the summation above, as
a result of which the expression (5) reduces to,

ρ(xyz)=(F(000)/V) + (2/V) ∑∑∑(Acosϕ + Bsinϕ) (6)

where,
ϕ=2π(hx + ky + lz)

 F(hkl) = A + iB

The triple summation in the expression (6) is over half of
the reciprocal space only. As a result, one of the three
indices can have only non-negative values. Let l be the
index with non-negative values. This choice is purely
arbitrary.
 If the unit cell is divided into N (= Nx⋅Ny⋅Nz) grid
points, and if there are M sets of unique Fourier
coefficients, it takes enormous time to carry out the three-
dimensional Fourier summation as expressed in (6).
However, it can easily be broken down into three one-
dimensional series using the so-called Beever-Lipson
factorization [4]. One can write,

cos2π(hx+ky+lz) = ChCkCl −Sh SkCl −ShCkSl −ChSkSl

sin2π(hx+ky+lz) = ShCkCl +ChSkCl +ChCkSl −Sh SkSl

where, Ch = cos2πhx, etc., and Sh = sin2πhx, etc. Then,

Acosϕ + Bsinϕ
= A(ChCkCl − ShSkCl − ShCkSl − ChSkSl)
+ B(ShCkCl + ChSkCl + ChCkSl − ShCkSl)

= (AChCk − AShSk + BShCk + BChSk)Cl

− (AShCk + AChSk −BChCk + BShSk)Sl

=[(ACh + BSh)Ck + (BCh − ASh)Sk]Cl

+[(BCh − ASh)Ck − (ACh + BSh)Sk]Sl

On substituting this result in (6), and using the following
definitions, with h as the summation index,

P(xkl) =∑[A(hkl) cos2πhx + B(hkl) sin2πhx] (7a)

Q(xkl) =∑[B(hkl) cos2πhx − A(hkl) sin2πhx] (7b)

the triple summation of (6) reduces to a double
summation,

=∑∑[(PCk + QSk)Cl + (QCk − PSk)Sl]

with k and l as the double summation indices. Further,
using the following definitions, with k as the summation
index,

U(xyl) =∑[P(xkl) cos2πky + Q(xkl) sin2πky] (8a)

W(xyl) =∑[Q(xkl) cos2πky − P(xkl) sin2πky] (8b)

the original triple summation of (6) reduces to a single
summation, with l as the summation index, and finally, the
Fourier summation can be written as

ρ(xyz) = (F(000)/V) + (2/V)

 ∑[U(xyl) cos2πlz + W(xyl) sin2πlz] (9)

Thus, the three-dimensional Fourier summation (6) is split
into three one-dimensional Fourier summations, (7), (8)
and (9). This itself reduces the computation time by about
two orders of magnitude, or more. Introduction of FFT at
this stage will reduce the execution time still further [5].
 The trigonometric functions are precomputed and
stored in a table, and the required values are extracted by
the standard table lookup procedures. In a sequential run
of the program, the first one-dimensional transform is
carried out by using (7) on rows of constant k and l
indices. Then, the second one-dimensional transform is
carried out by using (8) on rows of constant x and l values.
Finally, the third one dimensional transform is carried out
by using (9) on rows of constant x and y values.
 In a MIMD type of parallel computing system with no
shared memory, it is important to keep the communication
time to the minimum. The grid for electron density
calculations is chosen so as to be exactly distributed
among the processors used. First, the 3-D data were
divided into n planes perpendicular to one of the
summation directions, where n is the total number of
processors used, including the master. Each of these
blocks of data is transferred to one slave processor,
retaining one block for the master. All the processors work
on the two dimensional blocks of data, and compute the
transforms. At the end, the results are transferred to the
master. In the next step, the 3-D data, with one of the
directions already transformed, is divided equally among
all the processors along the second direction of
summation. Upon completion of the second transform by
all the processors, the data are received again in the
master. Finally, the 3-D data, now transformed in two
directions, is equally divided among all the processors
along the third and final direction of summation, and the

final results of the 3-D fourier map are available in the
master processor.

5 Conclusions

 Parallelization of the analytical method of computation
of structure factors and their derivatives with respect to the
refinable parameters, as described here can be
incorporated into any other code for the protein structure
optimization. The method of algorithm parallelization of
stereochemical restraints can be easily extended to the
energy based restraints used in some other optimization
codes. Knowledge acquired by parallelizing the FFT code
for electron density calculation can easily be extended to
the inverse Fourier transformation for the computation of
structure factors and their derivatives. Efforts to
parallelize the method of conjugate gradients, which have
already been tried out in one of the medium-range weather
forecasting codes [7] , will soon be extended to
crystallographic computations. One of the authors of this
article has already worked on the parallelization of the
molecular dynamics simulations. Parallelization of the
code that generates a calculated Fourier map using the
atomic positions will soon be taken up. Thus, with the
tasks completed so far, and the remaining tasks lined up
for the near future, most of the major crystallographic
computations can, in principle, be carried out on
ANUPAM in the future, by integrating these parallelized
modules into the crystallographic packages acquired from
other sources. However, this task may be very difficult,
because, modifying large packages of highly optimized
sequential codes, written by other people is not easy. It
would, perhaps be better if all the parallel codes are
written as parts of a new package of crystallographic
software for ANUPAM.

Acknowledgments

Help received at various stages of this work from our
colleagues in Computer Division, Solid State Physics
Division and High Pressure Physics Division is gratefully
acknowledged. One of the authors (MR) is thankful to M.
Rajgopal and M. Vishwas for helping with the manuscript
preparation using MS-Word.

References

[1] P. S. Dhekne, K. Ramesh, K. Rajesh, S. M. Mahajan &
H.K. Kaura, “ANUPAM Parallel Computer”, in:
Supercomputing in Scientific Visualization (Edited by S.
M. Mahajan, H. K. Mani, K. Guruvayurappan & P. S.
Dhekne), Tata McGraw-Hill Publishing Company, New
Delhi, pp.3-12, 1994.

[2] W. A. Hendrickson & J. H. Konnert, “Incorporation of
Stereochemical Restraints into Crystallographic
Refinement”, in: Computing in Crystallography (Edited by
R. Diamond, S. Ramaseshan & K. Venkatesan), Indian
Academy of Sciences, Bangalore, pp. 13.01-13.23, 1980.

[3] M. Ramanadham & R. Chidambaram, “Protein Structure
Optimization using Parallel Computers”, in:
Supercomputing in Scientific Visualization (Edited by S.
M. Mahajan, H. K. Mani, K. Guruvayurappan & P. S.
Dhekne), Tata McGraw-Hill Publishing Company, New
Delhi, pp. 142-150, 1994.

[4] G. H. Stout & L. H. Jensen, X-Ray Structure
Determination. A Practical Guide, Macmillan Company,
New York, 1968.

[5] A. Immirzi, “ Fast Fourier Transform in Crystallography”,
in: Crystallographic Computing Techniques (Edited by F.
R. Ahmed), Munksgaard, Copenhagen, pp.399-412, 1976.

[6] B. S. Jagadeesh, R. S. Rao & B. K. Godwal, “Normal and
High Pressure Simulations by ab initio Molecular
Dynamics with Parallel Processors”, in: High
Performance Computing (Edited by S. Sahni, V. K.
Prasanna & V. P. Bhatkar), Tata McGraw-Hill Publishing
Company, New Delhi, pp. 175-180, 1995.

[7] M. Ramanadham, M. Gaurav, B. S. Jagadeesh, Phool
Chand, S. R. H. Rizvi & R. K. Bansal, “Statistical Spectral
Interpolation: Analysis Code for Medium Range Weather
Forecasting”, Presented at the Second International
Workshop on Parallel Processing and Supercomputing
Applications in Science and Engineering”, ICTP, Trieste,
Italy, September 9-27, 1996.

