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Ordered Systems

• EXAFS more ordered (data to high k) 
!

• Shell by Shell analysis is popular and FT based fitting is helpful. 
!

• Rigid structure - similarity between related systems.
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Biological Systems

• EXAFS are more disordered (data to k=11-15 Å). 
!

• Complete EXAFS analysis necessary for meaningful interpretation. 
!

• Confidence mostly in first shell & second shell metal coordination.
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Experimental Considerations

• Sample Requirement 
• ~1 mM in metal, 100 uL in volume, 20-30% glycerol/glassing agent. 
• 0.1-1 mM for heavy metals Z > Cu, ~2mM for Z < Fe. 
•  Duplicates for photoreducing systems.
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• Beamline Specification 
• Liq He cryostat (10-15K) : must 
• 30+ element Ge Detector: critical 
• BL equipped with fast shutters, beam filters, ease of detuning: critical 
• Automated data measurement: required
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• 30+ element Ge Detector: critical 
• BL equipped with fast shutters, beam filters, ease of detuning: critical 
• Automated data measurement: required

• Sample Requirement 
• ~1 mM in metal, 100 uL in volume, 20-30% glycerol/glassing agent. 
• 0.1-1 mM for heavy metals Z > Cu, ~2mM for Z < Fe. 
•  Duplicates for photoreducing systems.

!
• Measurement Time 

• Time : 5-15 hours (per-sample, excluding duplicates) 
• Reproducibility : At least once
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Combining Experiment and Theory
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XAS pre- & near-edge

Electronic information:  
covalency, bond strength, type of ligands

Combining Experiment and Theory
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Structure: Information on Ligands 
How many, What type, How far.

EXAFSXAS pre- & near-edge

Electronic information:  
covalency, bond strength, type of ligands

Combining Experiment and Theory
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Structure: Information on Ligands 
How many, What type, How far.

EXAFS

Detailed Electronic Information 

Theoretical Correlation

XAS pre- & near-edge

Electronic information:  
covalency, bond strength, type of ligands

Combining Experiment and Theory
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Structure: Information on Ligands 
How many, What type, How far.

EXAFS

Detailed Electronic Information 

Theoretical Correlation

Structure Function Correlation 

XAS pre- & near-edge

Electronic information:  
covalency, bond strength, type of ligands

Combining Experiment and Theory
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• Sequential measurement of X-ray diffraction and X-ray absorption is possible.  
!

• Sample requirements:  Single crystals for polarized measurements : ~100 µm. 
!

• Smaller proteins with heavier transition metals (higher than Ni) ~50 µm. 
!

• Multiple crystals for standard XAS measurements.

SSRL Beamline 9-3

BEAMPIPE

CRYOSTREAM

GONIOMETER Ge DETECTOR

CCD DETECTOR
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Small Sample Requirement  
• Multiple crystals from small starting volume (~5 uL): solution XAS ~100 uL (~ 1mM). 

!
Applicable to Imperfect Crystals 

• Twins, multiples, poorly diffracting, cracked etc. several crystals on loop to increase 
signal 
!

Isotropic XAS
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Small Sample Requirement  
• Multiple crystals from small starting volume (~5 uL): solution XAS ~100 uL (~ 1mM). 

!
Applicable to Imperfect Crystals 

• Twins, multiples, poorly diffracting, cracked etc. several crystals on loop to increase 
signal 
!

Direct Comparison to Crystallography 
!

• Solution EXAFS  may vary from crystallography due to changes in H-bonding or due    
•  to crystal packing effects. Singe crystal XAS is a direct in-state comparison. 

!
• Monitor photoreduction in single crystals and correlate to photo-damage in 

crystallography.

Isotropic XAS
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  Human interaction with O2  Mediated by Hemoglobin (Hb)

•  Fe containing O2 transport protein 
!

•  Contains an Fe-porphyrin (heme) 
!

•  Present in all vertebrates 
!

•  Binds upto 4 O2 molecule per Hb

Oxyhemoglobin
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Fe2+(Protoporphyrin IX)(His) + O2                    Fe-O2 (Protoporphyrin IX) (His)

Fe2+              +          O2                                      Fe-O2 (Protoporphyrin IX) (His) 
(S=2, 4 unpaired e-)     (3Σg- S=1, 2 unpaired e-)                    (S=0, 0 unpaired e-) 

24 electrons undergo spin-pairing in the 4 subunits to form oxyhemoglobin!!

Oxyhemoglobin
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O
O

Fe

Electronic Structure

Fe2+     O2 
S=0,      S=0

+

Fe3+     O2- 
S=1/2,     S=1/2

+

Ferrous Ferric
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O
O

Fe

Electronic Structure

Fe2+     O2 
S=0,      S=0

+

Fe3+     O2- 
S=1/2,     S=1/2

+

Is the metal center Reduced (Ferrous) or Oxidized (Ferric)?  

Ferrous Ferric
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• O-O Bond Distance indicates Reduced (Ferrous). 
!

• Why is there a large spread in Fe-O ?  
!

!

Crystallography
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Solution Spectroscopy
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• O-O Bond Distance derived from spectroscopy (rRaman) indicates Oxidized (Ferric).

Discrepancy between solution spectroscopy and x-ray crystallography??
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•  Crystal near-edge similar to solution. 
!

•  Structure analysis shows very similar O2 
bound geometry. 

!
•  Fe K-edge and pre-edge distinctly 

different from starting material - deoxyHb 
!

•  Curiously - Fe K-pre-edge for oxyHb in 
solution and crystalline forms are 
different. 
!

• Since geometric structure is similar, does 
this point to electronic changes?
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pre-pre-edge feature ??

SI 14 

 

SI Figure S6.  Fe K pre-edge XAS data and fits for low-spin ferric [FeIII(TPP)(ImH)2]Cl and ferrous 
[FeII(tpp)(ImH)2].  (A) [FeIII(TPP)(ImH)2]Cl is well fit with two features with the lower energy representing 
transitions to states with t2g hole character (10).  (B) [FeII(tpp)(ImH)2] is well fit with a single feature.  Analogous to 
[FeIII(tpp)(ImH)2]Cl, the high energy feature (~7115 eV) is part of the rising edge and not included in the pre-edge 
area (SI Table S3). 
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�

Model Comparison

What do small molecule models with Fe3+O2- and Fe2+O2 look like?  
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SI Figure S4.  Fe K pre-edge XAS data of solution oxy-hemoglobin fit with either three (pane A) or two (pane B) 
pre-edge features, following the protocol for low-spin ferric or ferrous species [FeIII(tpp)(ImH)2]Cl and 
[FeII(tpp)(ImH)2], respectively (10).  In pane B, the absence of the feature indicated by * underfits the lower energy 
region of the spectrum.  (C) Fe K pre-edge and fit to crystalline oxy-hemoglobin, analogous to low-spin ferrous 
[FeII(tpp)(ImH)2]  with a single pre-edge feature.  This single features reproduces the pre-edge data and does not 
underfit the low-energy region of the spectrum as seen in pane B.  Reference SI Table S3 for pre-edge fit energy and 
intensity values. 
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Solution & Crystal Pre-edge
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• DFT reproduces EXAFS distances and the differences in pre-edge.
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Electronic Structure Interpretation

• Differences in Crystallography and Solution Spectroscopy Real. 
!

• Electronic structure of oxyhemoglobin consists of both the ferrous and ferric components. 
!

• Ferric dominates in solution and Ferrous dominates in crystal form.
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!
• Application of EXAFS to Metals in Biology 
• Modern Approach to Biological XAS 
• Single Crystal XAS  
• Oxyhemoglobin 
• DypB
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Dye-decolorizing Peroxidase B (DypB)

• Recently discovered heme protein with peroxidase-like activity. 
!

• Capable of oxidizing anthraquinone dyes, lignin and even Mn2+. 
!

• Remarkable specificity for a wide range of reductive substrates.
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Peroxidase Catalytic Cycle
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Characterizing Compound I & II
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Characterizing Compound I & II

FeIII
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FeIV
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Characterizing Compound I & II

FeIII
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Characterizing Compound I & II

FeIII

OH2

FeIV

O
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Cytochrome c Peroxidase

Fe3+-OH2

Cpd I !
Expected Spectral Change 
!

• > 1 eV shift in rising edge 
!

• > intensity & energy of pre-edge
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> 1 eV shift in rising edge 

!
> intensity & energy of pre-edge
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Solution XAS

Fe3+-OH2

Cpd I
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Solution XAS & EXAFS on DypB
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> 1 eV shift in rising edge 
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Solution XAS

Fe3+-OH2

Cpd I

Cpd IFe3+-OH2

27

Solution XAS & EXAFS on DypB



!
> 1 eV shift in rising edge 

!
> intensity & energy of pre-edge
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Solution XAS

Fe3+-OH2

Cpd I

Cpd IFe3+-OH2
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Solution XAS & EXAFS on DypB

1 Fe-O 1.67 Å, 5 Fe-N 2.00 Å2 Fe-N 1.92 Å, 4 Fe-N 2.02 Å
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Optimizing Crystallization Conditions

Crystalline XAS

Fe3+-OH2

Cpd I
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Optimizing Crystallization Conditions

Crystalline XAS

Fe3+-OH2

Cpd I !
> 1 eV shift in rising edge 

!
> intensity & energy of pre-edge 
!
Some differences in solution & xtal

�
�
�
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Optimizing Crystallization Conditions

Crystalline XAS

Fe3+-OH2

Cpd I !
> 1 eV shift in rising edge 

!
> intensity & energy of pre-edge 
!
Some differences in solution & xtal

�
�
�

Electronic structure validation for crystallography.
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Ongoing Work: Electronic Structure of DypB
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Ongoing Work: Electronic Structure of DypB
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Ongoing Work: Electronic Structure of DypB

Fe

OH2

N

N

NN
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Resting Ferric

CcP
DypB

• Why are the ferric forms of CcP and DypB different? 
!

• What are the differences in ligand field that lead to differences in the pre-edges? 
!

• Is it a first sphere or second sphere effect?
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Take Home Messages

• Biological EXAFS is a powerful technique that furnishes atomic resolution  
       local structures of metalloprotein active site. 
!

• XAS is a powerful technique to obtain valuable insights into the electronic structures of  
metalloproteins 

!
• Solution and crystalline structures of metalloproteins may vary intrinsically. 

!
• Researchers should feel encouraged to combine XAS and Crystallography, routinely.
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Thank You For Your Attention 
!

ritis@slac.stanford.edu  


