#### Singular-value decomposition of Rietveld least-squares matrix

Patrick H.J. Mercier <u>patrick.mercier@nrc-cnrc.gc.ca</u> National Research Council Canada

#### **OUTLINE FOR THE TALK**

- 1. Rietveld Method
- 2. Crystallographic least-squares system of normal equations
- 3. Diagnosing problematic Rietveld refinements
- 4. Crystal-chemical Rietveld refinement: A new concept

### 1. Rietveld Method

#### Standard Description of a Crystal Structure

- > space group
  symmetry
- > cell parameters
- > atom positions



| SPGNAM= | P63 | 3/m  |       |     |              |        |             |             |
|---------|-----|------|-------|-----|--------------|--------|-------------|-------------|
| CELEDG= |     | 9.3  | 67000 | 000 | 9.36700000   | 6.88   | 400000      |             |
| CELANG= |     | 90.0 | 00000 | 000 | 90.000000000 | 120.00 | 0000000     |             |
| ATOM=   | 1   | Ca   | 4f    | 3   | 0.3333       | 00000  | 0.666700000 | 0.001100000 |
| ATOM=   | 2   | Ca   | 6h    | m   | 0.2416       | 00000  | 0.007100000 | 0.250000000 |
| ATOM=   | 3   | Ρ    | 6h    | m   | 0.3981       | .00000 | 0.368800000 | 0.250000000 |
| ATOM=   | 4   | 0    | 6h    | m   | 0.3262       | 00000  | 0.484300000 | 0.250000000 |
| ATOM=   | 5   | 0    | 6h    | m   | 0.5880       | 00000  | 0.466800000 | 0.250000000 |
| ATOM=   | 6   | 0    | 12i   | 1   | 0.3416       | 00000  | 0.256800000 | 0.070400000 |
| ATOM=   | 7   | F    | 2a    | -6  | 0.0000       | 00000  | 0.000000000 | 0.250000000 |

#### International Tables for Crystallography...

| <b>P</b> 6 <sub>3</sub> /m                                                                                                                                                           | $C_{6h}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6/ <i>m</i>                                           | Hexagonal            | CONTINUED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No.                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| No. 176                                                                                                                                                                              | <b>P</b> 6 <sub>3</sub> /m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pat                                                   | terson symmetry P6/m |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |
| . k                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       | 5                    | Generators selected         (1); $t(1,0,0);$ $t(0,1,0);$ $t(0,0,1);$ (2);           Positions         Multiplicity,<br>Wyeloff lenter,<br>Site symmetry         Coordinates         (3) $\vec{x} + y, \vec{x}, z$ (4) $\vec{x}, y, z$ (2) $\vec{y}, x - y, z$ (3) $\vec{x} + y, \vec{x}, z$ (4) $\vec{x}, y, z$ (5) $y, \vec{x} + y, z + \frac{1}{2}$ (6) $x - y, z, z + \frac{1}{2}$ (6) $x - y, z, z + \frac{1}{2}$ (7) $\vec{x} - y, z, z + \frac{1}{2}$ (7) $\vec{x} - y, z, z + \frac{1}{2}$ (7) $\vec{x} - y, z, z + \frac{1}{2}$ (8) $x - y, z, z + \frac{1}{2}$ (7) $\vec{x} - y, z, z + \frac{1}{2}$ (8) $x - y, z, z + \frac{1}{2}$ (7) $\vec{x} - y, z, z + \frac{1}{2}$ (8) $x - y, z, z + \frac{1}{2}$ (8) $x - y, z, z + \frac{1}{2}$ (7) $\vec{x} - y, z - \frac{1}{2}$ (7) $\vec{x} - y, z - \frac{1}{2}$ (7) $\vec{x} - \frac{1}{2}$ (8) $\vec{x} - y, z - \frac{1}{2}$ (7) $\vec{x} - \frac{1}{2}$ (8) $\vec{x} - \frac{1}{2}$ (8) $\vec{x} - \frac{1}{2}$ (7) $\vec{x} - \frac{1}{2}$ (8) $\vec{x} - \frac{1}{2}$ (7) $\vec{x} - \frac{1}{2}$ (7) $\vec{x} - \frac{1}{2}$ (8) $\vec{x} - \frac{1}{2}$ (7 | (4); (7)                             |
| Origin at centre ( $\bar{3}$ ) on 6<br>Asymmetric unit $0 \le x$ ;<br>Vertices $0,0,0$<br>0,0,1<br>Symmetry operations<br>(1) 1<br>(4) 2(0,0,1) 0,0,2<br>(7) I 0,0,0<br>(10) m x,y,t | $\begin{array}{c} \begin{array}{c} & & & & & & \\ \hline \bigcirc & + & & & & \\ \hline \bigcirc & & & & \\ \hline \bigcirc & & & & \\ \hline \bigcirc & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \end{array} \\ \leq \dot{f}; & 0 \leq y \leq \dot{f}; & 0 \leq z \leq \dot{d}; \\ & \dot{f}, 0, 0 & & \dot{f}, \dot{f}, 0 & & \dot{f}, \dot{f}, 0 \\ & \dot{f}, 0, \dot{f} & & \dot{f}, \dot{f}, 0 & & \dot{f}, \dot{f}, 0 \\ & \dot{f}, 0, \dot{f} & & \dot{f}, \dot{f}, \dot{f} & & \dot{f}, \dot{f}, \dot{f} \\ \end{array} \\ \end{array}$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -<br>-<br>-<br>-<br>-<br>-<br>y,x, - |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                      | 2 b 3 0,0,0 0,0,3<br>2 a $\delta$ . 0,0,4 0,0,4<br>Symmetry of special projections<br>Along [001] p 6<br>a' = a b' = b<br>Origin at 0,0,z<br>Maximal non-isomorphic subgroups<br>I [2]P 6, 1; 2; 3; 4; 5; 6<br>[2]P 3 1; 2; 3; 7; 8; 9<br>[2]P 6 1; 2; 3; 10; 11; 12<br>[3]P 2 <sub>1</sub> /m 1; 4; 7; 10<br>Ha none<br>Maximal isomorphic subgroups of lowest index<br>Hc [3]P 6 <sub>3</sub> /m (c' = 3c); [3]H 6 <sub>3</sub> /m (a' = 3a, b' = 3b) (P 6 <sub>3</sub> /m)<br>Minimal non-isomorphic supergroups<br>I [2]P 6 <sub>3</sub> /m cm; [2]P 6 <sub>3</sub> /m m c<br>II [2]P 6 <sub>3</sub> /m cm; [2]P 6 <sub>3</sub> /m m c<br>II [2]P 6/m (2c' = c)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C.                                   |

4

No. 176

Reflection conditions

Special: as above, plus no extra conditions

General:

000l : l = 2n

hkil : l = 2n

hkil ; l = 2n

hkil : l = 2n

hkil : l = 2n

hkil : l = 2n

or hkil : l = 2n

-

or h-k=3n+1

or h-k=3n+2

or h-k=3n+1h-k = 3n+2

or h - k = 3n+1or h-k=3n+2hkil : l = 2n

Along [210] p 2g m

 $a' = \frac{1}{2}b$  b' = c

Origin at x, 1x,0

 $P 6_3/m$ 

#### X-ray powder pattern of a single-phase crystalline material



## Integrated intensity formula for powder diffraction implemented in Rietveld programs



#### Calculation and derivatives of Rietveld profiles



For each step i, we compare the counts Yo(i) with a calculated diffraction profile Yc(i)



**P0** is the collection of parameters in all the terms of the expression of Yc(i). For each parameter p in **P0**, we can write:



# 2. Crystallographic least-squares system of normal equations

#### **Crystallographic Least-squares System of Normal Equations**



w(i)  $(\partial Yc(i)/\partial \mathbf{p} \cdot \Delta \mathbf{p}) = w(i) [Yo(i) - Yc(i, \mathbf{P0})]$ 

where the unknowns are the changes  $\Delta p$  to bring to the current model P0

that we symbolize as  $A \cdot X = B$ , with as many equations as there are measured intensities.

From this, we create the *normal system of equations*, with dimension equal in number to the much smaller number of parameters in the model:



and solve it by e.g. matrix inversion as:

 $\mathbf{x} = [\mathbf{A}^{\mathsf{T}} \cdot \mathbf{A}]^{-1} \cdot \mathbf{A}^{\mathsf{T}} \cdot \mathbf{b}$ 

This gives the linear system of equations

where the solution  $\mathbf{x}$  the unknowns are the changes  $\Delta \mathbf{p}$  to bring to the current model **P0** 



We then build the "A\_matrix" and the "b\_vector" as follows



We next solve this linear "least-squares system of normal equations" by matrix inversion as:

$$\mathbf{x} = \Delta \mathbf{p} = \begin{bmatrix} \mathbf{A}^{\mathsf{T}} \cdot \mathbf{A} \end{bmatrix}^{-1} \cdot \begin{bmatrix} \mathbf{A}^{\mathsf{T}} \cdot \mathbf{b} \end{bmatrix}$$

#### matrix inversion of the "A\_matrix" is the crucial step

The estimated  $1\sigma$  standard uncertainty (s.u.) errors (or e.s.d.s) for the refined parameters are obtained as:  $\sigma(x_k) = \text{sqrt}([\mathbf{A}^T \cdot \mathbf{A}]^{-1}_{kk})$ 

The correlation coefficients  $C_{jk}$  for the refined parameters are obtained as:  $C_{jk}(x_k) = [\mathbf{A}^T \cdot \mathbf{A}]^{-1}_{jk} / \text{sqrt} (M^{-1}_{jj} M^{-1}_{kk})$ 

We repeat iteratively the process until the value of the "sum of squares"  $\Sigma_i w(i) [\Delta(i)]^2$ does not vary significantly anymore and the differences between each iteration are smaller than a pre-defined threshold

P.H.J. Mercier

# 3. Diagnosing problematic Rietveld refinements

#### **Diagnosing problematic Rietveld refinements**



Software program freely distributed by the author

**Diagnosing problematic refinements** 

#### **Example 1**

#### Comparing least-squares matrices from GSAS and TOPAS Rietveld refinement

Examples of the output of SVDdiagnostic for problematic cases of Rietveld refinements of P63/m fluorapatite.

(a) Standard crystallographic refinement with TOPAS; R<sub>wp</sub> = 8.673%, GOF = 1.550.

#### UNPROCESSED normal matrix

Condition number for matrix of normal equations = 0.785E+13 Error propagation is likely to spoil 13 trailing decimal digits out of probably 14.

Problem is ill-conditioned for double-precision matrix inversion unless error propagation is well taken care of. Use eigenvectors for small eigenvalues below to diagnose quasi singularity.

Eigenvectors for cr11.out ranked according to eigenvalues are printed as columns below

| Eigenvector    | #:   | 1     | 21     | 22     | 23     | 24     | 25     | 26     | 27     | 28     | 29     | 30     | 31     | 32     |
|----------------|------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| zero_error     | 1:   | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| divslit        | 2:   | 0.000 | -0.001 | 0.001  | -0.002 | 0.000  | -0.001 | 0.001  | -0.001 | 0.001  | -0.001 | 0.000  | 0.000  | -0.002 |
| bkg1040163200  | 3:   | 0.000 | 0.028  | -0.018 | 0.655  | 0.152  | 0.475  | 0.098  | 0.374  | -0.008 | 0.334  | 0.079  | 0.228  | -0.031 |
| bkg1040163201  | 4:   | 0.000 | 0.010  | -0.008 | -0.032 | 0,063  | 0.054  | 0.342  | 0.163  | 0.483  | -0,150 | 0.618  | -0.459 | -0.007 |
| bkg1040163202  | 5:   | 0.000 | -0.014 | 0.019  | -0.555 | -0.167 | -0.075 | 0.093  | 0.328  | 0.123  | 0.526  | 0.223  | 0.448  | 0.021  |
| bkg1040163203  | 6:   | 0.000 | -0.012 | 0.033  | 0.034  | -0.360 | 0.026  | -0.634 | 0.235  | -0.320 | 0.187  | 0.313  | -0.417 | -0.020 |
| bkg1040163204  | 7:   | 0.000 | 0.001  | 0.023  | 0.401  | -0.027 | -0.487 | -0.290 | -0.355 | 0.275  | 0.053  | 0.405  | 0.385  | 0.016  |
| bkg1040163205  | 8:   | 0.000 | 0.006  | 0.000  | -0.002 | 0.598  | -0.337 | 0.151  | -0.148 | -0.323 | 0.523  | 0.067  | -0.317 | -0.008 |
| bkg1040163206  | 9:   | 0.000 | 0.004  | -0.007 | -0.276 | 0.391  | 0.482  | -0.201 | -0.289 | -0.285 | -0.235 | 0.455  | 0.266  | 0.000  |
| bkg1040163207  | 10:  | 0.000 | -0.008 | 0.008  | -0.003 | -0.372 | 0.391  | 0.135  | -0.662 | 0.150  | 0.446  | -0.032 | -0.170 | -0.003 |
| bkg1040163208  | 11:  | 0.000 | -0.003 | 0.008  | 0.148  | -0.404 | -0.163 | 0.544  | -0.042 | -0.604 | -0.151 | 0.298  | 0.119  | 0.001  |
| <b>p1SCALE</b> | 12:  | 1.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| CrystalliteSi  | z13: | 0.000 | 0.000  | -0.001 | -0.026 | -0,006 | -0.024 | 0.003  | -0.014 | 0.012  | -0.007 | -0.002 | 0.023  | -0.999 |
| alat           | 14:  | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| clat           | 15:  | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| Alz            | 16:  | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| begA1          | 17:  | 0.000 | -0.088 | 0.011  | 0.007  | 0.007  | 0.011  | 0.005  | 0.007  | 0.007  | 0.002  | 0.005  | 0.000  | -0.001 |
| A2x            | 18:  | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| Л2У            | 19:  | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| begA2          | 20:  | 0.000 | -0.061 | 0.005  | 0.007  | 0.007  | 0.009  | 0.013  | 0.003  | 0.006  | -0.001 | 0.003  | 0.000  | 0.000  |
| beqB           | 21:  | 0.000 | 0.061  | 0.008  | 0.017  | 0.007  | 0.007  | 0.017  | 0.007  | 0.011  | 0.001  | 0.001  | 0.000  | -0.001 |
| Bx             | 22:  | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| Ву             | 23:  | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| beq0           | 24:  | 0.000 | -0.992 | 0.016  | 0.024  | 0.021  | 0.011  | 0.010  | 0.008  | 0.004  | -0.003 | 0.002  | 0.001  | -0.001 |
| 01x            | 25:  | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| 01y            | 26:  | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| 02x            | 27:  | 0.000 | -0.002 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| 02Y            | 28:  | 0.000 | -0.001 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| 03x            | 29:  | 0.000 | 0.001  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| 03у            | 30:  | 0.000 | 0.001  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| 03 z           | 31:  | 0.001 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| beqF           | 32:  | 0.000 | 0.018  | 0.999  | 0.008  | 0.027  | 0.022  | 0.024  | 0.005  | 0.007  | -0.016 | -0.017 | 0.000  | -0.001 |
|                |      |       |        |        |        |        |        |        |        |        |        |        |        |        |

Eigenvalues : 1.78E+12.. 1.97E+03 2.68E+02 4.16E+01 3.56E+01 3.01E+01 2.30E+01 2.08E+01 1.44E+01 6.69E+00 5.11E+00 1.15E+00 2.26E-01

#### Table 2

Examples of ill-conditioned Rietveld refinements.

All background parameters: fixed. Profile parameters: divslit fixed, CrystalliteSize refined. (a) Standard crystallographic refinement with TOPAS;  $R_{wp} = 8.696$ %, GOF = 1.553.

#### UNPROCESSED normal matrix

Condition number for matrix of normal equations = 0.342E+13 Error propagation is likely to spoil 13 trailing decimal digits out of probably 14.

Problem is ill-conditioned for double-precision matrix inversion unless error propagation is well taken care of. Use eigenvectors for small eigenvalues below to diagnose quasi singularity.

Eigenvectors for cr08.out ranked according to eigenvalues are printed as columns below

| Eigenvector     | #:  | 1        | 2        | 3        | 4        | 5        | 17       | 18       | 19       | 20       | 21       | 22       |
|-----------------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| zero error      | 1.  | 0.000    | 0.159    | -0.015   | 0.004    | -0.010   | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| p1SCALE         | 2:  | 1.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| CrystalliteSize | 3.  | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.001    | -1.000   |
| alat            | 4 : | 0.000    | =0.834   | -0.538   | -0.001   | -0.001   | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| clat            | 5:  | 0.000    | -0.529   | 0.843    | -0.001   | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| Alz             | 6:  | 0.000    | 0.000    | 0.000    | -0.008   | -0.075   | 0.000    | 0.000    | -0.001   | 0.000    | 0.000    | 0.000    |
| begA1           | 7:  | 0.000    | 0.000    | 0.000    | 0.000    | -0.001   | -0.313   | 0.745    | -0.582   | 0.091    | -0.012   | 0.000    |
| A2x             | 8:  | 0.000    | 0.000    | -0.001   | 0.583    | -0.001   | 0.001    | 0.001    | 0.001    | 0.000    | 0.000    | 0.000    |
| A2v             | 9:  | 0.000    | 0.003    | -0.001   | -0.808   | -0.036   | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| begA2           | 10: | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | -0.927   | -0.369   | 0.035    | 0.061    | -0.005   | 0.000    |
| begB            | 11: | 0.000    | 0.000    | 0.000    | 0.000    | 0.001    | -0.195   | 0.555    | 0.806    | -0.063   | -0.009   | 0.000    |
| Bx              | 12: | 0.000    | 0.001    | 0.004    | -0.022   | 0.693    | 0.000    | 0,001    | -0,001   | 0.000    | 0.000    | 0.000    |
| Bv              | 13: | 0.000    | -0.001   | 0.005    | 0.030    | -0.701   | 0.001    | 0.000    | 0.001    | 0.000    | 0.000    | 0.000    |
| beg0            | 14: | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.073    | -0.010   | 0.102    | 0.992    | -0.018   | 0.000    |
| 01x             | 15: | 0.000    | 0.000    | 0.000    | 0.004    | -0.002   | 0.000    | 0.001    | -0.001   | 0.000    | 0.000    | 0.000    |
| 01y             | 16: | 0.000    | 0.000    | -0.001   | 0.012    | 0.049    | -0.001   | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| 02x             | 17: | 0.000    | 0.000    | 0.001    | 0.020    | 0.016    | -0.001   | 0.001    | -0.002   | 0.002    | 0.000    | 0.000    |
| 02y             | 18: | 0.000    | 0.000    | 0.000    | -0.070   | -0.071   | -0.001   | 0.000    | -0.001   | 0.001    | 0.000    | 0.000    |
| 03x             | 19: | 0.000    | -0.001   | 0.001    | -0.007   | 0.068    | 0.000    | 0.000    | 0.000    | -0.001   | 0.000    | 0.000    |
| 03y             | 20: | 0.000    | 0.001    | -0.001   | -0.017   | -0.085   | 0.000    | 0.000    | -0.001   | -0.001   | 0.000    | 0.000    |
| 03z             | 21: | 0.001    | 0.000    | 0.001    | -0.005   | 0.045    | 0.001    | -0.001   | 0.000    | 0.000    | 0.000    | 0.000    |
| beqF            | 22: | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.009    | -0.011   | -0.002   | -0.019   | -1.000   | -0.001   |
| -               |     |          |          |          |          |          |          |          |          |          |          |          |
|                 |     |          |          |          |          |          |          |          |          |          |          |          |
| Eigenvalues     | :   | 1.80E+12 | 7.04E+09 | 2.62E+09 | 3.69E+08 | 2.17E+08 | 9.59E+03 | 5.13E+03 | 3.58E+03 | 2.03E+03 | 2.73E+02 | 5.27E-01 |

#### Table 3

Final refinements obtained after diagnostic by SVD.

All background and profile parameters needed to be fixed.

(a) Standard crystallographic refinement with TOPAS;  $R_{wp} = 8.695$  %, GOF = 1.553.

#### UNPROCESSED normal matrix

Condition number for matrix of normal equations = 0.659E+10 Error propagation is likely to spoil 10 trailing decimal digits out of probably 14.

Problem poorly conditioned for double-precision matrix inversion unless error propagation is well taken care of. Use eigenvectors for small eigenvalues below to diagnose quasi singularity.

Eigenvectors for cr10.out ranked according to eigenvalues are printed as columns below

| Eigenvector | #1  | 1        | 2        | 3        | 4        | 5        | б        | 17       | 18       | 19       | 20       | 21       |
|-------------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|             |     | 0 000    | 0.150    | 0.015    | 0.004    | -0.010   | 0.007    | 0.000    | 0.000    | 0.000    | 0.000    | 0 000    |
| zero_error  | 1:  | 0.000    | 0.159    | -0.015   | 0.004    | -0.010   | 0.007    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| PISCALE     | 21  | 1.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| alat        | 3;  | 0.000    | -0.834   | -0.538   | -0.001   | -0.001   | 0.001    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| clat        | 4:  | 0.000    | -0.529   | 0.843    | -0.001   | 0.000    | 0.005    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| Alz         | 5:  | 0.000    | 0.000    | 0.000    | -0.008   | -0.075   | -0.009   | 0.000    | 0.000    | -0.001   | 0.000    | 0.000    |
| begAl       | 61  | 0.000    | 0.000    | 0.000    | 0.000    | -0.001   | 0.000    | -0.313   | 0.745    | -0.582   | -0.091   | -0.012   |
| A2x         | 7;  | 0.000    | 0.000    | -0.001   | 0.583    | -0.001   | 0.663    | 0.001    | 0.001    | 0.001    | 0.000    | 0.000    |
| A2y         | в:  | 0.000    | 0.003    | -0.001   | -0.808   | -0.036   | 0.467    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| begA2       | 91  | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.001    | -0.927   | -0.369   | 0.035    | -0.061   | -0.005   |
| begB        | 10: | 0.000    | 0.000    | 0.000    | 0.000    | 0.001    | 0.000    | -0.195   | 0.556    | 0.806    | 0.064    | -0.009   |
| Бх          | 11: | 0.000    | 0.001    | 0.004    | -0.022   | 0.693    | -0.180   | 0.000    | 0.001    | -0.001   | 0.000    | 0.000    |
| Ву          | 12: | 0.000    | -0.001   | 0.005    | 0.030    | -0.701   | -0.282   | 0.001    | 0.000    | 0.001    | 0.000    | 0.000    |
| beq0        | 13: | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.073    | -0.010   | 0.103    | -0.992   | -0.018   |
| 01x         | 14: | 0.000    | 0.000    | 0.000    | 0.004    | -0.002   | 0.057    | 0.000    | 0.001    | -0.001   | 0.000    | 0.000    |
| 01y         | 15: | 0.000    | 0.000    | -0.001   | 0.012    | 0.049    | -0.074   | -0.001   | 0.000    | 0.000    | 0.000    | 0.000    |
| 02x         | 16: | 0.000    | 0.000    | 0.001    | 0.020    | 0.016    | 0.018    | -0.001   | 0.001    | -0.002   | -0.002   | 0.000    |
| 02y         | 17: | 0.000    | 0.000    | 0.000    | -0.070   | -0.071   | 0.019    | -0.001   | 0.000    | -0.001   | -0.001   | 0.000    |
| 03x         | 18: | 0.000    | -0.001   | 0.001    | -0.007   | 0.068    | -0.342   | 0.000    | 0.000    | 0.000    | 0.001    | 0.000    |
| 03y         | 19: | 0.000    | 0.001    | -0.001   | -0.017   | -0.085   | 0.321    | 0.000    | 0.000    | -0.001   | 0.001    | 0.000    |
| 03z         | 20: | 0.001    | 0.000    | 0.001    | -0.005   | 0.045    | -0.024   | 0.001    | -0.001   | 0.000    | 0.000    | 0.000    |
| beqF        | 21: | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.009    | -0.011   | -0.002   | 0.019    | -1.000   |
|             |     |          |          |          |          |          |          |          |          |          |          |          |
| Eigenvalues | :   | 1.80E+12 | 7.04E+09 | 2.62E+09 | 3.69E+08 | 2.17E+08 | 9.32E+07 | 9.59E+03 | 5.13E+03 | 3.58E+03 | 2.03E+03 | 2.73E+02 |

#### **Diagnosing problematic refinements**

#### Example 2

#### **Rietveld refinement of a battery material**

#### Monoclinic C2/m Li<sub>2</sub>MnO<sub>3</sub>-type structure

• Just like sharing out a cake – make sure everyone can get a piece!





#### How to construct the constraints?

- The technique is the same as can be used in GSAS
  - divide each atom occupancy on one site over a number of 'atoms'
  - share each portion with one other site, e.g. for Mn



- add a scaling factor to change overall Li:TM ratio whilst keeping Mn:Ni:Co ratio constant
- still makes for quite a lot of additional variables....

#### Anisotropic broadening

- Anisotropic broadening can be caused by a variety of reasons
  - Disorder (turbostratic, stacking faults, microstrain)
  - Short range order
  - Crystallite shape
- $Li_{1.2}Mn_{0.4}Ni_{0.3}Co_{0.1}O_2$  has a short range  $\sqrt{3a} \times \sqrt{3a}$  ordering with some full pattern anisotropy
- Full pattern: spherical harmonic Lorentzian convolution
- $\sqrt{3a} \times \sqrt{3a}$ : individual hkls broadened, e.g. lor\_fwhm = If(And(H == 0,K == 2,L == 0), a4, 0);
- For structure refinement what causes the broadening and how you model it isn't important – whatever works to correctly evaluate integrated peak areas of the measured intensities!

#### Fit for the 0.65 Å dataset

• Lack of anisotropic broadening correction affects the distribution of the metals on the 4g and 2b sites



#### Matrix Conditioning - the starting point

#### **UNPROCESSED** normal matrix

Condition number for matrix of normal equations =  $0.142E+26^{4}$ 

Error propagation is likely to spoil ALL digits in some elements of the normal matrix. System is singular for double-precision matrix inversion unless error propagation is well taken care of. A bit more than 14! Use eigenvectors below to diagnose singularity.

Eigenvectors for combined.out ranked according to eigenvalues are printed as columns below

| Eigenvect | tor #: 1   | 152    | 153    | 154    | 155    | 156    | 157    | 158    | 159   |
|-----------|------------|--------|--------|--------|--------|--------|--------|--------|-------|
| k         | 1: -0.001  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000 |
| Mn2       | 2: 0.000   | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000 |
| <br>p3    | 19: -0.003 | -0.001 | -0.019 | -0.001 | 0.011  | -0.039 | -0.001 | 0.000  | 0.000 |
| p4        | 20: 0.000  | -0.003 | -0.022 | -0.001 | 0.012  | -0.045 | -0.001 | 0.000  | 0.000 |
| bkg9920   | 21: -0.009 | 0.000  | 0.000  | -0.001 | 0.001  | 0.000  | 0.004  | -0.668 | 0.000 |
| bkg9921   | 22: -0.003 | 0.000  | 0.000  | 0.004  | -0.001 | 0.000  | -0.003 | 0.401  | 0.000 |
| bkg9922   | 23: 0.004  | 0.000  | 0.000  | 0.000  | 0.001  | 0.000  | 0.002  | -0.269 | 0.000 |
| bkg9923   | 24: 0.001  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | -0.001 | 0.139  | 0.000 |
| bkg9924   | 25: -0.001 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.001  | -0.077 | 0.000 |
| bkg9925   | 26: 0.000  | 0.001  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.044  | 0.000 |

Eigenvalues: 0.270E+14 .. 0.912E-05 0.350E-05 0.368E-07 0.875E-09 0.777E-09 0.122E-10 0.877E-11 0.190E-11

#### **PRECONDITIONED** normal matrix

.....

Condition number for matrix of normal equations = 0.383E+18

Still needs more than doubleprecision arithmetic

#### Here the preconditioning doesn't ensure numerical repeatability in inverting the LS matrix for this model and dataset

• There are a lot of variables in this refinement

 SVDdiagnostic identified a number of variables that were causing problems, including the background and parameters related to the anisotropic broadening

- After dealing with the problematic variables both the unprocessed and preconditioned matrices have satisfactory conditioning numbers
- UNPROCESSED normal matrix
- Condition number for matrix of normal equations = 0.110E+11
- Error propagation is likely to spoil 10 trailing decimal digits out of probably 14.
- Problem is ill-conditioned for double-precision matrix inversion unless error propagation is well taken care of.
- Use eigenvectors for small eigenvalues below to diagnose quasi singularity.
- Eigenvectors for combined\_k.out ranked according to eigenvalues are printed as columns below

| • | Eigenv  | ector # | : 1    | 59     | 60     | 61     | 62     | 63     | 64     | 65     | 66     |
|---|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| • | k       | 1:      | -0.001 | -0.008 | 0.005  | -0.002 | 0.001  | -0.003 | 0.003  | 0.006  | -0.004 |
| • | mn2     | 2:      | 0.000  | 0.002  | -0.032 | -0.045 | 0.000  | 0.010  | 0.008  | -0.003 | -0.010 |
| • | co2     | 3:      | 0.000  | 0.029  | 0.023  | 0.035  | -0.004 | -0.020 | 0.006  | -0.001 | -0.007 |
| • | ni2     | 4:      | 0.000  | -0.035 | 0.009  | 0.004  | 0.004  | 0.009  | -0.008 | 0.010  | 0.013  |
| • | <b></b> |         |        |        |        |        |        |        |        |        |        |

- Eigenvalues: 0.271E+14.. 0.485E+05 0.470E+05 0.351E+05 0.277E+05 0.241E+05 0.762E+04 0.521E+04 0.246E+04
- PRECONDITIONED normal matrix
- Condition number for matrix of normal equations = 0.883E+04
- Error propagation is likely to spoil 4 trailing decimal digits out of probably 14.
- Problem well conditioned for double-precision matrix inversion.
- Eigenvalues: 0.830E+01 .. 0.251E-01 0.201E-01 0.195E-01 0.107E-01 0.625E-02 0.565E-02 0.326E-02 0.940E-03

#### Final refined structure

Space group: C2/m (12) Overall residuals:  $R_{wp} = 9.61\%$ ,  $R_p = 7.0\%$ , Durban-Watson = 1.727, a = 4.98268(23), b = 8.56248(80), c = 5.01340(36) Å, b = 109.2479(95)^{\circ} Refined stoichiometry =  $Li_{1.165(36)}Mn_{0.402(13)}Ni_{0.323(16)}Co_{0.109(32)}O_2$ 

|                      | Site     | Atom | X           | У            | Z           | Occ         | Occ      | Biso     |
|----------------------|----------|------|-------------|--------------|-------------|-------------|----------|----------|
| The final            |          |      |             |              |             |             | (random) |          |
| refinement           | 4g – M1  | Mn   | 0           | 0.16597(14)  | 0           | 0.5467(105) | 0.4793   | 0.83(2)  |
| yielded              |          | Ni   |             |              |             | 0.3345(104) | 0.3856   |          |
| values with          |          | Со   |             |              |             | 0.1152(159) | 0.1305   |          |
| ESDs                 |          | Li   |             |              |             | 0.0036(217) | 0.0036   |          |
| The refined          | 2b – M2  | Mn   | 0           | 0.5          | 0           | 0.1111(93)  | 0.2152   | 0.10(6)  |
| Inerenneu            |          | Ni   |             |              |             | 0.2392(94)  | 0.1731   |          |
| bond lengths         |          | Со   |             |              |             | 0.0971(137) | 0.0586   |          |
| closely with         |          | Li   |             |              |             | 0.5526(191) | 0.5526   |          |
| those                | 2c – Li1 | Li   | 0           | 0            | 0.5         | 0.9966(274) | 0.9966   | 0.96(33) |
| expected             |          | Mn   |             |              |             | 0.0005(133) | 0.0016   |          |
| trom bond<br>valence |          | Ni   |             |              |             | 0.0022(129) | 0.0013   |          |
| parameters           |          | Со   |             |              |             | 0.0008(202) | 0.0004   |          |
| (low spin Co         | 4h – Li2 | Li   | 0           | 0.65505(384) | 0.5         | 0.9704(139) | 0.9704   | 0.19(17) |
| and Ni values        |          | Mn   |             |              |             | 0.0000(67)  | 0.0142   |          |
| determined           |          | Ni   |             |              |             | 0.0296(66)  | 0.0115   |          |
| from ICSD            |          | Co   |             |              |             | 0.0000(102) | 0.0039   |          |
| data)                | 4i – O1  | 0    | 0.21918(57) | 0            | 0.22220(64) | 1           | 1        | 0.23(5)  |
|                      | 8j – O2  | 0    | 0.24292(53) | 0.32251(20)  | 0.22823(39) | 1           | 1        | 1.00(4)  |

# 4. Crystal-chemicalRietveld refinement:A new concept



Ca II

Teeth and bones made of apatite Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>(OH,F,CI)  $PO_{A}$ Ca I

#### $A_{4}^{I}A_{6}^{II}(BO_{4})_{6}X_{2}$

A : larger divalent (Ca<sup>2+</sup>, Sr<sup>2+</sup>, Pb<sup>2+</sup>, Cd<sup>2+</sup>, Zn<sup>2+</sup>, Ba<sup>2+</sup>, etc.), monovalent ( $Cs^+$ , Na<sup>+</sup>, Li<sup>+</sup>, etc.), and trivalent (La<sup>3+</sup>, Y<sup>3+</sup>, Ce<sup>3+</sup>, Nd<sup>3+</sup>, Sm<sup>3+</sup>, Dy<sup>3+</sup>, etc.) cations

**Crystal Chemistry of Apatite** 

- *B* : smaller 3+, 4+, 5+, 6+, and 7+ metals and metalloids (P<sup>5+</sup>, As<sup>5+</sup>, V<sup>5+</sup>, Si<sup>4+</sup>, S<sup>6+</sup>, etc.)
- X: halides  $(F^-, CI^-, Br^-, I^-)$ , hydroxyl  $(OH)^-$ , or oxygen ions O<sup>2-</sup>

Space groups:  $P6_3/m$ ,  $P6_3$ ,  $P2_1/m$ ,  $P112_1/b$ , etc.



#### **Apatite As a Microporous Structure**





 $\rho_{AII}$ 



**a**\_AI-01

 $\dot{\delta}_{AI}$ 

τ(O1-B-O2) [x1] = τ(O1-B-O3) [x2] = τ<sub>O-B-O</sub>

 $d_{B-O}$  $d_{B-O}$  $d_{B-O}$  $d_{B-O}$  $d_{B-O}$  $d_{B-O}$  $d_{B-O}$  $d_{B-O}$ 

AI

τ(O3-B-O3) [x1] = τ(O2-B-O3) [x2] = τ'<sub>O-B-O</sub> 31

#### Four geometric constraints

 $a = 3^{1/2} \{ d_{AI-O1}^2 - (1/4) \cdot [d_{B-O} \sin(\tau'_{O-B-O}/2) + d_{AII-O3} \sin(\phi_{O3-AII-O3}/2)]^2 \}^{1/2} \cdot \cos[(\pi/6) - \delta_{AI} - \alpha_{AI}] + 3^{1/2} \cdot \{ (d_{AI-O1} + \Delta_{AI-O})^2 - (1/4) \cdot [d_{B-O} \sin(\tau'_{O-B-O}/2) + d_{AII-O3} \sin(\phi_{O3-AII-O3}/2)]^2 \}^{1/2} \cdot \cos[(\pi/6) - \delta_{AI} + \alpha_{AI}] + 2 (3^{1/2}) d_{B-O} \sin(\tau_{O-B-O}/2) \cos(\theta)$ 

where:

 $\sin(\theta) = \{ \{ d_{AI-O1}^2 - (1/4) \cdot [d_{B-O} \sin(\tau'_{O-B-O}/2) + d_{AII-O3} \sin(\phi_{O3-AII-O3}/2)]^2 \}^{1/2} \cdot \sin[(\pi/6) - \delta_{AI} - \alpha_{AI}] - \{ (d_{AI-O1} + \Delta_{AI-O})^2 - (1/4) \cdot [d_{B-O} \sin(\tau'_{O-B-O}/2) + d_{AII-O3} \sin(\phi_{O3-AII-O3}/2)]^2 \}^{1/2} \cdot \sin[(\pi/6) - \delta_{AI} + \alpha_{AI}] \} - \{ (2 d_{B-O} \sin(\tau_{O-B-O}/2) + d_{AII-O3} \sin(\phi_{O3-AII-O3}/2)]^2 \}^{1/2} \cdot \sin[(\pi/6) - \delta_{AI} + \alpha_{AI}] \}$ 

 $c = 2 \cdot [d_{B-O} \sin(\tau'_{O-B-O}/2) + d_{AII-O3} \sin(\phi_{O3-AII-O3}/2)]$ 

$$\cos(\psi_{AI-O1}) = [d_{B-O} \sin(\tau'_{O-B-O} / 2) + d_{AII-O3} \sin(\phi_{O3-AII-O3} / 2)] / [2 \cdot d_{AI-O1}]$$

 $z(A^{I}) = 0$  (*i.e.*, cation-centered  $A^{I}O6$  polyhedra)



Numerical equivalence to within 14-digit double-precision accuracy



results for 18 end-member chemical compositions

Rietveld refn't of powder data





#### Acta Cryst. B 61: 635-655





*J. Appl. Cryst.* 39: 369-375

J. Appl. Cryst. 39: 458-465

Creation of a *TOPAS* script for crystal-chemical refinement

Performed both types of refinement on a top-quality XRD powder pattern:

- -- numerical stability
- -- addition of random noise to experimental data



#### Crystal-chemical refinement with TOPAS; $R_{wp} = 9.231$ , GOF = 1.650

UNPROCESSED normal matrix

Condition number for matrix of normal equations = 0.790E+13 Error propagation is likely to spoil 13 trailing decimal digits out of probably 14. **CN =0.790E+13** 

Problem is ill-conditioned for double-precision matrix inversion unless error propagation is well taken care of. Use eigenvectors for small eigenvalues below to diagnose quasi singularity.

Eigenvectors for chl3.out ranked according to eigenvalues are printed as columns below

| argenveccor : | #:  | 1        | 17       | 18       | 19       | 20                | 21       | 22       | 23       | 24       | 25       | 26       | 27       | 28       |
|---------------|-----|----------|----------|----------|----------|-------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| dA101         | 1:  | 0.000    | 0.000    | 0.000    | 0.000    | 0.000             | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| DeltaA10      | 2:  | 0.000    | -0.001   | -0.001   | 0.000    | 0.000             | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| deltaA1       | 3:  | 0.000    | 0.027    | -0.143   | 0.000    | 0.003             | -0.006   | 0.005    | 0.008    | -0.003   | -0.004   | -0.001   | 0.000    | 0.000    |
| alphaA1       | 4:  | 0.000    | 0.009    | -0.089   | 0.001    | 0.001             | -0.001   | 0.004    | 0.003    | -0.001   | 0.000    | 0.000    | 0.000    | 0.000    |
| dBO           | 5:  | 0.000    | 0.000    | 0.002    | 0.000    | 0.000             | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| tauOBO        | 6:  | 0.000    | -0.005   | 0.276    | -0.001   | -0.007            | 0.006    | -0.017   | -0.009   | 0.001    | 0.003    | -0.001   | 0.001    | 0.000    |
| rhoA2         | 7:  | 0.000    | 0.001    | 0.005    | 0.000    | 0.000             | 0.000    | -0.001   | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| alphaA2       | 8:  | 0.000    | -0.007   | -0.012   | -0.002   | -0.008            | -0.001   | -0.001   | 0.002    | 0.000    | 0.002    | 0.000    | 0.000    | 0.000    |
| dA203         | 9:  | 0.000    | 0.000    | -0.006   | 0.000    | 0.000             | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| phi03A203     | 10: | 0.000    | -0.018   | 0.945    | -0,012   | 0.001             | 0.005    | -0.022   | -0.017   | 0.009    | 0.000    | -0.003   | 0.001    | -0.002   |
| zero_error    | 11: | 0.000    | 0.000    | 0.000    | 0.000    | 0.000             | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| divslit       | 12: | 0.000    | 0.001    | 0.000    | -0.002   | 0.000             | 0.001    | -0.001   | 0.001    | 0.001    | 0.001    | 0.000    | 0.000    | -0.002   |
| bkg805787520  | 13: | 0.000    | -0,017   | 0.002    | 0.650    | 0.170             | -0.488   | -0.123   | -0.344   | -0.011   | -0.339   | 0.082    | 0.228    | -0.032   |
| bkg805787521  | 14: | 0.000    | -0.006   | -0.014   | -0.033   | 0.063             | -0.058   | -0.347   | -0.143   | 0.481    | 0.151    | 0.619    | -0.460   | -0.006   |
| bkg805787522  | 15: | 0.000    | 0.020    | -0.016   | -0.544   | -0.186            | 0.076    | -0.108   | -0.328   | 0.125    | -0.526   | 0.225    | 0.448    | 0.020    |
| bkg805787523  | 16: | 0.000    | 0.030    | 0.017    | 0.059    | -0.363            | -0.018   | 0.617    | -0.265   | -0.321   | -0.194   | 0.311    | -0.417   | -0.019   |
| bkg805787524  | 17: | 0.000    | 0.020    | 0.015    | 0.401    | 0.000             | 0.495    | 0.305    | 0.335    | 0.276    | -0.049   | 0.401    | 0.385    | 0.017    |
| bkg805787525  | 18: | 0.000    | 0.003    | 0.002    | -0.032   | 0.607             | 0.328    | -0.140   | 0.155    | -0.319   | -0.522   | 0.064    | -0.317   | -0.009   |
| bkg805787526  | 19: | 0.000    | -0.006   | 0.015    | -0.297   | 0.367             | -0.481   | 0.226    | 0.281    | -0.286   | 0.237    | 0.455    | 0.265    | 0.000    |
| bkg805787527  | 20: | 0.000    | 0.006    | 0.013    | -0.002   | -0.377            | -0.371   | -0.095   | 0.679    | 0.158    | -0.442   | -0.034   | -0.169   | -0.003   |
| bkg805787528  | 21: | 0.000    | 0.007    | -0.006   | 0.159    | -0.392            | 0.171    | -0.545   | 0.080    | -0.603   | 0.146    | 0.298    | 0.117    | 0.001    |
| piscale       | 22: | 1.000    | 0.000    | 0.000    | 0.000    | 0.000             | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| plCS          | 23: | 0.000    | -0,001   | -0.002   | -0.025   | -0.007            | 0.024    | -0.002   | 0.013    | 0.013    | 0.008    | -0.002   | 0.022    | -0.999   |
| begAl         | 24: | 0.000    | 0.014    | -0.015   | 0.009    | 0.006             | -0.011   | -0.005   | -0.007   | 0.008    | -0.002   | 0.005    | -0.001   | -0.001   |
| begA2         | 25: | 0.000    | 0.003    | 0.002    | 0.007    | 0.006             | -0.009   | -0.013   | -0.002   | 0.006    | 0.001    | 0.003    | 0.000    | 0.000    |
| beqO          | 26: | 0.000    | 0.006    | -0.004   | 0.022    | 0.020             | -0.013   | -0.009   | -0.005   | 0.004    | 0.003    | 0.002    | 0.001    | -0.001   |
| beqB          | 27: | 0.000    | 0.004    | 0.010    | 0.016    | 0.008             | -0.007   | -0.017   | -0.004   | 0.011    | 0.000    | 0.001    | 0.000    | -0.001   |
| pedx          | 28: | 0.000    | 0,998    | 0.022    | 0.009    | 0.023             | -0.022   | -0.021   | -0.003   | 0.008    | 0.017    | -0.016   | 0.000    | -0.002   |
| Bigenvalues   | :   | 1.84E+12 | 2.86E+02 | 1.26E+02 | 4.22E+01 | 3.58 <b>E</b> +01 | 3.02E+01 | 2.33E+01 | 2.12E+01 | 1.45E+01 | 6.76E+00 | 5.15E+00 | 1.16E+00 | 2.33B-01 |

#### Standard crystallographic refinement with TOPAS; $R_{wp} = 8.673$ , GOF = 1.550

UNPROCESSED normal matrix

Condition number for matrix of normal equations = 0.785E+13

Error propagation is likely to spoil 13 trailing decimal digits out of probably 14.

#### CN =0.785E+13

Problem is ill-conditioned for double-precision matrix inversion unless error propagation is well taken care of. Use eigenvectors for small eigenvalues below to diagnose quasi singularity.

Eigenvectors for cr11.out ranked according to eigenvalues are printed as columns below

| Eigenvector   | #:   | 1     | 21     | 22     | 23     | 24     | 25     | 26     | 27     | 28     | 29     | 30     | 31     | 32     |
|---------------|------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|               |      |       |        |        |        |        |        |        |        |        |        |        |        |        |
| zero_error    | 1:   | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| divslit       | 2:   | 0.000 | -0.001 | 0.001  | -0.002 | 0.000  | -0.001 | 0.001  | -0.001 | 0.001  | -0.001 | 0.000  | 0.000  | -0.002 |
| bkg1040163200 | 3:   | 0.000 | 0.028  | -0.018 | 0.655  | 0.152  | 0.475  | 0.098  | 0.374  | -0.008 | 0.334  | 0.079  | 0.228  | -0.031 |
| bkg1040163201 | 4:   | 0.000 | 0.010  | -0.008 | -0.032 | 0,063  | 0.054  | 0.342  | 0.163  | 0.483  | -0,150 | 0.618  | -0.459 | -0.007 |
| bkg1040163202 | 5:   | 0.000 | -0.014 | 0.019  | -0.555 | -0.167 | -0.075 | 0.093  | 0.328  | 0.123  | 0.526  | 0.223  | 0.448  | 0.021  |
| bkg1040163203 | 6:   | 0.000 | -0.012 | 0.033  | 0.034  | -0.360 | 0.026  | -0.634 | 0.235  | -0.320 | 0.187  | 0.313  | -0.417 | -0.020 |
| bkg1040163204 | 7:   | 0.000 | 0.001  | 0.023  | 0.401  | -0.027 | -0.487 | -0.290 | -0.355 | 0.275  | 0.053  | 0.405  | 0.385  | 0.016  |
| bkg1040163205 | 8:   | 0.000 | 0.006  | 0.000  | -0.002 | 0.598  | -0.337 | 0.151  | -0.148 | -0.323 | 0.523  | 0.067  | -0.317 | -0.008 |
| bkg1040163206 | 9:   | 0.000 | 0.004  | -0.007 | -0.276 | 0.391  | 0.482  | -0.201 | -0.289 | -0.285 | -0.235 | 0.455  | 0.266  | 0.000  |
| bkg1040163207 | 10:  | 0.000 | -0.008 | 0.008  | -0.003 | -0.372 | 0.391  | 0.135  | -0.662 | 0.150  | 0.446  | -0.032 | -0.170 | -0.003 |
| bkg1040163208 | 11:  | 0.000 | -0.003 | 0.008  | 0.148  | -0.404 | -0.163 | 0.544  | -0.042 | -0.604 | -0.151 | 0.298  | 0.119  | 0.001  |
| p1SCALE       | 12:  | 1.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| CrystalliteSi | z13: | 0.000 | 0.000  | -0.001 | -0.026 | -0,006 | -0.024 | 0.003  | -0.014 | 0.012  | -0.007 | -0.002 | 0.023  | -0.999 |
| alat          | 14:  | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| clat          | 15:  | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| Alz           | 16:  | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| begA1         | 17:  | 0.000 | -0.088 | 0.011  | 0.007  | 0.007  | 0.011  | 0.005  | 0.007  | 0.007  | 0.002  | 0.005  | 0.000  | -0.001 |
| A2x           | 18:  | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| лгу           | 19:  | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| begA2         | 20:  | 0.000 | -0.061 | 0.005  | 0.007  | 0.007  | 0.009  | 0.013  | 0.003  | 0.006  | -0.001 | 0.003  | 0.000  | 0.000  |
| beqB          | 21:  | 0.000 | 0.061  | 0.008  | 0.017  | 0.007  | 0.007  | 0.017  | 0.007  | 0.011  | 0.001  | 0.001  | 0.000  | -0.001 |
| Bx            | 22:  | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| Ву            | 23:  | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| beg0          | 24:  | 0.000 | -0.992 | 0.016  | 0.024  | 0.021  | 0.011  | 0.010  | 0.008  | 0.004  | -0.003 | 0.002  | 0.001  | -0.001 |
| 01x           | 25:  | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| 01y           | 26:  | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| 02x           | 27:  | 0.000 | -0.002 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| 02y           | 28:  | 0.000 | -0.001 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| 03x           | 29:  | 0.000 | 0.001  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| 03у           | 30:  | 0.000 | 0.001  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| 03 z          | 31:  | 0.001 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| begF          | 32:  | 0.000 | 0.018  | 0.999  | 0.008  | 0.027  | 0.022  | 0.024  | 0.005  | 0.007  | -0.016 | -0.017 | 0.000  | -0.001 |
|               |      |       |        |        |        |        |        |        |        |        |        |        |        |        |

39

UNPROCESSED normal matrix

Condition number for matrix of normal equations = 0.659E+10 Error propagation is likely to spoil 10 trailing decimal digits out of probably 14. CN =0.659E+10

Problem poorly conditioned for double-precision matrix inversion unless error propagation is well taken care of. Use eigenvectors for small eigenvalues below to diagnose quasi singularity.

Bigenvectors for cr10.out ranked according to eigenvalues are printed as columns below

| Eigenvector | #:  | 1        | 2        | 3        | 4        | 5        | б        | 17       | 18       | 19       | 20       | 21       |
|-------------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| zaro arror  | 1.  | 0 000    | 0 159    | -0.015   | 0 004    | -0.010   | 0 007    | 0.000    | 0 000    | 0.000    | 0.000    | 0 000    |
| zero_error  | 1.  | 1.000    | 0.155    | -0.015   | 0.004    | -0.010   | 0.007    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| PISCALE     | 2:  | 1.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| alat        | 3:  | 0.000    | -0.834   | -0.538   | -0.001   | -0.001   | 0.001    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| clat        | 4:  | 0.000    | -0.529   | 0.843    | -0.001   | 0.000    | 0.005    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| Alz         | 5:  | 0.000    | 0.000    | 0.000    | -0.008   | -0.075   | -0.009   | 0.000    | 0.000    | -0.001   | 0.000    | 0.000    |
| beqA1       | 6:  | 0.000    | 0.000    | 0.000    | 0.000    | -0.001   | 0.000    | -0.313   | 0.745    | -0.582   | -0.091   | -0.012   |
| A2x         | 7:  | 0.000    | 0.000    | -0.001   | 0.583    | -0.001   | 0.663    | 0.001    | 0.001    | 0.001    | 0.000    | 0.000    |
| A2y         | 8:  | 0.000    | 0.003    | -0.001   | -0.808   | -0.036   | 0.467    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| beqA2       | 9:  | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.001    | -0.927   | -0.369   | 0.035    | -0.061   | -0.005   |
| beqB        | 10: | 0.000    | 0.000    | 0.000    | 0.000    | 0.001    | 0.000    | -0.195   | 0.556    | 0.806    | 0.064    | -0.009   |
| Bx          | 11: | 0.000    | 0.001    | 0.004    | -0.022   | 0.693    | -0.180   | 0.000    | 0.001    | -0.001   | 0.000    | 0.000    |
| Ву          | 12: | 0.000    | -0.001   | 0.005    | 0.030    | -0.701   | -0.282   | 0.001    | 0.000    | 0.001    | 0.000    | 0.000    |
| beq0        | 13: | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.073    | -0.010   | 0.103    | -0.992   | -0.018   |
| 01x         | 14: | 0.000    | 0.000    | 0.000    | 0.004    | -0.002   | 0.057    | 0.000    | 0.001    | -0.001   | 0.000    | 0.000    |
| оју         | 15: | 0.000    | 0.000    | -0.001   | 0.012    | 0.049    | -0.074   | -0.001   | 0.000    | 0.000    | 0.000    | 0.000    |
| 02x         | 16: | 0.000    | 0.000    | 0.001    | 0.020    | 0.016    | 0.018    | -0.001   | 0.001    | -0.002   | -0.002   | 0.000    |
| 02y         | 17: | 0.000    | 0.000    | 0.000    | -0.070   | -0.071   | 0.019    | -0.001   | 0.000    | -0.001   | -0.001   | 0.000    |
| 03x         | 18: | 0.000    | -0.001   | 0.001    | -0.007   | 0.068    | -0.342   | 0.000    | 0.000    | 0.000    | 0.001    | 0.000    |
| 03у         | 19: | 0.000    | 0.001    | -0.001   | -0.017   | -0.085   | 0.321    | 0.000    | 0.000    | -0.001   | 0.001    | 0.000    |
| 03z         | 20: | 0.001    | 0.000    | 0.001    | -0.005   | 0.045    | -0.024   | 0.001    | -0.001   | 0.000    | 0.000    | 0.000    |
| beqF        | 21: | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.009    | -0.011   | -0.002   | 0.019    | -1.000   |
|             |     |          |          |          |          |          |          |          |          |          |          |          |
| Eigenvalues |     | 1.80E+12 | 7.04E+09 | 2.62E+09 | 3.69E+08 | 2.17E+08 | 9.32E+07 | 9.59E+03 | 5.13E+03 | 3.58E+03 | 2.03E+03 | 2.73E+02 |

#### Crystal-chemical refinement with TOPAS; $R_{wp} = 9.231, GOF = 1.648$

#### UNPROCESSED normal matrix

Condition number for matrix of normal equations = 0.221E+11 Error propagation is likely to spoil 10 trailing decimal digits out of probably 14.

#### CN =0.221E+11

Problem is ill-conditioned for double-precision matrix inversion unless error propagation is well taken care of. Use eigenvectors for small eigenvalues below to diagnose quasi singularity.

Eigenvectors for ch12.out ranked according to eigenvalues are printed as columns below

| Eigenvector | #:  | 1        | 2                 | 3        | 4        | 5        | б        | 13       | 14       | 15       | 16       | 17       |
|-------------|-----|----------|-------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|             |     |          |                   |          |          |          |          |          |          |          |          |          |
| dA101       | 1:  | 0.000    | 0.718             | -0.213   | 0.009    | -0.610   | 0.255    | -0.001   | 0.000    | 0.000    | 0.000    | 0.000    |
| DeltaA10    | 2:  | 0.000    | 0.433             | -0.129   | 0.014    | 0.221    | -0.840   | 0.002    | 0.001    | 0.000    | -0.001   | 0.002    |
| deltaA1     | 3:  | 0.000    | 0.003             | -0.001   | 0.000    | 0.008    | -0.005   | -0.161   | -0.074   | 0.500    | 0.028    | 0.086    |
| alphaA1     | 4 : | 0.000    | 0.016             | -0.005   | 0.001    | 0.024    | 0.004    | 0.007    | 0.017    | 0.195    | 0.000    | 0.051    |
| dBO         | 5:  | 0.000    | 0.537             | 0.521    | 0.037    | 0.557    | 0.295    | 0.001    | -0.001   | 0.000    | 0.000    | -0.001   |
| tauOBO      | 6:  | 0.000    | 0.006             | -0.009   | 0.000    | 0.016    | 0.001    | -0.051   | 0.003    | -0.811   | -0.020   | -0.185   |
| rhoA2       | 7:  | 0.000    | 0.000             | 0.000    | 0.000    | -0.194   | -0.279   | -0.001   | -0.003   | -0.003   | 0.001    | -0.004   |
| alphaA2     | 8:  | 0.000    | 0.000             | 0.000    | 0.000    | 0.000    | -0.001   | 0.814    | 0.472    | 0.046    | -0.006   | 0.010    |
| dA203       | 9:  | 0.000    | -0.088            | 0.816    | 0.018    | -0.480   | -0.255   | -0.001   | 0.001    | -0.009   | 0.000    | 0.007    |
| phi03A203   | 10: | 0.000    | -0.001            | 0.006    | 0.000    | -0.004   | -0.003   | 0.008    | -0.003   | 0.211    | -0.017   | -0.977   |
| zero_error  | 11: | 0.000    | -0.031            | -0.030   | 0.999    | -0.010   | 0.003    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| piscale     | 12: | 1.000    | 0.000             | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| beqA1       | 13: | 0.000    | 0.000             | 0.000    | 0.000    | 0.001    | 0.005    | 0.021    | -0.075   | 0.066    | 0.016    | 0.015    |
| beqA2       | 14: | 0.000    | 0.000             | 0.000    | 0.000    | 0.000    | 0.002    | 0.150    | -0.003   | -0.008   | 0.005    | -0.002   |
| beq0        | 15: | 0.000    | 0.000             | 0.000    | 0.000    | -0.001   | -0.001   | 0.451    | -0.875   | -0.023   | 0.009    | 0.001    |
| beqB        | 16: | 0.000    | 0.000             | 0.000    | 0.000    | 0.000    | -0.003   | -0.287   | -0.001   | -0.032   | 0.002    | -0.013   |
| beqX        | 17: | 0.000    | 0.000             | 0.000    | 0.000    | 0.000    | -0.001   | 0.004    | 0.014    | -0.027   | 0.999    | -0.023   |
|             |     |          |                   |          |          |          |          |          |          |          |          |          |
| Eigenvalues | :   | 1.87E+12 | 1.57 <b>E+1</b> 1 | 1.95E+10 | 6.59E+07 | 8.98E+06 | 3.09E+06 | 2.66E+03 | 2.12E+03 | 5.97E+02 | 2.91E+02 | 8.47E+01 |

#### Numerical stability of Rietveld refinements

*J. Appl.* Cryst. 39: 458-465

Practical use of SVD for apatites In both cases, regular crystalprofile-shape crystallographic chemical and background refinement refinement parameters needed to be similar condition number fixed at some arbitrary values similar numerical stability cure of Rietveld LS model *SVDdiagnostic* Software program freely distributed by the author

J. Appl. Cryst. 39: 369-375 Experimental proof of the greater precision and accuracy of crystal-chemical refinement

**CORROBORATION** 

Observed a precision increase by nearly an order of magnitude in the least-squares E.S.D.s.



| Observed a precision<br>increase by nearly<br>an order of magnitude in the<br>least-squares E.S.D.s.                                                                                                                                                               | C-CH<br>Ca1:0 01:4<br>01:5<br>01:5<br>02:5<br>02:5<br>02:5<br>02:5                                                                        | :4       2.39802       (42)         :0       2.39802       (42)       74.151       (16)         :3       2.39802       (42)       74.151       (16)         :1       2.44645       (63)       154.7555       (48)       123.939       (10)       93.026       (18)         :2       2.44645       (63)       75.948       (23)       93.026       (18)       154.7555       (48)       123.934       (10)         :5       2.44645       (63)       75.948       (23)       75.948       (23)       123.939       (10)       93.026       (18)         :5       2.44645       (63)       75.948       (23)       75.948       (23)       123.939       (10)       93.026       (18)       154.7555       (48) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C-CH<br>Ca2:0 O3:3 2.33557 (57) 102.584<br>O3:2 2.33557 (57) 141.067 (65) 102.584<br>O2:4 2.3874 (13) 85.67 (47) 85.670 (47)<br>O3:7 2.5069 (13) 74.889 (36) 77.442 (20)<br>O3:6 2.5069 (13) 59.349 (37) 74.889 (36)<br>O1:0 2.6868 (13) 149.635 (21) 149.635 (21) | Ca1:0 O1:4<br>O1:0<br>O1:1<br>O2:1<br>O2:1<br>O2:1<br>O2:1<br>O2:1<br>I52.267<br>I35.735 (52<br>I35.735 (52<br>I35.735 (52<br>I00.708 (56 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CRYS<br>Ca2:0 O3:2 2.3314 (20)<br>O3:3 2.3314 (20) 140.70 (13)<br>O2:4 2.3442 (29) 85.758 (61) 85.758 (61)<br>O3:7 2.5115 (25) 74.145 (81) 135.87 (11)<br>O3:6 2.5115 (25) 59.568 (93) 74.145 (81)<br>O1:0 2.6691 (25) 149.313 (55) 149.313 (55)                   | 77.419 (53<br>77.419 (53<br>100.595 (94                                                                                                   | <i>J. Appl. Cryst.</i> (2005) 39: 369-375<br>3) 135.87 (11)<br>4) 72.013 (74) 72.013 (74)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C-CH<br>P:0 O1:0 1.53407 (50<br>O3:1 1.53407 (37<br>O3:0 1.53407 (37<br>O2:0 1.53407 (50<br>Ca2:4 3.0708 (14<br>O2:3 3.16969 (95                                                                                                                                   | )<br>) 110.9056 (4<br>) 108.0000 (1<br>) 107.9996 (3<br>) 114.887 (3<br>) 44.951 (2                                                       | 44)<br>16) 110.9056 (44)<br>39) 107.9996 (39) 110.9056 (14)<br>33) 54.2946 (69) 54.2946 (69) 134.21 (33)<br>28) 69.936 (34) 68.676 (14) 68.676 (14) 179.159 (34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CRYS<br>P:0 O3:1 1.5364 (20<br>O3:0 1.5364 (20<br>O1:0 1.5792 (39<br>O2:0 1.5807 (29<br>Ca2:4 3.0673 (11<br>O2:3 3.115 (32                                                                                                                                         | )<br>) 108.58 (1'<br>) 110.27 (1'<br>) 110.62 (1'<br>) 116.03 (1'<br>) 44.558 (7                                                          | 17)<br>12) 110.27 (12)<br>16) 108.52 (11) 108.52 (11)<br>14) 133.350 (86) 54.590 (86) 54.590 (86) 44<br>71) 71.47 (20) 177.908 (98) 68.69 (12) 68.69 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| UNPROCESSED | normal | matri× |
|-------------|--------|--------|
|-------------|--------|--------|

Condition number for matrix of normal equations = 0.279E+11 Error propagation is likely to spoil 10 trailing decimal digits out of probably 14.

Eigenvalues

Problem is ill-conditioned for double-precision matrix inversion unless error propagation is well taken care of. Use eigenvectors for small eigenvalues below to diagnose quasi singularity.

Eigenvectors for final\_fit.out ranked according to eigenvalues are printed as columns below

| Eigenvector #                 | :                        | l                        | 2                        | 3 ••                      | 13                                 | 14                        | 15                        | 16                         | 17                       | 18                         | eco-apatites                                  |
|-------------------------------|--------------------------|--------------------------|--------------------------|---------------------------|------------------------------------|---------------------------|---------------------------|----------------------------|--------------------------|----------------------------|-----------------------------------------------|
| dA101<br>DeltaA10             | 1:                       | 0.000                    | 0.715<br>0.435           | -0.208                    | -0.025<br>0.017                    | 0.004                     | -0.006<br>0.005           | 0.005                      | 0.001                    | 0.000                      |                                               |
| deltaAl                       | 3:                       | 0.000                    | 0.003                    | -0.001                    | -0.267                             | -0.281                    | -0.022                    | 0.498                      | 0.028                    | -0.012                     |                                               |
| alphaAl<br>deo<br>tau060      | 4:<br>5:<br>6:           | 0.000<br>0.000           | 0.016<br>0.537<br>0.007  | -0.005<br>0.523<br>-0.009 | 0.803<br>-0.002<br>-0.014          | -0.422<br>0.011<br>-0.152 | 0.332<br>-0.006<br>0.058  | 0.139<br>-0.005<br>-0.848  | -0.017<br>0.001          | -0.002<br>0.000            | bond-angle variables                          |
| nnoA2<br>alphaA2              | /:<br>8:                 | 0.000                    | 0.000                    | -0.001<br>0.000           | 0.031                              | 0.002<br>0.739<br>-0.011  | 0.005                     | -0.020<br>0.058<br>-0.004  | 0.002<br>0.001<br>-0.001 | 0.001<br>0.002             |                                               |
| phi03A203                     | 10:                      | 0.000                    | -0.001                   | 0.006                     | -0.002                             | -0.004                    | -0.002                    | 0.018                      | 0.012                    | 1.000                      |                                               |
| zero_error<br>plSCALE<br>plMS | 11:<br>12:<br>13:        | 0.000<br>1.000<br>-0.001 | -0.038<br>0.000<br>0.000 | -0.036                    | 0.000<br>0.000<br>-0.001<br>-0.025 | 0.000                     | 0.000<br>0.000<br>0.000   | 0.000                      | 0.000                    | 0.000                      | φ <sub>03-AII-03</sub> and τ <sub>0-B-0</sub> |
| beqA2<br>beq0<br>beqB         | 14:<br>15:<br>16:<br>17: | 0.000                    | 0.000                    | 0.000                     | 0.052<br>0.409<br>-0.137           | 0.127<br>0.016<br>-0.340  | -0.030<br>-0.865<br>0.142 | -0.014<br>-0.013<br>-0.039 | 0.008<br>0.004<br>0.011  | -0.001<br>-0.002<br>-0.002 | are poorly determined                         |
| beqX                          | 18:                      | 0.000                    | 0.000                    | 0.000                     | 0.021                              | 0.005                     | 0.007                     | 0.001                      | 0.999                    | -0.012                     |                                               |

Eigenvalues : 0.871E+12 0.448E+11 0.609E+10 · · 0.342E+04 0.306E+04 0.218E+04 0.560E+03 0.275E+03 0.312E+02

|                                                                                    | UNPROCESSED normal                                                                                                                             | matri×                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      | Acto                                                                                                                                                                                 | Cryst                                                                                                                                                             | R 63.                                                                                                                            | 37_/8                                                                                                                                              |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                    | Condition number fo<br>Error propagation i                                                                                                     | r matrix<br>s likely                                                                   | of normal<br>to spoil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | equations<br>10 trailin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 0.319E<br>g decimal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +10<br>digits out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of probably 1                                        | .4.                                                                                                                                                                                  | <i>Cryst</i> .                                                                                                                                                    | <b>D</b> 0 <b>J</b> .                                                                                                            | 57-40                                                                                                                                              |
| stability of                                                                       | Problem poorly cond<br>Use eigenvectors fo                                                                                                     | itioned f<br>r small e                                                                 | for double<br>eigenvalue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -precision<br>s below to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | matrix in<br>diagnose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | version un<br>quasi sing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | less error pro<br>ularity.                           | pagation i                                                                                                                                                                           | s well tak                                                                                                                                                        | (en care o                                                                                                                       | f.                                                                                                                                                 |
| crystal-                                                                           | Eigenvectors for fi                                                                                                                            | nal_fit.«                                                                              | out ranked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | according                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | to eigenv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | alues are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | printed as col                                       | umns below                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                  |                                                                                                                                                    |
| chemical                                                                           | Eigenvector #                                                                                                                                  | :                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                    | 13                                                                                                                                                                                   | 14                                                                                                                                                                | 15                                                                                                                               | 16                                                                                                                                                 |
| least-<br>squares<br>extraction<br>increased by<br>by fixing<br>those<br>variables | dA101<br>DeltaA10<br>deltaA1<br>alphaA1<br>dB0<br>rhoA2<br>alphaA2<br>dA203<br>zero_error<br>plSCALE<br>plMS<br>beqA1<br>beqA2<br>beqB<br>beqX | 1:<br>2:<br>3:<br>4:<br>5:<br>7:<br>8:<br>9:<br>10:<br>12:<br>13:<br>14:<br>14:<br>16: | $\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 1.000\\ 1.000\\ -0.001\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0$ | $\begin{array}{c} 0.716\\ 0.434\\ 0.003\\ 0.536\\ 0.000\\ 0.000\\ -0.096\\ -0.038\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ $ | $\begin{array}{c} -0.208\\ -0.126\\ -0.001\\ -0.005\\ 0.524\\ -0.001\\ 0.000\\ 0.816\\ -0.036\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.0$ | $\begin{array}{c} 0.023\\ 0.003\\ 0.001\\ 0.001\\ 0.042\\ -0.002\\ 0.000\\ 0.024\\ 0.999\\ 0.000\\ 0.010\\ 0.010\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c} 0.026 \\ -0.018 \\ 0.383 \\ -0.819 \\ 0.002 \\ -0.030 \\ -0.142 \\ -0.001 \\ 0.000 \\ 0.000 \\ 0.001 \\ 0.197 \\ -0.034 \\ -0.345 \\ -0.025 \\ -0.023 \end{array}$ | $\begin{array}{c} 0.001\\ 0.001\\ 0.642\\ 0.379\\ -0.014\\ -0.012\\ -0.619\\ 0.012\\ 0.000\\ 0.000\\ 0.000\\ -0.097\\ -0.111\\ 0.011\\ 0.196\\ -0.016\end{array}$ | 0.004<br>-0.063<br>-0.314<br>0.007<br>0.000<br>-0.310<br>-0.006<br>0.000<br>0.000<br>0.118<br>0.031<br>0.876<br>-0.135<br>-0.004 | 0.000<br>0.002<br>-0.034<br>0.015<br>-0.001<br>-0.002<br>-0.002<br>0.001<br>0.000<br>0.000<br>-0.001<br>-0.008<br>-0.004<br>-0.010<br>-0.999<br>45 |

: 0.871E+12 0.448E+11 0.611E+10 0.241E+08 0.546E+07 .. 0.348E+04 0.292E+04 0.221E+04 0.273E+03

Application of SVDdiagnostic to  $Ca_{10}(V_xP_{1-x}O_4)_6F_2$ eco-apatites

#### Practical use of SVD for diagnosing Rietveld refinement









#### **Discovery of triclinic apatites structure type**



| Tetrahedra                           | Along $a$ (°) | Along $b$ (°) | Along [110] (°) |
|--------------------------------------|---------------|---------------|-----------------|
|                                      |               |               | _               |
| As-AP                                | 12            | 11            | 5               |
| V-AP                                 | 8.5           | 9.5           | 3               |
| Oxy-HAP <sup>(a)</sup>               | 14            | 6             | 1               |
| $La_{10-x}(GeO_4)_6O_{3-1.5x}^{(b)}$ | 18.5          | 13.5          | 3               |

References: (a) Alberius-Henning et al., 2001); (b) León-Reina et al. (2003).

#### $Ca_{10}(PO_4)_6F_2$ and $Ca_{10}(PO_4)_6F_2$ predicted to be isostructural





#### Acta Cryst. B (2007) 63: 251-256

#### **References Summary and Conclusions**

-- We developed and explained an SVD approach to objective assessment of numerical stability for Rietveld refinements.

Mercier et al. (2006), J. Appl. Cryst., 39: 458-465

-- A crystal-chemically parameterized model of  $P6_3/m$  apatite was developed. Equivalence to standard crystallographic description has been shown.

Mercier et al. (2005), Acta Cryst. B, 61: 635-655

-- A TOPAS script was developed allowing direct least-squares extraction of crystal-chemical parameters for  $P6_3/m$  apatites.

Mercier et al. (2006), J. Appl. Cryst., 39: 369-375

-- By imposing *ab initio* results in a crystal-chemical Rietveld refinement, a precise description of Ca<sub>10</sub>(V<sub>x</sub>P<sub>1-x</sub>O<sub>4</sub>)<sub>6</sub>F<sub>2</sub> eco-apatites has been obtained. Mercier *et al.* (2007), *Acta Cryst. B*, 63: 37-48

-- Triclinic apatites were demonstrated to correspond to a new structure type, by both neutron and X-ray diffraction as well as *ab initio* calculations.

Baikie et al. (2007), Acta Cryst. B, 61: 251-256

#### **Inorganic Chemistry**

#### The Crystal Chemistry of $Ca_{10-y}(SiO_4)_3(SO_4)_3CI_{2-x-2y}F_x$ Ellestadite

Yanan Fang,<sup>\*,†</sup> Clemens Ritter,<sup>‡</sup> and Tim White<sup>†,§</sup>

<sup>†</sup>School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore <sup>‡</sup>Institute Laue-Langevin, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9, France

<sup>§</sup>Centre for Advanced Microscopy, Sullivan's Creek Road, Australian National University, Canberra ACT 0200 Australia

Supporting Information

**ABSTRACT:** Fluor-chlorellestadite solid solutions  $Ca_{10}(SiO_4)_3(SO_4)_3Cl_{2-x}F_{x^2}$  serving as prototype crystalline matrices for the fixation of hazardous fly ash, were synthesized and characterized by powder X-ray and neutron diffraction (PXRD and PND), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The lattice parameters of the ellestadites vary linearly with composition and show the expected shrinkage of unit cell volume as fluorine (IR = 1.33 Å) displaces chlorine (IR = 1.81 Å). FTIR spectra indicate little or no OH<sup>-</sup> in the solid solutions. All compositions conform to  $P6_3/m$  symmetry where F<sup>-</sup> is located at the 2a (0, 0, 1/4) position, while Cl<sup>-</sup> is displaced out of the 6h Ca(2) triangle plane and occupies 4e (0, 0, z) split positions with z ranging from 0.336(3) to 0.4315(3). Si/S randomly occupy the 6h tetrahedral site. Ellestadites rich in Cl ( $x \le 1.2$ ) show an overall deficiency in halogens (<2 atom per formula unit), particularly Cl as a result of CaCl<sub>2</sub> volatilization, with charge balance achieved by the creation of Ca vacancies (Ca<sup>2+</sup> + 2Cl<sup>-</sup>  $\rightarrow \Box_{Ca} + 2\Box_{Cl}$ ) leading to the formula  $Ca_{10-y}(SiO_4)_3(SO_4)_3Cl_{2-x-2y}F_x$ . For F-rich compositions the vacancies are found at Ca(2), while for Cl-rich ellestadites, vacancies are at Ca(1). It is likely the loss of CaCl<sub>2</sub> which leads tunnel anion vacancies promotes intertunnel positional disorder, preventing the formation of a  $P2_1/b$  monoclinic dimorph, analogous to that reported for Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>Cl<sub>2</sub>. Trends in structure with composition were analyzed using crystal-chemical parameters, whose systematic variations served to validate the quality of the Rietveld refinements.

🚓 ACS Publications

S © 2011 American Chemical Society

12641

dx.doi.org/10.1021/ic201673r | Inorg. Chem. 2011, 50, 12641-12650

P.H.J. Mercier





# Inorganic Chemistry

# The Crystal Chemistry of $Ca_{10-y}(SiO_4)_3(SO_4)_3Cl_{2-x-2y}F_x$ Ellestadite Yanan Fang,<sup>\*,†</sup> Clemens Ritter,<sup>‡</sup> and Tim White<sup>†,8</sup>



Figure 9. Correlations observed between polyhedral distortion parameters: (a)  $\delta_{Ca1}$  versus  $\phi_{O3-Ca2-O3}$ , (b)  $\langle \tau_{O-B-O} \rangle_{a2}$  versus  $\phi_{O3-Ca2-O3}$ , (c)  $\Psi_{Cal-O1}^{Cal z=0}$  versus  $\alpha_{Ca\nu}$  and (d)  $\alpha_{Ca2}$  versus  $\phi_{O3-Ca2-O3}$ . These figures should be compared with Figure.8 in Mercier et al.<sup>33</sup> Circles: published data; large filled squares: this study. ( $\delta_{Cal}$ :counter-rotation angle of CaO<sub>6</sub> polyhedra;  $\phi_{O3-Ca2-O3}$ : O3-Ca2-O3 bond angle;  $<\tau_{O-B-O}>: O-B-O$  bondbending angle;  $\Psi_{Ca1-O1}$  Ca1 z=0: angle that an Ca1<sub>z=0</sub>-O1 bond makes with respect to c;  $\alpha_{Ca1}$ : orientation of CaO<sub>6</sub> polyhedra with respect to a;  $\overline{g}_{Ca2}$ : orientation of Ca2 triangles with respect to a.).