
7 

Crystal Structure Analysis Using 
the "Superposition"- and 

"'Complementary"-Structures 

by 

Ernst H/Shne and Leo Kutschabsky 

This electronic edition may be freely copied and 
redistributed for educational or research purposes 

only. 

It may not be sold for profit nor incorporated in any product sold for profit 
without the express pernfission of The Executive Secretary, International 
Union of (?rystalk~graphy, 2 Abbey Square, Chester (?111 211U, UK 

Copyr ight  in this electronic ectition (<.)2001 International [Jnion o f  
Crys ta l lography 

Published for the 
International Union of Crystallography 

by 
University College Cardiff Press 

Cardiff, Wales • 



~) 1981 by the International Union of Crystallography. 
All rights reserved. 

Published by the University College Cardiff Press for the 
International Union of Crystallography with the 
financial assistance of Unesco Contract No. SC/RP 250.271 

This pamphlet is one of a series prepared by the 
Commission on Crystallographic Teaching of the 
International Union of Crystallography, under the 
General Editorship of Professor C. A. Taylor. 
Copies of this pamphlet and other pamphlets in 
the series may be ordered direct from the  
University College Cardiff Press, 
CF1 1XL, U.K. 

ISBN 0 906649 11 1 



Series Preface 

The long term aim of the Commission on Crystallographic Teaching in 
establishing this pamphle t  p rog ramme is to produce a large collection of 
short s tatements each dealing with a specific topic at a specific level. The  
emphasis  is on a particular teaching approach and there may well, in time, 
be pamphlets  giving alternative teaching approaches to the same topic. I t  
is not the function of the Commission to decide on the 'best '  approach 
but to make  all available so that teachers can make  their own selection. 
Similarly, in due course, we hope that the same topics will be covered at 
more  than one level. 

The  initial selection of ten pamphlets  published together  represents  a 
sample of the various levels and approaches and it is hoped that it will 
st imulate many more  people  to contribute to this scheme. I t  does not take 
very long to write a short pamphlet ,  but its value to someone  teaching a 
topic for the first t ime can be ve ry  great. 

Each pamphle t  is prefaced by a s ta tement  of aims, level, necessary 
background,  etc. 

C. A. Taylor  
Edi tor  for the Commission 

The financial assistance of UNESCO, ICSU and of the International Union of Crystallog- 
raphy in publishing the pamphlets is gratefully acknowledged. 



Teaching Aims 

Broad: To illustrate and illuminate the relation between diffraction 
pattern and crystal structure, and to draw together direct and vector 
methods. 

Specific: To provide a method for solving structures when standard 
methods fail. 

Level  
Postgraduate 

Background 

Sound understanding of the theory, combined with practical experi- 
ence, of the standard methods of  structure solution. 

Practical Resources  

Computing aid highly desirable. 

Time Required 

A heavy and demanding course requiring an estimated 8 hours. 



Crystal Structure Analysis Using the 
"Superpositioni'- an d "Complementary"-Structures 

E r n s t  H 6 h n e  a n d  L e o  K u t s c h a b s k y  

Akademie der Wissenschaften der DDR,  Zentralinstitut fiir physikalische 
Chemie, 1199 Berlin-Adlershof, Rudower  Chaussee 5, D D R  

1. Genera l  

Quite a number of crystal structures contain par ts  (e.g. hea W atoms or 
building units) with a higher symmetry (e.g. with additional translation or 
pseudotranslation) compared with the whole structure. In those cases, 
standard methods may not lead to correct results, this is why special 
methods may have to be .applied. 

As an example let the heavy atoms (strongly reflecting atoms) have 
parameters xs, ys, z~ and x,, y,, ½+ z s (Fig. 1). Then they contribute only to 
the structure factors F(hkl)wi th  1 = 2n, since their contribution Fs(hkl) is 
equal to 

F~(hkl) = fs {exp [27r/(hxs + ky~ + lzs]+ exp [2wi(hxs + ky,, + l~+ z~))]} 

= f~{exp [27r/(hx~ + ky s +/z,)][1 + ( -  1)z]} 

F~(hkl)t=2,+l =-- 0 (1.1) 

Therefore  the ]F(hkl)[ 2 with l = 2 n  are systematically strong, compared 
with those with l = 2 n + 1 ,  i.e. for the. mean, values (!(hkl)) of the 
intensities within any  region of ~r values . 

(I(hkl)l=2,) strong, (I(hkl)~=2,+1) weak. 

If such a systematic distribution of the intensities or a similar one 
occurs, it is useful, for methodical reasons, to regard the electron density 
O(x, y, z) as the sum of two- -o r  if necessary--of  several parts. 

Thus the electron density function 

p(x, y, Z) = ~', ~ ~ F(hkl) exp [-2-a-/(hx + ky + lz) ]  
h k l 

may for the case indicated in Fig. 1 be written 

p(x, y, z) = Y. Y. ~ F(hkl) exp[-2rri(hx + ky + l z )  
IT k '  I 

(1 = 2 n )  0.2) 



0 C 

a 

Fig. 1. Crystal structure in Pl.[-'N--symbol for the arrangement of heavy atoms, 
[ 7  and [] remaining atoms of the structure. 

+ ~, ~, ~ F(hkl) exp [-2"tri(hx + ky + lz)]  
h k l 

(1 = 2 n + 1 )  

= psup(X, y, Z) "1- lOcom (X, y, Z) (1.2') 

where 

psup(xyz) = ~ ~ ~ F(hkI) exp [-2"rri(hx+ky+lz)] 
h k l 

( 1 = 2 n )  

pcom(xyz) = f.f~ ~. F(hkl) exp [-27r/(hx + k y +  lz)]  
h k | 

(1 = 2 n + 1 )  

/gsu p (X, y, Z) denotes a hypothetical structure, called the superposition 
structure, which is related to the real structure in the following way 

ps.p(x, y, z)=½[p(x, y, z) + p(x, y, ½+ z)] (1.3) 

In Osur~(x, y) (Fig. 2) the two heavy atoms (I--N) appear with correct 
0 

Fig. 2. Superposition structure.[-'k--heavy atoms [,-'-', []--remaining atoms with 
half weight. 
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Fig. 3. Complementary structure.' " , [3 - -a toms  with positive half  weight,~.'.:" o u. S 

i l i - a t ° m s  with negative hal f  weight. 

weights because they are connected  by a translation of c/2, whereas the 
remaining atoms (squares and triangles) appear with half their weights 
(marked by shaded symbols) at the original position and at a second point 
shifted relative to it by c/2. 

Generally speaking, the symmetry of Psup(x, Y, z) is identical with the 
symmetry of the arrangement of the heavy atoms (or other building units 
with higher symmetry) taken by themselves. This higher symmetry may 
either be strictly true for the heavy atoms taken by themselves, or only in 
approximation. In the latter case it may be useful to disregard deviations 
from the higher symmetry, to start with. 

The symmetry of the complementary structure Pcom(X, y, Z) follows 
from (1.2) and (1.3): 

Pcom(X, Z, y ) =  l[Io(X , y,  Z ) - - p ( X ,  y,  1 ,'~- Z)] (1.4) 

Its properties are shown in Fig. 3. Accordingly, the heavy atoms (i.e. 
those which occur in pairs related to a shift of c/2) are absent in 
p~om(X, y, z), whereas any other  atom appears with half its weight at its 
real position and with half negative weight at a position shifted by c/2 
(Fig. 3). The space ~ o u p  symmetry of the arrangement with positive 
weights in pcom(X, y, z) is identical with the space ~ o u p  of the real 
structure O(x, y, z). In a similar way, the introduction of a superposition 
and a complementary structure may be indicated by systematically 
strong reflections occurring, e.g. for h = 2n or h + k = 2n or h + k + 1 = 2n 
etc. 

If, on the other  hand, the heavy atoms (or another  part  of the structure, 
taken by itself) possesses a higher symmetry (other than translation) than 
the struc~u-e as a whole, the introduction of other  kinds of hypothetical 
structures, also to be called psup(x, y, z) and pcom(x, y, z) may be of use. In 
this case, no systematically strong and weak reflections result. 

3 
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Fig. 4. Superposition structure ( centrosymmetric ). F~--centrosymmetric arrange- 
ment of heavy atoms, [2"-', r ?~---remaining atoms with half weights. 

As an example,  we consider a structure in PI containing two heavy 
atoms of the same element  per  unit cell. The heavy atoms considered by 
themselves are connected by a centre of symmetry.  The structure com- 
puted with phases (signs) taken f rom the heavy a tom contribution is 
necessarily centrosymmetric  and is related to the real structure by its 
superposition with its centrosymmetric  image (Fig. 4). If referred to such 
a partial centre of symmetry as origin, the electron density distribution of 
the superposition structure Osup(x, Y, z) may be expressed as 

osup(x, y, z) = ~[o(x, y, z ) + o ( ~ ,  9, ~)] (1.5) 

The real structure or at least part  of it may in many cases of this kind be 
obtained using well established chemical knowledge, such as atomic 
distances, known stereochemistry of molecules or parts of them as of 
coordination polyhedra etc. 

2. Special Methods  

2.1. Linear Structure Factor Equations 

In many cases two coordinates (e.g. x i, yj) of any a tom in the real 
structure are the same as those of the superposition structure. There  
arises the task of determining the third atomic coordinate (zj). The  
method of linear structure factor equations (SFE) by Kutschabsky 2 and by 
Kutschabsky and H6hne  3 allows us to calculate these atomic coordinates (zi) 
directly, using the reflection of the first level of the reciprocal lattice 
(F(hkl)). 

The basic relation follows directly from the formula for the structure 
factor 

p N 

F ( H ) =  ~" ~ (f$)(I-l)cos27rl-lrs~.+i/C~(l-1)sin27rltrsj) (2.1) 
s = l  j = l  

4 



where P is t h e n u m b e r  of equipoints in the unit cell, N is the number of 
symmetrically independent atoms, f,i is the atomic scattering factor and r~i 
is the radius vector of the  centre of atom s, j. 

Vector t t  is defined by ha* + kb*+  Ie*, where (a, b*, c*) are  the basic 
reciprocal vectors. 

Using the symmetry matrices R s and the translation t~ we obtain: 

p • N 

F(H)  = Z ~ f,i(lt)[ cos 2"rrH(Rsrj +t~)+ i sin 27rH(R~ri +t~)] (2.2) 
s = l j = l  

The separation into the components leads to 
p N 

F(/- / )= ~ ~ %j(tt)[cos27r(~,x~+/3~yj+%z~+~,) 
s = l  j = l  

+ i sin 27r(mx j +/3,yj ÷ %zj + ~3s)] (2.3) 
p N 

F(H) = wj(la)[cos +  ,)'cos 
s = l / = l  

- sin 2 ~r(a~xj +/3,y~ + ~5,)- sin 27r'/sz~ 

+ i sin 27r(a,x~ +/3~y~ + 3~) -cos 27r%zi 

+ i cos 27r(%xj +/3~y i + 3~) sin 27r%zj (2.4) 

In the most important cases the factor % depends only on l (not h or k). 
In those cases we obtain for structure factors P(hkl) with constant L 

N N 

F(H) = ~ (a t + ibj)C~L~+ ~, (q + idi)s~ L~ (2.5) 
i = l  i = l  

where the unknown variables cos 2"rrLz~ and sin 2~Lz i have been denoted 
by CI z'~ and S~ L>, respectively, and their known coefficients by % hi, cj and 

4- 
ai=aj(h, k,~,x~, Yi) etc. where the exact form of dependence on 

h, k, fj, x~ and yj. may be obtained from Table 4 of International Tables 
for X-ray Crystallography, Vol. 1. 

The 2N unknown variables C-~j ~-> and S} L> may be determined by a 
system of linear equations using Fob~(I-l) for F(I-I). 

If the phases of the Fob~(l-l) are unknown the unobserved reflections 
may be used to obtain a system of homogenous linear equations. Often it 
is of advantage to use in addition to the homogenous equations one 
equation belonging to a strong structure factor whose phase may be fixed 
arbitrarily in centrosymmetrical space groups, and in the non- 
centrosymmetrical space groups in which the origin may have any posi- 
tion in the z-direction. 

Because the coefficients of these equations are inaccurate and, 
moreover,  the structure factors are zero only approximately a more 



accurate solution for the values Ci L) and ~qiL) may be obtained by using V l  --1 
more equations than there are variables and by minimizing the sum of the 
squares of the deviations ~ IFobs(]~)-Fcalc(H)] 2, where F~c0FI) stands for 
the right side Of equation (2.5) and F (H)  is to replace by Fobs(I-l) in this 
relation. The  C~ L) and S~ L) f rom the first calculation may be used to 
determine the phases of further structure factors. Taking these equations 
in addition to those used already, the number  of equations increases and 
thus the accuracy of CI L) and S) L) is improved.  

If the F(hkl) with L = 1 are used, the atomic parameters  zi of all atoms 
resolved in the (x, y)-projection follow from Cl l )=cos  2wzj and S) 1)= 
sin 2~rzj a n d  (C~1))2--t-(S~1)) 2=  1. The  accuracy of the values zj may  be 
further improved by using F(hkl) with L larger than one. 

2.2. The Application of Direct Methods to Centrosymmetric Structures 
Containing heavy atoms 4 

It is assumed that the positions of the heavy atoms are known and that 
there is a sufficient number  of reflections whose signs are determined by 
the heavy atoms. These reflections do not obey the probabili ty relation 
(2.6). 

S,,+,,,- S~," Sh, (2.6) 

On subtracting the heavy a tom contribution f rom the observed structure 
factors of these reflections, one obtains the s ign  of the light a tom 
contributions for these reflections. Thereaf ter  one can solve the remaining 
light a tom structure by applying equation (2.6) to obtain the signs of the 
reflections that do not have contributions from the heavy atoms. 

The procedure was used to solve the structure of the complex 
Au[S2C2(CN)2]2 Au[SaCN(C4Hg)2] 2. The space group was found to be 
P2flc, with two formula units per unit cell. The reflections hkl (h = 
2n, k + 1 = 2n) were all very strong and the gold atoms were placed at the 
(special) position 000,½00, ~,111 and 0½½. 1337 observed 'strong'  reflec- 
tions (with equal positive contributions f rom the gold atoms) and 538 
observed 'weak '  reflections (without any contributions f rom the gold 
atoms) were used. 

The first step was a calculation of the Wilson plot. The  following 
expressions was used: 

(I),, = K L ( ~  L f2 exp (--2BL sin 2 0/h2))h + Kz-r(IFHI 2 exp (--2BH sin 2 0/A2)),, 
(2.7) 

where 1 =  (KIFobsl~) is the observed intensity on a relative scale, K =  
Kr. = KH is the scale factor, yL denotes a summation over  all light atoms 
in the unit cell, FH is the heavy a tom contribution to the structure factor 
and Br_ and Bn are the overall t empera ture  factor parameters  of the light 
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and heavy atoms respectively. The average is taken over reflections h 
within a given sin 0 interval. 

For the 'weak' reflections (Fn = 0) the second term in equation (2.7) 
vanishes and a Wilson plot for these reflections gave the scale factor KL 
(1.29) and the value of BL (3.24 ~2). On substituting these results in 
equation (2.7) a Wilson plot for the 'strong' reflections gave the scale 
factor KH (1.26) and the value of Bn (2.91 .&2). A small difference in KL 
and Kn will not affect the following steps. 

The second step is the calculation of the normalized structure factors E. 
The formulae normally used for the calculation of E values do not make 
sense for a structure containing heavy atoms. For  the corresponding light 
atom structure the E values, EL, are defined by: 

EL =FL(e E~ f i ) - m  exp (BL sin 20/)t z) (2.8) 

where FL is the light atom contribution to the structure factor and, for 
space group P21/c, e = 2  for h01 and 0k0 reflections and e = 1 for all 
other reflections. 6 

The 'strong' reflections have positive s t ructure  factors and we have 
Fa = Fobs-FH; the magnitude and the sign of the EL value is obtained by 
equation (2.8). This resulted in 365 signed EL values, with [Ec]> 1.3. For 
the 'weak' reflections we have IFLI = ]Fobd and only the magnitude of the 
EL value is obtained. This resulted in 270 reflections with [EL]> 1.3. 

The third step is the application of equation (2.6) to obtain the signs of 
the 'weak' reflections. When several interactions of the type ( h + h ' ) =  
(h)+(h') occur for JELl> 1.3, where both S~, and S~,, are known, several 
predictions of the sign Sa+~,, are obtained by application of (2.6). These 
predictions should be reasonably consistent before Ss,+a, is considered to 
be determined and singly occurring interactions should never be trusted. 
We have followed a procedure similar to the sign correlation procedure. 
The origin is partly fixed b y  the choice of the gold atom positions and 
further determined by assigning arbitrary signs to two 'weak' reflections: 
221 (IELI=4.0) and 348 (lULl=2.9). We define the following sets of 
reflections, all lULl>2.0: 

ha are 'strong' reflections, hkl(h = 2n, k + 1 = 2n). 
ha are the two origin determining choices. 
h3 are the reflections hi + h2 and h2+ h~. 
h4 are the reflections ha + h3, h2 + h3 and h 3-t- h~. 

The application of the equation (2.6) on only reflections lh cannot give 
new signs; together with the reflections h2 probable signs for 36 reflec- 
tions h3 were calculated. Upon entering h3 in equation (2.6), many 
reflections take part in the calculations and consequently the sign of one 
reflection h4 will often be found from several independent sign relations 



(2.6). Signs were calculated for 48 reflections hn; of these the signs of 24 
reflections were determined by at least five consistent relations (2.6) and 
accepted to be correct. Although some of the signs for reflections h 3 may 
be incorrectly determined, it is highly improbable that all reflections h 3 

used for the signs determination of one reflection h4 are incorrect. The 
intermediate results for h 3 and the rest of h a w e r e  rejected. 

Continued application of equation (2.6) on 365 'strong' reflections, 2 
reflections h2 and 24 reflections h4 resulted in the sign determination of 
158 more 'weak' reflections with IELI > 1.3. A Fourier synthesis revealed 
the positions of all of the light atoms, except the hydrogen atoms. 

The above described procedure may be generalized for heavy atoms on 
general positions. In this case there also exist reflections with inter- 
mediate heavy atom contributions. For  these reflections IFLI--IlFobJ ± IFHII 
and the lowest FL value is taken to avoid incorrect sign indications. In our 
opinion this procedure is well suited to an automatic solution of structures 
containing heavy atoms. 

3. Steps of Structure Determinat ion  

1. Determine the space group and unit cell of the real structure 
2. Test for systematically strong intensities 
3. Determine the space group of the superposition structure (see 

examples) 
4. Determine the superposition structure psup(x, y, z) or at least the heavy 

atom position(s) in psup(x, y, z) 
5. Determine the complementary s t r u c t u r e  Pcom(X, y, Z) or the real 

structure 
5.1. Compute and discuss the Patterson function of the complemen- 

tary structure, if this corresponds to the systematically weak 
reflection 

5.2. Apply "Direct  methods" (see above) 
5.3. Apply the method of "linear structure factor equations" 
5.4. Resolve the ambiguity of the superposition structure using chemi- 

cal knowledge, such as minimum distance between atoms, know- 
ledge of groups, coordination polyhedra etc. 

4. Examples  

A. Demissidine hydroiodide 8 

Crystal data: C27H45NO'HI" ~CzHsOH 
orthorhombic: P212121; a = 23.0 .& b = 7.6 ~, c = 16.0 .& 

Z = 4  
Observed systematic intensity distribution: 

(I(hkl)~=2n} strong; (I(hkl)l=2,+~) weak. 



,7. C 

, 

@ '@ 
I 

a 5 

v .  1/4 I/4 

Fig. 5. (a) Space group symmetry of (a) real structure-P212~2 ~ ~ 7  building unit 
in y, I ~  in f, " ~  in l /2-y, .,~ in 112+y; the heavy atoms marked by circles. 

According to the chemical formula and number of molecules per unit 
cell there are 4 heavy atoms per unit cell, i.e. one per asymmetric unit. 
Thus the 2 heavy atoms related by a shift of c/2  (on account of systematic 
intensity distribution) must necessarily belong to the same set of 
equipoints. This results if and only if the atoms lie on screw dyads parallel 
to c (see Fig. 5), thus the set of equipoints in P212121 

x, y, z;½-x, g ~+z;½+x,½- y, ~; ~,~+ ' _ y,  ~ -  z 

specializes to 

3 1 (000, 00½)+¼, O, z; ~, ~, 

With z '  = 2z this corresponds within the unit cell a ' =  a, b ' =  b, c' = c/2  of 
D Z I c'] 
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(b) superposidon structure--Pmm,h derived from P 2 1 2 1 2 1 ;  the reduced weights of 
all building units in general position (triangles) to a quarter compared with the 

weight of the heavy atoms (circles) is symbolized by dashed lines. 



the superposition structure, to the equipoints 

1 0 , 3 1 f ,  4 ,  , Z ; ~ ,  5 ,  

Obviously (Fig. 5), any of these two points lies on mirror  planes 
perpendicular  to a '  and b'  and are related by an n-glide plane perpen-  
dicular to c'. Thus the space group of the superposition structure is 
Pmrnn. 

The same result could have been obtained by scanning the or thorhom-  
bic higher symmetry  space group for such equipoints. Then the set of 
special positions (a) 00z, 1 1 025 z would be found for Proton, which corres- 
ponds to the set found, after a shift of the origin by a'/4. 

The space group for the superposition structure thus obtained may now 
be tested with the usual space group tests, and indeed, the hk0-reflections 
with h + k = 2 n +  1 are weak (corresponding to the n-glide plane). The 
superposition structure thus contains for each of 4 symmetry related 
atoms (x, y, z) etc., of the real structure the following sets of 4 atoms. 

(x, y, z),  (x, 1 ~_ ( 5 -  x, y, z), ' y , , : ,  z), i ( ~ - x , y ,  ½+z)  

i.e. 4 atoms to any a tom of the real structures. This superposition 
structure would be obtained, if the usual heavy atom technique could be 
applied, and would certainly be difficult to interpret. 

The Patterson function gave, however,  not only the z-coordinate  of the 
heavy a tom but also hinted that it may not lie exactly on the dyad screw, 
but only approximately so; this was confirmed by the Patterson of the 
complementary  structure, obtained f rom the reflections with 1 = 2n + 1. 

This indicated a deviation of x i f rom ¼, and this deviation results in 
contribution of reflections with high values of h which even determine 
their phases. 

The iodine parameters  were refined and with the resulting phases a first 
Fourier synthesis of the complementary  structure was obtained in space 
group P21212I. 

This result was compared  with the known part  of the model and thus a 
part  of the structure deduced and used as a starting point for the final 
determination of the real structure. 

B. Piper idino-acet-m-bromo-ani l ide  9 
Crystal data: C13HlvN2OBr 
-orthorhombic: Pbca; a = 23.65 ,~, b = 12.66 ,~, c = 9.37 ,~; 

Z = 8  
Observed systematic intensity distribution: 
<I(hkl)h=2, ) strong; <I(hkl)h=~,,+l> weak 
Space group of Osup(x, y, z): Pbcrn with lattice parameters  

r a C t  = a = 7 '  b'=b, c. 

10 
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Fig. 6. (y, z )-proi.eclion of  tl2e superposition structure ~vith the pseudo-mirror-plane.  

The 3-dimensional Patterson function explained the systematic dis- 
tribution in the intensities by the particular position of the b romine-a tom 
on the a-glide plane with the fractional coordinates x = 0.159, y = 0.193, 
z = 0.25. With the known position of the bromine a tom (refined by least 
squares methods) the signs of most of the Fobs(hkl)~l~2,~ but not of the 
Fobs(hkI)j,=2,÷l were determined.  

With Fobs(hkl)~,=,_~ a 3-dimensional Fourier  synthesis of the superposi- 
tion structure was calculated. This psup(x, y, z) involves perpendicular  to c 
an additional mirror  plane, not existing in the real structure, through the 
bromine atom. Tha t  is why each max imum in the synthesis has a corres- 
ponding reflected one (Fig. 6). But only one of these pairs corresponds to 
an atom in the real structure. In addition many  maxima occurred in the 
Fourier  synthesis which do not refer  to atoms. Therefore  the interpreta-  
tion of the synthesis by the model  of the molecule failed. 

To preclude the spurious peaks in the Fourier  synthesis a spatial 
minimum function M4(x, y, z) ~° was derived from the Patterson function 
by using the known bromine-bromine  vectors. 

The  comparison of Fourier  synthesis and minimum function revealed to 
which of the pairs of peaks connected by the mirror  plane atoms could be 
assigned. These peaks of the superposition structure are shown in Fig. 7. 
Its (x, y)-projection is identical with the projection of the real structure. 
A model of the molecule enabled us to determine the z-coordinates  of 
the atoms by eliminating the ambiguity in the Fourier  synthesis. 

C. Acetamide  hemihydrobromide  11"12 

Crystal data: ( C H 3 C O N H 2 )  2. H B r  
monoclinic: P21/c,a=6.51.A, b = 8 . 6 4 A ,  c = 8 . 2 4 , ~ ,  /3=113.1  ° , 

Z - - 2 .  
<I(hkl)k+l=2~>, strong, (I(hkl)k÷l=2n÷l> weak. 

F rom Z = 2 and P2~/c it follows that  the bromine  a tom lies at the centre 
of symmetry  forming, taken by themselves, an A-cen t r ed  lattice. The  

11 
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Fig. 7. Peak coinciding in Fourier synthesis and minimum function. 

.Fobs(hkl)k+z=2,, correspond to a superposition structure with the space 
group A 2/m, which has a mirror  plane perpendicular  b in addition to the 
space group of the real structure. 

The  (x, z)-project ion of the superposition structure is identical to the 
corresponding projection of the real structure. This projection, calculated 
with Fobs(h01) revealed the position of all atoms. Although the determi-  
nation of the real structure in 3 dimensions with the help of a model did 
not seem feasible, due to the poor  data available, it was possible to 
determine approximate  y-coordinates of the atoms by means of two 
independent  systems of linear structure factor equations: 

F(h 11)~=2,+1 = K Y,j 4~ cos 2w(hxi + lzi) cos 2-n'yj (4.1) 

and 

F(h 1 l)z=~_n = - K  Y~j 4fj sin 2"n'(hxj + Iz~) sin 2"rryj (4.2) 

where K is the scaling factor. The  expressions 4~ cos 2"rr(hxj + l z i )=a i 
and -4[i sin 2~(hx i + Iz~)= b i may be calculated because x i and zj are 
known, whereas K cos 2,n'y i = C~ and K sin 2-tryj = S~ are the unknown 
values. From the known position of the h e a w  atom (bromine) most  
of the signs of the F(hll)l=2,+l could be  determined and a system of 
equations (4.1) with a twelvefold overdeterminat ion could be  set up 

F(hll)l=2.+l = ~ a~(hll)C~. (4.1) 
i 
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Fig.-8. Electron density projection p (x, z) of  acetamide hemi-hydrobromide. 

This system of equat ions  was solved by  least squares  technique.  Because  
the  F(h 1 I) are on  a relat ive scale the solutions C~ were  mult ipl ied with a 
cons tan t  ( l / K )  so that  (1/K)C~r = 1 is valid. 

Two values Yi = YJo and Yi = 1-y~o are in keeping  with the solutions 
C~ = (1/K)C'(yio) obtained.  To  find out  which of these two values is 
correct,  equat ions  of the type (4.2): 

F(h ll)l=2, = ~, bi(h l l )S  ~ (4.2) 
i 

were  used. The  b romine  a toms do not  contr ibute  to the F(h 11)i=2,. The  
signs of these s tructure factors  were  unknown.  The re fo re  the unobserved  
reflections F(h 1 l)l=a, and one  s t rong reflection F(h 1 l) 1 =a, were  used foxz 
sett ing up a system of in_homogeneous equat ions.  The  S i = (1/k)Sf were  
less accurate  than the Cj because  this system of equat ions  had only a 
twofold overde te rmina t ion .  That  is why the absolute values of  the y-  
coordinates  were  calculated f rom the C~, but the ambigui ty  was elimi- 
nated by the S t. The  results are shown in Fig. 9. St ructure  ref inement  
9roved these approx imate  values to be correct.  

¼ 
o; 

I 

1' I 
zl 

- - ¼  

i .y ¾ 

Fig. 9. The average structure p(yz) of acetamide hemihydrobromide calculated only 
• with Fobs(0kl) for k+  1 =2n.  Atomic position obtained with the help of SFE are 

marked by crosses,-the refined positions are marked by squares. 
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D. a -Ca lc iumte t rabora te -hydra te  13 

Crystal data: CAB204.4 H 2 0  
Monoclinic: Pc or P2/c, a = 5.86 ~ ,  b = 6.93/~,  c = 7.78 ,~,, /3 = 94°; 

Z = 2  
Observed systematic intensity distribution: 
(I(hkl)l=2,,) strong, (I(hkl)l=2,,+l) weak 

The intensity statistic of Howells,  Phillips and Rogers TM using the I(hkl) 
showed that the real structure has the centrosymmetric  space group P2/c. 

The Patterson function showed in agreement  with Z = 2 and P/2c that 
the calcium atom occupies a special position on the twofold rotation axis 

_ _ 1  with parameters  Xca = 0, Zc= - z and Yca approximately zero. This position 
is near  the c-glide plane and thus explains why the reflections 
I(hkl)~=~_,~+l are systematically weak. 

On the other hand the calcium atom determined most  of the signs of 
the F(hk0) .  The  Fourier  projection p(x, y) gave the positions of the 
oxygen and boron atoms. Because the signs of the F(hkl) with 1 = 2n + 1 
were not determined by the contribution of the calcium a tom the 
z -paramete rs  of the a toms could not be derived f rom a Fourier  synthesis 
based on the contributions of the calcium a tom to the sign of the F(hkl). 
But with the SFE-method  the approximate  z-coordinates  were easily 
obtained. 

From the structure factor formula  follows 

with F(hkl) = E (a~g'c~ g' + b~L'SJ L' for L = 1, 2 
J 

a~ l)= -4f~ sin 2rrhx, sin 2rrkyj 

b~ 1) = - 4 f / c o s  2~rhx~ sin 2rrkyj 

a~ =) = 4f /cos  2rrhx i cos 2rrky, 

b~ =) = -4f~ sin 2rrhx, cos 27rkyj 

C~ L) = cos 2rrLzi, S~ L) = sin 2~Lz,  

Two systems of equations were set up. For the first system F(hkl) and for 
the second F(hk2) were used. In each case the unobserved structure 
factors and one strong structure factor with arbitrary sign was used. These 
systems of equations gave approximate  values for C~ L) and S~ r-), by which 
Fc(hk/) were calculated. 

By comparing the Fc(hkl) with the Fo(hkl) the signs of more  structure 
factors could be determined.  The  corresponding equations were added to 
the previous systems of equations. In this way the overdeterminat ion of 
the systems of equations was increased and the  accuracy of the results 
improved. The final results obtained after several cycles are listed in 
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the Table. The last column contains the refined pa ramete r  for  comparison. 

Atom C~fl' S~ I) C} 2) S} 2' zj z i refined 

Ca - -  1.00 -1 .000  - -  0.250 0.25 
O1 - -  0.20 0.872 - -  0.036 0.0359 
02 1.00 0.51 0.703 0.756 0.070 0.0588 
O a 0.68 0.44 0.111 0.923 0.106 0.1042 
O 4 0.66 -0 .74  -0 .338  0.680 0.842 0.8193 

E. Dimethylaminomethylp inene  12.1s 

Crystal data: C13H24NBr 
monoclinic: P21, a = 11.37 ~ ,  b = 8.62 .&, c = 7 .48/~, /3  = 97.4; Z = 2 

The x- and z -parameters  of the bromine a tom were determined from 
the Patterson synthesis and refined by Fourier  methods.  The y coordinate 
was chosen arbitrarily as YBr =¼. The 3-dimensional Fourier  synthesis 
based on the phases of the Fobs(hkl) derived f rom the bromine contribu- 
tions is a superposit ion structure with the space group P21/m with an 
additional mirror  plane at y = ¼. For  the calculation of this Synthesis only 
Fo(hkl) for 0k4  were available because the crystals were very small. 
The  Fourier  synthesis revealed the positions of all non-hydrogen atoms, 
most  of them resolved in the x and z directions. Nearly all these atoms 
are, however,  located so closely to the pseudo mirror  plane that the peak 
corresponding to one a tom and its mirror  image were not separated but 
formed an elliptical m a x i m u m  with its peak on the mirror  plane (Fig. 10). 

The  main problem of the structure determination was to determine the 
small deviations of the light atoms f rom this pseudo mirror  plane. 

YT 

- .  c(9i 

0 

(W 

J Sin~ 
x 2 

Fig. 10. Comparison of the composite three dimensional electron density projected 
along 001 (only one full or dashed contour of the same height at arbitrary level is 
drawn) of atomic positions obtained by SFE (results from F(h21) are marked by 
open circles, from F(h31) by open squares, average values solid) and of the 

positions obtained by. least-squares refinement marked by crosses. 
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• Analysis of the  p e a k  shape resulted in rather inaccurate values of the 
deviations from the mirror plane. Better  values were obtained by the SFE 
method: To start with, the positions of all atoms in (x, z)-projection were 
refined by difference Fourier Synthesis to an R value of 0.16. Using the 
formulae 

and 

Ao(h21) = KlY. 2f, cos 2rr(hxj + 1%) cos 2w2yj . 
i 

Ao (h31) = Kz~ - 2f~ sin 27r(hxi-(- i zi) sin 27r3 yi 
i 

w h e re K1  and 1'22 are thescal ing factors, two systems of equations were 
ob ta ined tak ing  Ao(hkl) equal to Fo(hkl). This may be done Without 

-creating large errors since the Bo(hkl), to which the bromine i toms do 
not contribute, are expec ted  to be small. In these systems of equations 
only those  Ao(hkl) were used whose signs could be deduced from the 
contributions F~ir(hkl) of the bromine atoms: 
: With the abbreviations 

a ,  =.2fi cOS 27r(hx i + lz,) (-7~2), = K1 cos 2rr2y 

bj .- =2f~- sin 27r(hxj + 1%) _~.q!3)' = K,_ sin 2rr3 yj. 

the systems of .the equations ha~ee the form 

Fo(h21) = 2 ,-~2,, ajt~i. 
i 

Fo(h31) = ~ h S (3~' 
i 

The structure factors F0(h21) and Fo(h31) are on a relative scale. The 
scaling factors K1 and K2 were given such values that (1/K1)CBr(27-- 
(1/K2)S~ = 1. Four  .values f o r . t h e  coordinate yj of any atom are in 
keeping with 

C~ 2) = (1/K1)C~2)(y~o) namely 5 = ±Y~o, Yi = ±Yio +½- 

Two of these values f o r  any atom could be excluded by comparison with 
the Fourier synthesis of the superposition structure (see above). From the 
two remaining values one could be precluded for most of the atoms by 
using a model  of the molecule (Fig. 10). The accuracy of the y coordi- 
nates Obtained from the C~ 2) was improved using the results .obtained 
f rom .q(3) The coordinates thus obtained were sufficiently accurate for a - - / "  . 

starting set for a least squares refinement of tile real structure. 
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