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Series Preface 

The long term aim of the Commission on Crystallographic Teaching in 
establishing this pamphlet  p rogramme is to produce a large collection of 
short s tatements each dealing with a specific topic at a specific level. The 
emphasis is on a particular teaching approach and there may well, in time, 
be pamphlets  giving alternative teaching approaches to the same topic. It 
is not the function of the Commission to decide on the 'best '  approach 
but to make  all available so that teachers can make their own selection. 
Similarly, in due course, we hope that the same topics will be covered at 
more  than one level. 

The initial selection of ten pamphlets  published together represents a 
sample of the various levels and approaches and it is hoped that it will 
stimulate many more  people  to contribute to this scheme. It does not take 
very long to write a short pamphlet ,  but its value to someone teaching a 
topic for the first t ime can be very great. 

Each pamphle t  is prefaced by a s ta tement  of aims, level, necessary 
background,  etc. 

C. A. Taylor  
Editor  for the Commission 

The financial assistance of UNESCO, ICSU and of the International Union of Crystallog- 
raphy in publishing the pamphlets is gratefully acknowledged. 



Teaching Aims 

To show how rotation matrices and translation vectors can make a 
useful contribution to the understanding of symmetry in real space and its 
implications in reciprocal space. 

Level  

This approach would be most useful for students who already have 
some acquaintance with crystallography in undergraduate courses. 

Background 

This text is self-contained but assumes fzmiliarity with complex numbers 
and some knowledge of vectors and matrices, e.g. multiplication of row 
and column vectors or of two matrices. 

Practical Resources  

No specific practical resources are required. 

Time required for Teaching 

This text could be worked through on a serf-teaching basis in perhaps 
four or five hours. 



Rotation Matrices and Translation 
Vectors in Crystallography 

S. H o v m 6 1 1 e r  

1. Rotat ion  Matrices and Translation Vectors  

Rotat ion matrices (R) and translation vectors (t) are very powerful 
descriptions of the symmetry within the crystal and give aid in origin 
specification, in determining phase restrictions, systematic absences, sys- 
tematic enhancement  and semivariants,  in distinguishing centric and 
acentric reflections, general and spatial reflections and are helpful in 
making correct space group determinations.  

Every space group has a number  of equivalent positions. These may be 
from 1, as in P1, to 192, as in Fm3m, Fm3c, Fd3m and Fd3c. Every 
a tom at a point (x, y, z) is also found as a result of the symmetry at 
position (x', y', z'). The  equivalent positions are listed for all space groups 
in International Tables for X-ray Crystallography. The equivalent posi- 
tions are related to each other through S Y M M E T R Y  O P E R A T I O N S .  
Every  symmetry operat ion is a pair of R and t. One equivalent position is 
derived from another  through a rotation and a translation applied in that 
order.  The  word rotation stands not  only for 2-, 3-, 4- or 6-fold rotation, 
but  also for reflections in a point or in a plane. The  translations are along 
axes or diagonals of the unit cell. The relation between two equivalent 
positions can be denoted as: 

R -  y + t2 = y'  or shorter R . x + t = x ' .  (1) 

\ Z ]  \ t3/  Z t 

Example: 
The space group P1 has only one equivalent position (x, y, z). The only 

symmetry  operat ion in that space group is thus the unit matrix, I 

! = 1 , the translation vector  is t = . 

0 

Example: 
The space group P31 has 3 equivalent positions: (x, y, z), ( - y ,  x - y ,  



½+z) and ( y - x , - x ,  3+z). The symmetry operations are: 

(i°i) 0 (i -1 i ) 0  R 1  = 1 t l  = , R,_ = - 1 tz = , 

0 0 

R 3 -- - 0 t3 = • 

0 

Note that 

R2 • R 2 - -  R3 ,  t 2 + t 2  = t3, (R2)3 = R2  • R3 -- R3 • R 2 = R 1  = I .  

The different symmetry operations for each space group can always be 
derived f rom at the most  3 unique not further  reducible symmetry  
operations (3 because space is 3-dimensional).  All other symmetry opera-  
tions can be derived f rom the unique ones through: 

R i + t ,  = R m ( R , { R o [ - - .  (Rm + t ~ , ) . . .  ] + t 0 } + t , ) + t m ,  (2) 

where m, n and o can be 1, 2 or 3 for the 3 unique symmetry operations. 

2 .  T h e  S t r u c t u r e  F a c t o r  

For  every space group and every structure and every reflection (hkl) we 
know: 

N 

F(hkl) = ~ ~ .  exp [2~(h/q. + kyj + Izj)], 

where 

F(hkl) is the amplitude and phase for a reflection with indices (h, k, I). 
F(hkl) is called the structure factor. 
is the scattering factor of a tom ]. 

N is the number  of atoms in the unit cell 
x~yjz i are the x-, y- and z-coordinates  of a tom j. 

In the following (hx + ky + / z )  is often written hx to make  the formulae 
shorter. 

The structure factor depends on 

1. The kinds of atoms in the unit cell. 
2. The position of the atoms within the unit cell. 

Since the space group symmetry  gives information about  the relative 
positions of the atoms, F(hkl) will become dependent  on the symmetry.  
This holds both for the phase and ampli tude of F(hkl). The form of this 
dependence will come clear f rom the following pages. 
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3. Special  Ref lec t ions  

In a space group with n equivalent positions (Rix+ ti), i = 1, 2 • • • n the 
structure factor can be calculated through summing up the contributions 
to it in the following way: 

N/n  N/n  

F ( h ) =  ~ fi" exp ( 2 ~ r i . h - x l ) +  ~ fi" exp ( 2 7 r , - h - x 2 ) + - -  "x.) (4) 
i=1 i=1 

i.e. first all the atoms of the first equivalent position are added, then those 
atoms related to the first ones through R 2 + t  2 are added, and so on until 
all a toms within the unit cell are added. 

According to (1) every equivalent position can be written as R x + t .  If 
this expression is inserted into (4), and we for the sake of simplicity look 
at a space group with 2 equivalent positions, we obtain: 

N/2 N/2 

F(h) -- ~ f~ exp (2-rrihx)+ ~ fi exp (2 wihERx + t]). (5) 
i=1 i=1 

The second of these sums can be rewritten, since 

exp (27rih[Rx + t]) = exp (27ri[ h Rx + ht]) 

= exp (2~rihRx+ 27riht) 

= exp (27r/hRx) - exp (2~riht). (6) 

If (5) and (6) are combined we get: 

N/2 N/2 

FOl) = ~ fi exp (2~-ihx)+exp (2zriht) • }'1 fi exp (2zrihRx). (7) 
i=1 i = l  

It is obvious that in the general case the contributions from the two parts 
of the structure differ, both in amplitude and phase. If, however,  the two 
contributions are equally large, i.e. have identical amplitudes, there will 
be several interesting situations. The amplitudes of two (or more) parts of 
the structure are equal if and only ff hill  = h or h~ .  = - h for at least one 
Ri, i~-l. 

4.  P h a s e  Restr ict ions  

In the general case, where the contributions f rom the two parts of the 
unit cell have different amplitudes, F(hkl) can be represented as the sum 
of two vectors of different lengths ( =  amplitude) and different directions 
( =  phase) as in Fig. 1. 

The phase of F(hkl) can take on any value between 0 and 360 °. The 
special case that h R =  - h  will result in a restriction of the possible value 
of the phase of F(hkl). This is called P H A S E  R E S T R I C T I O N .  If the 
phase of the first contribution in (7) is a and ht = 0, then the phase of the 



I 
h) 

Fig. 1. The structure factor F(h)= F(hkl)  represented as the vector sum of the 
contributions from two parts of the unit cell. In the general case these two parts differ 

both in amplitude and phas e . 

second contribution becomes - a .  As is clear from Fig. 2 the only 
possible phase values for the sum of these two contributions are 0 and 
180 °, or if expressed in radians 0 and 7r. If - 9 0 < a  < 9 0  °, the phase of 
F(hkl) becomes 0 °, and if 9 0 < c x < 2 7 0  ° the phase of F(hkl) will be 180 °. 
the phase of F(hkl) is denoted q~ here in order to distinguish it from the 
phase of the contributions. 

We say (hk/) has a phase restriction of 0 ( +  180°). 

All reflections in centrosymmetric  space groups have phase restriction 0 
(+180°).  Most reflections in non-centrosymmetr ic  space groups lack 

O i  

w F(h),  ~ = 0 

Fig. 2. In the special case where two halves of the unit cell have equal amplitude 
contribution, but opposite phases (a and -a) ,  the resulting reflection will have a 

phase restriction. 



phase restriction, but  some special reflections have phase  restriction. The  
phase is not  necessarily restr icted to 0 ( +  180°) - - such  phase restrictions 
as 45 ° , 60 ° , 90 ° and so on exist. All phase restrictions are + 1 8 0  ° or  
modulo  180 ° . In o rder  to clarify this an example  is worked  out  in some 
detail. 

W h a t  is the phase restriction of  (h01) in space ~ o u p  P3121 (No 152)? 
The  equivalent  posit ions are: 

(x, y, z) ( - y ,  x - y, ½+ z), (y - x, - x ,  3+  z), 

(y, x, - z )  ( -  x,'y - x, 1/3 - Z) and ( x -  y, - y ,  ~ -  z). 

The rota t ion matr ices and translation vectors  are:  

(!Oo 1 oO)(O) 1 oO 
)< 

(i 11 o°)(°)o (_!lo)(O)o o o 
0 1 ½  - 0 1 3  

(i lo i)(!)(-i ° -  o°)(°)o (i o°)(°)o 
0 -  0 - 1  ~ 0 - 1  } 

While  the equivalent  posit ions are derived f rom the rota t ion matr ices and 
translat ion vectors  th rough  R x + t  the equivaler~t reflections are derived 
th rough  h ' =  hR.  While (xyz) was writ ten as a column vector ,  (hk/) must  
be writ ten as a row vector .  

The  reflections equivalent  to (hk/) are:  

(!0!) (i !) (hkl). 1 = (hk/), (hk/) • - 1  = (k, - h  - k, l) 

0 0 

and so on, giving (hkl), (k, h - k ,  l), ( - h - k ,  h, l), (k, h , - l ) ,  ( - h - k ,  k , - l )  
and ( h , - h - k , - l ) .  The reflection (h01) is equivalent  to ( 0 , - h ,  1), 
( - h ,  h, 1), (0, h , - 1 ) ,  ( - h ,  0 , - 1 )  and ( h , - h , - 1 ) .  All these reflections 
have equal  ampli tude,  but  their phases  m a y  differ, as we shall see later. 

Phase  restrictions occur  if and only if (hkl) Ri = ( - h ,  - k ,  - l ) ,  that  is 
when  the Friedel  pair  of a reflection is genera ted  by any Ri. If h5 ~ 0 only 
115 creates a Friedel pair  of (h01).  

These  results are in t roduced into (7). If the first summat ion  over  half 
the a toms in the unit  cell gives a contr ibut ion to the s t ructure  fac tor  of 
ampli tude IF] and  phase  ~, the o ther  half of the a toms in the unit cell will 
give a contr ibut ion of ampl i tude ]F] but  with a phase  exp (27riht) • ( - o 0 .  
The  value exp (27riht) is short  for  exp (27r/[ht l+ kt2+It3]) which in this 
case equals  exp (27ri[h • 0 +  k • 0 +  1 -½]) or  exp (27ri/3) or + 1 2 0  ° (note the 
+ sign!). The  second sum thus has a phase  of 120 ° -  ~. As  is clear f rom 



F(h), ~o = 6 0  ° 

Fig. 3. A reflection with a phase restriction other than 0 or 180 °. 

the geometrical interpretation in Fig. 3, the resulting structure factor will 
take on either the phase 60 ° or 240 ° . 

Reflections with phase restrictions are more often very strong or very 
weak than general reflections. This is due to the fact that the two 
contributions are either both large or both small in the case of a phase 
restricted reflection, whereas in the general case their amplitudes are 
independent. On the basis of their probability to take on extreme 
amplitude values all reflections are sorted into two categories: acentric or 
centric reflections. Reflections without phase restriction are called acen- 
tric and reflections with phase restrictions are called centric. The proba- 
bility distribution of centric and acentric reflections is so different that it is 
often possible to distinguish between the space groups P1 and P i  only 
from intensity data. The concept  centric should not be mixed up with 
centrosymmetfic or centred (also spelled centered). While centrosymmet- 
tic refers to a space group, centric refers only to single reflections. 
Although all reflections in centrosymmetric space groups are centric, not 
all reflections in non-centrosymmetric space groups are acentfic. 

5.  Sys t emat i c  A b s e n c e s  

If h" R = h and h -  t ~ 0 (modulo 1) then the reflection h is extinct, or 
absent, i.e. its amplitude is --0. If we have a 2-fold symmetry, like in P21 
the two contributions to the structure factor are equally large but have 
exactly opposite directions and they cancel each other. This is illustrated 
in Fig. 4a. In space groups with 3-fold symmetry, such as P31 there will 
be systematic absences for reflections where h R =  h and h -  - i t - g  or 2, as 
illustrated in Fig. 4. Because of the 3-fold symmetry the atoms are 



a b 

J 

c d 

Fig. 4. The rise of systematic absences in space groups with (a) 2-fold, (b) 3-fold, 
(c) 4-fold and (d) 6-fold symmetry elements. 

divided into 3 groups rather than 2 as was the case with a 2-fold 
symmetry. With 4- or 6-fold symmetry the situation is much like that of 
the 3-fold, only we now have 4 or 6 contributions, each unlike in size but 
differing by 90 ° and 60 ° respectively. See Figs. 4c and 4d. 

6. Systematic Enhancement, Epsilon 
The third and last case of special reflections is where hR  = h and ht = 0 

(modulo 1). The 2 (or 3 or 4 or 6 or more) contributions are equally large 
and have the same phase and thus enlarge each other. The expected 
intensity ( I - -  F 2) of such a reflection is 2 (or 3 or 4 or 6 or more) times as 
large as that of a general reflection. The factor of enhancement is called 
epsilon (e) and is easily derived as the number of rotation matrices Ri 
that can be applied on h and give back h. 
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Fig. 5. A systematically enhanced reqection is one where the two halves of a unit 
cell scatter with equal amplitudes and in phase. 

Example: 
In P2 there are two symmetry operations: 

(i°!) (!) (i ° i ) ( ! )  R I =  1 t l =  and RE= 1 to_= . 

0 0 -- 

All reflections of the type (0 k 0) will fulfil the criteria hR = h and ht = 0 
for both the symmetry operations, and thus these reflections have e = 2. It 
is clear that e is not the effect of systematic absences. See Fig. 5. 

7 .  P h a s e  Shif ts  

In analogy with equivalent positions, and as an effect of these, there are 
equivalent reflections. Two equivalent reflections, h and h' always have 
the same amplitudes, i.e. IF(h)[ = IF0a') I, but their phases may differ. The 
phases are, however, related to each other in an easily deduced way. The 
difference in phase between two equivalent reflections is called PHASE 
SHIFT. How the phase shift arises and how great it is will be shown now. 

Two reflections h and  h' are equivalent if there exists an R~ such that 
h ' =  + h R  i. Due to Friedel's law h is always equivalent to - h .  The phases 
of two equivalent reflections are related as: 

F(h') -- F(hR) = exp (2~riht) • F01). 

Proof: 
The proof is carried out for a 2-fold symmetry for the sake of 

simplicity. A similar strategy can be used for higher symmetries. If x and 
R x + t  are equivalent positions, then R - l ( x - t )  is also an equivalent 
position, since just as well as x gives rise to x', x' gives rise to x, by the 



same symmetry operation: 

R - ~ ( [ R x + t ] - t )  = R - ~ ( R x + t -  t) = R - a  ( R x )  = ( R - X R )  • x = x .  

R -1 is the inverse matrix of R, i.e. R - I R = I .  We shall make use of this 
when we calculate F(h ' )=  F(hR): 

N 

F(h')--  ~ fi exp (2wihRx). (8) 
i = 1  

In analogy with (5) we now sum over half the unit cell: 
N/2 NI2 

F(if)  = ~ ~ exp (2~rihRx)+ ~ fj exp (2~'ihR[R-l{x-t}]). (9) 
i = 1  i = 1  

The second sum in (9) is easily simplified to (10) making use of RR -1 = | .  
N/2 NI2 

f~ exp (2~rih[x-t]) = exp (-2~riht) • ~ fi exp (27rihx). (10) 
i = 1  i - 1  

The term exp (-2-tr/ht) can be brought outside the summation since it is a 
constant. Note the minus sign of the exponent! We now get 

NI2 N/2 

F(h') = exp (-2-n'iht) • ~ fi exp (2~-ihx)+ ~ fj. exp (2-rrihRx). (11) 
i=1  i=1 

(11) is compared to (7): 

N/2 N/2 

F(h) = ~ fj exp (27rihx)+exp (27r/ht) • ~, f /exp (2~rihRx). (7) 
j=~ j = l  

The two expressions (11) and (7) are identical except for the phase term 
exp (-2-n-ihr) which is applied on both sums of (7) in order to get (11). 
Thus F(h) and F(h') have equal amplitudes but differ in phase by 
exp (2-rriht). 

The phase shift is called Sh and is equal to exp (--2-rriht). Note the 

minus sign! F(h') = exp (-2zriht) • F0a). (12) 

This is often written in other forms, denoting.the phase of F0a) q~(h): 

q~(h')=q~(h)+Sb or ~p(h')=q~(h)-360°.ht .  

Since the phase shift depends on the translation vector, all phases of 
equivalent reflections derived through symmetry operations with transla- 
tion vector = 0, are equal. An example of equivalent reflections with 
different phases will be given. Derive the phases of all reflections equival- 
ent to (h 0 1) in space group P3121. The equivalent reflections were 
derived on page 5. 

(3 0 1),(0 - 3  1 ) , ( -3  3 1),(0 3 - 1 ) , ( - 3  0 -1)  and (3 - 3 . - 1 ) .  



If the first reflection, (3 0 1), is +60 °, then the second becomes 

6 0 ° - 3 6 0  °.  (3 • 0 + 0  • 0 + 1  - ½ ) = 6 0 ° - 3 6 0  °.  1_ 5 -  6 0 ° -  1200 = - 6 0 ° .  

In a similar way the phases of the other  reflections are 6 0 0 - 2 4 0  ° =  180 °, 
6 0 ° - 0  ° = 60 °, 60 ° -  120 ° =  - 6 0  ° and 6 0 0 - 2 4 0  ° = 180 °. 

Note  that the fifth reflection ( - 3  0 - 1 )  also is the Friedel pair of 
(3 0 1). Due  to Friedel 's  law the phase of any reflection must be minus 
that of its Friedel pair. In all cases where  a symmetry  operat ion generates 
an equivalent reflection which is also its Friedel mate,  we have two 
indications of the phase value. If the phase of (hkl) is ~ then the phase of 
( - h  - k  - l )  is -q~ due to Friedel 's  law, and the phase is q ; - S a  due to the 
phrase shift. We now have a system of equations: 

( - h - k - l ) =  - , 0  

( - h - k - l ) = ~ + S h  

with the solution - - ~ = ~ P + S h ,  i.e. ~O=Sh/2 (modulo 180 ° since Sh of 
course is modulo 360°). This alternative way of deriving phase restrictions 
is clearly more  elegant than that of page 4. 

In a similar way the systematically absent reflections can be shown to 
be exactly those reflections which have two contradictory phase indica- 
tions. In P21 (0 k 0)-reflections with k odd are extinct. The equivalent 
positions of P21 are (x, y, z) and ( -x ,  ½+ y , - z ) .  The reflections (hk/) and 
( - h ,  k , - l )  are equivalent and the phase shift is k/2. A reflection like 
(0 3 0) is thus equivalent to itself, but the equivalent reflection generated 
has a phase differing f rom the original one by 180 °. The phase of (0 3 0) 
is at the same time q~ and ~o + 180 °, which of course is only possible if the 
amplitude of the reflection is 0! 
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