

The core CIF dictionary and the mmCIF dictionary

Brian McMahon

International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, UK bm@iucr.org

An overview is given of the core and mmCIF dictionaries and how they are arranged in categories related to different aspects of the crystallographic experiment. The core categories will be described in detail. mmCIF categories describing protein structure will be introduced in a general way for a plenary audience (more specific macromolecular structure considerations will be addressed in the presentation by John Berrisford).

Core CIF dictionary

- First published as integral part of the CIF standard (1991)
- Includes the data items needed to describe any crystal structure
- Includes discrete experimental data from single-crystal diffraction (structure factors)
- Includes essential experimental metadata
- Permits some chemical characterisation of the crystal
- Allows documentation in the form of a journal article
- Defines a general data model, extensible through other dictionaries

The first two slides give a brief overview of the material that will be covered in this lecture. The first part, on the core CIF dictionary, will give a historical background to the development of a standard describing essential data items in a machine-readable format. We will aim to explain something of the design requirements and choices (pointing out that the approach was designed by people who had also been involved in writing crystallographic structure solution packages, and so had an excellent working knowledge of the input/output requirements and capabilities of such packages). The core dictionary aims to cover a large part of the information needed to describe any reasonably well-ordered crystal structure, and is particularly well tuned to structure determination of small-unit-cell structures by single-crystal diffraction (especially of X-rays). Students will be exposed to some of the detail of assigned categories and data item definitions, but the main objective is to instill an understanding of why an orderly classification of data items is beneficial.

Macromolecular CIF (mmCIF) dictionary

- Commissioned soon after publication of core dictionary (1991)
- Long development period (published 1997)
- Attempt to capture all relevant information from an MX experiment
- Describe secondary structure of proteins and nucleic acids
- Accommodate all the data and metadata in a PDB entry
- Required more complex data model (DDL2)
- Became basis for the PDB database schema, subsequently expanded

This slide is intended to parallel the first, showing how the same principles were applied in the field of protein (and nucleic acid) crystallography. As this is a plenary lecture, it will not go too deeply into the complexities of protein structure determination; nevertheless, it is felt to be useful to expose non-macromolecular crystallographers to some sense of what mmCIF tries to do that is different from the core and other small-unit-cell extension dictionaries. A particular complication in the early adoption of mmCIF was that it sought to improve the description of structures beyond what was then available in the PDB format. As such, it was poorly tuned to existing software, which hindered its early adoption. Because of a relatively wide spread of computation approaches and a more diverse user community, it needed to be developed in a more flexible and rapidly growing way than the core dictionary.

Core CIF dictionary – history

- Many different software authors in the 1960s/70s/80s
- Each program had its own format
- Each diffractometer produced data files with their own formats
- Need for programs to pass data from one to the next ('pipeline')
- Attempts to settle on a common standard
- Standard Crystallographic File Structure (SCFS)
 - Brown, I. D. (1988). Standard Crystallographic File Structure-87. Acta Cryst. A44, 232.
- Crystallographic Information File (CIF)
 - Hall, S. R., Allen, F. H. & Brown, I. D. (1991). *The crystallographic information file (CIF): a new standard archive file for crystallography. Acta Cryst.* (1991). A**47**, 655-685

In this slide we do not give a detailed history of the evolution of the CIF standard (which may be covered in other course lectures), but we want to emphasise a few things. There were already many ways to describe the specific pieces of information ("data items") that each program required. Inevitability there was some similarity (there is really only one way to calculate and represent a unit-cell volume) but also much divergence (different programs took different approaches as to how to describe the site occupancy of an atom located on a crystallographic special position). There was also a growing need to handle diverse types of data as program systems were developed to address all the challenges along the structure solution and refinement workflow. CIF stood on the shoulders of its predecessors – of particular importance were the classification and categorisation of the data items that were needed by the SCFS project, backed up by the requirements for publication of *Acta Crystallographica* and the requirements for database deposition of the CCDC; and the data storage approach within the *Xtal* suite of programs developed and managed by Syd Hall and others.

Organisation of the core dictionary

Торіс	Category group	Subject covered		
	CELL	Unit cell		
(a) Experimental measurements	DIFFRN	Diffraction experiment		
	EXPTL	Experimental conditions		
(b) Analysis	REFINE	Refinement procedures		
	REFLN	Reflection measurements		
	ATOM	Atom sites		
(c) Atomicity, chemistry and structure	CHEMICAL	Chemical properties and nomenclature		
	GEOM	Geometry of atom sites		
	SYMMETRY	Symmetry information		
	VALENCE	Bond-valence information		
	CITATION	Bibliographic references		
	COMPUTING	Computational details of the experiment		
(d) Publication	DATABASE	Database information		
	JOURNAL	Journal housekeeping		
	PUBL	Contents of a published article		
(e) File metadata	AUDIT	Dictionary maintenance and identification		

We discuss the organisation of the core dictionary thematically, using the approach to classification described in *International Tables* G (Chapter 3.2). In practice the dictionary is organised strictly alphabetically, but this approach may help to appreciate its overall design. "Category groups" are not formally defined in DDL1, the original formalism used for the core dictionary, but they are formal structures in the mmCIF category and can usefully be adopted informally to better understand the core dictionary structure.

Experimental measurements – the CELL group

CELL category

_cell_angle_alpha _cell_angle_beta _cell_angle_gamma _cell_formula_units_Z _cell_length_a _cell_length_b _cell_length_c _cell_measurement_pressure _cell_measurement_radiation _cell_measurement_reflns_used _cell_measurement_temperature _cell_measurement_theta_max _cell_measurement_theta_min _cell_measurement_wavelength _cell_reciprocal_angle_alpha _cell_reciprocal_angle_beta _cell_reciprocal_angle_gamma _cell_reciprocal_length_a _cell_reciprocal_length_b _cell_reciprocal_length_c _cell_special_details _cell_volume

CELL_MEASUREMENT_REFLN category

_cell_measurement_refln_index_h _cell_measurement_refln_index_k _cell_measurement_refln_index_1

EXAMPLE

_cell_length_a	20.572(3)	
_cell_length_b	3.9052(5)	
_cell_length_c	14.811(3)	
_cell_angle_alpha	90	
_cell_angle_beta	110.95(2)	
_cell_angle_gamma	90	
_cell_volume	1111.2(4)	
_cell_formula_uni	ts_Z 8	
_cell_measurement	_reflns_used	2315
_cell_measurement	_theta_min	2.9395
_cell_measurement	_theta_max	30.5514
_cell_measurement	_temperature	298(2)

Portalone, G. (2019). 6-Methyluracil: a redetermination of polymorph (II). *IUCrData*, **4**, x190861.

There are two categories in this group, describing the unit cell and its measurement. CELL_MEASUREMENT_REFLN is a category on its own, because it loops the reflections used in the determination of the unit cell on a diffractometer. In practice these do not seem to be reported much. The CELL category combines both aspects of the experimental conditions and the refined cell parameters, which is arguably a property of the derived structure model. Perhaps the thinking is that determining the cell parameters establishes input data for the structure determination on a par with other experimental conditions. In any case, the values required by structure determination software are well characterised by their individual definitions in the dictionary.

Experimental measurements – DIFFRN group

DIFFRN ORIENT REFLN

The DIFFRN family of categories relate to the diffraction experiment, and in principle cover any instrument, technique or methodology. They are grouped roughly according to the scheme in the slide. The DIFFRN category describes the ambient conditions, crystal treatment and any noteworthy aspects of diffraction point symmetry, systematic absences, inferred space group etc. The categories "before the crystal" characterise the radiation probe (not always X-rays) and its source. The categories "at the crystal" describe the goniometer or other mounting device and the relationship between the crystal-centric reference frame and coordinates given in the frame of reference of the instrumentation. "After the crystal" comes some information about the radiation detector, while the intensity measurements themselves are listed using the DIFFRN_REFLN and related categories. These categories were developed to record peak intensities from point diffractometers; nowadays raw diffraction images can be described *in toto* within the imgCIF ("image CIF") framework.

Experimental measurements – EXPTL group

EXPTL

EXPTL CRYSTAL

Although very many of the CIF data categories describe aspects of the experimental setup and conduct, the categories in the "EXPTL" group itself are largely concerned with the crystal itself – its habit, size, density, preparation and treatment. Clearly they are concerned with single crystals (powders are described in separate (PD_SPEC) categories in the pdCIF dictionary, for example).

Analysis – structure refinement

REFINE

_refine_diff_density_max
_refine_diff_density_min
_refine_diff_density_rms
_refine_ls_abs_structure_details
_refine_ls_abs_structure_Flack
_refine_ls_abs_structure_Rogers
_refine_ls_d_res_high
_refine_ls_d_res_low
_refine_ls_extinction_coef
_refine_ls_extinction_expression
_refine_ls_extinction_method
_refine_ls_goodness_of_fit_all
_refine_ls_goodness_of_fit_gt
_refine_ls_goodness_of_fit_obs
_refine_ls_goodness_of_fit_ref
_refine_ls_hydrogen_treatment
_refine_ls_matrix_type
_refine_ls_number_constraints
_refine_ls_number_parameters

_refine_ls_number_reflns _refine_ls_number_restraints _refine_ls_R_factor_all _refine_ls_R_factor_gt _refine_ls_R_factor_obs _refine_ls_R_Fsqd_factor _refine_ls_R_I_factor _refine_ls_restrained_S_all _refine_ls_restrained_S_gt _refine_ls_restrained_S_obs _refine_ls_shift/esd_max _refine_ls_shift/esd_mean _refine_ls_shift/su_max _refine_ls_shift/su_max_lt _refine_ls_shift/su_mean _refine_ls_shift/su_mean_lt _refine_ls_structure_factor_coef _refine_ls_weighting_details _refine_ls_weighting_scheme _refine_ls_wR_factor_all _refine_ls_wR_factor_gt

_refine_ls_wR_factor_gt
_refine_ls_wR_factor_obs
_refine_ls_wR_factor_ref
_refine_special_details

REFINE_LS_CLASS

_refine_ls_class_code
_refine_ls_class_code
_refine_ls_class_d_res_high
_refine_ls_class_d_res_low
_refine_ls_class_R_factor_all
_refine_ls_class_R_factor_gt
_refine_ls_class_R_Fsqd_factor
_refine_ls_class_R_I_factor
_refine_ls_class_wR_factor_all

There are a large number of data items relating to the structure refinement, as the metrics produced during least-squares refinement provide some indication of the likely quality of the resulting structure model. The "REFINE_LS_CLASS" items allow for handling particular groups of intensities ("reflection classes") in different ways. This can be useful, for example, in identifying the reflections from different phases of a composite material. Note in this list the presence of italicised data names. Their use is deprecated (in most of these examples the name has been changed to reflect preferred terminology); but as CIF is intended as an archive mechanism, the deprecated items are retained in the dictionary and attributes are added to indicate their replacements.

Analysis – reflections used in refinement

Groups of reflections

REFLNS

_reflns_d_resolution_high
_reflns_d_resolution_low
_reflns_Friedel_coverage
_reflns_limit_h_max
_reflns_limit_h_min
_reflns_limit_k_max
_reflns_limit_k_min
_reflns_limit_l_max
_reflns_limit_l_min
_reflns_number_gt
_reflns_number_total
_reflns_special_details
_reflns_threshold_expression

REFLNS_CLASS

_reflns_class_code
_reflns_class_d_res_high
_reflns_class_d_res_low
_reflns_class_description
_reflns_class_number_gt
_reflns_class_number_total
_reflns_class_R_factor_all
_reflns_class_R_factor_gt
_reflns_class_R_Fsqd_factor
_reflns_class_R_I_factor
_reflns_class_wR_factor_all

REFLNS SCALE

_reflns_scale_group_code
_reflns_scale_meas_F
_reflns_scale_meas_F_squared
_reflns_scale_meas_intensity

REFLNS_SHELL

_reflns_shell_d_res_high
_reflns_shell_d_res_low
_reflns_shell_meanI_over_uI_all
_reflns_shell_meanI_over_uI_gt
_reflns_shell_number_measured_all
_reflns_shell_number_measured_gt
_reflns_shell_number_possible
_reflns_shell_number_unique_all
_reflns_shell_number_unique_gt
_reflns_shell_percent_possible_all
_reflns_shell_percent_possible_gt
_reflns_shell_percent_possible_obs
_reflns_shell_Rmerge_F_all
_reflns_shell_Rmerge_F_gt
_reflns_shell_Rmerge_I_all
_reflns_shell_Rmerge_I_gt

The reflections actually used for the (final) refinement are stored in a CIF as a loop in the REFLN category. The various "REFLNS_" categories provide coarse-grained summaries of the reflections, either in total or as split up by resolution shell (REFLNS_SHELL), by scale group (REFLNS_SCALE) or by some other arbitrary category (REFLNS_SCALE). Note that, for conciseness of display, deprecated data names have been dropped from this and succeeding lists.

Analysis – reflections used in refinement

Individual reflections - structure factors

REFLN		Exam					
_refln_index_h _refln_index_k _refln_index_l _refln_A_calc _refln_A_meas	_refln_mean_path_length_tbar _refln_phase_calc _refln_phase_meas _refln_refinement_status _refln_scale_group_code refln_sint/lambda	_refln_index_h _refln_index_k _refln_index_l _refln_F_squared_calc _refln_F_squared_meas _refln_F_squared_sigma refln observed status					
_refln_sint/lambda _refln_B_calc _refln_sint/lambda _refln_B_meas _refln_symmetry_epsilon _refln_class_code _refln_symmetry_multiplicity _refln_crystal_id _refln_wavelength _refln_f_calc _ _refln_F_meas _refln_F_sigma _refln_F_sigma _refln_F_sigma	ref 4 6 8 10 12 14 16 18 1 3	ln_ol 0 0 0 0 0 0 0 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0	ed_status 3307.04 11608.51 7328.16 72.13 1309.75 92.59 0.64 493.14 271.31 3736.66	$\begin{array}{c} 2953.75\\ 11255.44\\ 7688.11\\ 76.83\\ 1424.38\\ 64.57\\ 3.80\\ 464.68\\ 338.59\\ 4174.68\end{array}$	$\begin{array}{cccc} 43.53 & 0 \\ 106.34 & 0 \\ 62.41 & 0 \\ 7.67 & 0 \\ 30.84 & 0 \\ 7.43 & 0 \\ 2.56 & 0 \\ 28.68 & 0 \\ 6.55 & 0 \\ 29.94 & 0 \end{array}$	
_refln_F_squared_wares _refln_F_squared_sigm _refln_include_status _refln_intensity_calc _refln_intensity_meas _refln_intensity_sigm	a na : :	5 7	1 1 ne, G.	0 0 (2019).	10.36 562.07 6-Methyluracil: a red	4174.68 10.77 658.90 etermination of polyr	0.61 o 9.17 o

Structure factor listings generally comprise the intensities (or *F* squared values), the phases being generally unknown. The CIF dictionary does have provision for listing calculated and measured phases, for listing the *A* and *B* structure-factor components, wavelength associated with individual reflections (in the case of Laue, energy-dispersive or polychromatic methods), etc. In practice, most single-crystal monochromatic structure determinations have listings such as those shown in the example, which is from *SHELXL*-2014. Note that this still uses the deprecated data name _refln_observed_status instead of the preferred _refln_include_status.

ATOM_SITES

_atom_sites_fract_tran_matrix_11
_atom_sites_fract_tran_matrix_12
_atom_sites_fract_tran_matrix_13
_atom_sites_fract_tran_matrix_21
_atom_sites_fract_tran_matrix_22
_atom_sites_fract_tran_matrix_23
_atom_sites_fract_tran_matrix_31
_atom_sites_fract_tran_matrix_32
_atom_sites_fract_tran_matrix_33
_atom_sites_Cartn_tran_matrix_11
_atom_sites_Cartn_tran_matrix_12
_atom_sites_Cartn_tran_matrix_13
_atom_sites_Cartn_tran_matrix_21
_atom_sites_Cartn_tran_matrix_22
_atom_sites_Cartn_tran_matrix_23
_atom_sites_Cartn_tran_matrix_31
_atom_sites_Cartn_tran_matrix_32
_atom_sites_Cartn_tran_matrix_33
_atom_sites_Cartn_tran_vector_1
_atom_sites_Cartn_tran_vector_2
_atom_sites_Cartn_tran_vector_3
_atom_sites_Cartn_transform_axes

_atom_sites_fract_tran_vector_1 _atom_sites_fract_tran_vector_2 _atom_sites_fract_tran_vector_3 _atom_sites_solution_hydrogens _atom_sites_solution_primary _atom_sites_solution_secondary _atom_sites_special_details

ATOM_TYPE

_atom_type_symbol
_atom_type_analytical_mass_%
_atom_type_description
_atom_type_number_in_cell
_atom_type_oxidation_number
_atom_type_radius_bond
_atom_type_radius_contact
_atom_type_scat_Cromer_Mann_a1
_atom_type_scat_Cromer_Mann_a2
_atom_type_scat_Cromer_Mann_a3
_atom_type_scat_Cromer_Mann_a4
_atom_type_scat_Cromer_Mann_b1
_atom_type_scat_Cromer_Mann_b2
_atom_type_scat_Cromer_Mann_b3
_atom_type_scat_Cromer_Mann_b4
_atom_type_scat_Cromer_Mann_c
_atom_type_scat_dispersion_imag
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_source
_atom_type_scat_length_neutron
_atom_type_scat_source
_atom_type_scat_versus_stol_list

Most end-users are most interested in the atomic positional coordinates and anisotropic displacement parameters, which effectively describe the threedimensional molecule or coordinated structure. Most of this information is in a single category (or looped list of data items), which we shall consider in a moment. For a full understanding of the structure described in the ATOM_SITE loop, one also needs to know the transformation matrix between Cartesian and fractional cell coordinates (described in the ATOM_SITES loop), as well as the elemental identity of the atom or atoms occupying each site. The latter can be inferred from the information in the ATOM_TYPE list, which gives scattering coefficients and other properties of each atom type. It is worth remembering that (averaged throughout the whole crystal) the "atoms" at each site may appear as an average of different elements or may have in some sense "unusual" scattering coefficients. All such factors can be recorded in the ATOM_TYPE data.

ATOM_SITE

_atom_site_label
_atom_site_adp_type
_atom_site_aniso_B_11
_atom_site_aniso_B_12
_atom_site_aniso_B_13
_atom_site_aniso_B_22
_atom_site_aniso_B_23
_atom_site_aniso_B_33
_atom_site_aniso_label
_atom_site_aniso_ratio
_atom_site_aniso_type_symbol
_atom_site_aniso_U_11
_atom_site_aniso_U_12
_atom_site_aniso_U_13
_atom_site_aniso_U_22
_atom_site_aniso_U_23
_atom_site_aniso_U_33
_atom_site_attached_hydrogens
_atom_site_B_equiv_geom_mean
_atom_site_B_iso_or_equiv
_atom_site_calc_attached_atom
_atom_site_calc_flag
_atom_site_Cartn_x
_atom_site_Cartn_y
_atom_site_Cartn_z

```
_atom_site_chemical_conn_number
_atom_site_constraints
_atom_site_description
_atom_site_disorder_assembly
_atom_site_disorder_group
_atom_site_fract_x
atom site fract v
_atom_site_fract_z
_atom_site_label_component_0
_atom_site_label_component_1
_atom_site_label_component_2
_atom_site_label_component_3
_atom_site_label_component_4
_atom_site_label_component_5
_atom_site_label_component_6
_atom_site_occupancy
_atom_site_refinement_flags_posn
_atom_site_refinement_flags_adp
_atom_site_refinement_flags_occupancy
_atom_site_restraints
_atom_site_symmetry_multiplicity
_atom_site_type_symbol
_atom_site_U_equiv_geom_mean
_atom_site_U_iso_or_equiv
_atom_site_Wyckoff_symbol
```

The ATOM_SITE data are, as mentioned before, the things that most CIF end-users are most interested in. When these data were published in print journals, it was often the case that the anisotropic displacement parameters were listed in a separate table from the coordinates, purely as a matter of formatting convenience. This convention is still found in many CIFs, but it is quite possible (and from a computational point of view, possibly more efficient) to include all of these items in a single table (loop).

EXAMPLE

loop_	(Doo	
_atom_site_type_symbol		
_atom_site_label	Ť	
_atom_site_fract_x		
_atom_site_fract_y		
_atom_site_fract_z	C4	
_atom_site_U_iso_or_equiv		2
_atom_site_adp_type)
_atom_site_calc_flag		
O O1 0.06097(6) 0.5147(3) -0.06247(9) 0.0486(4) Uani d		
O O2 0.26885(6) 0.0108(3) 0.10454(9) 0.0468(3) Uani d		
N N1 0.07366(7) 0.2401(3) 0.07840(9) 0.0380(3) Uani d		
H H1 0.0293(10) 0.304(5) 0.0715(13) 0.049(5) Uiso d		
C C2 0.09750(8) 0.3466(4) 0.00759(11) 0.0366(4) Uani d	C6(X)	
N N3 0.16426(6) 0.2545(3) 0.02038(9) 0.0361(3) Uani d		
H H3 0.1820(10) 0.333(5) -0.0258(15) 0.057(5) Uiso d		A
C C4 0.20846(7) 0.0710(4) 0.09840(11) 0.0357(4) Uani d		D
C C5 0.17907(7) -0.0298(4) 0.16844(11) 0.0372(4) Uani d		~
Н Н5 0.2066 -0.1641 0.2240 0.045 Uiso calc	φ	01
C C6 0.11357(8) 0.0595(4) 0.15811(11) 0.0359(4) Uani d	\cap \cap	
C C7 0.08038(9) -0.0227(5) 0.23014(13) 0.0488(5) Uani d	0 0	
H H7A 0.1100 -0.1790 0.2783 0.073 Uiso calc		
H H7B 0.0354 -0.1289 0.1975 0.073 Uiso calc	Portalone, G. (2019). 6-Methyluracil: a redetermina	ation
H H7C 0.0742 0.1864 0.2615 0.073 Uiso calc	of polymorph (II). IUCrData, 4 , x190861.	

In this (slightly edited) example, the atom coordinates are presented separately from the anisotropic displacement parameters. It is quite clear by inspection where atoms have been constrained – the positions of the hydrogens attached to the N atoms are refined, those attached to carbons fixed; but the explicit flags ("calc") would permit an automated analysis based on such properties.

The anisotropic displacement parameters are presented in a separate loop, but formally this and the coordinate table on the previous slide are part of the same category, and so could be presented together in a composite loop. The arrangement here is historic, because of constraints of publishing in print.

Structure – the CHEMICAL group

CHEMICAL

_chemical_absolute_configuration
_chemical_compound_source
_chemical_melting_point
_chemical_melting_point_gt
_chemical_melting_point_lt
_chemical_name_common
_chemical_name_mineral
_chemical_name_structure_type
_chemical_name_systematic
_chemical_optical_rotation
_chemical_properties_biological
_chemical_properties_physical
_chemical_temperature_decomposition
$_chemical_temperature_decomposition_gt$
$_chemical_temperature_decomposition_lt$
_chemical_temperature_sublimation
_chemical_temperature_sublimation_gt
_chemical_temperature_sublimation_lt

CHEMICAL_FORMULA

- _chemical_formula_analytical _chemical_formula_iupac _chemical_formula_moiety _chemical_formula_structural
- _chemical_formula_sum
- _chemical_formula_weight
- $_chemical_formula_weight_meas$

CHEMICAL_CONN_ATOM

. .

_chemical_conn_atom_number
_chemical_conn_atom_charge
_chemical_conn_atom_display_x
_chemical_conn_atom_display_y
_chemical_conn_atom_NCA
_chemical_conn_atom_NH
chemical conn atom type symbol

CHEMICAL_CONN_BOND

_chemical_conn_bond_atom_1 _chemical_conn_bond_atom_2 _chemical_conn_bond_type

This group of categories characterises the chemistry of the material whose structure is being determined. The CHEMICAL and CHEMICAL_FORMULA items relate to the gross properties of the material; the CHEMICAL_CONN_* items provide a very simple way to describe chemical connectivity (*i.e.* provide a two-dimensional chemical structure outline, but without indications of bond types, charge distribution, etc. In principle this could allow simple substructure searching (at least of organic molecules). These categories exist in the core dictionary because the typical single-crystal structure determination is interested in determining the two-and three-dimensional structure of a single chemical species. For mmCIF, a different approach was followed, because biological macromolecules are often bound to a variety of other molecules and ions. Since the focus of interest is usually the protein itself, the various ligand species are often handled as idealised structures (and are perhaps not refined). We will see in the mmCIF that they are described by the CHEM_COMP (meaning "chemical component") categories.

Structure – the CHEMICAL group

XAMPLE (CIF)	EXAMPLE (MIF)	1
\checkmark	and the step id number	loop_ bond id 1
oop ov	_ccdd_acom_site_atom_id_numberatom_type_symbolatom_type radius bond	_bond_id_1
chemical conn atom number	_atom_site_type_symbol C 0.68	bond type ccdc
chemical conn atom type symbol	_atom_site_fract_x H 0.23	bond environme
	_atom_site_fract_y N 0.68	1 2 S chain
_chemical_conn_atom_display_x	_atom_site_fract_z 0 0.68	3 1 A ring
_chemical_conn_atom_display_y	_ccdc_atom_site_symmetry	4 3 S chain
_chemical_conn_atom_NCA	_ccdc_atom_site_base loop	5 4 D chain
_chemical_conn_atom_NH	1 C1 C 0.2500 0.1280(1) 0.0 1_555 1 atom id	6 4 D chain
1 C 4.8497 2.9504 2 1	2 01 0 0.2500 0.06477(7) 0.0 1_555 2atom_type	7 3 A ring
2 C 4.8497 4.3504 3 0	3 C2 C 0.1668(1) 0.16901(8) -0.0608(2) 1_555 3atom_attach_nh	8 7 A ring
3 C 3.6373 5.0504 3 0	4 N1 N 0.0776(1) 0.13664(7) -0.1342(2) 1_555 4atom_attach_h	9 8 S chain
	5 02 0 0.05679(9) 0.07942(7) -0.0825(2) 1_555 5 _atom_charge	10 9 D chain
	6 03 0 0.02663(9) 0.16864(7) -0.2449(2) 1_555 6 1 C 3 0 0 7 C3 C 0.1672(1) 0.23847(8) -0.0632(2) 1_555 7 2 0 1 0 -1	11 13 S chain
5 C 2.4249 2.9504 2 1		12 7 S chain
6 C 3.6373 2.2504 3 0		14 11 S chain
7 0 3.6373 6.4504 1 0		15 8 A ring
8 N 1.2124 5.0504 3 0		16 1 A ring
9 0 1.2124 6.4504 1 0		17 16 S chain
10 0 0.0000 4.3504 1 0	12 H1 H 0.111(1) 0.261(1) -0.112(3) 1_555 12 7 C 2 1 0 13 H2 H 0.153(2) 0.017(1) 0.148(3) 1_555 13 8 C 3 0 0	18 17 D chain 19 17 D chain
11 N 3.4393 0.8644 3 0	14 H3 H 0.076(2) 0.030(1) 0.301(3) 1_555 14 9 N 3 0 0	20 15 S chain
	15 C3G C 0.3328 0.23847 0.0632 8_555 7 10 0 1 0 0	20 15 5 chain 21 9 D chain
12 0 2.1401 0.3429 1 0	16 C2G C 0.3332 0.16901 0.0608 8_555 3 11 N 0 4 1	22 11 S chain
13 0 4.5406 0.0000 1 0	17 N1G N 0.4224 0.13664 0.1342 8_555 4 15 C 2 1 0	23 11 5 chain
14 N 6.0622 5.0504 3 0	18 02G 0 0.44321 0.07942 0.0825 8_555 5 16 C 3 0 0	15 16 A ring
15 0 7.2746 4.3504 1 0	19 O3G O 0.47337 0.16864 0.2449 8_555 6 17 N 3 0 0	
16 0 6.0622 6.4504 1 0	20 H1G H 0.389 0.261 0.112 8_555 12 18 0 1 0 0	
	21 O4G O 0.3227 0.37478 0.0604 8_555 10 19 O 1 O 0	
	22 H2B H 0.153 -0.017 0.352 3_555 13 21 0 1 0 0	
	23 H3B H 0.076 -0.030 0.199 3_555 14	

The idea behind this slide is to demonstrate the very rudimentary abilities of the CHEMICAL_CONN_* groups with the slightly more expressive MIF (molecular information file) approach. Even MIF does not accommodate the full range of expression required for chemical structure representation, and it accommodates different conventions for describing bond orders (i.e. is not an unequivocal standard). The CIF content was not fully developed and is rarely, if ever, used. It was expected that a more complex formalism such as MIF (which used more of the STAR File feature set than CIF) would be necessary to describe chemical structures properly, but MIF never gained much attraction in the chemistry community. The Cambridge Structural database can output CIF/MIF files that include three- and two-dimensional structure descriptions. As these conform to the CIF syntax, they are restricted to a subset of MIF features. Their usefulness appears to be limited.

GEOM GEOM_ANGLE GEOM_BOND GEOM_CONTACT GEOM_HBOND GEOM_TORSION

The various geometry categories require little detailed explanation: they are a straightforward way to list geometric values derived from the structural coordinates. As purely derived quantities, their inclusion in a CIF is in one sense redundant. However, they serve as a useful validation cross check, and they are convenient for identifying specific values that the author wishes to appear in a publication, as demonstrated in this example. It is perhaps worth pointing out here that in IUCr journals, the "supporting crystallographic data" which are available for every published structure allow visualisation of any geometric parameter (bond distance, angle, torsion, hydrogen bond) simply by clicking on the table entry.

Structure – SYMMETRY and SPACE_GROUP

SYMMETRY

_symmetry_Int_Tables_number

_symmetry_cell_setting

_symmetry_space_group_name_H-M _symmetry_space_group_name_Hall

SYMMETRY_EQUIV

_symmetry_equiv_pos_site_id _symmetry_equiv_pos_as_xyz

SPACE_GROUP

_space_group_crystal_system _space_group_id _space_group_IT_number _space_group_name_Hall _space_group_name_H-M_alt

SPACE_GROUP_SYMOP

_space_group_symop_operation_xyz _space_group_symop_sg_id

EXAMPLE

_space_group_crystal_system monoclinic _space_group_name_H-M_alt 'C 2/c' _space_group_name_Hall '-C 2yc' loop_

_space_group_symop_operation_xyz
'x, y, z'
'-x, y, -z+1/2'
'x+1/2, y+1/2, z'
'-x+1/2, y+1/2, -z+1/2'
'-x, -y, -z'
'x, -y, z-1/2'
'-x+1/2, -y+1/2, -z'
'x+1/2, -y+1/2, z-1/2'

Portalone, G. (2019). 6-Methyluracil: a redetermination of polymorph (II). *IUCrData*, **4**, x190861.

This slide shows the deprecated SYMMETRY and replacement SPACE_GROUP categories, with an example from a recent *SHELXL*-2014 CIF demonstrating that real-world CIFs are still missing the formal identifiers in the symmetry operations list, compromising the position-independent nature of CIF data structures.

This example links the GEOM and SPACE_GROUP categories. The ..._site_symmetry_A entry is a pointer to the symmetry operator with a matching value of _space_group_symop_id. Here I am still keeping the real-world data names (*i.e.* in DDL1 all-underscore formalism), but I have properly added in the _space_group_symop_id entries.

Structure – the VALENCE group

Bond valences are calculated in inorganic structures and provide another opportunity for validating the chemical reasonableness of the structure.

Publication

This is a rather busy slide, but in practice will be shown in stages. The various category groups associated with each part of an article are keyed visually to an example paper. The JOURNAL categories provide bibliographic metadata about the publication. The PUBL categories include the textual content of the article. The COMPUTING, DATABASE and CITATION categories link to software, database entries and literature citations respectively. The latter two category groups are not generally used by IUCr journals (linking information is expected to be embedded in the article text), but were imported from the original mmCIF dictionary which considered it important to have granular linking between entries in structural and bibliographic databases. The detailed content of these categories will be explored by example in the publication tutorials.

File metadata – the AUDIT group

AUDIT _audit_block_code _audit_creation_date _audit_creation_method _audit_update_record

AUDIT_AUTHOR _audit_author_address _audit_author_name

AUDIT_CONFORM _audit_conform_dict_location _audit_conform_dict_name _audit_conform_dict_version

AUDIT_CONTACT_AUTHOR _audit_contact_author_address

_audit_contact_author_email _audit_contact_author_fax _audit_contact_author_name _audit_contact_author_phone

AUDIT_LINK _audit_link_block_code _audit_link_block_description

EXAMPLE	
data_example	
_audit_block_code _audit_creation_date _audit_creation_method	xyzzy_2002-04-05 2002-04-05 'SHELXL97'
_audit_update_record ; 2002-04-09 discussion added 2002-04-17 coeditor number XY 2002-04-18 revised comment af ;	-
<pre>loopaudit_conform_dict_name _audit_conform_dict_version _audit_conform_dict_location cif_core.dic 2.3 . cif_pd.dic 1.0 .</pre>	

The AUDIT family of categories supply a variety of types of metadata concerning the file itself. For crystal structure determinations, AUDIT_AUTHOR can be used to identify the crystallographers involved in data collection, who are not always listed amongst the publication authors. AUDIT_CONFORM provides a mechanism for identifying an appropriate level of validation based on the detailed content of the contemporary dictionaries when the file was generated. AUDIT_LINK may describe the relationships between data blocks (*e.g.* the separate phases or substructures identified in a composite material).

mmCIF dictionary – history

- Protein Data Bank established 1971
- Biological macromolecular structures "deposit first, then publish"
- PDB file format well established during 1970s, 1980s
- By 1990s, shortcomings becoming apparent
- Seemed a natural extension to the new CIF standard
- Long and difficult development (1991-1997)

As with the history of the core dictionary, we do not want to go into too much detail. Unlike the case for small-unit-cell structures, there was already a de facto standard for data requirements in the form of the PDB file. However, developed initially in the Fortran fixed-format style, the PDB format was already showing limitations in coping with the size of large molecules, and its annotations describing detailed structural features were free-text and therefore unstructured. Despite some "hacks" to improve matters, it was reasonably clear that a radically new approach was needed.

mmCIF dictionary – philosophy

- Provide a full description of the macromolecular experiment and its results
- Specify relationships between different components of a complex macromolecular structure
- Required richer dictionary definition language (DDL2)
- Dictionary concepts translated well to relational database model
- mmCIF category structure underpins wwPDB database schema
- However, only fully accepted as data exchange format in 2010s

In practice, capturing all the information needed to give a complete description of the experiment and the structure was a major undertaking, both in terms of specifying the necessary data items, and subsequently in persuading the community to provide them. The technical challenge was first met by the mmCIF dictionary in 1997, subsequently greatly enlarged and refined with the PDBx family of extensions. Persuading the community to provide all the information that could be of use for future scientific re-use and development remains something of a challenge.

1CNR

CORRELATED DISORDER OF THE PURE PRO22(SLASH)LEU25 FORM OF CRAMBIN AT 150K REFINED TO 1.05 ANGSTROMS RESOLUTION

Yamano, A. & Teeter, M.M. (1994). Correlated disorder of the pure Pro22/Leu25 form of crambin at 150 K refined to 1.05-Å resolution. J. Biol. Chem. 269, 13956-13965.

Specification of three distinct components of the crambin structure

loop_ _struct_asym.id struct asym.entity id struct asym.details 'single polypeptide chain' ethanol ethanol 'cocrystallized ethanol molecule' HOH

Identification of the biological function of the structural components

chain_a

1 555

_struct_biol.id crambin 1 struct biol.details ; The function of this protein is unknown and therefore the biological unit is assumed to be the single polypeptide chain without co-crystallization factors i.e. ethanol. crambin 1

_struct_biol_gen.asym.id struct biol gen.symmetry

Structural biologists are very interested not only in the structure of a protein or nucleic acid molecule, but also in its biological function. The mmCIF dictionary was designed to allow detailed annotation of many of these ancillary features of interest. We illustrate some of these with a very simple example: crambin, a small seed storage protein from the Abyssinian cabbage. There is a hierarchy of levels of structure description. At the topmost level, the STRUCT category group describes the gross structure – the components of the crystallography asymmetric unit, the biological function of the different components of a protein assembly, the secondary structure of the proteins, intramolecular interactions.

1CNR

CORRELATED DISORDER OF THE PURE PRO22(SLASH)LEU25 FORM OF CRAMBIN AT 150K REFINED TO 1.05 ANGSTROMS RESOLUTION

Yamano, A. & Teeter, M.M. (1994). Correlated disorder of the pure Pro22/Leu25 form of crambin at 150 K refined to 1.05-Å resolution. *J. Biol. Chem.* **269**, 13956-13965.

Description of the secondary structure of the crambin protein

<pre>loop_ _struct_conf.id _struct_conf.conf_type.id _struct_conf.beg_label_comp_id _struct_conf.beg_label_asym_id</pre>
_struct_conf.beg_label_seq_id
_struct_conf.end_label_comp_id
_struct_conf.end_label_asym_id
_struct_conf.end_label_seq_id
_struct_conf.details
H1 HELX_RH_AL_P ILE chain_a 7 PRO chain_a 19
'HELX-RH3T 17-19'
H2 HELX_RH_AL_P GLU chain_a 23 THR chain_a 30
'Alpha-N start'
S1 STRN_P CYS chain_a 32 ILE chain_a 35 .
S2 STRN_P THR chain_a 1 CYS chain_a 4 .
S3 STRN_P ASN chain_a 46 ASN chain_a 46 .
S4 STRN_P THR chain_a 39 PRO chain_a 41 .
T1 TURN-TY1_P ARG chain_a 17 GLY chain_a 20 .
T2 TURN-TY1_P PRO chain_a 41 TYR chain_a 44 .

The secondary structure (STRUCT_CONF refers to the backbone conformation) is described in terms of structural motifs beginning and ending at certain residues in the polypeptide (or nucleic acid). Here we see a catalogue of right-handed alpha helices, beta strands and type I turns.

1CNR

CORRELATED DISORDER OF THE PURE PRO22(SLASH)LEU25 FORM OF CRAMBIN AT 150K REFINED TO 1.05 ANGSTROMS RESOLUTION loop_ _struct_conn.id struct conn.conn type id _struct_conn.ptnr1_label_comp_id ______struct_conn.ptnr1_label_asym_id _struct_conn.ptnr1_label_seq_id _struct_conn.ptnr1_label_atom_id _struct_conn.ptnr1_role _struct_conn.ptnr2_label_asym_id _struct_conn.ptnr2_label_seq_id _struct_conn.ptnr2_label_atom_id _struct_conn.ptnr2_role _struct_conn.ptnr2_symmetry struct conn.details SS2 disulf CYS chain_a 4 S . 1 555 CYS chain_a 32 S . 1 555 SS1 disulf CYS chain_a 3 S 1_555 . CYS chain_a 40 S 1_555 HB1 hydrog SER chain_a 6 OG positive 1_555 LEU chain_a 8 0 negative 1_556 HB2 hydrog ARG chain_a 17 N positive 1_555 ASP chain_a 43 0 negative 1_554 . Yamano, A. & Teeter, M.M. (1994). Correlated disorder of the pure Pro22/Leu25 form of crambin at 150 K refined to 1.05-Å resolution. J. Biol. Chem. 269, 13956-13965.

Interactions between portions of the crambin structure

The STRUCT_CONN loop describes two of the three disulfide bonds shown in the *Jmol* figure, as well as two hydrogen bonds (not shown).

1CNR

CORRELATED DISORDER OF THE PURE PRO22(SLASH)LEU25 FORM OF CRAMBIN AT 150K REFINED TO 1.05 ANGSTROMS RESOLUTION

Yamano, A. & Teeter, M.M. (1994). Correlated disorder of the pure Pro22/Leu25 form of crambin at 150 K refined to 1.05-Å resolution. *J. Biol. Chem.* **269**, 13956-13965.

Description of the crambin polypeptide

_entity		e_com.e	ntity_	id	A	
_entity		_com.n	ame		crambin	
_entity_src_nat.entity_id				A		
_entity	_src_	nat.co	mmon_r	name	'Abyssinian Cabbage	י ڊ
_entity	_src_	nat.ge	nus		Crambe	
_entity	_src_	nat.sp	ecies		abyssinica	
_entity	_src_	nat.de	tails		?	
_entity	_poly	.entit	y_id		A	
_entity	_poly	.type			polypeptide(L)	
_entity	_poly	.nstd_	chiral	ity	no	
_entity	_poly	.nstd_	linkag	je	no	
_entity	_poly	.nstd_	monome	ers	no	
_entity	_poly	.type_	detail	s		
'Seque	ence h	neterog	eneity	at :	residues 22 and 25'	
loop_						
_ent:	ity_po	oly_seq	.entit	y_id		
_ent:	ity_po	oly_seq	.num			
_ent:	ity_po	oly_seq	.mon_i	d		
A	1	THR	A	2	THR	
\#	abbre	eviated		-		
A	22	PRO	A	22	SER	
A	23	GLU	A	24	ALA	
A	25	LEU	А	25	ILE	
\#	abbre	eviated		-		
А	47	ALA	А	48	ASN	

The distinct chemical entities in the assembly can be annotated in significant detail. In this example the amino acid sequence is listed, together with some characteristics of the protein molecule itself (as distinct from ligands or other complexed molecules).

1CNR

CORRELATED DISORDER OF THE PURE PRO22(SLASH)LEU25 FORM OF CRAMBIN AT 150K REFINED TO 1.05 ANGSTROMS RESOLUTION

Yamano, A. & Teeter, M.M. (1994). Correlated disorder of the pure Pro22/Leu25 form of crambin at 150 K refined to 1.05-Å resolution. *J. Biol. Chem.* **269**, 13956-13965.

Separate chemical components forming the crambin polypeptide

loop_ _chem_comp _chem_comp _chem_comp _chem_comp	p.mon p.fon		
_cnem_com	-	"С2 H6 O1'	"ethanol"
ALA	-	'C3 H7 N1 O2'	"alanine"
ARG	-	'C6 H14 N4 O2'	"arginine"
ASN	-	'C4 H8 N2 O3'	"asparagine"
ASP	- yes	'C4 H7 N1 O4'	"aspartic acid"
CYS	yes	'C3 H7 N1 O2 S1'	"cysteine"
GLU	yes	'C5 H9 N1 O4'	"glutamic acid"
GLY	yes	'C2 H5 N1 O2'	"glycine"
ILE	yes	'C6 H13 N1 O2'	"isoleucine"
LEU	yes	'C6 H13 N1 O2'	"leucine"
PHE	yes	'C9 H11 N1 O2'	"phenylalanine"
PRO	yes	'C5 H9 N1 O2'	"proline"
SER	yes	'C3 H7 N1 O3'	"serine"
THR	yes	'C4 H9 N1 O3'	"threonine"
TYR	yes	'C9 H11 N1 O3'	"tyrosine"
VAL	yes	'C5 H11 N1 O2'	"valine"

The CHEM_COMP category provides the chemical identity of each monomeric residue in the polypeptide assembly. The (idealised) structure of each such molecule (and small molecules that appear as ligands) is described using other categories within the CHEM_COMP group.

1CNR

CORRELATED DISORDER OF THE PURE PRO22(SLASH)LEU25 FORM OF CRAMBIN AT 150K REFINED TO 1.05 ANGSTROMS RESOLUTION

Yamano, A. & Teeter, M.M. (1994). Correlated disorder of the pure Pro22/Leu25 form of crambin at 150 K refined to 1.05-Å resolution. *J. Biol. Chem.* **269**, 13956-13965.

Atomic positional coordinat	es of the crambin model
loop_	
_atom_site.label_seq_id	
_atom_site.type_symbol	
_atom_site.label_atom_id	
_atom_site.label_comp_id	
_atom_site.label_asym_id	
_atom_site.label_alt_id	
_atom_site.cartn_x	
_atom_site.cartn_y	
_atom_site.cartn_z	
_atom_site.occupancy	
_atom_site.B_iso_or_equiv	r
_atom_site.footnote_id	
_atom_site.label_entity_i	.d
_atom_site.id	
1 N N THR chain_a A	16.864 14.059 3.442
	0.80 6.22 . A 1
1 N N THR chain_a B	17.633 14.126 4.146
1 C CA THR chain a A	0.20 8.40 . A 2
1 C CA THR chain_a A	16.868 12.814 4.233
1 C CA THR chain a B	0.80 4.45 . A 3 17.282 12.671 4.355
I C CA IRR chain_a B	0.20 7.82 . A 4
1 C C THR chain a.	15.583 12.775 4.990
i c c ink chain_a :	1.00 4.39 . A 5
100 THR chain a.	
i c c incenati_a.	1.00 7.04 . A 6
	1.00 /.01 . A U

At the most granular level, each atomic position can be traced upwards through residues, helices, chains and molecules to provide a complete structure description of the macromolecular complex.

mmCIF Analysis – phasing

Overall description of phasing PHASING Phasing via molecular averaging PHASING_AVERAGING Phasing via isomorphous replacement PHASING_ISOMORPHOUS Phasing via multiple-wavelength anomalous dispersion PHASING_MAD PHASING_MAD_CLUST PHASING_MAD_EXPT PHASING_MAD_RATIO PHASING_MAD_SET Phasing via multiple isomorphous replacement PHASING_MIR PHASING_MIR_DER PHASING_MIR_DER_REFLN PHASING_MIR_DER_SHELL PHASING_MIR_DER_SITE PHASING_MIR_DER_SHELL Phasing data sets PHASING_SET PHASING_SET_REFLN

Because of the size and complexity of biological macromolecules, a variety of phasing strategies may need to be employed in solving the structure. This list of the phasing-related categories demonstrates the different approaches involved in the molecular averaging, single and multiple isomorphous replacement, and multiple-wavelength anomalous dispersion methods. There are complex interactions between the categories; the PHASING_SET and PHASING_SET_REFLNS categories allow intensity and phase information for the data sets to be used in phasing to be stored in the same data block as the information for the refined structure. This approach helps to encourage validation and reproducibility of the derived structural model.

mmCIF Analysis – phasing

Because of the size and complexity of biological macromolecules, a variety of phasing strategies may need to be employed in solving the structure. This list of the phasing-related categories demonstrates the different approaches involved in the molecular averaging, single and multiple isomorphous replacement, and multiple-wavelength anomalous dispersion methods. There are complex interactions between the categories; the PHASING_SET and PHASING_SET_REFLNS categories allow intensity and phase information for the data sets to be used in phasing to be stored in the same data block as the information for the refined structure. This approach helps to encourage validation and reproducibility of the derived structural model.

mmCIF Analysis – phasing

phasing MAD.entry id 'NCAD'	LOOP
Pusping_way.ently_id	phasing MAD clust.id
900	_phasing_MAD_clust.id _phasing_MAD_clust.expt_id
phasing MAD expt.expt id	phasing MAD_clust.number set
phasing MAD expt.number clust	'four wavelength' 1 4
phasing MAD expt.R normal all	'five wavelength' 1 5
phasing MAD expt.R normal anom scat	'five wavelength' 2 5
phasing_MAD_expt.delta_delta_phi	
phasing MAD expt.delta phi sigma	
phasing_MAD_expt.mean_fom	loop
1 2 0.063 0.451 58.5 20.3 0.88	phasing MAD set.expt id
2 1 0.051 0.419 36.8 18.2 0.93	phasing MAD set.clust id
	phasing MAD set.set id
.00	phasing MAD set.wavelength
phasing MAD ratio.expt id	phasing MAD set.wavelength details
phasing MAD ratio.clust id	phasing MAD set.d res low
phasing MAD ratio.wavelength 1	phasing MAD set.d res high
phasing MAD ratio.wavelength 2	phasing MAD set.f prime
phasing MAD ratio.d res low	phasing MAD set.f double prime
phasing MAD ratio.d res high	1 'four wavelength' aa 1.4013 'pre-edge' 20.00
phasing MAD ratio.ratio two wl	3.00 -12.48 3.80
phasing MAD ratio.ratio one wl	1 'four wavelength' bb 1.3857 'peak' 20.00
phasing MAD ratio.ratio one wl centric	3.0031.22 17.20
1 'four wavelength' 1.4013 1.4013 20.00 4.00	0
. 0.084 0.076	
1 'four wavelength' 1.4013 1.3857 20.00 4.00	0
0.067	MAD phasing of the structure of N-cadherin (Shapiro et al., 1995) described
1 'four wavelength' 1.4013 1.3852 20.00 4.00	using data items in the PHASING_MAD and related categories.
0.051	

This is a small portion of an example of MAD phasing using data from two experiments, the first of which had two clusters, using respectively four and five wavelengths. The second experiment was a single five-wavelength cluster. Reference: Shapiro, L., Fannon, A. M., Kwong, P. D., Thompson, A., Lehmann, M. S., Grubel, G., Legrand, J. F., Als-Nielsen, J., Colman, D. R. & Hendrickson, W. A. (1995). Structural basis of cell-cell adhesion by cadherins. *Nature (London)* **374**, 327-337.

mmCIF structure – alternative conformations

Portion of the description of two conformations in which the inhibitor binds to the enzyme in a HIV-a protease structure. Reference: Fitzgerald, P.M., McKeever, B.M., VanMiddlesworth, J.F., Springer, J.P., Heimbach, J.C., Leu, C.T., Herber, W.K., Dixon, R.A., Darke, P.L. (1990). Crystallographic analysis of a complex between human immunodeficiency virus type 1 protease and acetyl-pepstatin at 2.0-Å resolution. *J. Biol. Chem.* **265**, 14209-14219.

mmCIF structure – CHEM_COMP

_chem_comp.id 'DM2' _chem_comp.name 'adriamycin' _chem_comp.type non-polymer _chem_comp.formula 'C27 H29 N1 O11' _chem_comp.number_atoms_all 68 _chem_comp.number_atoms_nh 39 _chem_comp.formula_weight 543.51 loop_ _chem_comp_atom.comp_id _chem_comp_atom.atom_id _chem_comp_atom.model Cartn x		EXAMPLE
_chem_comp_atom.model_Cartn_y _chem_comp_atom.model_Cartn_z	Chemical Component Summary	
DM2 'C1' C 12.996 0.476 12.694	Name	DOXORUBICIN
DM2 'C2' C 13.982 -0.225 13.183 DM2 'C3' C 12.482 0.165 11.515 # abbreviated	Identifiers	(75,95)-7 ((2R,45,55,65)-4-amino-5-hydroxy-6-methyl- oxan-2-yljoxy-6.9,11-trihydroxy-9-(2-hydroxy-ethanoyl)-4- methoxy-8,10-dihydro-7H-tetracene-5,12-dione
	Formula	C27 H29 N O11
loop_	Molecular Weight	543.52
_chem_comp_bond.comp_id _chem_comp_bond.atom_id_1 _chem_comp_bond.atom_id_2 _chem_comp_bond.value_order _chem_comp_bond.value_dist	Туре	NON-POLYMER
	Isomeric SMILES	COc1cccc2C(=0):3c(O):c4C(C@)(O)(C(C@H) (O(C@H)5C(C@H(N)(C@H)(O)(C@H) (C)O5):c4c(O):3C(=0):12)C(=O)CO
	InChi	InChin 150(27)+23N(01161-10-22(21)15)2505-17(38- 10)30-15-8-27(38,16(20)9-29)7-12-01(5)26(26)21- 20(24(12)30)2(32)11-4-3-5-14(27-21)6(11)25(21)34h3- 5,10,13,15,17,22,29,31,33,36-361(5-9,28)42,1- 2H310-1,31,5-7,7-22,937-30,36-361(5-9,28)42,1- 2H310-1,31,5-7,7-22,937-30,36-361(5-9,28)42,1-
	InChiKey	AOJJSUZBOXZQNB-TZSSRYMLSA-N
	InChiKey	2H3/t10-,13-,15-,17-,22+,27-/m0/s1

The CHEM_COMP category provides a mechanism for describing the (idealised) chemical structure of components of a macromolecular complex, which could be the individual amino acids in a polypeptide chain or ligands which bind to an enzyme. The Protein Data Bank maintains a ligand database which characterises all of these chemical species. It provides a significant extension to the scope of the CHEMICAL category of the CIF dictionary, and in conjunction with the mmCIF CHEM_LINK group is better suited to the description of linked assemblies of repeating monomers that characterises many biological macromolecular structures.

mmCIF structure – the STRUCT categories

Higher-level macromolecular structure STRUCT STRUCT_ASYM STRUCT_BIOL STRUCT_BIOL_GEN STRUCT_BIOL_KEYWORDS STRUCT_BIOL_VIEW

Secondary structure STRUCT_CONF STRUCT_CONF_TYPE

Structural interactions STRUCT_CONN STRUCT_CONN_TYPE Structural features of monomers STRUCT_MON_DETAILS STRUCT_MON_NUCL STRUCT_MON_PROT STRUCT_MON_PROT_CIS

Noncrystallographic symmetry STRUCT_NCS_DOM STRUCT_NCS_DOM_LIM STRUCT_NCS_ENS STRUCT_NCS_ENS_GEN STRUCT_NCS_OPER

External databases STRUCT_REF STRUCT_REF_SEQ STRUCT_REF_SEQ_DIF β-sheets STRUCT_SHEET STRUCT_SHEET_TOPOLOGY STRUCT_SHEET_ORDER STRUCT_SHEET_RANGE STRUCT_SHEET_HBOND

Molecular sites STRUCT_SITE_GEN STRUCT_SITE_KEYWORDS STRUCT_SITE_VIEW

We are all familiar with the often beautiful cartoon representations of protein structures (the example is BgaR, a lactose sensor [Newman, J., Caron, K., Nebl, T. & Peat, T. S. (2019). *Acta Cryst.* D75, 639-646]). There is a considerable challenge translating this into machine-readable database records. The mmCIF dictionary approaches this by describing structural features at various levels of granularity, each of which has its own group of categories, and then relating these categories to the chemical characterisations in the various ENTITY and CHEM_COMP categories, and ultimately to the ATOM_SITE list of individual atomic coordinates.

mmCIF structure – STRUCT relationships

This slide is simply to illustrate the number and complexity of relationships between the different structure-related categories and the other levels of description of the structure model. Full details are given in *International Tables for Crystallography* Volume G 1st ed., Chapter 3.6.