DDILM: NEXT GENERATION
DICTIONARY DEFINITION LANGUAGE
by
Syd Hall, Nick Spadaccini and John Westbrook
(Version: 5 August 2008)

1. INTRODUCTION

This document provides the specifications of DDLm, a next generation dictionary definition
language designed to support the definition capabilities of the existing dictionary languages,
DDL1 (Hall and Cook, 1995) and DDL2 (Westbrook and Hall, 1995), as well as provide a higher
level of semantic content for domain dictionaries. While providing important new functionality to
the dictionary developer, DDLm fully supports the semantic capabilities of existing IUCr data
dictionaries. No changes are required in existing archival data files in order to apply domain
dictionaries written in DDLm.

Data dictionaries contain precise, machine-parseable definitions of data items, and consequently
play a vital role in the rapid and reliable exchange of electronic scientific data. Increasingly data
dictionaries play a major role in the automatic interpretation and validation of data. In
crystallography, the exchange and deposition of CIF data (Hall, Allen & Brown, 1991) is supported
by CIF dictionaries for each of the different sub-disciplines (Hall & McMahon, 2005). At present
CIF dictionaries are constructed using DDL1 and DDL2; the latter having evolved from the former
to extend the scope and precision of dictionary definitions for macromolecular structural data.

The automatic and seamless exchange of electronic data depends implicitly on the level of usable
semantic information provided by dictionaries, as this largely determines the precision of the
validation and knowledge management processes. For example, the ability of a dictionary
definition language to express the algorithmic methods that relate derived data items enables data
definitions to assume a much more fundamental role in data validation and evaluation; a role
currently performed by customized software. The advantage of using semantic knowledge stored
in a dictionary for this purpose (particularly if this information has been adopted internationally
by an official scientific body) is the assurance that standard, well-understood algorithms are
uniformly adhered to.

Scientific data, by its very nature, are in a state of continual change and this necessitates efficient
exchange processes that are in step with the evolution and creation of new data definitions.
Semantically-rich and readily-updatable data dictionaries allow this to happen. DDLm is a next
generation dictionary definition language. It encompasses the particular strengths of DDL1 and
DDL2, and draws upon many attributes used in StarDDL, to provide a more hierarchical, concise
and implicit approach to data definitions. In particular, it incorporates a methods expression
language, dREL (Spadaccini, Hall and Castleden, 2000) for relating derived data items. dREL
applies data items computationally in relational expressions as object-oriented variables. This,
with the facility to import externally-sourced data definitions, provides dictionaries written in
DDLm with a higher level of functionality which encourages modular dictionaries with shared
common definitions.

For those unfamiliar with the construction of data dictionaries, we start with a brief introduction
to the terminology used in this document. The term "DDL", already used above, refers to a
dictionary definition language in which the lingua is composed of a prescribed set of attributes. Each
attribute serves to identify a particular characteristic of a data item. The definition of a particular
data item is achieved by assigning values to the appropriate attributes that describe its precise

nature, and its relationship to other items. Which attributes are used in a definition, and which are
not, is detailed later in 6.2. The collection of definitions for set of data items is referred to as a
domain (or discipline) dictionary. It is also important to appreciate that the attributes themselves
are defined within their own dictionary using the same DDL (i.e. each attribute is specified using a
collection of the appropriate attributes) and this is referred to as the DDL dictionary. Finally, when
a collection of data items is ascribed actual values, this is referred to as a data file or an instance
document. These terms are used throughout this document.

2. OVERVIEW OF DDLM

2.1 MAIN DIFFERENCES TO DDL1 AND DDIL2

The attributes of DDLm encompass those in DDL1 and DDL2, albeit with a richer syntax designed
to increase the semantic content of definitions while keeping definition repetition to a minimum.
The main difference to DDLI and DDL?2 are the addition of:

* methods using a symbolic algorithmic language, dREL, to relate derivable items,
* stricter and multi-level attribute inheritance between data categories,

* increased precision and flexibility in data typing,

* implicit child-parent relationship between equivalent data items, and

* procedures for importing common definitions from external dictionaries.

2.2 IMPLICIT CHILD RELATIONSHIPS OF LINKED ITEMS

Parent category relationships (i.e. categories of items that are derived from or members of another
category) are explicitly identified in DDLm but not the child categories. Child category
relationships can readily be derived on instantiation of the dictionary from the parent links.
Removing the need to identify child categories in a dictionary eliminates a cumbersome and error-
prove task for dictionary developers, and enhances the readability of the dictionary by reducing
redundant information which obscures more critical aspects of definitions.

2.3 STRONGER DATA TYPING.

DDLm provides an expanded attribute set for specifying data types with the introduction of
attributes for establishing the nature and the origin of items. The data typing attributes now cover
four basic classes of information; known simply as the container, contents, purpose and dimension
attributes. The container attribute identifies the composition of the item value. Allowed container
types are Single, Multiple, Array, List, Tuple and Table. The contents attribute identifies the nature of
the individual value(s) within the container, in terms of numerical and character descriptors. The
contents attribute types are enumerated but can be expanded in the auxiliary file com_val.dic.
The purpose attribute identifies the origin and function of a data item. This information is important
at many levels; it indicates, for example, if a numerical value is expected to have a standard
uncertainty value or not; if the value is an active filename, or a code used to import definitions; if
the value has been measured, observed or assigned. This detail is needed for manipulating data
within a method expression using the algorithmic language dREL. Also, by specifying that an
item is measured, observed or assigned, associated validation and evaluation processes may be
handled consistently and, in some cases, automatically within the method expressions.

2.4 CATEGORY INHERITANCE

In dictionaries written in DDLm the hierarchical parent relationships between categories of data
items is specified explicitly. By default, each category inherits properties of its parent. The
inheritance process is detailed later in §4.1.

2.5 DATA TAG CONSTRUCTION

The naming of individual items, and groups of items, is more flexible in DDLm. The name of a
category is in most cases the leading string in an item tag. This is no longer a requirement,
however, because the category tag and object tag (identified by the trailing characters) are now
specified separately in a dictionary using the attributes _name.category_ idand
_name.object_id. Identifying the two parts of an item tag with separate attributes:

* permits the tag constructions that do not comply to the DDL2 name rules,
* avoids progressive elongation of tags for deeply nested families of categories, and

® removes the need for a period to be used to separate the category and object names.

3. DICTIONARY ORGANISATION

The construction and organization of a dictionary written in DDLm conforms to the Star File
syntax. Each item definition and each category definition is contained within a save_ frame,
known as the “definition frame”. These frames contain a sequence of “attributes” as tag-value
pairs. All definition frames in a dictionary file are contained with a single data_ block, known as
the “dictionary block”. Attributes defining dictionary-only information are contained within the
data block but not within a save frame.

3.1 DEFINITION FRAME

Each item definition and category definition in a dictionary is contained within a save_ frame i.e.
the definition starts with a save frame name statement and ends with a save_ statement. The
“frame name” usually matches the tag of the category or item being defined within the frame.
Here an example of a category definition of AToM_SITE from the Core_Structure dictionary.

save ATOM SITE

_definition.id atom site

_definition.scope Category

_definition.class List
definition.update 2007-02-06

_description.text

The CATEGORY of data items used to describe atomic site information
used in crystallographic structure studies.

_description.common 'Atom Site List'

_category.parent id core structure

_category key.generic ' atom site.key'

_category key.primitive (_atom site.label)
save

Definition 3.1.1

Here is an example of an item definition from the Core_Structure dictionary.

save atom site.description
_definition.id ' atom site.description'

_definition.update 2006-06-29
_description.text

A description of special aspects of this site. See also
_atom site.refinement flags.

_description.common 'Atom Site Details'
_name.category id atom site
_name.object id description
_type.purpose Describe
_type.container Single
_type.contents Text
loop
_description example.case 'Ag/Si disordered'
save

Definition 3.1.2

3.2 DICTIONARY BLOCK
Each dictionary written in DDLm must start with a data block statement which identifies the
dictionary. For example, in the core_structure dictionary this statement is
data_CORE_STRUCT
whereas in the dictionary defining the DDLm attributes themselves, it is

data DDL DIC

3.3 DICTIONARY-SPECIFIC ATTRIBUTES

Each dictionary block contains attributes specifying the properties of the dictionary file as a whole.
These attributes are not contained within a save frame and are inherited by all other categories
and items, except where the same attribute in individual definitions overrides the inherited attribute value.
For example, the start of the core_structure dictionary is as follows.

data CORE_STRUC

_dictionary.title CORE_STRUC

_dictionary.class Instance

_dictionary.version 1.1.05

_dictionary.date 2008-02-12

_dictionary.uri www.iucr.org/cif/dic/core_struc.dic
_dictionary.ddl conformance 3.7.09

_dictionary.namespace CoreStruc:

_description.text

This dictionary contains the definitions of data items
as considered CORE to the description of STRUCTURE data.

Definition 3.3.1

The dictionary block must also contain a "head" category definition frame that is the parent of all
other categories in the dictionary. For example, the core_structure dictionary block contains the
head category definition as follows.

save CORE_STRUCTURE

_definition.id core structure
_definition.scope Category
_definition.class Head
_definition.update 2008-02-12

_description.text

The DICTIONARY group encompassing the CORE STRUCTURE data items defined
and used with in the Crystallographic Information Framework (CIF).

_category.parent id cif core

| save_

Definition 3.3.2

The dictionary block also contains dictionary audit information. For convenience, this is usually
placed at end of the dictionary, following the last item definition frame. Here is a typical audit list.

loop
_dictionary audit.version
_dictionary audit.date
_dictionary audit.revision

1.0.01 2005-12-12

Initial version of the TEMPLATES dictionary created from the
definitions used in CORE 3 dictionary version 3.5.02

1.0.02 2006-02-12

Remove dictionary attributes from a save frame.
Change category core templates to template

Example 3.3.1

4. CATEGORY AND ITEM RELATIONSHIPS

4.1 CATEGORY HIERARCHY

As stated in section §3.3, each dictionary block contains a head category definition that is the
"parent" for all other categories in the dictionary. The head category is at the top of a hierarchical
tree of categories in the dictionary, and all other categories in the dictionary file are, directly or
indirectly, its children. In a dictionary written in DDLm, lower categories in the hierarchy inherit
attribute values from their parent categories, except when these are superceded by the local
specification of the same attribute.

Example 4.1.1 below shows is a typical list of categories in a dictionary (category tags in blue and
green), followed by the contained items (item tags in red) and categories. In this example, the
items describing the crystal unit cell in the core_crystal dictionary are listed.

CORE CRYSTAL
a CELL
_cell.atomic mass
_cell.formula units 2
_cell.metric tensor
_cell.orthogonal matrix
_cell.special details
_cell.volume
CELL ANGLE
~cell angle.alpha
~cell angle.beta
~cell angle.gamma
CELL LENGTH
~cell length.a
~cell length.b
~cell length.c
CELL VECTOR
_cell vector.a
_cell vector.b
_cell vector.c
CELL MEASUREMENT
~cell measurement.pressure
_cell measurement.radiation

~cell measurement.reflns used

_cell measurement.temperature

_cell measurement.theta max

_cell measurement.theta min

~cell measurement.wavelength
CELL MEASUREMENT REFLN (parent: cell)
_cell measurement refln.hkl
_cell measurement refln.theta
_cell measurement refln.index h
_cell measurement refln.index k
_cell measurement refln.index 1

Example 4.1.1

The parent of each category is specified in its definition with the attribute _category.parent_id.
For example, in the CELL category definition this attribute may have the value ‘core_crystal’;
whereas in the CELL_ANGLE category definition this attribute would have the value ‘cell’. The
list shown in Example 4.1.1 is indented according to the hierarchical relationship of items to the
parent category. Part of this relationship is the assumption that all categories of items can be
subsumed (i.e. merged or joined) into the parent category. This property is however modified by
the category scope, which may have either the state code List or Set (the scope state Head also exists
but will not be discussed here). Whereas items in an instance document belonging to a category of
scope List must appear as a looped list (see §4.2), items with scope Set need not (they may,
however, be referenced as a class of objects in methods expressions - examples of this will be
shown later). More importantly, items in a Sef category are seen to be automatic members of the
parent category whereas List items are not unless the attribute _category.parent_joinis
specified as Yes in the category definition.

We shall see later that the ability to specify relationships between categories of items is
particularly important in enriching the semantics of data.

4.2 LIST CATEGORIES AND REFERENCE KEYS

When an item can have more than one value it will appear in a data file as a looped list, and all
items in this list will be members of a single category or of joined categories (see §4.3). For
example, the coordinates of atomic sites are defined in the ATOM_SITE category (see Definition
3.1.1 above).

loop

_atom site.label
_atom site.fract x
_atom site.fract y
_atom site.fract z

ol .5501(6) .6371(6) 1601 (13)
o2 .4012(6) 5162 (6) 2290(12)
o3 .2502(7) 5705(7) 6011 (14)
cl .4170(8) .6931(9) 4965 (18)
c2 .3144(8) 6702 (9) 6420 (19)
c3 .2789(9) 7494 (10) .838(2)

Example 4.2.1

A looped list is a 2D table in which the data names are a row of header tags identifying columns of
values. E.g., the tag _atom_site.label refers to the column of values “01”, “02”,...,”c3”. In each
table at least one item must have unique values in order that other values in a row may be
unambiguously accessed. These rows of values are often referred to as “packets”or “list
instances”. The item that is designated to have “unique” values in a category is known as the
“category key”. The key in the ATOM_SITE category above is _atom_site.label and each value of
this item provides the access to the other three items in the packet. For example, “03” points to the
values “.2502(7)”, “.5705(7)” and “.6011(14)”, and no others! In a dictionary the key is specified in

the category definition with the _category_key.generic or category key.primitive
attributes (see the AToM_SITE definition in §3.1 above).

The attribute information in the ATOM_SITE category definition (see Definition 3.1.1) refers all
aToM_SITE items. Thatis, the properties of a category apply to all items that are defined with the
attribute name.category_id set with the value “atom site”.

The definition of the key item _atom site.label is as follows.

save atom site.label
_definition.id ' atom site.label’
_import list.id [["Att', 'atom site label', 'com att.dic']]
_name.category id atom site
_name.object id label
save

Definition 4.2.1

Compared to _atom_site.description (see Definition 3.1.2), the _atom site.label definition
is compact because the attribute _import_list.idis used to insert attributes from the generic
definition atom_site_label stored in the file com_att.dic. Using an import attribute here is
convenient because atom label items are defined in many different categories and dictionaries, and
they are identically-equivalent being derived from the labels residing in the ATOM_SITE category.
Placing the common attributes of derived items in generic definition and in a separate file, then
using the import commands to expand definitions at application time, is both efficient and secure
(a change to the generic definition will affect all equivalent definitions).

Here is the generic definition atom_site_label which resides in the file com_att.dic

save atom site label
_definition.id 'atom site label’
_definition.update 2006-06-29
_description.text

This label is a unique identifier for a particular site in the
asymmetric unit of the crystal unit cell.

_description.common 'Atom Site Label!
__type.purpose Assigned
_type.container Single
_type.contents Label
loop
_description example.case Cl2 Ca3g28 Fe3+17 H*251

C a phe 83 a 0 Zn Zn 301 A O

save_

Definition 4.2.2

Note that the processing of import attributes usually assumes that locally specified attributes take
precedence over imported attributes (more details are given in §6.17 and §6.18).

4.3 JOINED CATEGORIES

As discussed in §4.2, the specification of an access key is essential for each List category. In this
section we describe how, in special circumstances, list categories may be joined with their parent
List categories at instantiation. This may apply when categories have equivalent category keys
and list structures, but, for reasons of data presentation and simplification, items are instantiated
as separate lists. For example, the use of separate lists can be efficient for lists in which there is
significant disparity between the density of active data from packet to packets. In such cases the
dense and sparse components of the packet are placed in separate list categories, with one
category defined as the parent of the other (see §4.1).

The ability to join equivalent but separated list categories is specified within the definition of the
“child” category using the attribute _category.parent_join setto Yes. Note that the keys of
joined categories may be used interchangeably in the instance document.

In the Core_CIF dictionary, an example of joined categories is ATOM_SITE and ATOM_SITE_ANISO.
We have seen in §3.2 that the key item of the first is _atom_site.label and the definition below
shows that the key item of the second is _atom site_aniso.label. These are interchangeable.

save ATOM SITE ANISO
_definition.id
_definition.scope
_definition.class
_definition.update

atom site aniso
Category

List

2007-02-06

_description.text

The CATEGORY of data items used to describe atomic site information
used in crystallographic structure studies.

_description.common

_category.parent id

_category.parent join

_category key.generic

_category key.primitive
save

'"Atom Site Anisotropic List'
atom site
Yes

' atom site aniso.key'

(_atom site aniso.label)

Definition 4.3.1

Here is a simple data file showing items in these categories expressed as separate lists.

loop
_atom site.
_atom site.
_atom site.fract y
_atom site.fract z
ol .5501(6) .6371(6)
02 .4012(6) .5162(6)
o3 .2502(7) .5705(7)

label
fract x

.1601(13)
.2290(12)
.6011(14)

loop

_atom site aniso.label

_atom site aniso.U 11

_atom site aniso.U 12

_atom site aniso.U 13

_atom site aniso.U 22

_atom site aniso.U 23

_atom site aniso.U 33
ol .035 .012 .003 .043 .001
o3 .048 .011 .021 .034 .009

Example 4.3.1

.022
.032

Because the categories ATOM_SITE and ATOM_SITE_ANISO are defined as joinable, these lists may
be considered to be one list by parsers. That is, as follows.

loop

_atom site.
_atom site.
_atom site.
_atom site.
_atom site

label
fract x
fract y
fract z
aniso.U 11

_atom _site aniso
_atom _site aniso
_atom _site aniso
_atom _site aniso
_atom _site aniso
ol .5501(6)
02 .4012(6)
o3 .2502(7)

.6371 (6)
.5162 (6)
.5705(7)

.U 12
.U 13
.U 22
.U_23
.U_33
1601 (13)
.2290(12)
6011 (14)

.035 .012
2227227

.048 .011

.003 .043 .001 .022

.021 .034 .009 .032

Example 4.3.2

The concept of joined lists is important to the generality of data relational languages, such as
dREL, used in method expressions. Joinable lists are assumed to have equivalent key items, so
that above, either of the items _atom_site.label and _atom_site_aniso.label may be used
interchangeably as the key to the joined list. This allows items in joined lists be addressed simply
in terms of the extension names of the parent category name. That is, reference to ATOM_SITE.U_11,
point to the value of _atom_site_aniso.U_11.

4.4 LINKED LIST KEYS

The values of category keys uniquely identify data packets in lists. If any item in a List category
has the same values as a key, within or without the category, this is identified as a list link. For
example, in the instance list below the item _atom_site.calc_attached_atom has the same label
values as the key to the same list.

loop

_atom site.label

_atom site.type symbol

_atom site.fract x

_atom site.fract y

_atom site.fract z

_atom site.calc attached atom
Cl C .41520 .69430 .49560 .
c2 C .31850 .66960 .63180 HI

C3 C .27660 .75080 .84370

H1 H .41000 .72000 .47000

loop

_atom type.symbol

_atom type scat.dispersion real
_atom type scat.dispersion imag
_atom type scat.source

0 .047 .032 'Int Tables Vol IV Tables 2.2B and 2.3.1'
C .017 .009 'Int Tables Vol IV Tables 2.2B and 2.3.1'
H 0 0 'Stewart and Davidson'

Example 4.4.1

This relationship is specified in the definition of _atom_site.calc_attached_atom with the
attribute _name.linked_item id indicating that atom site.label is the derivative parent.

save atom site.calc attached atom
_definition.id ' atom site.calc attached atom'
_definition.update 2006-11-03
_description.text

The atom site.label of the atom site to which the 'geometry-
calculated' atom site is attached.

_description.common 'Atom Site Parent Atom'
_name.category id atom site
_name.object id calc _attached atom
_name.linked item id ' atom site.label’
_type.purpose Link

_type.container Single

_type.contents Label

save_

Definition 4.4.1

In the example 4.4.1, the values of _atom_site.type_symbol are the element symbols stored in
the ATOM_TYPE category list as the key item _atom_type.symbol. Again, this link is specified in
the definition of _atom_site.type_symbol using the attribute _name.linked item id.

| save atom site.type symbol

_definition.id ' atom site.type symbol'
_definition.update 2006-11-03
_description.text

A code to identify the atom specie(s) occupying this site.

This code must match a corresponding atom type.symbol. The
specification of this code is optional if component 0 of the
_atom _site.label is used for this purpose. See atom type.symbol.

_description.common 'Atom Site Type Symbol'
_name.category id atom site/
_name.object id type symbol
_name.linked item id ' atom type.symbol'
_type.purpose Link
_type.container Single
_type.contents Code

save

Definition 4.4.2

4.5 LINKED KEYS OF DERIVATIVE ITEMS

The origin of data items is considered to be primitive or derivative. If a data value is measured,
observed or assigned it is classified as “primitive”. Primitive items cannot be derived from other
data. All other data are classified as “derivative”. Derivative data values may be evaluated (i.e.
calculated) from their relationships to other data items, primitive and derivative. Identifying the
origin of data is important because the value of a derivative item can determined from a method
expression relating it to the known values of other data items. Instance values of derivative items
may be evaluated singly or as entities in a category list. In some cases the entire list category may
be considered derivative, and evaluated using methods expressions.

In this section, we explain how category keys are related when one list category is derived from
another. If an entire list category is derivative, its list key will be dependent, or linked, to the key of
list from which it was derived.

This is best understood from an example. We will use the dependence of a list of geometric bond
distances between the atom sites in a molecule on the list of atom site coordinates. The distances
form a “derivative list” because are derived from the coordinate list. Using the definitions in the
CoreCIF dictionary, we see that the category GEOM_BOND items may be derived from category
ATOM_SITE values [Note that for the sake of simplicity the geometry bond examples and definitions shown
below have intentionally excluded the symmetry of the atomic sites].

Here is an instance file containing these two lists.

loop

_atom site.label

_atom site.fract x

_atom site.fract y

_atom site.fract z

_atom site.U iso or equiv

_atom site.adp type
cl .41520 .69430 .49560 .03000 Uiso
c2 .31850 .66960 .63180 .03000 Uiso
c3 .27660 .75080 .84370 .03000 Uiso
c4 .34400 .85470 .87960 .03000 Uiso
c5 .44470 .87990 .74290 .03000 Uiso
c6 .47570 .79210 .53701 .03000 Uiso
c7 .45300 .61239 .27920 .03000 Uiso

loop

_geom bond.id

_geom _bond.distance
[cl,c2] 1.3373(10)
[cl,c6] 1.3134(10)

[cl,c7] 1.4764(12)
[c2,c3] 1.4707(10)
[c3,c4] 1.4094 (10)
[c4,c5] 1.3786(11)
[c5,c6] 1.4604 (10)

Example 4.5.1

These two lists are linked through their category keys. In the AToM_SITE list, the defined key is
_atom_site.label (see the definition in §3.1). In the GEOM_BOND list the key is _geom_bond. id
which is a tuple made up of two ATOM_SITE keys identifying the “bonded” atoms in the site list.
That is, the GEOM_BOND key is dependent on the existence of the AToM_SITE keys.

We will now show how this is specified in a dictionary written in DDLm. Here is the definition of
the GEOM_BOND category indicating that _geom_bond. id is the category key. The definition of
_geom_bond. id follows and here the relationship of the key to the individual atom labels
_geom_bond.atom site_label_ 1 and _geom bond.atom_site_label_2 is specified in the
_method.expression attribute.

save GEOM BOND

_definition.id geom bond
_definition.scope Category
_definition.class List
_definition.update 2006-06-17

_description.text

The CATEGORY of data items used to specify the geometry bonds lengths
in the structural model as derived from the atomic sites.

_description.common 'Bond Lengths List'
_category.parent id geom

_category key.generic ' geom bond.key'

_category key.primitive (_geom bond.atom site label 1,

_geom _bond.atom site label 2)
save

Definition 4.5.1

save geom bond.key
_definition.id ' geom bond.key'
_definition.update 2006-06-17
_description.text

Key to the geometry bond distance list.

_description.common 'Key to bond distance list'
_name.category id geom_bond
_name.object id key
_type.purpose Key
_type.container Single
_type.contents Inherited
loop

_methgd.purpose
method.expression
TEVAL
; _geom bond.key = geom. bond.id

save

save geom bond.id
_definition.id ' geom bond.id'
_definition.update 2008-06-24
_description.text

Identity of bond distance in terms of the atom site labels and
symmetry operators as pairs for each of the two "bonded" atom sites.

_description.common 'BondDistId'’

_name.category id geom_bond
_name.object id id
_type.purpose Identify
_type.container Tuple
_type.contents Tuple [Label, Symop]
_type.dimension [2]
loop
_method.purpose
method.expression
“Evaluation
With a as geom bond
_geom bond.id = Tuple (
Tuple (a.atom site label 1, a.site symmetry 1),
Tuple (a.atom site label 2, a.site symmetry 2))
save

Definition 4.5.2

The following definition of _geom_bond.atom_site_label_1 shows how the dependency of this
label on _atom_site.label is specified with the attribute _name.linked_item id.

save geom bond.atom site label 1
_definition.id ' geom bond.atom site label 1°'
_definition.update 2006-11-03
_description.text

Label of the first site in the geometry bond.

_description.common '"Atom Site Label'

_name.category id geom_bond
_name.object id atom site label 1
_name.linked item id _atom site.label’
_type.purpose Key
_type.container Single
_type.contents Label

save

Definition 4.5.3

That is, each value of geom bond.atom site label 1 (and geom bond.atom site label 2)
must match a value of _atom site.label, otherwise the file is in error. The link between these
labels means that dREL may access the coordinate packets in the AToM_SITE list directly using
geom bond.atom site label 1o0r geom bond.atom site label 2 valuesin the GEOM BOND
list.

6. GLOSSARY OF DDLM ATTRIBUTES

6.1 DDLM DICTIONARY

The purpose and function of the individual DDLm attributes are defined in their own DDLM
dictionary (filename: dd1_m.dic) using the attributes themselves. All attributes are grouped
into categories but only the category tags of List categories (as opposed to Set categories) are
shown (in blue capital letters) with the parent category name in parentheses. Note that unless
specified explicitly using _category.parent_join List categories in DDLm cannot be joined to
their parent categories (i.e. their lists cannot be merged).

DDL_ATTR

ALIAS (parent: ddl attr)

alias.definition_id
alias.dictionary uri

category.parent id
category.parent join

category key.generic
category key.primitive

CATEGORY_ MANDATORY (parent: category)
category mandatory.item id

definition.class
definition.id
definition.scope
definition.update
definition.xref code

description.key_words
description.common
description.text

DESCRIPTION_EXAMPLE (parent: description)
description example.case
description example.detail

dictionary.class
dictionary.date
dictionary.ddl_conformance
dictionary.namespace
dictionary.title
dictionary.uri
dictionary.version

DICTIONARY AUDIT (parent: dictionary)
dictionary audit.date

dictionary audit.revision

dictionary audit.version

DICTIONARY (parent: dictionary)
dictionary valid.attributes
dictionary valid.scope

DICTIONARY XREF (parent: dictionary)
dictionary xref.code

dictionary xref.date
dictionary_xref.format
dictionary_xref.name
dictionary_xref.uri

enumeration.default
enumeration.def index_id
enumeration.range
enumeration.mandatory

ENUMERATION DEFAULT (parent: enumeration)
enumeration default.index
enumeration default.value

ENUMERATION SET (parent: enumeration)
enumeration set.state
enumeration_set.construct

enumeration set.detail

enumeration set.xref code

enumeration set.xref dictionary

IMPORT (parent: ddl _attr)
import.block

import.file

import.if dupl

import.if miss
import.scope

import_list.id
loop.level

METHOD (parent: ddl_attr)
method.purpose
method.expression

name.object id
name.category id
name.linked item id

type.container
type.contents
type.purpose
type.dimension

units.code

6.2 FORMAT OF DDLM DEFINITION FRAMES

The basic organisation of DDLm definition frames is consistent across all definitions and domain
dictionaries. Certain attributes are mandatory for the construction of a valid category or item
definition frame. The appropriateness of attributes in the different frames is specified formally in
the DDLM dictionary using the attributes _dictionary valid.scope and

_dictionary valid.attributes. The DDLM dictionary is the only dictionary in which these
two attributes may be invoked. The syntax of the value for _dictionary valid.attributes
is as follows, where:

+ <attribute tag> stipulates that this attribute is mandatory,
. <attribute tag> stipulates that this attribute is encouraged,

! <attribute category> stipulates that this category of attributes is invalid.

loop_
_dictionary valid.scope
_dictionary valid.attributes

Dictionary

_dictionary.title
_dictionary.class
_dictionary.version
_dictionary.date
_dictionary.uri
_dictionary.ddl conformance
_dictionary.namespace
_dictionary audit.version
_dictionary audit.date
_dictionary audit.revision
_description.text

ALIAS

CATEGORY

DEFINITION

ENUMERATION

LOOP

METHOD

NAME

TYPE

UNITS

+ 4+ o+ A+

Category

_definition.id
_definition.scope
_definition.class
_category.parent id
_category key.generic
_category key.primitive
_category mandatory.item id
_description.text

ALIAS

DICTIONARY

ENUMERATION

IMPORT

LOOP

NAME

TYPE

UNITS

+ 4+ + +

Item
; + definition.id
_definition.scope
_definition.class
_definition.update
_name.object id
_name.category id
_type.purpose
_type.container
_type.contents
_description.text
_description.common
! CATEGORY
! DICTIONARY

+ 4+ o+t

The construction of dictionary definitions has already been illustrated in the Sections 3 and 4. For
the category definitions, the attributes needed are relatively simple (see Definitions 3.3.2,4.3.1 and
4.5.1). For the item definitions, the attributes required may vary considerably, but certain
attributes are mandatory (see Definitions 4.2.2,4.4.1,4.4.2,4.5.2 and 4.5.3).

For the sake of brevity, the description of individual attribute definitions that follow will not
include every attribute applied (these may be seen in the file dd1_m.dic). Only the
characteristics that uniquely distinguish each attribute will be shown and discussed.

6.3 ALIAS Attributes

The ALIAS attributes identify identically-equivalent tags that may be aliased (i.e. substituted) for
the defined tag. These attributes are included when equivalent items exist in this or another
dictionary.

6.3.1 ALIAS

_definition.class List
_category.parent id ddl attr
_category key.generic ' alias.definition id'

6.3.2 _alias.definition_id

Specifies the tag of another item equivalent to the item in the current definition.

_type.purpose Key
_type.container Single
_type.contents Tag

6.3.3 _alias.dictionary_uri

Specifies the universal resource identifier of the dictionary containing the definition of an item
aliased to the item in the current definition.

_type.purpose Identify
_type.container Single
_type.contents Uri

6.4 CATEGORY Attributes

The CATEGORY attributes specify the group properties of a related set of items.

6.4.1 CATEGORY

_definition.class
_category.parent id

Set
ddl attr

6.4.2 category.parent_id

Specifies the parent (the next highest in the category hierarchy) category tag of the category being

defined (see also 4.1 above).

_type.purpose Identify
_type.container Single
_type.contents Tag

6.4.3 _category.parent_join

Specifies if at instantiation time the defined List category may be joined to the parent List category

(see also 4.3 above).

_type.purpose Identify
_type.container Single
_type.contents YesorNo
_enumeration.default No

6.5 CATEGORY_KEY Attributes

The CATEGORY_KEY attribute identifies the category keys of a List category. In an instance
document, in order to access specific packets of item values within a looped list, these keys must
have a unique value. Two keys types are provided; _category_key.generic and
_category_key.primitive. The generic key is a tag identifying a single key item or an item
containing a method specifying the key item(s). The generic key allows the key item(s) to be
varied, and selected, according to instantiated values of items outside the category. The primitive
key is a tuple containing the one or more item tags that form the basic key. The components of the
primitive key are fixed.

6.5.1 CATEGORY_KEY

_definition.class Set
_category.parent id category

6.5.2 _category_key.generic

Specifies the tag of the item whose value is the key to packets of items in a looped list of items in a
List category. See 4.2 for an example of a generic key.

_type.purpose Identify
_type.container Single
_type.contents Tag

6.5.3 _category_key.primitive

Specifies a tuple of an item or items whose composite value is the key to packets of items in a List
category. See 4.2 for an example of a primitive key.

_type.purpose Identify
_type.container Single
_type.contents Tuple
_type.dimension [*]

6.6 CATEGORY_MANDATORY Attributes

The CATEGORY_MANDATORY attribute identifies the items that must be present in an instance data
list of the category items.

6.6.1 CATEGORY MANDATORY

_definition.class List
_category.parent id category
_category key.generic ' category mandatory.item id'

6.6.2 _category mandatory.item_id

Specifies the tag of the item that must be present in an instance data list of the category items.

_type.purpose Key
_type.container Single
_type.contents Tag

6.7 DEFINITION Attributes

The DEFINITION attributes identify the nature and purpose of definition frames in a dictionary.
6.7.1 DEFINITION

_definition.class Set
_category.parent id ddl attr

loop

_category mandatory.item id ' definition.id'

6.7.2 definition.class

Specifies the class or purpose of the dictionary, category or item being defined. The allowed
definition classes are listed below.

_type.purpose State

_type.container Single

_type.contents Code
loop

_enumeration set.state
_enumeration set.detail

Audit
; Item used to IDENTIFY and AUDIT dictionary properties only.
Attribute
; Item used as an attribute in the definition
of other data items. Applied in dictionaries only.
Head

; Category of items that is the parent of
all other categories in the dictionary.

List
Category of items that in a data file must
reside in a looped list with a key item defined.

Set
; Category of items that form a set (but not a
loopable list). These items may be referenced
as a class of items in a dREL methods expression.
Datum
; Item in a domain-specific dictionary. These items
appear in data files.
Transient

Definition saveframes specifying the attributes, enumeration
values and functions used in dictionary definitions. These tags
are ONLY used in dictionary definitions.

_enumeration.default Datum

6.7.3 _definition.id

Specifies the tag of the item or category being defined within the current definition frame.

_type.purpose Identify
_type.container Single
_type.contents Tag

6.74 definition.scope

Specifies the scope of item being defined in terms of its inheritance. The allowed definition scopes

are shown.

_type.purpose State

_type.container Single

_type.contents Code

loop

_enumeration set.state

_enumeration set.detail
Dictionary "applies to all defined items in the dictionary"
Category "applies to all defined items in the category"
Item "applies to a single item definition"

_enumeration.default Item

6.7.5 definition.update

Specifies the calendar date (format “yyyy-

mm-dd”) that the item definition was last updated.

_type.purpose Audit
_type.container Single
_type.contents Date

6.7.6 _definition.xref code

Specifies a code that identifies the same item defined in another dictionary identified by the

DICTIONARY_ XREF category of attributes.

_type.purpose Identify
_type.container Single
_type.contents Code

6.8 DESCRIPTION Attributes

The DESCRIPTION attributes provide various text descriptions of the defined data item.

6.8.1 DESCRIPTION

| _definition.class

Set

| _category.parent id ddl attr

6.8.2 _description.key_words

Specifies a sequence of comma-delimited word sequences that are "key words" identifying an item
for thematic searches.

_type.purpose Describe
_type.container List
_type.contents Code

6.8.3 _description.common

Specifies the common or usual name of the defined item.

_type.purpose Describe
_type.container Single
_type.contents Text

6.8.4 description.text
Specifies the text describing of the defined item.

__type.purpose Describe
_type.container Single
_type.contents Text

6.9 DESCRIPTION_EXAMPLE Attributes

The DESCRIPTION_EXAMPLE attributes provide descriptive example values of the defined item.
These values are not machine interpretable.

6.9.1 DESCRIPTION EXAMPLE

_definition.class List
_category.parent id description
_category key.generic ' description example.case'

6.9.2 _description_example.case

Specifies an example value for the defined item.

_type.purpose Key
_type.container Single
_type.contents Text

6.9.3 _description_example.detail

Specifies the text details of an example value for the defined item.

__type.purpose Describe
_type.container Single
_type.contents Text

6.10 DICTIONARY Attributes

The DICTIONARY attributes describe aspects of the dictionary as a whole. These attributes are
specified within the dictionary block but not within a definition frame.

6.10.1 DICTIONARY

_definition.class Set
_category.parent id ddl attr
loop

_category mandatory.item id
' dictionary.title'

_dictionary.uri'
' dictionary.date'
' dictionary.version'

6.10.1 _dictionary.class

Specifies the nature or purpose of the items defined in the dictionary.

_type.purpose State

_type.container Single

_type.contents Code
loop

_enumeration set.state
_enumeration set.detail

Attribute 'dictionary containing DDL attribute definitions'

Instance 'dictionary containing data definitions'

Import 'dictionary containing definitions for importation'

Function 'dictionary containing method function definitions'
_enumeration.default Instance

6.10.2 _dictionary.date
Specifies the calendar date (format “yyyy-mm-dd”) that the dictionary was last updated.

__type.purpose Audit
_type.container Single
_type.contents Date

6.10.3 _dictionary.ddl_conformance

Specifies the version code (nn.mm.ii) for the DDL dictionary to which all definitions in the current
dictionary conform.

_type.purpose Audit
_type.container Single
_type.contents Version

6.10.4 _dictionary.namespace

Specifies a unique name for the dictionary that may be prefixed to an item tag (defined within the

specific dictionary) with a separating colon character ":" when used in dictionary applications.
Because tags must be unique, dictionary namespace prefixes are unlikely to be used in data files.

_type.purpose Identify
_type.container Single
_type.contents Code

6.10.5 _dictionary.uri

Specifies the URI location and filename of the current dictionary.

_type.purpose Identify
_type.container Single
_type.contents Uri

6.10.6 _dictionary.title

Specifies the common title for the current dictionary.

_type.purpose Identify
_type.container Single
_type.contents Code

6.10.7 _dictionary.version

Specifies the version code (nn.mm.ii) of the dictionary. This code must match a value for
_dictionary_audit.version in the dictionary audit list (see 6.11)

| _type.purpose Audit

_type.container Single
_type.contents Version

6.11 DICTIONARY_AUDIT Attributes

The DICTIONARY_AUDIT attributes describe the status and the origins of a dictionary.
6.11.1 DICTIONARY_ AUDIT

_definition.class List
_category.parent id dictionary
_category key.generic ' dictionary audit.version'

loop
_category mandatory.item id ' dictionary audit.date'

6.11.2 _dictionary_ audit.date

Specifies the calendar date (format “yyyy-mm-dd”) of the last revision of the dictionary.

__type.purpose Audit
_type.container Single
_type.contents Date

6.11.3 _dictionary audit.revision

Specifies the description of the revision applied.

_type.purpose Describe
_type.container Single
_type.contents Text

6.11.4 _dictionary_ audit.version

Specifies the code (nn.mm.ii) identifying the version of a dictionary (see _dictionary.version)
associated with a revision.

_type.purpose Key
_type.container Single
_type.contents Version

6.12 DICTIONARY_VALID Attributes

The DICTIONARY_VALID attributes identify when attributes are used in the different definition
scopes. That is, whether specific attributes are mandatory or prohibited in the dictionary, category
or item definitions. The DICTIONARY_VALID attributes are only used in the DDL dictionary. For the
current invocation see Section 6.2.

6.12.1 DICTIONARY_ VALID

_definition.class List
_category.parent id dictionary
_category key.generic ' dictionary valid.scope'

loop
_category mandatory.item id ' dictionary valid.attributes'

6.12.2 _dictionary_valid.attributes

Specifies as text the names of attributes that are mandatory or prohibited.

_description.text

A list of the attribute names and the attribute categories that are
either MANDATORY or PROHIBITED for the definition.scope value
specified in the corresponding dictionary valid.scope. All
unlisted attributes are considered optional.

MANDATORY attributes are preceded by a "+" character.

PROHIBITED attributes are preceded by a "!" character.
RECOMMENDED attributes are preceded by a "." character.
__type.purpose Audit
_type.container Single
_type.contents Text

6.12.3 _dictionary valid.scope

Specifies the dictionary scope associated with the _dictionary valid.attributes lists.

_type.purpose State

_type.container Single

_type.contents Code
loop

_enumeration set.state
_enumeration set.detail

Dictionary "applies to all defined items in the dictionary"
Category "applies to all defined items in the category"
Item "applies to a single definition"

6.13 DICTIONARY_XREF Attributes

The DICTIONARY_XREF attributes identify external dictionaries to which items in the current

dictionary are cross-referenced using the definition.xref code attribute.

6.13.1 DICTIONARY XREF

_definition.class List
_category.parent id dictionary
_category key.generic ' dictionary xref.code'

6.13.2 _dictionary_ xref.code

Specifies the key code of the cross-referenced dictionary.

_type.purpose Key
_type.container Single
_type.contents Code

6.13.3 _dictionary_xref.date

Specifies the calendar date (format “yyyy-mm-dd”) of the cross-referenced dictionary.

_type.purpose Audit
_type.container Single
_type.contents Date

6.13.4 _dictionary_xref.format

Specifies the format description of the cross-referenced dictionary.

_type.purpose Describe
_type.container Single
_type.contents Text

6.13.5 _dictionary_xref.name

Specifies the common name of the cross-referenced dictionary.

__type.purpose Describe
_type.container Single
_type.contents Text

6.13.6 _dictionary_xref.uri

Specifies the URI of the cross-referenced dictionary.

_type.purpose Audit
_type.container Single
_type.contents Uri

6.14 ENUMERATION ATTRIBUTES

The ENUMERATION attributes specify any prescribed constraints on the values of defined items.
6.14.1 ENUMERATION

_definition.class Set
_category.parent id ddl attr

6.14.2 _enumeration.default

Specifies the default value the value of the defined item, which is used if a value is not present in
the instance data file.

_type.purpose Limit
_type.container Single
_type.contents Implied

6.14.3 _enumeration.range

Specifies the range of values the defined item must lie within. The minimum and maximum

values are separated by a colon ":" character.

_type.purpose Limit
_type.container Single
_type.contents Range

6.14.4 _enumeration.def_ index_id

Specifies the tag of an item whose coded value is used as an index to select a default enumeration
value from the enumeration default list (see 6.15). The code value must match one of the
_enumeration default.index values.

_type.purpose Identify
_type.container Single
_type.contents Tag

6.14.5 _enumeration.mandatory

Specifies if it obligatory that the enumeration constraints (set by other attributes) MUST be
adhered to in any validation process. The default is Yes.

_type.purpose Limit
_type.container Single
_type.contents YesorNo
_enumeration.default Yes

6.15 ENUMERATION_DEFAULT Attributes

The ENUMERATION DEFAULT attributes specify the allowed default values for the defined item. The
single default value applicable for a specific instance document is determined by the value of tag
identified by the attribute _enumeration.def_index_id (see 6.14.3). The code value is used as an
index to select a default enumeration value from the _enumeration_default list by matching one
of the enumeration default.index values.

6.15.1 ENUMERATION DEFAULT

_definition.class List
_category.parent id enumeration
_category key.generic ' enumeration default.index'

6.15.2 _enumeration_default.index

Specifies the key index codes to the list of eligible default values. This code is matched at
instantiation time with the value of the item identified by the attribute
enumeration.def index id.

_type.purpose Key
_type.container Single
_type.contents Code

6.15.3 _enumeration_default.value

Specifies eligible default values. The appropriate default is selected at instantiation time by
matching the _enumeration_default.index code with that of the item identified by the attribute
enumeration.def index id.

_type.purpose Limit
_type.container Single
_type.contents Implied

6.16 ENUMERATION_SET Attributes

The ENUMERATION_SET attributes specify a set of predetermined values (i.e. states) for an item.
6.16.1 ENUMERATION_ SET

_definition.class List
_category.parent id enumeration
_category key.generic ' enumeration set.state'

6.16.2 _enumeration_set.state

Specifies permitted codes or “states” for a item.

_type.purpose Key
_type.container Single
_type.contents Code

6.16.3 _enumeration_set.construct

Specifies the construction rules of permitted states in terms regular expression (REGEX) rules.

_type.purpose Limit
_type.container Single
_type.contents Regex

6.16.4 _enumeration_set.detail

Specifies the description of a permitted enumeration state.

_type.purpose Describe
_type.container Single
_type.contents Text

6.16.5 _enumeration_set.xref code

Specifies a cross-reference code for a permitted state with respect to the codes used in the
dictionary identified with the DICTIONARY_ XREF category attributes.

_type.purpose Identify
_type.container Single
_type.contents Code

6.16.6 _enumeration_set.xref_ dictionary

Specifies the code for the dictionary identified with the DICTIONARY_XREF category attributes.

_type.purpose Link
_type.container Single

| _type.contents Code

6.17 IMPORT Attributes

The IMPORT attributes faciltate the importation of definition lines from external files. These
attributes do not contribute to the direct definition of an item but provide a mechanism for
inserting external definition material into a dictionary.

6.17.1 IMPORT

_definition.class List
_category.parent id ddl attr
_category key.generic ' import.block'

6.17.2 _import.block

Specifies the block of definitions to be imported from _import.file.

_type.purpose Key

_type.container Single

_type.contents Tag
loop

_description example.case _atom site.xyz'

'refln'

6.17.3 _import.file
Specifies the URI containing the definition block specified by _import.block.

_type.purpose Identify
_type.container Single
_type.contents Uri

6.17.4 _import.if dupl

Specifies the action to be taken if the imported definition block already exists in the importing
dictionary file. The actions allowed appear as enumerated states.

_type.purpose State

_type.container Single

_type.contents Code
loop

_enumeration set.state
_enumeration set.detail

Ignore 'ignore imported definitions if id conflict'

Replace 'replace existing with imported definitions'

Exit 'issue error exception and exit'
_enumeration.default Exit

6.17.5 _import.if miss

Specifies the action to be taken if the imported definition block is missing from the file identified
by _import.file. The actions allowed appear as enumerated states.

_type.purpose State

_type.container Single

_type.contents Code
loop

_enumeration set.state
_enumeration set.detail

Ignore 'ignore import'
Exit 'issue error exception and exit'
_enumeration.default Exit

save

6.17.6 _import.scope

Specifies the scope of imported definition block identified by _import.block. The scopes allowed
appear as enumerated states.

_type.purpose State

_type.container Single

_type.contents Code
loop

_enumeration set.state
_enumeration set.detail

Dic 'all saveframes in the source file'

Cat 'all saveframes in the specific category'

Grp 'all saveframes in the category with children'
Def 'one saveframe containing a definition'

Att 'import attributes within a saveframe'

Sta 'import enumeration state list only'

Val ‘'import enumeration default value list only'

6.18 IMPORT _LIST Attributes

The IMPORT_LIST attributes specify the importation of definition material from external files.

6.18.1 IMPORT LIST

| _category.parent id import

6.18.2 _import_list.id

Specifies all of the attributes described in 6.17 for the importation of definition material from
external files. This attribute is a convenient composite of the IMPORT attributes in that they are
presentated as a single List () rather than as a looped list.

_type.container List
_type.contents [Code, Tag,Uri,Code, Code]
_type array.dimension [5 []17*]

loop

_method.purpose
_method.expression
Definition

With i as import
_import list.id = List([i.scope, i.block, i.file, i.if dupl, i.if miss])

6.19 LOOP Attributes

The LOOP category attributes specify the loop level of the defined item. For CIF data this will
always be 1, but for STAR File data nested lists to any level are permitted.

6.19.1 LOOP

_definition.class Set
_category.parent id ddl attr

6.19.2 loop.level
Specifies the loop level of the defined item.

_type.purpose Limit
_type.container Single
_type.contents Index
_enumeration.range 1:
_enumeration.default 1

6.20 METHOD Attributes

The METHOD category attributes specify methods for expressing relationships between the defined
item and other defined items.

6.20.1 METHOD

_definition.class List
_category.parent id ddl attr
_category key.generic ' method.purpose'

6.20.2 method.purpose

Specifies the purpose code of the method for the defined item. Three method classes exist:
Evaluation, Definition and Validation.

_type.purpose State
_type.container Single
_type.contents Code

loop
_enumeration set.state
_enumeration set.detail

Evaluation "method evaluates an item from related item values"
Definition "method generates attribute value(s) in the definition"
Validation "method compares an evaluation with existing item value"
_enumeration.default Evaluation

6.20.3 _method.expression

Specifies the script, in the dREL language, relating the defined item to other items.

_type.purpose Method
_type.container Single
_type.contents Text

6.21 NAME Attributes

The NAME attributes specify the name constructs of the defined item.
6.21.1 NAME

_category.parent id ddl attr
loop
_category mandatory.item id
' name.object id
' name.category id'

6.21.2 _name.object_id

Specifies the “object tag” of the defined item. This is a unique name string identifying an object
with its category.

_type.purpose Identify
_type.container Single
_type.contents Otag

6.21.3 _name.category_id

Specifies the name of the category the defined item is a member of.

_type.purpose Identify
_type.container Single
_type.contents Ctag

6.21.4 name.linked_item_id

Specifies the tag that the defined item is a derivative of, and implicitly dependent on the existence
of, the linked item when used in an instance document. See 4.4 and 4.5 for examples.

_type.purpose Identify
_type.container Single
_type.contents Tag

6.22 TYPE Attributes

The TYPE attributes specify the nature and origin of the defined item.
6.22.1 TYPE

| _category.parent id ddl attr

6.22.2 type.container

Specifies the container type of the defined item. This is the simplest type description of the text
string representing a value. Seven container types are recognised.

_type.purpose State

_type.container Single

_type.contents Code
loop

_enumeration set.state
_enumeration set.detail

Single 'a single value'

Multiple 'values related by boolean ', |&!*'" or range ":" ops'

List 'list of values bounded by []; separated by commas'

Array 'List of fixed length and dimension'

Tuple "immutable List bounded by (); nested tuples allowed'

Table 'key:value elements bounded by {}; separated by commas'

Implied '"implied by type.container of associated value'
_enumeration.default Single

6.22.3 _type.contents

Specifies the code identifying nature of the defined item. The allowed codes are specified in an
enumeration list stored in the external file com val.dic (see below).

_type.purpose State

_type.container Multiple

_type.contents Code

_import list.id [['sta', 'type contents', 'com val.dic']]
loop

_description example.case
_description example.detail

'Integer’ 'all elements are integer'
'Real,Code' 'elements are in muliples of real number and codes'
'Real |Code' 'elements are either a real number or a code'

The allowed codes for type.contents are stored in the external file com val.dic.

loop
_enumeration set.state
_enumeration set.detail

Implied 'typing unknown; determined by referenced item'

Achar 'an alphabetic character'

ANchar 'an alphanumeric character'

Pchar 'a printable character'

Text 'a case-sensitive string/lines of text'

Tag 'case-insensitive data item name or tag'

Ctag 'case-insensitive category name preceding period in item tag'
Otag 'case-insensitive object name trailing period in item tag'
Filename 'name of an external file'

Savename 'case insensitive name of a saveframe used as a REFERENCE tag'
Code 'code used for indexing data or referencing data resources'
Regex 'a REGEX conformant expression'

Date 'ISO date format yyyy-mm-dd'

YesorNo 'the flag with values of "yes", "y", "no" or "n".'

Uri 'an universal resource indicator string specifying a file'

Version 'version digit string of the form <major>.<version>.<update>'
Dimension 'integer dimensions of an array in square brackets'

Range 'An inclusive range of numerical values min:max'

Digit 'a single digit unsigned number'

Count 'an unsigned integer number'

Index 'an unsigned non-zero integer number'

Integer 'a positive or negative integer number'

Float 'a floating-point real number'

Real 'a floating-point real number'

Imag 'a floating-point imaginary number'

Complex 'a complex number'

Binary 'a binary number'

Hexadecimal 'a hexadecimal number'

Octal 'a octal number'

Label 'code itentifying an atom site’

Element 'code itentifying an atom type (element symbol)'

Formula 'code describing a chemical formula'

Symop 'code itentifying the symmetry and lattice of an atom site’

6.22.4 type.purpose

Specifies the purpose, origin or function code of the defined item.

_type.purpose State
_type.container Single
_type.contents Code
loop_
_enumeration set.state
_enumeration set.detail
_enumeration set.construct
Import
; >>> For dictionaries only <<<
Used within dictionaries to import definition lines
from other dictionaries. 1In the expanded dictionary
the import item is replaced by the imported items.
Method
; >>> For dictionaries only <<<
A text method expression in a dictionary definition relating
the defined item to other defined items.
Audit
; An item used to contain audit information about the creation
or conformance of a file.
Identify
An item used to identify another item or file.
Describe
; A descriptive item intended only for human interpretation.
Limit
; An item used to limit the values of other items.
State
; An item with one or more codified values that must exist
within a discrete and countable list of enumerated states.
Key
; An item with a codified value that is the key to identifying
specific packets of items in the same category.
Link
; An item with a value that is a foreign key linking packets
in this category list to packets in another category.
Assigned
An item whose value is assigned in the process of refining

and modeling measured and observed items.

Observed
; An item whose value is determined by observation or deduction.
Numerical observed values do NOT have a standard uncertainty.
Measured
; A numerical item whose value i1s measured or derived from a

measurement. It is expected to have a standard uncertainty
value which is either
1) appended as integers in parentheses at the
precision of the trailing digits, or
2) as a separate item with the same name as
defined item but with a trailing ' su'.

6.22.5 type.dimension

Specifies the array dimensions (number of elements in each dimension) of the defined item.

_type.purpose Limit

_type.container Single

_type.contents Text

loop

_description example.case

_description example.detail "[3,3]" 'in Array definition: 3x3 matrix'
"[31" 'in Array definition: 3 number vector'
"[o]" 'in List definition: 6 values'
"[*]"

'unknown number of elements'

6.23 UNITS Attributes

The UNITS attributes specify the units of measurement for a defined item.
6.23.1 UNITS

| _category.parent id ddl attr

6.23.2 units.code

Specifies the name of the units of measurement of the defined . The allowed codes are specified as
an enumeration list in the external file com_val.dic.

_type.purpose State

_type.container Single

_type.contents Code

_import list.id [['Sta','units code', 'com val.dic']

The allowed units.code values are specified in the external file com val.dic.

loop

_enumeration set.state

_enumeration set.detail
'centimetres' "length 'centimetres (meters * 10°(=-2))'"
'millimetres' "length 'millimetres (meters * 10°(=-3))'"
'nanometres' "length 'nanometres (meters * 10~ (=-9))'""
'angstroms' "length 'angstroms (meters * 107 (-10))'""
'picometres' "length 'picometres (meters * 10" (-12))'"
'femtometres' "length 'femtometres (meters * 107 (-15))'"

'reciprocal centimetres'

"per length 'reciprocal centimetres (meters * 107(-2)~-1)'"
'reciprocal millimetres'

"per length 'reciprocal millimetres (meters * 107(-3)~"-1)'"
'reciprocal nanometres'

"per-length 'reciprocal nanometres (meters * 107~ (=9)~-1)'"
'reciprocal angstroms'

"per-length 'reciprocal angstroms (meters * 107 (-10)"-1)'"

'reciprocal picometres'
"per-length 'reciprocal picometres (meters * 107 (-12)"-1)'"

'nanometre squared’

"length squared 'nanometres squared (meters * 107(-9))"2'"
'angstrom squared'

"length squared 'angstroms squared (meters * 107(-10))"2"'"

'8pi angstroms squared'

"length squared '8pi~2 * angstroms squared (meters * 107 (-10))"2'"
'picometre squared'

"length squared 'picometres squared (meters * 107(-12))"2"'"

'nanometre cubed'
"length cubed 'nanometres cubed (meters * 10%(-9))"3'"
'angstrom cubed'
"length cubed 'angstroms cubed (meters * 107(-10))"3'"
'picometre cubed'’
"length cubed 'picometres cubed (meters * 10%(-12))"3'"

'kilopascals' "pressure 'kilopascals'"

'gigapascals' "pressure 'gigapascals'"

'hours' "time 'hours'"

'minutes' "time 'minutes'"

'seconds' "time 'seconds'"

'microseconds’ "time 'microseconds'"

'degrees' "angle 'degrees (of arc)'"
'degree per minute' "rotation per time ‘'degrees (of arc) per minute'"
'celsius' "temperature 'degrees (of temperature) Celsius'"
'kelvins' "temperature 'degrees (of temperature) Kelvin'"
'electrons' "electrons 'electrons'"

'electron squared' "electrons-squared 'electrons squared'"

'electron per nanometres cubed'
"electron-density 'electrons per nanometres cubed (meters * 10"°(-9))"3'"
'electron per angstroms cubed'
"electron-density 'electrons per angstroms cubed (meters * 107 (-10))"3"'"
'electron per picometres cubed'
"electron-density 'electrons per picometres cubed (meters * 107 (-12))"3'"

'kilowatts' "power 'kilowatts'"

'milliamperes' '"current 'milliamperes'"

'kilovolts' "emf 'kilovolts'"

'arbitrary' "arbitary 'arbitrary system of units'"

7. REFERENCES

Allen, F.H., Barnard,].M., Cook, A.F.P. & Hall, S.R. (1995).]. Chem. Inform. Comp. Sci. 35, 412-
427.

Cook, A.E.P. (1991) “Dictionary Definition Language in STAR File Format.” ORAC Report.

Hall, S.R. The STAR File: (1991) “A New Format for Electronic Data Transfer and Archiving.” |
Chemical Information and Computer Science 31, 326-333.

Hall, S.R., Allen, F.H. & Brown, I.D. (1991) “The Crystallographic Information File (CIF): A New
Standard Archive File for Crystallography.” Acta Cryst. A47, 655-685.

Hall, S.R. & Cook, A.P.F. (1995) “STAR Data Definition Language: Initial Specification.”] Chemical
Information and Computer Science 35, 819-825.

Hall, S.R. & Spadaccini, N. (1994) “The STAR File: Detailed Specifications.” | Chemical Information and
Computer Science 34, 505-508.

Spadaccini, N., Hall, S.R., and Castleden, L.R. (2000) “Relational Expressions in STAR File
Dictionaries.” | Chemical Information and Computer Science 40, 1289-1301

Westbrook,].D & Hall, S.R. (1995) “A Dictionary Description Language for Macromolecular
Structure.” Draft DDL V 2.1.1 (draft from ndbserver.rutgers.edu/mmcif/ddl/)

