Publication of small-unit-cell structures in Acta Crystallographica

Michael Hoyland ECM28 University of Warwick, 2013

International Union of Crystallography 5 Abbey Square Chester CH1 2HU UK

International Union of Crystallography

- International Scientific
 Union
- Publishes 9 research journals
- Promotes standard crystallographic data file format (CIF)

Data flow in crystallography

Publication flow in IUCr journals

CIF – Early Development

- 1983,1988 Standard Crystallographic File Structure I.D. Brown
- 1990 Checking of data in Acta Cryst. C papers
- 1991 Publication of first CIF dictionary
- 1991 Techniques developed for processing CIF data First article typeset from a CIF file. Willis *et al.*
- 1992 First unsolicited CIF submission
- 1994 Faster processing for CIF submissions
- 1996 Acta Cryst. C CIF submission only

The benefits of CIF for publishers

- Submission and deposition of structural and experimental data in a standard format
- Contains the framework for publishing an article directly
- Allows the possibility of automated validation checking against a set of known "standards"
- Allows duplication checking against relevant structural databases (e.g. cellCheckCSD)
- Helps in fraud detection

 Image: state state

What is validation?

Comparison against a set of test criteria

- Are all the usually expected data and information present?
- Are related parameters consistent?
- Is the space group correct?

Annual Constant of Constant of

- Has the refinement converged?
- Are the assigned atom types correct?
- Is the structure reasonable?
- Has the structure been determined before?

Automation of validation

- Allows authors to get anonymous and instant feedback
- Detect and fix problems prior to submission
- Fewer and shorter revision cycles
- Consistent application of criteria
- Known application of criteria (no hidden hurdles to jump)

Crystallography

lournals

- Allows editors and referees to focus on the science
- Benefit faster publication times!

What does validation software do?

- Identifies possible problems via ALERTs
- Provides explanations of ALERTs
- Suggests interpretations and possible solutions
- A tool to help the author
 - efficiently check their work
 - avoid simple mistakes
- Not intended as a hurdle to make life difficult
- Not intended to hinder publication of correct results
- Also a useful tool for reviewers

Validation workflow

Recoldulate of Crystal cashs are on the

ALC: NO

CIF as a vehicle for article submission

Crystal data

(H₂O)al

 $M_{\tau} = 1058.34$ Triclinic PI

a = 9.380(1)Å

b = 13.316 (1) Åc = 15.432 (1) Å

 $\alpha = 90.131 (1)^{\circ}$

Data collection

Refinement

S = 1.03

 $wR(F^2) = 0.207$

8543 reflections.

440 narameters

35 restraints

Bruker SMART APEX

(SADABS: Sheldrick, 1996)

 $T_{min} = 0.540, T_{max} = 0.753$

diffractometer

publ section title

Diaquahexa-\m~2~-dichla tetrahydrofurandiiron(:

loop

:\

ALC: NO

publ author name publ author address 'Sadeghi, Omid' Department of Chemist General Campus Shahid Beheshti Unive Tehran 1983963113 Iran

'Ng, Seik Weng' Department of Chemist University of Malaya 50603 Kuala Lumpur Malaysia

publ section abstract ; In the oxido-centered [Fe~2~Mn (C~2~HC1~2~O~2 the central O atom is] which are themselves ea dichloroacetate anions configuration. Two of t coordinated by a water is coordinated by a tet the crystal, adjacent r 0---H...0 and 0---H...(centers of inversion, o chain along the <i>c</:

Acta Crystallographica Section E Structure Reports Online

ISSN 1600+5368

Diaguahexa-µ2-dichloroacetato- μ_3 -oxido-tetrahydrofurandiiron(III)manganese(II)

Omid Sadeghi,^a Mostafa M. Amini^a and Seik Weng Ng^{b*}

*Department of Chemistry, General Campus, Shahid Beheshti University, Tehrar 1983963113, Iran, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 17 December 2009; accepted 17 December 2009

Key indicators: single-crystal X-ray study; 7 = 295 K; mean o(C-C) = 0.012 Å; disorder in main residue; R factor = 0.063; wR factor = 0.207; data-to-parameter ratio = 19.4.

In the oxido-centered title compound, [Fe2Mn(C2HCl2O2)6-O(C4H8O)(H2O)2, the central O atom is linked to three metal atoms, which are themselves each linked to four dichloroacetate anions, and is in a triangular configuration. Two of the metal atoms are each coordinated by a water molecule, whereas the third is coordinated by a tetrahydrofuran molecule. In the crystal, adjacent molecules are linked by O-H...O and O-H...Cl hydrogen bonds across centers of inversion, generating a hydrogen-bonded chain along the c axis. The Mn¹¹ atoms are disordered with respect to the Fe¹¹¹ atoms, and the same metal site is occupied by 1/3Mn + 2/3Fe.

Related literature

For aquabis(tetrahydrofuran)hexakis(trifluoroacetato)(µ3oxido)M(II)diiron(III) (M = copper, zinc), see: Amini et al. (2004a,b).

Experimental

Fe2Mn(C2HCl2O2)6O(C4H4O)- $\beta = 100.067 (1)^{2}$ $y = 97.677(1)^{\circ}$ V = 1880.1 (2) Å³

7=7 Mo Ka radiation $\mu = 2.01 \text{ mm}^{-1}$ T = 295 K0.35 × 0.15 × 0.15 mm

metal-organic compounds

15425 measured reflections 8543 independent reflections Absorption correction: multi-scan 5788 reflections with $l > 2\sigma(l)$ $R_{int} = 0.025$

 $R[F^2 > 2\sigma(F^2)] = 0.063$ H atoms treated by a mixture of

independent and constrained refinement $\Delta\rho_{\rm max}=1.64~{\rm e}~{\rm \AA}^{-3}$ $\Delta \rho_{min} = -0.90 \text{ e Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å *)

$D - H - \cdots A$	D-H	HA	$D \cdots A$	D-H···A
O1w-H11O3t	0.85(1)	2.01 (3)	2,809 (6)	158 (5)
O2w-H22O8 ¹¹	0.85(1)	2.05 (4)	2.821 (5)	149 (7)
02W-H21010F	0.84 (6)	2.19 (7)	2,950 (6)	150 (6)
01W-H12CI1*	0.85 (3)	2,47 (4)	3.288 (4)	160 (6)

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, -y + 1, -z + 1

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT: program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank Shahid Beheshti University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2991)

References

Amini, M. M., Yadavi, M. & Ng, S. W. (2004a). Acta Cryst. E60, m492-m494. Amini, M. M., Yadavi, M. & Ng, S. W. (2004b). Acta Cryst. E60, m495-m497. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191. Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin 115.4

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Westrip, S. P. (2010). publCIF. In preparation.

SHELXL-97

C

oacetato-\m~3~-oxido-\ I) manganese (II)

)6 O (C4 H8 O) (H2 O)2]'

C16 H18 Cl12 Fe2 Mn 016' 1058.34

	triclinic
me_H-M	'P -1'
me_Hall	'-P 1'

xyz z'

- 9.380(1)13.316(1)15.432(1)
- 90.131(1)
- 100.067(1)
- 97.677(1)
- 1880.1(2)

Črystallography Journals Online

Acta Cryst. (2010), E66, m101

m101 Sadeghi et al.

Authoring tools (1) *publCIF*

Desktop CIF publishing editor, validator and formatter for small-molecule, powder, modulated and incommensurate structure CIFs

Received and a difference of Constanting and Constanting and the second second

Ed	it Preprir	it Tools	Help																			
	1	(1)		- (sta (2005	I Su	i. ș	ê 🕻	J. J.		> Acta	C prep	rint 🔻	Ad	d refine	ment deta	ils				
Đ	n fil 🕨	5 04	a B	BI	a	ab	ab		Ð (Z	₹Z	营	1						
	;											•	-									
	Fig. 1.	Molecu	lar etri	Icture	showi	na 50	18 nr	robal	hiliti	u diar	lacer		Crys	tal da	ata							
	atoms a					ng or	a pr	- DDu		1 arop			[CoR	le(C ₁₂	2H22	P)€(C0	D)₀].0.50	CH₃OH	γ =	111	.87 (2	2)°
	Fig. 2.						ne <i< td=""><td>.>a<!--</td--><td>/i> a:</td><td>xis. N</td><td>lote 1</td><td>5</td><td><i>M</i>_r =</td><td>823.</td><td>.7</td><td></td><td></td><td></td><td>V=</td><td>176</td><td>3.8 (8</td><td>8) ų</td></td></i<>	.>a </td <td>/i> a:</td> <td>xis. N</td> <td>lote 1</td> <td>5</td> <td><i>M</i>_r =</td> <td>823.</td> <td>.7</td> <td></td> <td></td> <td></td> <td>V=</td> <td>176</td> <td>3.8 (8</td> <td>8) ų</td>	/i> a:	xis. N	lote 1	5	<i>M</i> _r =	823.	.7				V=	176	3.8 (8	8) ų
	;	- 111 - 611	- ocnor,	. 01 01									Triclin	nic, P	ł				Z =	2		
	_publ_se	ection_	exptl_p	rep									a = 10.452 (3) Å					Mo Ka radiation				
	Synthes: HP(C~6~1												<i>b</i> = 11.664 (4) Å					$\mu = 4.03 \text{ mm}^{-1}$		-1		
	HP(C~6~H~11~)~2~ (molar ratio 1:1:2) in xylene solution for 1 glass tube. Recrystallization was from MeOH. ;						c = 15.641 (4) Å					<i>T</i> = 293 K										
	_publ_se	ection_	exptl_r	fineme	ent								a =	94.37	7 (2))°			0.50 mm).34 >	< 0.28
	, The enclosed CH-3-OH solvent molecule had a site occupation f Cvclohexvl H atoms were fixed at ideal positions with common						E.	β = 89.75 (2)°														
	displace;	ement pa	aramete:	:s (<i)< td=""><td>U</td><td>~130~</td><td>- = 0</td><td>.08</td><td>\\$A^2</td><td>2^).</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></i)<>	U	~130~	- = 0	.08	\\$A^2	2^).												
	******	******	******	******	*****	*****	****	****	*****	*****		•	Data	a colle	ection	n						
	<pre>data_(I) # CHEMICAL DATA</pre>								6813 4σ(/	3 reflections with $F > F$												
	_chemics ; Hexace	al_name arbonyl·	system	C, 2\k^2									scan			rrection 1968	on: ψ)	R _{int} =	= 0.02	22		
	; _chemica _chemica chemica	al_form	la_sum		30 H4					(C H4 6.5 P2			7 _{min} 0.32		131,	T _{max}	=	θ _{max}	= 27.	5°		
		'			B) I (E 011	1 3 . D	8C .)	13: 0 1	·		-	1518	9 me	easu	red		4 sta	andaro	d refl	lection	าร

Authoring tools (2) printCIF

4

0 R

Online CIF publishing validator and formatter for small-molecule, powder, modulated and incommensurate structure CIFs

http://publcif.iucr.org/services/tools/printcif.php

() printCIF	×			_ =	X
← → C © publcif.iucr	.org/services/tools/p	rintcif.php		ជ	4
	Geometric para		*		
PDF of article	Fe1—013 Fe1—07	🔝 (I) Fe1-O1	3 1.84	39 (7) 32 (7)	
Article + supplement	Fe1-01 Fe1-05			41 (7) 44 (6)	
checkCIF	Fe1—O3 Fe1—O1w			22 (7) 41 (7)	
Upload another CIF	Fe2-013 Fe2-012	▶	THE P	19 (9) 42 (8)	
🕌 Imol	Fe2			5 (1) 5 (1)	
Abstract	Fe2—O4 Fe2—O14			5 (1) 5 (1)	
Related literature Experimental Structure (I)	Fe3—013 Fe3—02		Bond selectio	28 (8)	
Computer programs Acknowledgements References	Fe3—011 Fe3—02w	2.148 (4) 2.155 (4)	C3C4 C4H4	1.541 (8) 0.98	
Supplementary materials	Fe3—010 Fe3—08	2.178 (4) 2.216 (4)	C5C6 C6H6	1.516 (8) 0.98	
	C11—C2 C12—C2	1.773 (8) 1.740 (9)	C7—C8 C8—H8	1.542 (8) 0.98	
	C13—C4 C14—C4	1.725 (8) 1.781 (9)	C9C10 C10H10	1.534 (8) 0.98	
	C15—C6 C16—C6	1.740 (10) 1.774 (10)	C11-C12 C12-H12a	1.538 (8) 0.98	
	C17—C8 C18—C8	1.779 (8) 1.717 (7)	C13C14 C13H13A	1.519 (9) 0.97	E.
	CI9-C10 C110-C10	1.736 (7) 1.751 (7)	C13—H13B C14—C15	0.97 1.493 (9)	
	CI11—C12 CI12—C12	1.751 (8)	C14—H14A C14—H14B	0.97	
	01—C1	1.752 (8) 1.250 (7)	C15-C16	1.521 (9)	
	02—C1 03—C3	1.217 (7) 1.240 (6)	C15—H15A C15—H15B	0.97 0.97	
	04—C3 05—C5 06—C5	1.226 (7) 1.236 (7) 1.240 (7)	C16—H16A C16—H16B	0.97 0.97	
	00-03	1.240 (7)	1993 - 5457 - 55673	0000531 - MAL	

Authoring tools (3) Enhanced figure toolkit

Create interactive threedimensional visualisations with *Jmol*, a viewer that allows direct interaction with the underlying data

These figures form an *integral* part of the online published article

http://submission.iucr.org/jtkt

Authoring tools (4) checkCIF: validation of structural model

公 3	ICr) checkCIF × +
N	• • • • • • • • • • • • • • • • • • •
checkCIF is	
sponsored by	neckCIF
Crystallography	
lournals	ervice of the
Online	ernational Union of Crystallography
0000	eckCIF reports on the consistency and integrity of crystal structure
	terminations reported in CIF format.
and the set of	ase upload your CIF using the form below. 🤨
	name:
V	toose File 02991.cif
	lect form of checkCIF report
5-82.20	D.
e Ch	HTML O PDF
ELSEVIER	lect validation type
WILEY-	Full validation of CIF and structure factors Validation of CIF only (no structure factors)
BLACKWELL	Ind CIF for checking
RSC Advancing the	
	ormation about this version of checkCIF
SUCCET PR	eful links
	tails of checkCIF/PLATON tests = dictionary
	l publication check wnload CIF editor (publCIF) from the IUCr
A KAGE	wnload CIF editor (enCIFer) from the CCDC
- <u>1</u>	
Become a sponsor	

4

checkCIF/PL4	TON (standard)		
	(standard)		3 10
You have not supplied	any structure factors. As a result	t the full set of tests cannot be	
lo syntax errors found Please wait while proc		nary ting this report	
Datablock: I			
Bond precision:	C-C = 0.0118 A	Wavelength=0,71073	1
Cell: a=9.38	b=13.316(1)	c=15.432(1)	
	=90.131(1) beta=100.067(1		
Cemperature: 295 K			
	Calculated	Reported	
/olume	1880.2(3)	1880.1(2)	
Space group	P -1	P -1	
lall group	-P 1	-P 1	
Noiety formula	C16 H18 C112 Fe2 Mn 016	C16 H18 C112 Fe2 Mn 016	
Sum formula	C16 H18 C112 Fe2 Mn 016	C16 H18 C112 Fe2 Mn 016	
ír	1058.85	1058.34	
0x,g cm-3	1.870	1.869	
1	2	2	
1u (mm-1)	2.009	2.005	
5000	1046.0	1046.0	
000'	1052.49		
n, k, lmax	12,17,20	12,17,20	
Vref	8641	8543	
fmin, Tmax	0.704,0.740	0.540,0.753	
[min'	0.491		
Correction method=	MULTI-SCAN		
ata completeness=	0.989 Theta (max) = 27.500	
R(reflections) = 0.	0626(5788) wR2(re	eflections)= 0.2066(8543)	
5 = 1.025	Npar= 440		
test-name_ALE Click on the hyperlinks Alert level A LAT241_ALERT_2_A (Alert level B LAT220_ALERT_2_B I LAT220_ALERT_2_B I	arge Non-Solvent C Ueq(m Hirshfeld Test Diff for 014	d to Neighbors for C16	L _e
LAT241_ALERT_2_B 0 LAT732_ALERT_1_B / H21 -O2W -	Check High Ueq as Compared Angle Calc 108(8), Rep 107	to Neighbors for C13	

Authoring tools (5) Experimental tables

Online service for formatting complex geometry and experimental tables for smallmolecule, powder, modulated and incommensurate structure CIFs

Output available in rtf format

http://publcif.iucr.org/services/tools/

Internal consistency versus external context

Acta Cryst. E 2007 2009 published over 100
 fraudulent structure
 determinations

•Nature of fraud only became apparent when able to correlate different structure factor files.

Why publish data?

Some reasons:

- To enhance the reproducibility of a scientific experiment
- To verify or support the validity of deductions from an experiment
- To safeguard against error
- To safeguard against fraud
- To allow other scholars to conduct further research based on experiments already conducted
- To allow reanalysis at a later date, especially to extract 'new' science as new techniques are developed
- To provide example materials for teaching and learning
- To provide long-term preservation of experimental results and future access to them
- To permit systematic collection for comparative studies

Reading the data

Interactive figures as an *integral* part of the article

Author views

Reader freedom to explore

incapable of H-bonding, can be seen by toggling the radiobutton group "Hydrogen Bonding".

Working with the data

For *any* published structure, the reader can *generate* a predicted powder diffraction pattern

ALC: NO

8

ALC: NO

All journals

Author

volume page

Advanced

search

Visualising crystallography and chemistry

Direct access to the data means that visualisation is not restricted to different views/perspectives of a static scene

Can interactively explore atomic structure and motions, chemical connectivity, lattice symmetry, disorder, molecular dimensions, bond lengths and angles . . .

Thank you

6

мî)

A.

••