4.1. Core dictionary (coreCIF)

BY S. R. HALL, F. H. ALLEN AND I. D. BROWN

This is version 2.4.2 of the core CIF dictionary (coreCIF). A commentary on the use of this dictionary may be found in Chapter 3.2.

The data names defined here are central to the description and reporting of any crystal structure determination, and this dictionary collects the natural set of descriptors for small-unit-cell structures (typically inorganic or small-molecular organic and metal-organic compounds) determined in single-crystal experiments. These data items may be supplemented by additional items designed for use in powder-diffraction experiments (Chapter 3.3), modulated and composite structures (Chapter 3.4), or electron-density studies (Chapter 3.5).

The data items in this dictionary also form a suitable basis for the description of biological macromolecular structures, but the complexity of such structures requires a more extensive dictionary using a rigorously relational data model that expresses dependencies and inheritances between individual items. The macromolecular CIF (mmCIF) dictionary described in Chapter 3.6 and given in Chapter 4.5 provides a complete set of data items within this model, including the content of the core CIF dictionary in a modified formalism.

Categories are described in alphabetic order; data items are arranged alphabetically within each category.

ATOM_SITE

Data items in the ATOM_SITE category record details about the atom sites in a crystal structure, such as the positional coordinates, atomic displacement parameters, and magnetic moments and directions.

Example 1 – based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276–2277].

loop_				
_atom_site_label				
atom_site_fract_x				
_atom_site_fract_y				
_atom_site_fract_z	atom_site_fract_z			
_atom_site_U_iso_or_equiv				
_atom_site_adp_type				
_atom_site_calc_flag				
_atom_site_calc_attached_atom	1			
01 .4154(4) .5699(1) .3	.060(1)	Uani	?	?
C2 .5630(5) .5087(2) .3	246(1) .060(2)	Uani	?	?
C3 .5350(5) .4920(2) .3	997(1) .048(1)	Uani	?	?
N4 .3570(3) .5558(1) .4	.167(0) .039(1)	Uani	?	?
C5 .3000(5) .6122(2) .3	581(1) .045(1)	Uani	?	?
021 .6958(5) .4738(2) .2	874(1) .090(2)	Uani	?	?
C31 .4869(6) .3929(2) .4	.143(2) .059(2)	Uani	?	?
# data truncated for	: brevity			
H321C .04(1) .318(3) .3	.14000	Uiso	?	?
H322A .25(1) .272(4) .4	.19000	Uiso	?	?
H322B .34976 .22118 .4	.19000	Uiso	calc	C322
H322C .08(1) .234(4) .3	.19000	Uiso	?	?

Affiliations: SYDNEY R. HALL, School of Biomedical and Chemical Sciences, University of Western Australia, Crawley, Perth, WA 6009, Australia; FRANK H. ALLEN, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, England; I. DAVID BROWN, Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada L8S 4M1.

(1991), C47, 2276–2277].
loop
atom site aniso label
atom site aniso B 11
atom_site_aniso_B_22
atom site aniso B 33
atom site aniso B 12
atom site aniso B 13
atom site aniso B 23
atom_site_aniso_type_symbol
01 .071(1) .076(1) .0342(9) .008(1) .0051(9)0030(9) O
C2 .060(2) .072(2) .047(1) .002(2) .013(1)009(1) C
C3 .038(1) .060(2) .044(1) .007(1) .001(1)005(1) C
N4 .037(1) .048(1) .0325(9) .0025(9) .0011(9)0011(9) N
C5 .043(1) .060(1) .032(1) .001(1)001(1) .001(1) C
data truncated for brevity
021 .094(2) .109(2) .068(1) .023(2) .038(1)010(1) 0
C51 .048(2) .059(2) .049(1) .002(1)000(1) .007(1) C
C511 .048(2) .071(2) .097(3)008(2)003(2) .010(2) C
C512 .078(2) .083(2) .075(2) .009(2)005(2) .033(2) C
C513 .074(2) .055(2) .075(2) .004(2) .001(2)010(2) C
data truncated for brevity
Example 3 – based on data set DPTD of Yamin, Suwandi, Fun, Sivakumar & bin
Shawkataly [Acta Cryst. (1996), C 52 , 951–953].
leen
loop
_atom_site_label _atom_site_chemical_conn_number
_atom_site_label _atom_site_chemical_conn_number _atom_site_fract_x
_atom_site_label _atom_site_chemical_conn_number _atom_site_fract_x _atom_site_fract_y
_atom_site_label _atom_site_chemical_conn_number _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z
_atom_site_label _atom_site_chemical_conn_number _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv
<pre>atom_site_label _atom_site_chemical_conn_number _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv S1 1 0.74799(9) -0.12482(11) 0.27574(9) 0.0742(3)</pre>
atom_site_label _atom_site_chemical_conn_number _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv \$1 1 0.74799(9) -0.12482(11) 0.27574(9) 0.0742(3) \$2 2 1.08535(10) 0.16131(9) 0.34061(9) 0.0741(3)
atom_site_label _atom_site_chemical_conn_number _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv \$1 1 0.74799(9) -0.12482(11) 0.27574(9) 0.0742(3) \$2 2 1.08535(10) 0.16131(9) 0.34061(9) 0.0741(3) \$1 3 1.0650(2) -0.1390(2) 0.2918(2) 0.0500(5)
<pre>atom_site_label _atom_site_chemical_conn_number _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv S1 1 0.74799(9) -0.12482(11) 0.27574(9) 0.0742(3) S2 2 1.08535(10) 0.16131(9) 0.34061(9) 0.0741(3)</pre>
_atom_site_label _atom_site_chemical_conn_number _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv S1 1 0.74799(9) -0.12482(11) 0.27574(9) 0.0742(3) S2 2 1.08535(10) 0.16131(9) 0.34061(9) 0.0741(3) N1 3 1.0650(2) -0.1390(2) 0.2918(2) 0.0500(5) C1 4 0.9619(3) -0.0522(3) 0.3009(2) 0.0509(6) # data truncated for brevity
_atom_site_label _atom_site_chemical_conn_number _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv S1 1 0.74799(9) -0.12482(11) 0.27574(9) 0.0742(3) S2 2 1.08535(10) 0.16131(9) 0.34061(9) 0.0741(3) N1 3 1.0650(2) -0.1390(2) 0.2918(2) 0.0500(5) C1 4 0.9619(3) -0.0522(3) 0.3009(2) 0.0509(6) # data truncated for brevity Example 4 - hypothetical example to illustrate the description of a disordered
atom_site_label _atom_site_chemical_conn_number _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv S1 1 0.74799(9) -0.12482(11) 0.27574(9) 0.0742(3) S2 2 1.08535(10) 0.16131(9) 0.34061(9) 0.0741(3) N1 3 1.0650(2) -0.1390(2) 0.2918(2) 0.0500(5) C1 4 0.9619(3) -0.0522(3) 0.3009(2) 0.0509(6) # data truncated for brevity Example 4 - hypothetical example to illustrate the description of a disordered methyl group.
_atom_site_label _atom_site_chemical_conn_number _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv S1 1 0.74799(9) -0.12482(11) 0.27574(9) 0.0742(3) S2 2 1.08535(10) 0.16131(9) 0.34061(9) 0.0741(3) N1 3 1.0650(2) -0.1390(2) 0.2918(2) 0.0500(5) C1 4 0.9619(3) -0.0522(3) 0.3009(2) 0.0509(6) # data truncated for brevity Example 4 - hypothetical example to illustrate the description of a disordered methyl group. loop_
<pre>atom_site_label _atom_site_chemical_conn_number _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv S1 1 0.74799(9) -0.12482(11) 0.27574(9) 0.0742(3) S2 2 1.08535(10) 0.16131(9) 0.34061(9) 0.0741(3) N1 3 1.0650(2) -0.1390(2) 0.2918(2) 0.0500(5) C1 4 0.9619(3) -0.0522(3) 0.3009(2) 0.0509(6) # data truncated for brevity Example 4 - hypothetical example to illustrate the description of a disordered methyl group. loop_ _atom_site_label # *_assembly M is a disordered methyl</pre>
<pre>atom_site_label _atom_site_chemical_conn_number _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_fract_z _atom_site_U_iso_or_equiv S1 1 0.74799(9) -0.12482(11) 0.27574(9) 0.0742(3) S2 2 1.08535(10) 0.16131(9) 0.34061(9) 0.0741(3) N1 3 1.0650(2) -0.1390(2) 0.2918(2) 0.0500(5) C1 4 0.9619(3) -0.0522(3) 0.3009(2) 0.0509(6) # data truncated for brevity Example 4 - hypothetical example to illustrate the description of a disordered methyl group. loop_ _atom_site_label # *_assembly M is a disordered methyl _atom_site_occupancy # with configurations 'A' and 'B':</pre>
<pre></pre>
_atom_site_label _atom_site_chemical_conn_number _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_fract_z _atom_site_Uiso_or_equiv S1 1 0.74799(9) -0.12482(11) 0.27574(9) 0.0742(3) S2 2 1.08535(10) 0.16131(9) 0.34061(9) 0.0741(3) N1 3 1.0650(2) -0.1390(2) 0.2918(2) 0.0500(5) C1 4 0.9619(3) -0.0522(3) 0.3009(2) 0.0509(6) # data truncated for brevity <i>Example 4 - hypothetical example to illustrate the description of a disordered</i> <i>methyl group.</i> loop_ _atom_site_label
<pre></pre>
_atom_site_label _atom_site_chemical_conn_number _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_fract_z _atom_site_Uiso_or_equiv S1 1 0.74799(9) -0.12482(11) 0.27574(9) 0.0742(3) S2 2 1.08535(10) 0.16131(9) 0.34061(9) 0.0741(3) N1 3 1.0650(2) -0.1390(2) 0.2918(2) 0.0500(5) C1 4 0.9619(3) -0.0522(3) 0.3009(2) 0.0509(6) # data truncated for brevity <i>Example 4 - hypothetical example to illustrate the description of a disordered</i> <i>methyl group.</i> loop_ _atom_site_label

atom site adp type

.5

.5

.5

.5

H13A

H11B

H12B

н13в

(char)

H13A

H12B

A standard code used to describe the type of atomic displacement parameters used for the site.

#

#

#

H12A

Appears in list containing **_atom_site_label**.

м

м

м

м

Related item: _atom_site_thermal_displace_type (alternate).

А

в

в

в

The data value must be one of the following:

- Uani anisotropic U^{ij}
- Uiso isotropic U
- Uovl overall U
- Umpe multipole expansion U
- Bani anisotropic B^{ij}
- Biso isotropic B
- Bovl overall B

_atom_site_aniso_B_11	
_atom_site_aniso_B_12	
atom_site_aniso_B_13	
atom_site_aniso_B_22	
atom_site_aniso_B_23	
atom site aniso B 33	(numb, su)

These are the standard anisotropic atomic displacement components in ångströms squared which appear in the structure-factor term

$$T = \exp\left\{-(1/4)\sum_{i}\left[\sum_{j}(B^{ij}h_{i}h_{j}a_{i}^{*}a_{j}^{*})\right]\right\},\$$

where h = the Miller indices and $a^* =$ the reciprocal-space cell lengths.

The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of \mathbf{B} for reporting atomic displacement parameters. \mathbf{U} , being directly proportional to \mathbf{B} , is preferred.

Appears in list containing **_atom_site_aniso_label**.

_atom_site_aniso_label (char) Anisotropic atomic displacement parameters are usually looped in a separate list. If this is the case, this code must match the _atom_site_label of the associated atom in the atom coordinate list and conform with the same rules described in _atom_site_label.

Appears in list. Must match parent data name _atom_site_label. [atom_site]

_atom_site_aniso_ratio (numb) Ratio of the maximum to minimum principal axes of displacement (thermal) ellipsoids.

Appears in list containing _atom_site_aniso_label.

The permitted range is $1.0 \rightarrow \infty$. [atom_site]

_atom_site_aniso_type_symbol (char) This _atom_type_symbol code links the anisotropic atom parameters to the atom-type data associated with this site and must match one of the _atom_type_symbol codes in this list.

Appears in list containing _atom_site_aniso_label. Must match parent data name _atom_site_type_symbol. [atom_site]

_atom_site_aniso_U_11	
atom_site_aniso_U_12	
atom_site_aniso_U_13	
_atom_site_aniso_U_22	
atom_site_aniso_U_23	
atom site aniso U 33	(numb, su)

These are the standard anisotropic atomic displacement components in ångströms squared which appear in the structure-factor term

$$T = \exp\left\{-2\pi^2 \sum_i \left[\sum_j (U^{ij}h_ih_ja_i^*a_j^*)\right]\right\},\,$$

where h = the Miller indices and a^* = the reciprocal-space cell lengths.

The unique elements of the real symmetric matrix are entered by row.

Appears in list containing _atom_site_aniso_label. Related item: _atom_site_aniso_B_ (conversion).

[atom site]

_atom_site_attached_hydrogens

The number of hydrogen atoms attached to the atom at this site excluding any hydrogen atoms for which coordinates (measured or calculated) are given.

Appears in list containing **_atom_site_label**.

The permitted range is 0 \rightarrow 8. Where no value is given, the assumed value is '0'.

Examples: '2' (water oxygen), '1' (hydroxyl oxygen), '4' (ammonium nitrogen).

[atom_site]

(numb. su)

_atom_site_B_equiv_geom_mean

Equivalent isotropic atomic displacement parameter, B_{equiv} , in angströms squared, calculated as the geometric mean of the anisotropic atomic displacement parameters.

$$B_{\text{equiv}} = (B_i B_j B_k)^{1/3},$$

where B_n = the principal components of the orthogonalized B^{ij} .

The IUCr Commission on Nomenclature recommends against the use of **B** for reporting atomic displacement parameters. **U**, being directly proportional to **B**, is preferred.

Appears in list containing **_atom_site_label**.

The permitted range is $0.0 \rightarrow \infty$.

Related items:

_atom_site_B_iso_or_equiv (alternate),

_atom_site_U_equiv_geom_mean (conversion).

[atom_site]

_atom_site_B_iso_or_equiv (numb, su) Isotropic atomic displacement parameter, or equivalent isotropic atomic displacement parameter, B_{equiv} , in ångströms squared, calculated from anisotropic displacement components.

$$B_{\text{equiv}} = (1/3) \sum_{i} \left[\sum_{j} (B^{ij} A_i A_j a_i^* a_j^*) \right],$$

where A = the real-space cell lengths and a^* = the reciprocal-space cell lengths; $B^{ij} = 8\pi^2 U^{ij}$.

Reference: Fischer, R. X. & Tillmanns, E. (1988). *Acta Cryst.* C44, 775–776.

The IUCr Commission on Nomenclature recommends against the use of \mathbf{B} for reporting atomic displacement parameters. \mathbf{U} , being directly proportional to \mathbf{B} , is preferred.

Appears in list containing **_atom_site_label**.

The permitted range is $0.0 \rightarrow \infty$.

Related items: _atom_site_B_equiv_geom_mean (alternate),

atom site U iso or equiv (conversion).

(char)

(char)

[atom site]

[atom site]

_atom_site_calc_attached_atom (char) The _atom_site_label of the atom site to which the 'geometrycalculated' atom site is attached.

Appears in list containing **_atom_site_label**. Where no value is given, the assumed value is '.'. [atom_site]

_atom_site_calc_flag

A standard code to signal whether the site coordinates have been determined from the intensities or calculated from the geometry of surrounding sites, or have been assigned dummy coordinates. The abbreviation 'c' may be used in place of 'calc'.

Appears in list containing **_atom_site_label**.

- The data value must be one of the following: d determined from diffraction measurements
 - calc calculated from molecular geometry
- c abbreviation for 'calc'
- dum dummy site with meaningless coordinates

Where no value is given, the assumed value is 'd'.

(numb)

4.1. CORE DICTIONARY (CORECIF)

(numb)

[atom site]

_atom_site_Cartn_x		
_atom_site_Cartn_y		
_atom_site_Cartn_z	(numb, su)	
The atom-site coordinates in ångströms specified a	ccording to a set	
of orthogonal Cartesian axes related to the cell axes as specified by		
the _atom_sites_Cartn_transform_axes description.		
Appears in list containing _atom_site_label .		
Related item: _atom_site_fract_ (alternate).	[atom_site]	

atom site chemical conn number This number links an atom site to the chemical connectivity list. It must match a number specified by chemical conn atom number. Appears in list containing _atom_site_label. Must match parent data name _chemical_conn_atom_number.

The permitted range is $1 \rightarrow \infty.$

atom site constraints (char) A description of the constraints applied to parameters at this site during refinement. See also atom site refinement flags and refine 1s number constraints.

Appears in list containing **__atom__site_label**. Where no value is given, the assumed value is '.'.

Example: 'pop=1.0-pop(Zn3)'.	[atom_site]

_atom_site_description	(char)	
A description of special aspects of this site. See also _atom_	site_	
refinement_flags.		
Appears in list containing _atom_site_label .		

Example: 'Ag/Si disordered'.

atom site disorder assembly

(char)

[atom_site]

A code which identifies a cluster of atoms that show long-range positional disorder but are locally ordered. Within each such cluster of atoms, _atom_site_disorder_group is used to identify the sites that are simultaneously occupied. This field is only needed if there is more than one cluster of disordered atoms showing independent local order.

Appears in list containing _atom_site_label.

Examples: 'A' (disordered methyl assembly with groups 1 and 2), 'B' (disordered sites related by a mirror), 'S' (disordered sites independent of symmetry). [atom site]

atom site disorder group A code which identifies a group of positionally disordered atom sites that are locally simultaneously occupied. Atoms that are positionally disordered over two or more sites (e.g. the hydrogen atoms of a methyl group that exists in two orientations) can be assigned to two or more groups. Sites belonging to the same group are simultaneously occupied, but those belonging to different groups are not. A minus prefix (e.g. -1) is used to indicate sites disordered about a special position.

Appears in list containing **_atom_site_label**.

Examples: '1' (unique disordered site in group 1), '2' (unique disordered site in group 2), '-1' (symmetry-independent disordered site). [atom site]

atom site fract x atom site fract y

_atom_site_fract_z

Atom-site coordinates as fractions of the cell length values. Appears in list containing _atom_site_label.

Related item: **_atom_site_Cartn_** (alternate). [atom site] ATOM_SITE

atom site label

(char) The atom site label is a unique identifier for a particular site in the crystal. This code is made up of a sequence of up to seven components, atom site label component 0 to * 6, which may be specified as separate data items. Component 0 usually matches one of the specified _atom_type_symbol codes. This is not mandatory if an atom site type symbol item is included in the atomsite list. The atom site type symbol always takes precedence over an atom site label in the identification of the atom type. The label components 1 to 6 are optional, and normally only components 0 and 1 are used. Note that components 0 and 1 are concatenated, while all other components, if specified, are separated by an underscore. Underscore separators are only used if higherorder components exist. If an intermediate component is not used, it may be omitted provided the underscore separators are inserted. For example, the label 'C233_ggg' is acceptable and represents the components C, 233, " and ggg. Different labels may have a different number of components.

Appears in list as essential element of loop structure. May match child data name(s): atom site aniso label, geom angle atom site label 1, _geom_angle_atom_site_label_2, _geom_angle_atom_site_label_3, _geom_bond_atom_site_label_1, _geom_bond_atom_site_label_2, geom contact atom site label 1, _geom_contact_atom_site_label_2, _geom_hbond_atom_site_label_D, geom hbond atom site label H, geom hbond atom site label A, _geom_torsion_atom_site_label_1, _geom_torsion_atom_site_label_2, _geom_torsion_atom_site_label_3, _geom_torsion_atom_site_label_4.

Examples: 'C12', 'Ca3g28', 'Fe3+17', 'H*251', 'boron2a', 'C_a_phe_83_a_0', 'Zn_Zn_301_A_0'. [atom site]

_atom_site_label_component_0
_atom_site_label_component_1
_atom_site_label_component_2
_atom_site_label_component_3
_atom_site_label_component_4
_atom_site_label_component_5
atom site label component 6

Component 0 is normally a code which matches identically with one of the _atom_type_symbol codes. If this is the case, then the rules governing the _atom_type_symbol code apply. If, however, the data item _atom_site_type_symbol is also specified in the atom-site list, component 0 need not match this symbol or adhere to any of the atom type symbol rules. Component 1 is referred to as the 'atom number'. When component 0 is the atom-type code, it is used to number the sites with the same atom type. This component code must start with at least one digit which is not followed by a + or - sign (to distinguish it from the component 0 rules). Components 2 to 6 contain the identifier, residue, sequence, asymmetry identifier and alternate codes, respectively. These codes may be composed of any characters except an underscore.

Appears in list containing _atom_site_label.

[atom site]

(char)

atom site occupancy

(numb. su)

The fraction of the atom type present at this site. The sum of the occupancies of all the atom types at this site may not significantly exceed 1.0 unless it is a dummy site. The value must lie in the 99.97% Gaussian confidence interval $-3u \le x \le 1 + 3u$. The enumeration range of $0.0 \rightarrow 1.0$ is thus correctly interpreted as meaning $(0.0 - 3u) \le x \le (1.0 + 3u)$. Appears in list containing _atom_site_label.

The permitted range is 0.0 \rightarrow 1.0. Where no value is given, the assumed value is '1 . 0'.

[atom site]

(numb, su)

(char)

(char)

(numb)

atom site refinement flags

This definition has been superseded and is retained here only for archival purposes. Use instead _atom_site_refinement_flags_posn, atom site refinement flags atom site refinement flags adp, occupancy.

A concatenated series of single-letter codes which indicate the refinement restraints or constraints applied to this site. This item should not be used. It has been replaced by atom site refinement flags posn, * adp and * occupancy. It is retained in this dictionary only to provide compatibility with legacy CIFs.

Appears in list containing _atom_site_label.

- The data value must be one of the following:
 - no refinement constraints
 - S special-position constraint on site
 - rigid-group refinement of site G
 - R riding-atom site attached to non-riding atom
 - D distance or angle restraint on site
 - thermal displacement constraints Т
 - IJ Uiso or U^{ij} restraint (rigid bond)
 - D partial occupancy constraint

[atom site]

(char)

atom site refinement flags adp

A code which indicates the refinement restraints or constraints applied to the atomic displacement parameters of this site.

Appears in list containing _atom_site_label.

Related item: _atom_site_refinement_flags (alternate).

The data value must be one of the following:

- no constraints on atomic displacement parameters
- Т special-position constraints on atomic displacement parameters
- $U_{\rm iso}$ or U^{ij} restraint (rigid bond) ΤT
- ΤU both constraints applied

[atom site]

atom site refinement flags occupancy (char) A code which indicates that refinement restraints or constraints were applied to the occupancy of this site. Appears in list containing _atom_site_label.

Related item: atom site_refinement_flags (alternate).

The data value must be one of the following:

- no constraints on site-occupancy parameters
- Ρ site-occupancy constraint

[atom site]

(char)

atom site refinement flags posn

A code which indicates the refinement restraints or constraints applied to the positional coordinates of this site.

Appears in list containing atom site label.

Related item: _atom_site_refinement_flags (alternate).

The data value must be one of the following:

- no constraints on positional coordinates D
- distance or angle restraint on positional coordinates G rigid-group refinement of positional coordinates

- R riding-atom site attached to non-riding atom
- special-position constraint on positional coordinates S combination of the above constraints
- DG combination of the above constraints DR
- DS combination of the above constraints
- combination of the above constraints GR
- GS combination of the above constraints
- RS combination of the above constraints
- combination of the above constraints DGR
- DGS combination of the above constraints
- combination of the above constraints DRS
- GRS combination of the above constraints DGRS combination of the above constraints

atom site restraints

[atom site] (char)

A description of restraints applied to specific parameters at this site during refinement. See also atom site refinement flags and refine 1s number restraints.

Appears in list containing _atom_site_label. Example: 'restrained to planar ring'.

[atom site]

atom site symmetry multiplicity

The multiplicity of a site due to the space-group symmetry as given in International Tables for Crystallography Vol. A (2002). Appears in list containing _atom_site_label. The permitted range is $1 \rightarrow 192$. [atom site]

atom site thermal displace type (char) This definition has been superseded and is retained here only for archival pur-

poses. Use instead atom site adp type. A standard code used to describe the type of atomic displacement parameters used for the site.

Appears in list containing _atom_site_label.

The data value must be one of the following:

- Uani anisotropic U^{ij}
- Uiso isotropic U Uovl overall U Umpe
- multipole expansion U anisotropic B^{ij} Bani Biso isotropic B Bovl overall B

[atom site]

[atom_site]

atom site type symbol

(char)

A code to identify the atom species (singular or plural) occupying this site. This code must match a corresponding atom type symbol. The specification of this code is optional if component 0 of the atom site label is used for this purpose. See _atom_type_symbol.

Appears in list containing _atom_site_label. Must match parent data name

_atom_type_symbol. May match child data name(s):

_atom_site_aniso_type_symbol.

Examples: 'Cu', 'Cu2+', 'dummy', 'Fe3+Ni2+', 'S-', 'H*', 'H(SDS)'. [atom_site]

atom site U equiv geom mean (numb, su)

Equivalent isotropic atomic displacement parameter, U_{equiv} , in ångströms squared, calculated as the geometric mean of the anisotropic atomic displacement parameters.

$$U_{\text{equiv}} = (U_i U_j U_k)^{1/3},$$

where U_n = the principal components of the orthogonalized U^{ij} . Appears in list containing _atom_site_label. The permitted range is $0.0 \rightarrow \infty$. Related items: atom site U iso or equiv (alternate),

_atom_site_B_equiv_geom_mean (conversion).

(numb, su) Isotropic atomic displacement parameter, or equivalent isotropic atomic displacement parameter, U_{equiv}, in ångströms squared, calculated from anisotropic atomic displacement parameters.

$$U_{\text{equiv}} = (1/3) \sum_{i} \left[\sum_{j} (U^{ij} A_i A_j a_i^* a_j^*) \right],$$

where A = the real-space cell lengths and $a^* =$ the reciprocal-space cell lengths.

Reference: Fischer, R. X. & Tillmanns, E. (1988). Acta Cryst. C44, 775-776.

Appears in list containing _atom_site_label.

The permitted range is $0.0 \rightarrow \infty$.

Related items:

_atom_site_U_equiv_geom_mean (alternate), _atom_site_B_iso_or_equiv (conversion).

atom site Wyckoff symbol

The Wyckoff symbol (letter) as listed in the space-group tables of International Tables for Crystallography Vol. A (2002). Appears in list containing _atom_site_label.

[atom site]

[atom_site]

(char)

atom site U iso or equiv

ATOM_SITES

Data items in the ATOM_SITES category record details about the crystallographic cell and cell transformations, which are common to all atom sites.

Example 1 – based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

_atom_sites_Cartn_transform_axes	
'c along z, astar along x,	b along y'
_atom_sites_Cartn_tran_matrix_11	58.39
_atom_sites_Cartn_tran_matrix_12	0.00
_atom_sites_Cartn_tran_matrix_13	0.00
_atom_sites_Cartn_tran_matrix_21	0.00
_atom_sites_Cartn_tran_matrix_22	86.70
_atom_sites_Cartn_tran_matrix_23	0.00
_atom_sites_Cartn_tran_matrix_31	0.00
_atom_sites_Cartn_tran_matrix_32	0.00
_atom_sites_Cartn_tran_matrix_33	46.27

_atom_sites_Cartn_tran_matrix_11 _atom_sites_Cartn_tran_matrix_12 _atom_sites_Cartn_tran_matrix_13 _atom_sites_Cartn_tran_matrix_21 _atom_sites_Cartn_tran_matrix_22 _atom_sites_Cartn_tran_matrix_23 _atom_sites_Cartn_tran_matrix_31 _atom_sites_Cartn_tran_matrix_32 _atom_sites_Cartn_tran_matrix_32

Matrix elements used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates. The axial alignments of this transformation are described in _atom_sites_Cartn_transform_axes. The 3×1 translation is defined in atom sites Cartn tran vector.

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}_{\text{Cartesian}} = \begin{pmatrix} 11 & 12 & 13 \\ 21 & 22 & 23 \\ 31 & 32 & 33 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{\text{fractional}} + \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

[atom_sites]

(numb)

(numb)

_atom_sites_Cartn_tran_vector_1 _atom_sites_Cartn_tran_vector_2 _atom_sites_Cartn_tran_vector_3

Elements of a 3×1 translation vector used in the transformation of fractional coordinates in the ATOM_SITE category to Cartesian coordinates. The axial alignments of this transformation are described in _atom_sites_Cartn_transform_axes.

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}_{\text{fractional}} = \begin{pmatrix} 11 & 12 & 13 \\ 21 & 22 & 23 \\ 31 & 32 & 33 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{\text{Cartesian}} + \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

[atom_sites]

(char)

atom sites Cartn transform axes

A description of the relative alignment of the crystal cell axes to the Cartesian orthogonal axes as applied in the transformation matrix _atom_sites_Cartn_tran_matrix_.

Example: 'a parallel to x; b in the plane of y and z'.

[atom sites]

(numb)

Matrix elements used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates. The axial alignments of this transformation are described in _atom_sites_Cartn_transform_axes. The 3×1 translation is defined in _atom_sites_fract_tran_vector_.

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}_{\text{fractional}} = \begin{pmatrix} 11 & 12 & 13 \\ 21 & 22 & 23 \\ 31 & 32 & 33 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{\text{Cartesian}} + \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

[atom_sites]

_atom_sites_fract_tran_vector_1 _atom_sites_fract_tran_vector_2 _atom_sites_fract_tran_vector_3 (numb) Elements of a 3 × 1 translation vector used in the transformation of Cartesian coordinates in the ATOM_SITE category to fractional coordinates. The axial alignments of this transformation are described in atom sites Cartn transform axes.

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}_{\text{fractional}} = \begin{pmatrix} 11 & 12 & 13 \\ 21 & 22 & 23 \\ 31 & 32 & 33 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{\text{Cartesian}} + \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

[atom_sites]

_atom_sites_solution_primary (char) Codes which identify the methods used to locate the initial atom sites. The *_primary code identifies how the first atom sites were determined; the *_secondary code identifies how the remaining non-hydrogen sites were located; and the *_hydrogens code identifies how the hydrogen sites were located.

Reference: Sheldrick, G. M., Hauptman, H. A., Weeks, C. M., Miller, R. and Usón, I. (2001). *Ab initio* phasing. In *International Tables for Crystallography*, Vol. F. *Crystallography of biological macromolecules*, edited by M. G. Rossmann and E. Arnold, ch. 16.1. Dordrecht: Kluwer Academic Publishers.

The data value must be one of the following:

difmap	difference Fourier map
vecmap	real-space vector search
heavy	heavy-atom method
direct	structure-invariant direct methods
geom	inferred from neighbouring sites
disper	anomalous-dispersion techniques
isomor	isomorphous structure methods
notdet	coordinates were not determined
dual	dual-space method (Sheldrick et al., 2001)
iterative	iterative algorithm, <i>e.g.</i> charge flipping [Oszlányi, G. and Süto, A. (2004). <i>Acta Cryst.</i> A 60 , 134-141]
other	a method not included elsewhere in this list

ATOM_SITES

(char)

atom sites solution secondary

Codes which identify the methods used to locate the initial atom sites. The * primary code identifies how the first atom sites were determined; the * secondary code identifies how the remaining non-hydrogen sites were located; and the * hydrogens code identifies how the hydrogen sites were located.

Reference: Sheldrick, G. M., Hauptman, H. A., Weeks, C. M., Miller, R. and Usón, I. (2001). Ab initio phasing. In International Tables for Crystallography, Vol. F. Crystallography of biological macromolecules, edited by M. G. Rossmann and E. Arnold, ch. 16.1. Dordrecht: Kluwer Academic Publishers. The data value must be one of the following

11	The data value must be one of the following:		
	difmap	difference Fourier map	
	vecmap	real-space vector search	
	heavy	heavy-atom method	
	direct	structure-invariant direct methods	
	geom	inferred from neighbouring sites	
	disper	anomalous-dispersion techniques	
	isomor	isomorphous structure methods	
	notdet	coordinates were not determined	
	dual	dual-space method (Sheldrick et al., 2001)	
	iterative	iterative algorithm, <i>e.g.</i> charge flipping [Oszlányi, G. and Süto, A. (2004). <i>Acta Cryst.</i> A 60 , 134-141]	
	other	a method not included elsewhere in this list	

[atom sites]

(char)

atom sites solution hydrogens Codes which identify the methods used to locate the initial atom

sites. The * primary code identifies how the first atom sites were determined; the * secondary code identifies how the remaining non-hydrogen sites were located; and the *_hydrogens code identifies how the hydrogen sites were located.

Reference: Sheldrick, G. M., Hauptman, H. A., Weeks, C. M., Miller, R. and Usón, I. (2001). Ab initio phasing. In International Tables for Crystallography, Vol. F. Crystallography of biological macromolecules, edited by M. G. Rossmann and E. Arnold, ch. 16.1. Dordrecht: Kluwer Academic Publishers.

The data value must be one of the following:

difmap	difference Fourier map
vecmap	real-space vector search
heavy	heavy-atom method
direct	structure-invariant direct methods
geom	inferred from neighbouring sites
disper	anomalous-dispersion techniques
isomor	isomorphous structure methods
mixed	a mixture of "geom" and "difmap"
notdet	coordinates were not determined
dual	dual-space method (Sheldrick et al., 2001)
iterative	iterative algorithm, e.g. charge flipping [Oszlányi, G. and Süto, A. (2004). Acta Cryst. A60, 134-141]
other	a method not included elsewhere in this list

[atom sites]

atom sites special details

Additional information about the atomic coordinates not coded elsewhere in the CIF.

[atom sites]

(char)

ATOM_TYPE

Data items in the ATOM TYPE category record details about properties of the atoms that occupy the atom sites, such as the atomic scattering factors.

Example 1 – based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277].

loop_
_atom_type_symbol
_atom_type_oxidation_number
_atom_type_number_in_cell
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
C 0 72 .017 .009 International_Tables_Vol_IV_Table_2.2B
H 0 100 0 0 International_Tables_Vol_IV_Table_2.2B
O 0 12 .047 .032 International_Tables_Vol_IV_Table_2.2B
N 0 4 .029 .018 International_Tables_Vol_IV_Table_2.2B

atom type analytical mass %

Mass percentage of this atom type derived from chemical analysis. Appears in list containing _atom_type_symbol. The permitted range is $0.0 \rightarrow 100.0$.

[atom_type]

(numb)

(char)

(numb)

atom type description

A description of the atom(s) designated by this atom type. In most cases, this will be the element name and oxidation state of a single atom species. For disordered or nonstoichiometric structures it will describe a combination of atom species.

Appears in list containing _atom_type_symbol.

Examples: 'deuterium', '0.34Fe+0.66Ni'. [atom_type]

atom type number in cell

Total number of atoms of this atom type in the unit cell. Appears in list containing _atom_type_symbol. The permitted range is $0 \to \infty$. [atom type]

atom type oxidation number (numb)

Formal oxidation state of this atom type in the structure.

Appears in list containing _atom_type_symbol.

The permitted range is $-8 \rightarrow 8$. Where no value is given, the assumed value is '0'.

[atom_type]

atom type radius bond

atom type radius contact

The effective intra- and intermolecular bonding radii in ångströms of this atom type.

Appears in list containing **_atom_type_symbol**. The permitted range is $0.0 \rightarrow 5.0$.

```
[atom type]
```

(numb)

(numb)

_atom_type	scat	Cromer	Mann	al
_atom_type	scat	Cromer	Mann	a2
_atom_type	_scat	Cromer	Mann	_a3
_atom_type	_scat	Cromer	Mann	_a4
_atom_type	_scat	Cromer	Mann	b1
_atom_type	scat	Cromer	Mann	b2
_atom_type	_scat	Cromer	Mann	_b3
_atom_type	scat	Cromer	Mann	b4
atom type	scat	Cromer	Mann	с

The Cromer-Mann scattering-factor coefficients used to calculate the scattering factors for this atom type.

References: International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B; International Tables for Crystallography (2004). Vol. C, Tables 6.1.1.4 and 6.1.1.5. [atom_type]

Appears in list containing _atom_type_symbol.

(char)

(char)

(char)

AUDIT_CONFORM

(char)

(char)

A description of how data were entered into the data block. Example: 'spawned by the program QBEE'. [audit]

_audit_update record

A record of any changes to the data block. The update format is a date (*vvvv-mm-dd*) followed by a description of the changes. The latest update entry is added to the bottom of this record.

Example: '1990-07-15 Updated by the Co-editor'.

audit creation method

[audit]

AUDIT_AUTHOR

Data items in the AUDIT AUTHOR category record details about the author(s) of the data block.

Example 1 – based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

loop	_
_aud	it_author_name
_aud	it_author_address
	'Fitzgerald, Paula M. D.'
; D	epartment of Biophysical Chemistry
м	erck Research Laboratories
P	O Box 2000, Ry80M203
R	ahway
N	ew Jersey 07065
υ	SA
;	
	'Van Middlesworth, J. F.'
; D	epartment of Biophysical Chemistry
М	erck Research Laboratories
P	O Box 2000, Ry80M203
R	ahway
N	lew Jersey 07065
U	SA
;	

audit author address

The address of an author of this data block. If there are multiple authors, audit author address is looped with audit author name

Appears in list containing _audit_author_name

Example: ; Department Institute Street City and postcode COUNTRY

[audit author]

(char)

audit author name

(char) The name of an author of this data block. If there are multiple authors, _audit_author_name is looped with audit author address. The family name(s), followed by a comma and including any dynastic components, precedes the first name(s) or initial(s).

Appears in list as essential element of loop structure.

Examples: 'Bleary, Percival R.', 'O'Neil, F.K.', 'Van den Bossche, G.', 'Yang, D.-L.', 'Simonov, Yu.A.', 'M\"uller, H.A.', 'Ross II, C.R.'.

[audit author]

AUDIT_CONFORM

Data items in the AUDIT CONFORM category describe the dictionary versions against which the data names appearing in the current data block are conformant.

Example 1 – any file conforming to the current CIF core dictionary.

_audit_conform_dict_name cif core.dic _audit_conform_dict_version 2.4 audit conform dict location ftp://ftp.iucr.org/pub/cif core.2.4.dic

_atom_type_scat_dispersion_real (numb) The imaginary and real components of the anomalous-dispersion scattering factor, f'' and f', in electrons for this atom type and the radiation given in _diffrn_radiation_wavelength.

atom type scat dispersion imag

Appears in list containing **__atom__type__symbol**. Where no value is given, the assumed value is '0.0' [atom type]

atom type scat dispersion source

Reference to source of real and imaginary dispersion corrections for scattering factors used for this atom type.

Appears in list containing atom type symbol.

Example: 'International Tables Vol. IV Table 2.3.1'. [atom type]

_atom_type_scat length neutron (numb) The bound coherent scattering length in femtometres for the atom type at the isotopic composition used for the diffraction experiment.

Appears in list containing atom type symbol. Where no value is given, the assumed value is '0.0'. [atom type]

atom type scat source

Reference to source of scattering factors or scattering lengths used for this atom type.

Appears in list containing _atom_type_symbol.

Example: 'International Tables Vol. IV Table 2.4.6B'. [atom type]

atom type scat versus stol list

A table of scattering factors as a function of $(\sin \theta)/\lambda$. This table should be well commented to indicate the items present. Regularly formatted lists are strongly recommended.

Appears in list containing _atom_type_symbol. [atom_type]

atom type symbol

(char)

[atom_type]

The code used to identify the atom species (singular or plural) representing this atom type. Normally this code is the element symbol. The code may be composed of any character except an underscore with the additional proviso that digits designate an oxidation state and must be followed by a + or - character.

Appears in list as essential element of loop structure. May match child data name(s): _atom_site_type_symbol

Examples: 'C', 'Cu2+', 'H(SDS)', 'dummy', 'FeNi'.

AUDIT

Data items in the AUDIT category record details about the creation and subsequent updating of the data block.

Example 1 – based (1991), C 47 , 2276–	on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. 2277].
_audit_block_co	de TOZ_1991-03-20
_audit_creation _audit_creation audit update r	
; 1991-04-09 1991-04-15 1991-04-17 1991-04-18	text and data added by Tony Willis. rec'd by co-editor as manuscript HL0007. adjustments based on first referee report. adjustments based on second referee report.

audit block code

(char)

(char)

A code intended to identify uniquely the current data block. Example: 'TOZ_1991-03-20'. [audit]

audit creation date

The date that the data block was created. The date format is yyyymm-dd.

Example: '1990-07-12'. [audit]

AUDIT_CONFORM

4. DATA DICTIONARIES

(char)

audit conform dict location

A file name or uniform resource locator (URL) for the dictionary to which the current data block conforms.

May appear in list containing audit conform dict name. [audit conform]

audit conform dict name (char) The string identifying the highest-level dictionary defining data names used in this file.

May appear in list as essential element of loop structure. [audit_conform]

audit conform dict version (char) The version number of the dictionary to which the current data block conforms.

May appear in list containing _audit_conform_dict_name. [audit_conform]

AUDIT_CONTACT_AUTHOR

Data items in the AUDIT CONTACT AUTHOR category record details about the name and address of the author to be contacted concerning the contents of this data block.

Example 1 – based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

1000

100b
_audit_contact_author_name
_audit_contact_author_address
_audit_contact_author_email
_audit_contact_author_fax
_audit_contact_author_phone
'Fitzgerald, Paula M. D.'
; Department of Biophysical Chemistry
Merck Research Laboratories
PO Box 2000, Ry80M203
Rahway
New Jersey 07065
USA
;
'paula_fitzgerald@merck.com'
'1(908)5945510'
' 1(908)5945510 '

audit contact author address (char) The mailing address of the author of the data block to whom correspondence should be addressed.

Example: ; Department Institute Street City and postcode COUNTRY

audit contact author email

(char)

The electronic mail address of the author of the data block to whom correspondence should be addressed, in a form recognizable to international networks. The format of e-mail addresses is given in Section 3.4, Address Specification, of Internet Message Format, RFC 2822, P. Resnick (Editor), Network Standards Group, April 2001.

Examples: 'name@host.domain.country', 'bm@iucr.org'.

[audit contact author]

[audit_contact_author]

audit contact author fax (char) The facsimile telephone number of the author of the data block to whom correspondence should be addressed. The recommended style starts with the international dialing prefix, followed by the area code in parentheses, followed by the local number with no spaces.

Examples: '12 (34) 9477334', '12 () 349477334'. [audit contact author] audit contact author name

The name of the author of the data block to whom correspondence should be addressed. The family name(s), followed by a comma and including any dynastic components, precedes the first name(s) or initial(s).

Examples: 'Bleary, Percival R.', 'O'Neil, F.K.', 'Van den Bossche, G.', 'Yang, D.-L.', 'Simonov, Yu.A.', 'M\"uller, H.A.', 'Ross II, C.R.' [audit contact author]

audit contact author phone

The telephone number of the author of the data block to whom correspondence should be addressed. The recommended style starts with the international dialing prefix, followed by the area code in parentheses, followed by the local number and any extension number prefixed by 'x', with no spaces.

Examples: '12 (34) 9477330', '12 () 349477330', '12 (34) 9477330x5543'.

[audit contact author]

AUDIT_LINK

Data items in the AUDIT LINK category record details about the relationships between data blocks in the current CIF.

Example 1 – multiple structure paper, as illustrated in A Guide to CIF for Authors (1995). IUCr: Chester.

loop _audit_link_block_code audit link block description 'discursive text of paper with two structures' morA (1) 'structure 1 of 2'

'structure 2 of 2' Example 2 - example file for the one-dimensional incommensurately modulated structure of K₂SeO₄.

loop audit link block code _audit_link_block_description 'publication details' KSE COM 'experimental data common to ref./mod. structures' KSE REF 'reference structure' KSE MOD 'modulated structure'

audit link block code

morA (2)

(char)

[audit_link]

The value of audit block code associated with a data block in the current file related to the current data block. The special value '.' may be used to refer to the current data block for completeness. Appears in list as essential element of loop structure. [audit link]

audit link block description (char) A textual description of the relationship of the referenced data block to the current one.

Appears in list containing _audit_link_block_code.

CELL

Data items in the CELL category record details about the crystallographic cell parameters and their measurement.

Example 1 – based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277].

_cell_length_a	5.959(1)
_cell_length_b	14.956(1)
_cell_length_c	19.737(3)
_cell_angle_alpha	90
_cell_angle_beta	90
_cell_angle_gamma	90
_cell_volume	1759.0(3)
_cell_measurement_temperature	293
_cell_measurement_reflns_used	25
_cell_measurement_theta_min	25
_cell_measurement_theta_max	31

cif_core.dic

(char)

(char)

cell angle alpha _cell_angle_beta

cell_angle gamma

Unit-cell angles of the reported structure in degrees. The values of _refln_index_h, *_k, *_1 must correspond to the cell defined by these values and _cell_length_a, * b and *_c. The values of _diffrn_refln_index_h, *_k, *_1 may not correspond to these values if a cell transformation took place following the measurement of the diffraction intensities. See also diffrn reflns transf matrix .

The permitted range is $0.0 \rightarrow 180.0$. Where no value is given, the assumed value is '90.0'. [cell]

cell formula units Z (numb) The number of the formula units in the unit cell as specified by _chemical_formula_structural, _chemical_formula_moiety Of chemical formula sum.

The permitted range is $1 \to \infty$.	[cell]
---	--------

_cell length a _cell_length_b _cell_length_c

Unit-cell lengths in angströms corresponding to the structure reported. The values of refln index h, * k, * 1 must correspond to the cell defined by these values and cell angle values. The values of diffrn refln index h, * k, * 1 may not correspond to these values if a cell transformation took place following the measurement of the diffraction intensities. See also diffrn reflns transf matrix .

The permitted range is $0.0 \rightarrow \infty$. [cell]

cell measurement pressure (numb, su) The pressure in kilopascals at which the unit-cell parameters were measured (not the pressure at which the sample was synthesized). The permitted range is $0.0 \rightarrow \infty$. [cell]

cell measurement radiation (char) Description of the radiation used to measure the unit-cell data. See also cell measurement wavelength. Examples: 'neutron', 'Cu K\a', 'synchrotron'. [cell]

cell measurement reflns used (numb) The total number of reflections used to determine the unit cell. These reflections may be specified as cell measurement refln data items.

[cell]

cell measurement temperature (numb, su) The temperature in kelvins at which the unit-cell parameters were measured (not the temperature of synthesis). The permitted range is $0.0 \rightarrow \infty$. [cell]

cell measurement theta max cell measurement theta min (numb) The maximum and minimum θ angles of reflections used to measure the unit cell in degrees. The permitted range is $0.0 \rightarrow 90.0$. [cell]

cell measurement wavelength (numb) The wavelength in ångströms of the radiation used to measure the unit cell. If this is not specified, the wavelength is assumed to be the same as that given in diffrn radiation wavelength. The permitted range is $0.0 \rightarrow \infty$. [cell]

(numb, su)

(numb_su)

cell reciprocal angle alpha

_cell_reciprocal_angle_beta cell reciprocal angle gamma

(numb. su)

[cell]

The angles defining the reciprocal cell in degrees. These are related to those in the real cell by

$$\cos \alpha^* = (\cos \beta \cos \gamma - \cos \alpha) / (\sin \beta \sin \gamma),\\ \cos \beta^* = (\cos \gamma \cos \alpha - \cos \beta) / (\sin \gamma \sin \alpha),\\ \cos \gamma^* = (\cos \alpha \cos \beta - \cos \gamma) / (\sin \alpha \sin \beta).$$

Reference: Buerger, M. J. (1942). X-ray Crystallography, p. 360. New York: John Wiley & Sons Inc.

The permitted range is $0.0 \rightarrow 180.0$. Where no value is given, the assumed value is '90.0'. [cell]

cell reciprocal length a _cell_reciprocal_length_b

cell reciprocal length c (numb, su) The reciprocal-cell lengths in inverse ångströms. These are related to the real cell by

> $a^* = bc \sin \alpha / V$, $b^* = ca \sin \beta / V$, $c^* = ab\sin\gamma/V$,

where V is the cell volume.

Reference: Buerger, M. J. (1942). X-ray Crystallography, p. 360. New York: John Wiley & Sons Inc.

The permitted range is $0.0 \rightarrow \infty$. [cell]

cell special details (char)

A description of special aspects of the cell choice, noting possible alternative settings.

Examples: 'pseudo-orthorhombic',

'standard setting from 45 deg rotation around c'.

cell volume (numb. su) Cell volume V in ångströms cubed.

$$V = abc(1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2\cos \alpha \cos \beta \cos \gamma)^{1/2},$$

where $a = _cell_length_a$, $b = _cell_length_b$, $c = _cell_$ length_c, α = _cell_angle_alpha, β = _cell_angle_beta and $\gamma =$ cell angle gamma. [cell]

The permitted range is $0.0 \rightarrow \infty$.

CELL_MEASUREMENT_REFLN

Data items in the CELL MEASUREMENT REFLN category record details about the reflections used in the determination of the crystallographic cell parameters. The _cell_measurement_refln_ data items would in general be used only for diffractometer measurements.

Example 1 – extracted from the CAD-4 listing for $Rb_2S_2O_6$ at room temperature (unpublished).

loop_
_cell_measurement_refln_index_h
_cell_measurement_refln_index_k
_cell_measurement_refln_index_1
_cell_measurement_refln_theta
-2 4 1 8.67
0 3 2 9.45
3 0 2 9.46
-3 4 1 8.93
-2 1 -2 7.53
10 0 0 23.77
0 10 0 23.78
-5 4 1 11.14
data truncated for brevity

9

CELL_MEASUREMENT_REFLN

_cell_measurement_refln_index h

_cell_measurement_refln_index_k

cell measurement refln index 1

Miller indices of a reflection used for measurement of the unit cell. Appears in list as essential element of loop structure. [cell measurement refln]

cell measurement refln theta (numb) $\boldsymbol{\theta}$ angle in degrees for the reflection used for measurement of the unit cell with the indices cell measurement refln index . Appears in list containing _cell_measurement_refln_index_.

The permitted range is $0.0 \rightarrow 90.0$. [cell_measurement_refln]

CHEMICAL

Data items in the CHEMICAL category record details about the composition and chemical properties of the compound. The formula data items must agree with those that specify the density, unit-cell and Z values.

Example 1 – based on data set 9597 gaus of Alyea, Ferguson & Kannan [Acta Cryst. (1996), C52, 765-767].

chemical name systematic

trans-bis(tricyclohexylphosphine)tetracarbonylmolybdenum(0)

chemical absolute configuration

Necessary conditions for the assignment of chemical absolute configuration are given by H. D. Flack and G. Bernardinelli (1999, 2000).

References: Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915; Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.

The data value must be one of the following:

- rm Absolute configuration established by the structure determination of a compound containing a chiral reference molecule of known absolute configuration.
- Absolute configuration established by anomalous-dispersion effects ad in diffraction measurements on the crystal.
- Absolute configuration established by the structure determination of rmad a compound containing a chiral reference molecule of known absolute configuration and confirmed by anomalous-dispersion effects in diffraction measurements on the crystal.

Absolute configuration has not been established by anomaloussyn dispersion effects in diffraction measurements on the crystal. The enantiomer has been assigned by reference to an unchanging chiral centre in the synthetic procedure.

Absolute configuration is unknown, there being no firm chemical eviunk dence for its assignment to hand and it having not been established by anomalous-dispersion effects in diffraction measurements on the crystal. An arbitrary choice of enantiomer has been made. Inapplicable.

[chemical]

(numb, su)

chemical compound source (char) Description of the source of the compound under study, or of the parent molecule if a simple derivative is studied. This includes the place of discovery for minerals or the actual source of a natural product.

Examples: 'From Norilsk (USSR)'.

'Extracted from the bark of Cinchona Naturalis'. [chemical]

chemical enantioexcess bulk

The enantioexcess of the bulk material from which the crystals were grown. A value of 0.0 indicates the racemate. A value of 1.0 indicates that the compound is enantiomerically pure. Enantioexcess is defined in the IUPAC Recommendations (Moss et al., 1996). The composition of the crystal and bulk must be the same.

Reference: Moss G. P. et al. (1996). Basic Terminology of Stereochemistry. Pure Appl. Chem. 68, 2193–2222. http://www.chem.qmul.ac.uk/iupac/stereo/index.html The permitted range is $0.0 \rightarrow 1.0$. [chemical]

10

(numb)

(char)

chemical enantioexcess bulk technique (char) The experimental technique used to determine the enantioexcess of the bulk compound.

The data value must be one of the following:

OA	Enantioexcess determined by measurement of the specific rotation
	of the optical activity of the bulk compound in solution.
CD	Enantioexcess determined by measurement of the visible/near UV
	circular dichroism spectrum of the bulk compound in solution.
EC	Enantioexcess determined by enantioselective chromatography of
	the bulk compound in solution.
othor	Enantipaycess determined by a technique not included elsewhere in

other Enantioexcess determined by a technique not included elsewhere in this list.

[chemical]

(numb. su)

chemical enantioexcess crystal

The enantioexcess of the crystal used for the diffraction study. A value of 0.0 indicates the racemate. A value of 1.0 indicates that the crystal is enantiomerically pure. Enantioexcess is defined in the IUPAC Recommendations (Moss et al., 1996).

Reference: Moss G. P. et al. (1996). Basic Terminology of Stereochemistry. Pure Appl. Chem. 68, 2193-2222. http://www.chem.qmul.ac.uk/iupac/stereo/index.html The permitted range is $0.0 \rightarrow 1.0$. [chemical]

chemical enantioexcess crystal technique (char) The experimental technique used to determine the enantioexcess of the crystal.

The data value must be one of the following:

- CD Enantioexcess determined by measurement of the visible/near UV circular dichroism spectrum of the crystal taken into solution. EC Enantioexcess determined by enantioselective chromatography of
- the crystal taken into solution. Enantioexcess determined by a technique not included elsewhere in other
- this list.

[chemical]

(char)

chemical identifier inchi

The IUPAC International Chemical Identifier (InChI) is a textual identifier for chemical substances, designed to provide a standard and human-readable way to encode molecular information and to facilitate the search for such information in databases and on the web.

Reference: McNaught, A. (2006). Chem. Int. (IUPAC), 28 (6), 12–14. http://www.iupac.org/inchi/

Example: 'InChI=1/C10H8/c1-2-6-10-8-4-3-7-9(10)5-1/h1-8H' (naphthalene). [chemical]

chemical identifier inchi key

(char) The InChIKey is a compact hashed version of the full InChI (IUPAC International Chemical Identifier), designed to allow for easy web searches of chemical compounds. See http://www.iupac.org/inchi/

Example: 'InChIKey=OROGSEYTTFOCAN-DNJOTXNNBG' (codeine). [chemical]

chemical identifier inchi version (char) The version number of the InChI standard to which the associated chemical identifier string applies. Example: '1.03'.

[chemical]

[chemical]

chemical melting point (numb, su) The temperature in kelvins at which the crystalline solid changes to a liquid.

The permitted range is $0.0 \rightarrow \infty$. [chemical]

chemical melting_point_gt

The permitted range is $0.0 \rightarrow \infty$.

chemical melting point lt (numb) A temperature in kelvins below which (* 1t) or above which (* gt) the melting point (the temperature at which the crystalline solid changes to a liquid) lies. These items allow a range of temperatures to be given. _chemical_melting_point should always be used in preference to these items whenever possible.

Related item: _chemical_melting_point (alternate).

cif_core.dic	4.1. CORE DICTIO	NARY (CORECIF)
_chemical_name_common Trivial name by which the compound is comm Example: '1-bromoestradiol'.	(char) only known. [chemical]	_chemical_temp _chemical_temp A temperature in (*_gt) the solid i
_chemical_name_mineral Mineral name accepted by the International M ciation. Use only for natural minerals. See compound_source. Example: 'chalcopyrite'.	e	a range of temper decomposition sho whenever possible. The permitted range is 0.0 Related item: _chemical Example: '350'.
chemical_name_structure_type Commonly used structure-type name. Usually of erals or inorganic compounds. Examples: 'perovskite', 'sphalerite', 'A15'.	(char) only applied to min- [chemical]	_chemical_temy The temperature in The permitted range is 0.0 Example: '350'. _chemical_temy
_chemical_name_systematic IUPAC or <i>Chemical Abstracts</i> full name of the	(char)	_chemical_temy A temperature in (* gt) the solid is l

Example: '1-bromoestra-1,3,5(10)-triene-3,17\b-diol'. [chemical]

chemical optical rotation (char) The optical rotation in solution of the compound is specified in the following format:

 $[\alpha]_{WAVE}^{TEMP} = SORT$ (c = CONC, SOLV),

where TEMP is the temperature of the measurement in degrees Celsius, WAVE is an indication of the wavelength of the light used for the measurement, CONC is the concentration of the solution given as the mass of the substance in g per 100 ml of solution, SORT is the signed value (preceded by a + or a - sign) of $100\alpha/(lc)$, where α is the signed optical rotation in degrees measured in a cell of length l in dm and c is the value of CONC as defined above, and SOLV is the chemical formula of the solvent. Example: $([a]^{25} - D^{-} = +108 (c = 3.42, CHCl^{-3}))$. [chemical]

_chemical_properties_biological	(char)
A free-text description of the biological properties of	the material.
Examples:	
<pre>; diverse biological activities including use as a laxative and strong antibacterial activity agains S. aureus and weak activity against cyclooxygenase-1 (COX-1)</pre>	t
;	
; antibiotic activity against Bacillus subtilis (ATCC 6051) but no significant activity against Candida albicans (ATCC 14053), Aspergillus flavus (NRRL 6541) and Fusarium verticillioides (NRRL 25457)	
;	
; weakly potent lipoxygenase nonredox inhibitor	
; ; no influenza A virus sialidase inhibitory and plaque reduction activities	
;] touisitu oppinet Ducentile meleneneteu	
; low toxicity against Drosophila melanogaster	[chemical]
;	[Cnemical]
_chemical_properties_physical	(char)
A free-text description of the physical properties of th	e material.
Examples: 'air-sensitive', 'moisture-sensitive', 'hygroscop	pic',
'deliquescent', 'oxygen-sensitive', 'photo-sensitive', 'py 'semiconductor', 'ferromagnetic at low temperature',	-
'paramagnetic and thermochromic'.	[chemical]
chemical temperature decomposition	(numb su)

nb, su) The temperature in kelvins at which the solid decomposes. The permitted range is $0.0 \rightarrow \infty$.

Example: '350'.

[chemical]

chemical temperature decomposition gt

chemical temperature decomposition lt (numb) A temperature in kelvins below which (*_1t) or above which (* gt) the solid is known to decompose. These items allow a range of temperatures to be given. _chemical_temperature_ decomposition should always be used in preference to these items whenever possible.

The permitted range is $0.0 \rightarrow \infty$.

Related item: _chemical_temperature_decomposition (alternate).

Example: '350'. chemical temperature sublimation

The temperature in kelvins at which the solid sublimes.

The permitted range is $0.0 \rightarrow \infty$.

[chemical]

[chemical]

(numb, su)

chemical temperature sublimation gt

chemical temperature sublimation lt (numb) A temperature in kelvins below which (* 1t) or above which (* gt) the solid is known to sublime. These items allow a range of temperatures to be given. chemical temperature sublimation should always be used in preference to these items whenever possible.

The permitted range is $0.0 \rightarrow \infty$.

Related item: _chemical_temperature_sublimation (alternate). Example: '350'.

[chemical]

CHEMICAL_CONN_ATOM

Data items in the chemical conn atom and chemical conn bond categories record details about the two-dimensional (2D) chemical structure of the molecular species. They allow a 2D chemical diagram to be reconstructed for use in a publication or in a database search for structural and substructural relationships. The _chemical_conn_atom_ data items provide information about the chemical properties of the atoms in the structure. In cases where crystallographic and molecular symmetry elements coincide, they must also contain symmetry-generated atoms, so that the chemical conn atom and chemical conn bond data items will always describe a complete chemical entity.

Example 1 - based on data set DPTD of Yamin, Suwandi, Fun, Sivakumar & bin Shawkataly [Acta Cryst. (1996), C52, 951-953].

Loop_	_			_		
_	_	conn_at	_			
chemic	al	conn_at	om_typ	be_a7	ymbol	
chemic	al	conn_at	om_di:	splay	/_x	
chemic	al	conn_at	om_di	splay	/_У	
chemic	al	conn_at	om_NC2	A		
chemic	al	conn_at	om_NH			
1	s	.39	.81	1	0	
2	S	.39	.96	2	0	
3	N	.14	.88	3	0	
4	С	.33	.88	3	0	
5	С	.11	.96	2	2	
6	С	.03	.96	2	2	
7	С	.03	.80	2	2	
8	С	.11	.80	2	2	
9	s	.54	.81	1	0	
10	s	.54	.96	2	0	
11	N	.80	.88	3	0	
12	С	.60	.88	3	0	
13	С	.84	.96	2	2	
14	С	.91	.96	2	2	
15	С	.91	.80	2	2	
16	С	.84	.80	2	2	

chemical conn atom charge

(numb)

The net integer charge assigned to this atom. This is the formal charge assignment normally found in chemical diagrams. Appears in list containing _chemical_conn_atom_type_symbol.

The permitted range is $-6 \rightarrow 6$. Where no value is given, the assumed value is '0'.

Examples: '1' (for an ammonium nitrogen), '-1' (for a chloride ion).

[chemical conn atom]

CHEMICAL_CONN_ATOM

chemical conn atom display x

chemical conn atom display y

The 2D Cartesian coordinates (x, y) of the position of this atom in a recognizable chemical diagram. The coordinate origin is at the lower left corner, the x axis is horizontal and the y axis is vertical. The coordinates must lie in the range 0.0 to 1.0. These coordinates can be obtained from projections of a suitable uncluttered view of the molecular structure.

Appears in list containing _chemical_conn_atom_type_symbol.

The permitted range is $0.0 \rightarrow 1.0$. [chemical conn atom]

chemical conn atom NCA

The number of connected atoms excluding terminal hydrogen atoms.

Appears in list containing _chemical_conn_atom_type_symbol. The permitted range is $0 \to \infty$. [chemical conn atom]

chemical conn atom NH (numb)

The total number of hydrogen atoms attached to this atom, regardless of whether they are included in the refinement or the atom site list. This number will be the same as atom site attached hydrogens only if none of the hydrogen atoms appear in the _atom_site_ list.

Appears in list containing _chemical_conn_atom_type_symbol. The permitted range is $0 \to \infty$.

[chemical_conn_atom]

chemical conn atom number

The chemical sequence number to be associated with this atom. Appears in list containing _chemical_conn_atom_type_symbol. May match child data name(s): atom site chemical conn number,

_chemical_conn_bond_atom_1, _chemical_conn_bond_atom_2.

The permitted range is $1 \to \infty$. [chemical conn atom]

chemical conn atom type symbol (char) A code identifying the atom type. This code must match an _atom_type_symbol code in the _atom_type_ list or be a recognizable element symbol.

Appears in list as essential element of loop structure.

[chemical_conn_atom]

CHEMICAL_CONN_BOND

Data items in the _chemical_conn_atom_ and _chemical_conn_ bond categories record details about the two-dimensional (2D) chemical structure of the molecular species. They allow a 2D chemical diagram to be reconstructed for use in a publication or in a database search for structural and substructural relationships. The _chemical_conn_bond_ data items specify the connections between the atoms in the _chemical_conn_atom_ list and the nature of the chemical bond between these atoms.

Example 1 - based on data set DPTD of Yamin, Suwandi, Fun, Sivakumar & bin Shawkataly [Acta Cryst. (1996), C52, 951-953].

_chemical_conn_bond_atom_1 _chemical_conn_bond_atom_2 chemical conn bond type

4	1	doub	4	3	sing
4	2	sing	5	3	sing
6	5	sing	7	6	sing
8	7	sing	8	3	sing
10	2	sing	12	9	doub
12	11	sing	12	10	sing
13	11	sing	14	13	sing
15	14	sing	16	15	sing
16	11	sing	17	5	sing
18	5	sing	19	6	sing
20	6	sing	21	7	sing
22	7	sing	23	8	sing
24	8	sing	25	13	sing
26	13	sing	27	14	sing
28	14	sing	29	15	sing
30	15	sing	31	16	sing
32	16	sing			

(numb)

(numb)

(numb)

chemical conn bond atom 1

cif_core.dic

(char)

chemical conn bond atom 2

(numb)

Atom numbers which must match with chemical sequence numbers specified as chemical conn atom number values. These link the bond connection to the chemical numbering and atom sites. Appears in list. Must match parent data name _chemical_conn_atom_number. The permitted range is $1 \to \infty$. [chemical conn bond]

chemical conn bond type

The chemical bond type associated with the connection between the two sites chemical conn bond atom 1 and * 2.

Appears in list containing _chemical_conn_bond_atom_. The data value must be one of the following:

ne uata va	nue	must be one of the following
sing		single bond
doub		double bond
trip		triple bond
quad		quadruple bond
arom		aromatic bond
poly		polymeric bond
delo		delocalized double bond
pi		π bond
**		

Where no value is given, the assumed value is 'sing'.

[chemical_conn_bond]

CHEMICAL_FORMULA

_chemical_formula_ items specify the composition and chemical properties of the compound. The formula data items must agree with those that specify the density, unit-cell and Z values. The following rules apply to the construction of the data items chemical formula analytical, * structural and * sum. For the data item * moiety, the formula construction is broken up into residues or moieties, i.e. groups of atoms that form a molecular unit or molecular ion. The rules given below apply within each moiety but different requirements apply to the way that moieties are connected (see chemical formula moiety). (1) Only recognized element symbols may be used. (2) Each element symbol is followed by a 'count' number. A count of '1' may be omitted. (3) A space or parenthesis must separate each cluster of (element symbol + count). (4) Where a group of elements is enclosed in parentheses, the multiplier for the group must follow the closing parenthesis. That is, all element and group multipliers are assumed to be printed as subscripted numbers. (An exception to this rule exists for * moiety formulae where pre- and post-multipliers are permitted for molecular units.) (5) Unless the elements are ordered in a manner that corresponds to their chemical structure, as in chemical formula structural, the order of the elements within any group or moiety depends on whether carbon is present or not. If carbon is present, the order should be: C, then H, then the other elements in alphabetical order of their symbol. If carbon is not present, the elements are listed purely in alphabetical order of their symbol. This is the 'Hill' system used by Chemical Abstracts. This ordering is used in chemical formula moiety and chemical formula sum.

Example 1 – based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277].

_chemical_formula_moiety	'C18 H25 N O3'
_chemical_formula_sum	'C18 H25 N O3'
_chemical_formula_weight	303.40

Example 2 – based on data set 9597 gaus of Alyea, Ferguson & Kannan [Acta Cryst. (1996), C52, 765-767].

_chemical_formula_iupac	'[Mo (C O)4 (C18 H33 P)2]'
_chemical_formula_moiety	'C40 H66 Mo O4 P2'
_chemical_formula_structural	'((C O)4 (P (C6 H11)3)2)Mo'
_chemical_formula_sum	'C40 H66 Mo O4 P2'
_chemical_formula_weight	768.81

(char)

chemical formula analytical

Formula determined by standard chemical analysis including trace elements. See the CHEMICAL FORMULA category description for rules for writing chemical formulae. Parentheses are used only for standard uncertainties (e.s.d.'s).

Example: 'Fe2.45(2) Ni1.60(3) S4'.

chemical formula iupac

(char)

[chemical formula]

Formula expressed in conformance with IUPAC rules for inorganic and metal-organic compounds where these conflict with the rules for any other _chemical_formula_ entries. Typically used for formatting a formula in accordance with journal rules. This should appear in the data block in addition to the most appropriate of the other chemical formula data names.

Reference: IUPAC (1990). Nomenclature of Inorganic Chemistry. Oxford: Blackwell Scientific Publications.

Example: '[Co Re (C12 H22 P)2 (C O)6].0.5C H3 O H'

[chemical formula]

chemical formula moiety

(char)

Formula with each discrete bonded residue or ion shown as a separate moiety. See the CHEMICAL FORMULA category description for rules for writing chemical formulae. In addition to the general formulae requirements, the following rules apply: (1) Moieties are separated by commas ','. (2) The order of elements within a moiety follows general rule (5) in the CHEMICAL FORMULA category description. (3) Parentheses are not used within moieties but may surround a moiety. Parentheses may not be nested. (4) Charges should be placed at the end of the moiety. The charge '+' or '-' may be preceded by a numerical multiplier and should be separated from the last (element symbol + count) by a space. Pre- or post-multipliers may be used for individual moieties.

Examples: 'C7 H4 Cl Hg N O3 S', 'C12 H17 N4 O S 1+, C6 H2 N3 O7 1-', 'C12 H16 N2 O6, 5(H2 O1)', '(Cd 2+)3, (C6 N6 Cr 3-)2, 2(H2 O)'. [chemical formula]

chemical formula structural

(char)

See the CHEMICAL FORMULA category description for the rules for writing chemical formulae for inorganics, organometallics, metal complexes etc., in which bonded groups are preserved as discrete entities within parentheses, with post-multipliers as required. The order of the elements should give as much information as possible about the chemical structure. Parentheses may be used and nested as required. This formula should correspond to the structure as actually reported, *i.e.* trace elements not included in atom-type and atom-site lists should not be included in this formula (see also chemical formula analytical).

Examples: 'Ca ((Cl O3)2 O)2 (H2 O)6',

'(Pt (N H3)2 (C5 H7 N3 O)2) (Cl O4)2'.

chemical formula sum

(char)

(numb)

[chemical formula]

[chemical formula]

See the CHEMICAL FORMULA category description for the rules for writing chemical formulae in which all discrete bonded residues and ions are summed over the constituent elements, following the ordering given in general rule (5) in the CHEMICAL_FORMULA category description. Parentheses are not normally used.

Example: 'C18 H19 N7 O8 S'.

chemical formula weight

Formula mass in daltons. This mass should correspond to the formulae given under chemical formula structural, * iupac, * moiety or * sum and, together with the Z value and cell parameters, should yield the density given as exptl crystal density diffrn. [chemical_formula]

The permitted range is $1.0 \rightarrow \infty$.

chemical formula weight meas

(numb) Formula mass in daltons measured by a non-diffraction experiment.

The permitted range is $1.0 \rightarrow \infty$. [chemical formula]

CITATION

Data items in the CITATION category record details about the literature cited as being relevant to the contents of the data block.

Example 1 – based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. 1000 citation id

citation coordinate linkage citation title

citation country citation page first _citation_page_last citation year ______ citation journal abbrev citation journal volume citation journal issue _citation_journal_id_ASTM citation journal id ISSN citation_book_title _citation_book_publisher citation book id ISBN citation special details primary yes

; Crystallographic analysis of a complex between human immunodeficiency virus type 1 protease and acetyl-pepstatin at 2.0-Angstroms resolution.

- US 14209 14219 1990 'J. Biol. Chem.' 265 HBCHA3 0021-9258 .
- The publication that directly relates to this coordinate set.

2 no Three-dimensional structure of aspartyl-protease from human immunodeficiency virus HIV-1.

UK 615 619 1989 'Nature' 337 . NATUAS 0028-0836 . . Determination of the structure of the unliganded enzyme.

- 3 no Crystallization of the aspartylprotease from human immunodeficiency virus, HIV-1.
- 1919 1921 1989 'J. Biol. Chem.' 264 US HBCHA3 0021-9258 . . Crystallization of the unliganded enzyme.

citation abstract

(char)

Abstract for the citation. This is used most when the citation is extracted from a bibliographic database that contains full text or abstract information.

Appears in list containing _citation_id.	[citation]
_citation_abstract_id_CAS The <i>Chemical Abstracts</i> Service (CAS) abstract identi for journal articles.	(char) fier; relevant
Appears in list containing _citation_id.	[citation]
_citation_book_id_ISBN The International Standard Book Number (ISBN) code the book cited; relevant for books or book chapters. Appears in list containing citation id.	(char) e assigned to
_citation_book_publisher The name of the publisher of the citation; relevant the	(char)
book chapters.	
Appears in list containing _citation_id . Example: 'John Wiley'.	[citation]
_citation_book_publisher_city The location of the publisher of the citation; relevant book chapters.	(char) for books or

Appears in list containing _citation_id. Example: 'New York'.

[citation]

CITATION	4. DATA DIO	CTIONARIES	cif_core.dic
_citation_book_title The title of the book in which the citation appear books or book chapters. Appears in list containing_citation_id.	(char) red; relevant for [citation]	_citation_journal_id_CSD The Cambridge Structural Database (CSD) cod journal cited; relevant for journal articles. This i used at the Protein Data Bank (PDB).	
		Appears in list containing _citation_id . Example: '0070'.	[citation]
_citation_coordinate_linkage _citation_coordinate_linkage states whether of tion is concerned with precisely the set of coord the data block. If, for instance, the publication des structure, but the coordinates had undergone fur prior to creation of the data block, the value of this	dinates given in scribed the same ther refinement	_citation_journal_id_ISSN The International Standard Serial Number (ISS) to the journal cited; relevant for journal articles.	(<i>char</i>) N) code assigned
be 'no'.		Appears in list containing _citation_id.	[citation]
Appears in list containing _citation_id.The data value must be one of the following:nocitation unrelated to current coordinatesnabbreviation for 'no'yescitation related to current coordinatesyabbreviation for 'yes'	[citation]	_citation_journal_issue Issue number of the journal cited; relevant for journal cited; relevant for journal citation_id. Example: '2'.	(char) urnal articles. [citation]
_citation_country The country of publication; relevant for books and Appears in list containing _citation_id.	(char) l book chapters. [citation]	_citation_journal_volume Volume number of the journal cited; relevant for Appears in list containing _citation_id. Example: '174'.	(char) journal articles. [citation]
_citation_database_id_CSD	(char)		
Identifier ('refcode') of the database record in Structural Database that contains details of the cite Appears in list containing_citation_id.	the Cambridge	_citation_language Language in which the cited article is written.	(char)
Example: 'LEKKUH'.	[citation]	Appears in list containing _citation_id. Example: 'German'.	[citation]
_citation_database_id_Medline Accession number used by Medline to categorize ographic entry. Appears in list containing _citation_id. The permitted range is $1 \rightarrow \infty$. Example: '89064067'.	(numb) a specific bibli- [citation]	_citation_page_first _citation_page_last The first and last pages of the citation; relevant for books and book chapters. Appears in list containing _citation_id.	(char) or journal articles, [citation]
_citation_id The value of _citation_id must uniquely identify _citation_ list. The _citation_id 'primary' sh indicate the citation that the author(s) consider to b tinent to the contents of the data block. Note that not be a number; it can be any unique identifier.	ould be used to be the most per- t this item need	<pre>_citation_special_details A description of special aspects of the relationsh of the data block to the literature item cited. Appears in list containing _citation_id. Examples: ; citation relates to this precise coordinate special</pre>	-
Appears in list as essential element of loop structure. May match child o citation_author_citation_id, _citation_editor_ci		; ; citation relates to earlier low-resolution st	tructure
Examples: 'primary', '1', '2', '3'.	[citation]	; ; citation relates to further refinement of str reported in citation 2	
_citation_journal_abbrev Abbreviated name of the journal cited as given i Abstracts Service Source Index.	(char) in the Chemical	;	[citation]
Appears in list containing _citation_id. Example: 'J. Mol. Biol.'.	[citation]	_citation_title The title of the citation; relevant for journal ar book chapters.	(char) ticles, books and
_citation_journal_full Full name of the journal cited; relevant for journal Appears in list containing_citation_id.	(char) articles.	Appears in list containing _citation_id . Example: ; Structure of diferric duck ovotransferrin at	2.35 \%A
Example: 'Journal of Molecular Biology'.	[citation]	resolution.	[citation]
_citation_journal_id_ASTM The American Society for Testing and Materials assigned to the journal cited (also referred to as the ignator of the <i>Chemical Abstracts</i> Service); relevant articles.	ne CODEN des- vant for journal	_citation_year The year of the citation; relevant for journal ar book chapters. Appears in list containing_citation_id.	
Appears in list containing ditation id	[ditation]	Example: '1994'	[ditation]

DOOK Chapters. Appears in list containing _citation_id. Example: '1984'.

[citation]

Appears in list containing **_citation_id**.

CITATION_AUTHOR

Data items in the CITATION AUTHOR category record details about the authors associated with the citations in the citation list.

Example 1 – based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

loop			
citation author citation id			
	'Fitzgerald, P.M.D.'		
primary	'McKeever, B.M.'		
primary	'Van Middlesworth, J.F.'		
primary	'Springer, J.P.'		
primary	'Heimbach, J.C.'		
primary	'Leu, CT.'		
primary	'Herber, W.K.'		
primary	'Dixon, R.A.F.'		
primary	'Darke, P.L.'		
2	'Navia, M.A.'		
2	'Fitzgerald, P.M.D.'		
2	'McKeever, B.M.'		
2	'Leu, CT.'		
2	'Heimbach, J.C.'		
2	'Herber, W.K.'		
2	'Sigal, I.S.'		
2	'Darke, P.L.'		
2	'Springer, J.P.'		
3	'McKeever, B.M.'		
3	'Navia, M.A.'		
3	'Fitzgerald, P.M.D.'		
3	'Springer, J.P.'		
3	'Leu, CT.'		
3	'Heimbach, J.C.'		
3	'Herber, W.K.'		
3	'Sigal, I.S.'		
3	'Darke, P.L.'		

citation author citation id

The value of citation_author_citation_id must match an identifier specified by _citation_id in the _citation_ list.

Appears in list as essential element of loop structure. Must match parent data name citation id. [citation author]

citation author name

Name of an author of the citation; relevant for journal articles, books and book chapters. The family name(s), followed by a comma and including any dynastic components, precedes the first name(s) or initial(s).

Appears in list as essential element of loop structure.

Examples: 'Bleary, Percival R.', 'O'Neil, F.K.', 'Van den Bossche, G.', 'Yang, D.-L.', 'Simonov, Yu.A.', 'M\"uller, H.A.', 'Ross II, C.R.'. [citation author]

citation author ordinal

This data name defines the order of the author's name in the list of authors of a citation. Appears in list.

[citation author]

CITATION_EDITOR

Data items in the CITATION EDITOR category record details about the editor associated with the book or book chapter citations in the _citation_ list.

Example 1 – hypothetical example.

loop

- citation editor citation id
- _citation_editor_name 5 'McKeever, B.M.
- 'Navia, M.A. 5
- 5 'Fitzgerald, P.M.D.'
- 5 'Springer, J.P.'

_citation_editor_citation_id (d	char)
The value of _citation_editor_citation_id must match identifier specified by _citation_id in the _citation_ list.	an
Appears in list as essential element of loop structure. Must match parent data name	
_citation_id. [citation_edit	cor]
_citation_editor_name (d	char)
Name of an editor of the citation; relevant for books and b chapters. The family name(s), followed by a comma and includ any dynastic components, precedes the first name(s) or initial(ling
Appears in list as essential element of loop structure.	
Examples: 'Bleary, Percival R.', 'O'Neil, F.K.', 'Van den Bossche, 'Yang, DL.', 'Simonov, Yu.A.', 'M\"uller, H.A.', 'Ross II, C.R.'. [citation_edit	
citation editor ordinal (a	char)
This data name defines the order of the editor's name in the lis editors of a citation.	
Appears in list. [citation_edit	or]
COMPUTING	
Data items in the COMPUTING category record details about computer programs used in the crystal structure analysis.	the
Example 1 – Rodrìguez-Romero, Ruiz-Pérez & Solans [Acta Cryst. (1996), C	252,

1415-14171. _computing_data_collection 'CAD-4 (Enraf-Nonius, 1989)' _computing_cell_refinement 'CAD-4 (Enraf-Nonius, 1989)' computing_data_reduction 'CFEO (Solans, 1978)' 'SHELXS86 (Sheldrick, 1990)' computing structure solution 'SHELXL93 (Sheldrick, 1993)' _computing_structure_refinement _computing_molecular_graphics 'ORTEPII (Johnson, 1976)' computing publication material 'PARST (Nardelli, 1983)'

_computing_cell_refinement _computing_data collection computing data reduction computing molecular graphics computing publication material computing structure refinement computing structure solution Software used in the processing of the data. Give the program or package name and a brief reference. Examples: 'CAD-4 (Enraf-Nonius, 1989)',

'DIFDAT, SORTRF, ADDREF (Hall & Stewart, 1990)', 'FRODO (Jones, 1986), ORTEP (Johnson, 1965)',

'CRYSTALS (Watkin, 1988)', 'SHELX85 (Sheldrick, 1985)'.

[computing]

(char)

(char)

DATABASE

Data items in the DATABASE category record details about the database identifiers of the data block. These data items are assigned by database managers and should only appear in a CIF if they originate from that source.

Example 1 – based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277].

_database_code_CSD

' VOBYUG'

database code CAS database code COD database code CSD database code ICSD database code MDF database_code_NBS _database_code_PDB

database code PDF

The codes are assigned by databases: Chemical Abstracts; Crystallography Open Database (COD); Cambridge Structural Database

(char)

(char)

(char)

(organic and metal-organic compounds); Inorganic Crystal Structure Database; Metals Data File (metal structures); NBS (NIST) Crystal Data Database (lattice parameters): Protein Data Bank; and the Powder Diffraction File (JCPDS/ICDD).

database code depnum ccdc archive

Deposition numbers assigned by the Cambridge Crystallographic Data Centre (CCDC) to files containing structural information archived by the CCDC.

database code depnum ccdc fiz

[database]

[database]

(char)

(char) Deposition numbers assigned by the Fachinformationszentrum Karlsruhe (FIZ) to files containing structural information archived by the Cambridge Crystallographic Data Centre (CCDC).

database code depnum ccdc journal

Deposition numbers assigned by various journals to files containing structural information archived by the Cambridge Crystallographic Data Centre (CCDC).

database CSD history

A history of changes made by the Cambridge Crystallographic Data Centre and incorporated into the Cambridge Structural Database (CSD).

_database_journal ASTM database journal CSD

The ASTM CODEN designator for a journal as given in the Chemical Source List maintained by the Chemical Abstracts Service, and the journal code used in the Cambridge Structural Database.

DIFFRN

Data items in the DIFFRN category record details about the intensity measurements.

Example 1 - based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277].

_diffrn_special_details $q \operatorname{scan} \operatorname{width} (1.0 + 0.14 \operatorname{tan} q) \$, $q \operatorname{scan} \operatorname{rate}$

diffrn ambient pressure

The mean hydrostatic pressure in kilopascals at which the intensities were measured.

The mean hydrostatic pressure in kilopascals above which (* gt) or below which (* 1t) the intensities were measured. These items allow for a pressure range to be given. _diffrn_ambient_pressure should always be used in preference to these items whenever possible.

The permitted range is $0.0 \rightarrow \infty$.

diffrn ambient temperature (numb, su) The mean temperature in kelvins at which the intensities were

The permitted range is $0.0 \rightarrow \infty$. [diffrn]

diffrn ambient temperature gt

diffrn ambient temperature lt The mean temperature in kelvins above which (* gt) or below which (*_1t) the intensities were measured. These items allow a range of temperatures to be given.

diffrn ambient temperature should always be used in preference to these items whenever possible.

The permitted range is $0.0 \rightarrow \infty$.

Related item: _diffrn_ambient_temperature (alternate). [diffrn]

diffrn crystal treatment (char) Remarks about how the crystal was treated prior to the intensity measurements. Particularly relevant when intensities were measured at low temperature.

Examples: 'equilibrated in hutch for 24 hours',

'flash frozen in liquid nitrogen',

'slow cooled with direct air stream'. [diffrn]

diffrn measured fraction theta full (numb) Fraction of unique (symmetry-independent) reflections measured out to diffrn reflns theta full.

The permitted range is $0 \rightarrow 1.0$. [diffrn] diffrn measured fraction theta max (numb)

Fraction of unique (symmetry-independent) reflections measured out to diffrn reflns theta max.

The permitted range is $0 \rightarrow 1.0$. [diffrn] diffrn special details (char)

Special details of the intensity-measurement process. Should include information about source instability, crystal motion, degradation and so on.

Example:

The results may not be entirely reliable

as the measurement was made during a heat wave when the air-conditioning had failed.

diffrn symmetry description

Observed diffraction point symmetry, systematic absences and possible space group(s) or superspace group(s) compatible with these.

[diffrn]

[diffrn]

(char)

DIFFRN_ATTENUATOR

Data items in the DIFFRN ATTENUATOR category record details about the diffraction attenuator scales employed.

Example 1 – hypothetical example.

loop		
	_attenuator_code	
diffrn	_attenuator_scal	e
0	1.00	
1	16.97	
2	33.89	

diffrn attenuator code

(char) A code associated with a particular attenuator setting. This code is referenced by the diffrn refln attenuator code which is stored with the intensities. See diffrn attenuator scale.

Appears in list as essential element of loop structure. May match child data name(s): _diffrn_refln_attenuator_code [diffrn attenuator]

diffrn attenuator material (char)

Material from which the attenuator is made. Appears in list containing _diffrn_attenuator_code. [diffrn attenuator]

diffrn attenuator scale (numb)

The scale factor applied when an intensity measurement is reduced by an attenuator identified by diffrn attenuator code. The measured intensity must be multiplied by this scale to convert it to the same scale as unattenuated intensities.

Appears in list containing _diffrn_attenuator_code. The permitted range is $1.0 \rightarrow \infty$.

cif_core.dic

(numb)

(char)

[database]

(char)

[database]

[database]

DATABASE

(char)

[database]

4.1. CORE DICTIONARY (CORECIF)

DIFFRN_ORIENT_MATRIX

DIFFRN_DETECTOR	
Data items in the DIFFRN_DETECTOR cates detector used to measure the scattered radiat analyser and post-sample collimation.	
Example 1 – based on PDB entry 5HVP and laboratory recorresponding to PDB entry 5HVP.	ecords for the structure
_diffrn_detector 'multiwi _diffrn_detector_type 'Siemens	
_diffrn_detector The general class of the radiation detector. Related item: _diffrn_radiation_detector (alternate). Examples: 'photographic film', 'scintillation cour 'BF~3~ counter'.	(char) nter', 'CCD plate', [diffrn_detector]
<u>diffrn_detector_area_resol_mean</u> The resolution of an area detector, in pixels mr The permitted range is $0.0 \rightarrow \infty$.	(<i>numb</i>) n ⁻¹ . [diffrn_detector]
_diffrn_detector_details A description of special aspects of the radiation	(char) n detector. [diffrn detector]
_diffrn_detector_dtime The deadtime in microseconds of the detector of diffraction intensities. The permitted range is $0.0 \rightarrow \infty$. Related item: _diffrn_radiation_detector_dtime (alter	
_diffrn_detector_type The make, model or name of the detector device	- (char)
_diffrn_radiation_detector This definition has been superseded and is retained her poses. Use instead _diffrn_detector. The detector used to measure the diffraction intensit	ties.
_diffrn_radiation_detector_dtime This definition has been superseded and is retained her poses. Use instead _diffrn_detector_dtime. The deadtime in microseconds of the detector used to	
tion intensities. The permitted range is $0.0 \rightarrow \infty$.	[diffrn_detector]
DIFFRN_MEASUREMEN	Т

Data items in the DIFFRN_MEASUREMENT category refer to the mounting of the sample and to the goniometer on which it is mounted. *Example 1 – based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst.*

Example 1 - based on data set 102 of Willis, Beckwith & lozer [Acta Cryst (1991), C47, 2276–2277].

_diffrn_measurement_device_type 'Philips PW1100/20 diffractometer' _diffrn_measurement_method \q/2\q

_diffrn_measurement_details

A description of special aspects of the intensity measurement. Example: '440 frames of 0.25\%'. [diffrn_measurement]

_diffrn_measurement_device

The general class of goniometer or device used to support and orient the specimen.

Examples: 'three-circle diffractometer',

'four-circle diffractometer', ' $\$ -geometry diffractometer',

'oscillation camera', 'precession camera'. [diffrn_measurement]

(char)

(char)

_diffrn_measurement_device_details (char) A description of special aspects of the device used to measure the diffraction intensities. Example: ; commercial goniometer modified locally to

allow for 90\% \t arc
[diffrn_measurement]

diffrn measurement device type

The make, model or name of the measurement device (goniometer) used.

[diffrn_measurement]

diffrn measurement method

Method used to measure the intensities.

Example: 'profile data from q/2q scans'.

(char)

(char)

cans'. [diffrn_measurement]

_diffrn_measurement_specimen_support (char) The physical device used to support the crystal during data collection.

Examples: 'glass capillary', 'quartz capillary', 'fiber', 'metal loop'. [diffrn_measurement]

DIFFRN_ORIENT_MATRIX

Data items in the DIFFRN_ORIENT_MATRIX category record details about the orientation matrix used in the measurement of the diffraction intensities.

Example 1 – data set n-alkylation_C-4 of Hussain, Fleming, Norman & Chang [Acta Cryst. (1996), C52, 1010-1012]. diffrn orient matrix UB 11 -0.04170 diffrn orient matrix UB 12 -0.01429_diffrn_orient_matrix_UB_13 -0.02226 _diffrn_orient_matrix_UB_21 -0.00380 _diffrn_orient_matrix_UB_22 -0.05578 _diffrn_orient_matrix_UB_23 -0.05048 _diffrn_orient_matrix_UB_31 0.00587 diffrn orient matrix UB 32 -0.13766

_diffrn_orient_matrix_type 'TEXSAN convention (MSC, 1989)'

_diffrn_orient_matrix_type

diffrn orient matrix UB 33

(char)

A description of the orientation matrix type and how it should be applied to define the orientation of the crystal precisely with respect to the diffractometer axes.

[diffrn_orient_matrix]

0.02277

_diffrn_orient_matrix_UB_11
_diffrn_orient_matrix_UB_12
diffrn_orient_matrix_UB_13
diffrn_orient_matrix_UB_21
_diffrn_orient_matrix_UB_22
_diffrn_orient_matrix_UB_23
_diffrn_orient_matrix_UB_31
_diffrn_orient_matrix_UB_32
diffrn orient matrix UB 33

(numb)

The elements of the diffractometer orientation matrix. These define the dimensions of the reciprocal cell and its orientation to the local diffractometer axes. See _diffrn_orient_matrix_type. [diffrn orient matrix]

4. DATA DICTIONARIES

cif_core.dic

DIFFRN_ORIENT_REFLN

Data items in the DIFFRN_ORIENT_REFLN category record details about the reflections that define the orientation matrix used in the measurement of the diffraction intensities.

Example 1 – typical output listing from an Enraf-Nonius CAD-4 diffractometer.

loop_							
_diff:	rn_c	rient	_refln_	_index_h			
_diff:	rn_c	rient	_refln_	_index_k			
diff	rn_c	rient	refln	index 1			
diff:	rn_c	rient	refln	angle_th	neta		
_diff:	rn_c	rient	_refln_	_angle_ph	ni		
_diff:	rn_c	rient		angle_or	nega		
_diff:	rn_c	rient		angle_ka	appa		
- 3	2	3	7.35	44.74	2.62	17.53	
- 4	1	0	9.26	83.27	8.06	5.79	
0	0	6	5.85	-43.93	-25.36	86.20	
2	1	3	7.36	-57.87	6.26	5.42	
0	0	- 6	5.85	-161.59	36.96	-86.79	
- 3	1	0	6.74	80.28	5.87	2.60	
2	0	3	5.86	-76.86	-0.17	21.34	
0	0	12	11.78	-44.02	-19.51	86.41	
0	0	-12	11.78	-161.67	42.81	-86.61	
- 5	1	0	11.75	86.24	9.16	7.44	
0	4	6	11.82	-19.82	10.45	4.19	
5	0	6	14.13	-77.28	10.17	15.34	
8	0	0	20.79	-77.08	25.30	-13.96	

_diffrn_orient_refln_angle_chi _diffrn_orient_refln_angle_kappa _diffrn_orient_refln_angle_omega _diffrn_orient_refln_angle_phi _diffrn_orient_refln_angle_psi _diffrn_orient_refln_angle_theta

Diffractometer angles of a reflection used to define the orientation matrix in degrees. See _diffrn_orient_matrix_UB_ and _diffrn_orient_refln_index_h, *_k and *_1.

Appears in list containing _diffrn_orient_refln_index_.
[diffrn_orient_refln]

_diffrn_orient_refln_index_h _diffrn_orient_refln_index_k _diffrn_orient_refln_index_1

The indices of a reflection used to define the orientation matrix. See _diffrn_orient_matrix_.

Appears in list as essential element of loop structure. [diffrn_orient_refln]

DIFFRN_RADIATION

Data items in the DIFFRN_RADIATION category describe the radiation used in measuring the diffraction intensities, its collimation and monochromatization before the sample. Post-sample treatment of the beam is described by data items in the DIFFRN DETECTOR category.

Example 1 – based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276–2277].

_diffrn_radiation_type	'Cu K\a'
_diffrn_radiation_monochromator	'graphite'

_diffrn_radiation_collimation

The collimation or focusing applied to the radiation.

Examples: '0.3 mm double-pinhole', '0.5 mm', 'focusing mirrors'.

[diffrn_radiation]

(char)

_diffrn_radiation_inhomogeneity (numb) Half-width in millimetres of the incident beam in the direction perpendicular to the diffraction plane.

The permitted range is $0.0 \rightarrow \infty$. [diffrn_radiation]

diffrn_radiation_monochromator

(char)

The method used to obtain monochromatic radiation. If a monochromator crystal is used, the material and the indices of the Bragg reflection are specified.

Examples: 'Zr filter', 'Ge 220', 'none', 'equatorial mounted graphite'.
[diffrn_radiation]

diffr	'n	_ra	adia	tion	_pol	arisn	_norm		(numb)
-	1	•	1			1.0	.1	1	.1

The angle in degrees, as viewed from the specimen, between the perpendicular component of the polarization and the diffraction plane. See _diffrn_radiation_polarisn_ratio.

The permitted range is $-180.0 \rightarrow 180.0$. [diffrn_radiation]

_____diffrn_radiation_polarisn_ratio (numb) Polarization ratio of the diffraction beam incident on the crystal. It is the ratio of the perpendicularly polarized to the parallel polarized components of the radiation. The perpendicular component forms an angle of <u>______radiation_polarisn_norm</u> to the normal to the diffraction plane of the sample (*i.e.* the plane containing the incident and reflected beams). The permitted range is $0.0 \rightarrow \infty$. [diffrn radiation]

diffrn radiation probe

(char)

The nature of the radiation used (*i.e.* the name of the subatomic particle or the region of the electromagnetic spectrum). It is strongly recommended that this information be given, so that the probe radiation can be simply determined.

The data value must be one of the following: x - ray

neutron
ileucioli
electron
gamma

(numb)

(numb)

_diffrn_radiation_type

The type of the radiation. This is used to give a more detailed description than _diffrn_radiation_probe and is typically a description of the X-ray wavelength in Siegbahn notation.

Examples: 'Cu K\a', 'Cu K\a~1~', 'Cu K-L~2,3~', 'white-beam'.

[diffrn_radiation]

[diffrn_radiation]

(char)

_diffrn_radiation_xray_symbol (char) The IUPAC symbol for the X-ray wavelength for the probe radiation

The data value must be one of the following:

	5
K-L~3~	$K\alpha_1$ in older Siegbahn notation
K-L~2~	$K\alpha_2$ in older Siegbahn notation
K-M~3~	$K\beta$ in older Siegbahn notation
K-L~2,3~	use where $K-L_3$ and $K-L_2$ are not resolved

[diffrn_radiation]

(numb)

DIFFRN_RADIATION_WAVELENGTH

Data items in the DIFFRN_RADIATION_WAVELENGTH category describe the wavelength of the radiation used in measuring the diffraction intensities. Items may be looped to identify and assign weights to distinct wavelength components from a polychromatic beam.

Example 1 – based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276–2277].

_diffrn_radiation_wavelength 1.5418

diffrn radiation wavelength

The radiation wavelength in ångströms.

May appear in list containing _diffrn_radiation_wavelength_id.

The permitted range is $0.0 \rightarrow \infty$. [diffrn_radiation_wavelength]

_diffrn_radiation_wavelength_details (char) Information about the determination of the radiation wavelength that is not conveyed completely by an enumerated value of _diffrn_radiation_wavelength_determination.

May appear in list containing _diffrn_radiation_wavelength_id. [diffrn radiation wavelength]

(char)

_diffrn_radiation_wavelength_determination (*char*) The method of determination of incident wavelength.

May appear in list containing _diffrn_radiation_wavelength_id.

The data value must be one of the following:

fundamental	Wavelength that is a fundamental property of matter
	e.g. Mo $K\alpha$.
estimated	Estimated from secondary information e.g. monochro-
	mator angle or time of flight.
refined	Based on refinement using a standard material with
	known cell parameters.
	[diffrn radiation wavelength]

[diffrn_radiation_wavelength]

_diffrn_radiation_wavelength_id (char) An arbitrary code identifying each value of _diffrn_radiation_ wavelength. Items in the DIFFRN_RADIATION category are looped when multiple wavelengths are used. This code is used to link with the _diffrn_refln_ list. It must match with one of the _diffrn_ refln wavelength id codes.

Appears in list as essential element of loop structure. May match child data name(s):

_diffrn_refln_wavelength_id.

Examples: 'x1', 'x2', 'neut'. [diffrn_radiation_wavelength]

diffrn_radiation_wavelength_wt (numb)

The relative weight of a wavelength identified by the code _diffrn_radiation_wavelength_id in the list of wavelengths. Appears in list containing _diffrn_radiation_wavelength_id.

The permitted range is $0.0 \rightarrow 1.0$. Where no value is given, the assumed value is '1.0'. [diffrn_radiation_wavelength]

DIFFRN_REFLN

Data items in the DIFFRN_REFLN category record details about the intensities measured in the diffraction experiment. The DIFFRN_REFLN data items refer to individual intensity measurements and must be included in looped lists. (The DIFFRN_REFLNS data items specify the parameters that apply to all intensity measurements. The DIFFRN_REFLNS data items are not looped.)

Example 1 – extracted from the CAD-4 listing for $Tl_2Cd_2(SO_4)_3$ at 85 K (unpublished).

```
loop_
   _diffrn_refln_index_h
    _diffrn_refln_index_k
    diffrn refln index l
    diffrn refln scan rate
    diffrn refln counts bg 1
    diffrn refln counts total
   _diffrn_refln_counts_bg_2
    _diffrn_refln_angle_theta
    _diffrn_refln_angle_phi
    diffrn_refln_angle_omega
    diffrn refln angle kappa
    diffrn refln scan width
    diffrn refln elapsed time
   0 -16 0. 4.12 28 127 36 33.157 -75.846 16.404
50.170 1.516 19.43
0 0 -15 0. 4.12 38 143 28
                             30.847
                                     -75.846 14.094
50.170 1.516 19.82
0 0 -14 0. 1.03 142 742 130
                             28.592
                                     -75.846
                                             11.839
50.170 1.516 21.32
0 0 -13 0. 4.12 26 120 37 26.384
                                     -75.846
                                               9.631
50.170 1.450 21.68
0 0 -12 0. 0.97 129 618 153 24.218
                                     -75.846
                                               7.464
50.170 1.450 23.20
0 0 -11 0. 4.12 33 107 38 22.087
                                     -75.846
                                               5.334
50.170 1.384 23.55
0 0 -10 0. 4.12 37 146 33
                             19.989
                                     -75.846
                                               3.235
50.170 1.384 23.90
0 0 -9 0. 4.12 50 179 49 17.918
                                    -75.846
                                               1.164
50.170 1.384 24.25
# - - - - data truncated for brevity - - - -
3 4
     -4 0. 1.03 69 459 73 30.726 -53.744 46.543
-47.552 1.516 2082.58
3 4 -5 0. 1.03 91 465 75 31.407 -54.811 45.519
-42.705 1.516 2084.07
3 14 -6 0. 1.03 84 560 79 32.228 -55.841 44.745
-38.092 1.516 2085.57
     - - data truncated for brevity - - - -
```

_diffrn_refln_angle_chi
diffrn_refln_angle_kappa
diffrn_refln_angle_omega
diffrn_refln_angle_phi
diffrn refln angle psi
diffrn refln angle theta

_diffrn_refln_angle_theta (numb) The diffractometer angles of a reflection in degrees. These correspond to the specified orientation matrix and the original measured cell before any subsequent cell transformations.

Appears in list containing _diffrn_refln_index_. [diffrn_refln]

_diffrn_refln_attenuator_code (char) The code identifying the attenuator setting for this reflection. This code must match one of the _diffrn_attenuator_code values. Appears in list containing_diffrn_refln_index_. Must match parent data name _diffrn_attenuator_code. [diffrn_refln]

diffrn refln class code

The code identifying the class to which this reflection has been assigned. This code must match a value of $_diffrn_reflns_class_code$. Reflections may be grouped into classes for a variety of purposes. For example, for modulated structures each reflection class may be defined by the number $m = \sum |m_i|$, where the m_i are the integer coefficients that, in addition to h, k, l, index the corresponding diffraction vector in the basis defined for the reciprocal cell.

Appears in list containing _diffrn_refln_index_. Must match parent data name _diffrn_reflns_class_code. [diffrn_refln]

_diffin_ferins_class_code.	[diliu_teriu]
diffrn refln counts bg 1	
diffrn refln counts net	
diffrn refln counts peak	
diffrn refln counts total	(numb)
The diffractometer counts for the measure	ments: background
before the peak, background after the peak, ne	et counts after back-
ground removed, counts for peak scan or po	sition, and the total
counts (background plus peak).	
Appears in list containing _diffrn_refln_index	[diffrn_refln]
diffrn refln crystal id	(char)
Code identifying each crystal if multiple cryst	als are used. Is used
to link with exptl crystal id in the exptl	
Appears in list containing _diffrn_refln_index Must m	natch parent data name
_exptl_crystal_id.	[diffrn_refln]
diffrn refln detect slit horiz	
diffrn refln detect slit vert	(numb)
Total slit apertures in degrees in the diffracti	on plane (* horiz)
and perpendicular to the diffraction plane (*_v	vert).
Appears in list containing _diffrn_refln_index	
The permitted range is $0.0 \rightarrow 90.0$.	[diffrn_refln]
_diffrn_refln_elapsed_time	(numb)
Elapsed time in minutes from the start of the	e diffraction experi-
ment to the measurement of this intensity.	
Appears in list containing _diffrn_refln_index	
The permitted range is $0.0 \rightarrow \infty$.	[diffrn_refln]
_diffrn_refln_index_h	
_diffrn_refln_index_k	
_diffrn_refln_index_l	(numb)
Miller indices of a measured reflection. These	
_refln_index_h, *_k, *_1 values if a transfor	
nal measured cell has taken place. Details of	
tion are given in _diffrn_reflns_reduction	_process. See also
_diffrn_reflns_transf_matrix	
Appears in list as essential element of loop structure.	[diffrn_refln]
_diffrn_refln_intensity_net	(numb)
Net intensity calculated from the diffraction co	ounts after the atten-
uator and standard scales have been applied.	
Appears in list containing _diffrn_refln_index	

Appears in list containing **_diffrn_refln_index**_. The permitted range is $0 \rightarrow \infty$. (numb)

[diffrn_refln]

diffrn refln intensity sigma

This definition has been superseded and is retained here only for archival purposes. Use instead diffrn refln intensity u.

Standard uncertainty (e.s.d.) of the net intensity calculated from the diffraction counts after the attenuator and standard scales have been applied.

Appears in list containing _diffrn_refln_index_. The permitted range is $0 \to \infty$.

diffrn refln_intensity_u (numb)

Standard uncertainty of the net intensity calculated from the diffraction counts after the attenuator and standard scales have been applied.

Appears in list containing _diffrn_refln_index_

The permitted range is $0 \to \infty$.

Related item: _diffrn_refln_intensity_sigma (alternate). [diffrn refln]

diffrn_refln_scale_group_code

The code identifying the scale applicable to this reflection. This code must match with a specified _diffrn_scale_group_code value.

Appears in list containing _diffrn_refln_index_. Must match parent data name _diffrn_scale_group_code. [diffrn_refln]

diffrn refln scan mode

(char)

(char)

The code identifying the mode of scanning for measurements using a diffractometer. See diffrn refln scan width and _diffrn_refln_scan_mode_backgd.

Appears in list containing _diffrn_refln_index_

The data value must be one of the following:

Om ω scan

mo

- ot $\omega/2\theta$ scan
- Q scans (arbitrary reciprocal directions) q

[diffrn_refln]

diffrn refln scan mode backgd (char) The code identifying the mode of scanning a reflection to measure the background intensity. Appears in list containing _diffrn_refln_index_. The data value must be one of the following:

st stationary counter background moving counter background

[diffrn_refln]

diffrn refln scan rate (numb) The rate of scanning a reflection in degrees per minute to measure the intensity. Appears in list containing _diffrn_refln_index_. The permitted range is $0.0 \rightarrow \infty$. [diffrn refln] diffrn refln scan time backgd (numb) The time spent measuring each background in seconds. Appears in list containing _diffrn_refln_index_. The permitted range is $0.0 \rightarrow \infty$. [diffrn_refln] diffrn refln scan width (numb) The scan width in degrees of the scan mode defined by the code diffrn refln scan mode. Appears in list containing diffrn refln index . The permitted range is $0.0 \rightarrow 90.0$. [diffrn_refln] diffrn refln sint/lambda (numb) The $(\sin \theta)/\lambda$ value in reciprocal ångströms for this reflection. Appears in list containing _diffrn_refln_index_. The permitted range is $0.0 \rightarrow \infty$. [diffrn refln] diffrn refln standard code (char) A code indicating that this reflection was measured as a standard reflection. The value must be '.' or match one of the

diffrn standard refln code values. Appears in list containing _diffrn_refln_index_. Must match parent data name _diffrn_standard_refln_code. Examples: '1', '2', '3', 's1', 's2', 's3', 'A', 'B', 'C'. [diffrn refln]

diffrn refln wavelength

The mean wavelength in ångströms of the radiation used to measure the intensity of this reflection. This is an important parameter for reflections measured using energy-dispersive detectors or the Laue method

Appears in list containing diffrn refln index . The permitted range is $0.0 \rightarrow \infty$.

diffrn refln wavelength id

Code identifying the wavelength in the diffrn radiation list.

Appears in list containing diffrn refln index . Must match parent data name diffrn radiation_wavelength_id.

Examples: 'x1', 'x2', 'neut'.

[diffrn refln]

[diffrn_refln]

DIFFRN_REFLNS

Data items in the DIFFRN REFLNS category record details about the set of intensities measured in the diffraction experiment. The DIFFRN REFLNS data items specify the parameters that apply to all intensity measurements. The DIFFRN REFLNS data items are not looped. (The DIFFRN REFLN data items refer to individual intensity measurements and must be included in looped lists.)

Example 1 – based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C**47**, 2276–2277].

_diffrn_reflns_number	1592
_diffrn_reflns_av_R_equivalents	0
_diffrn_reflns_av_unetI/netI	.027
_diffrn_reflns_limit_h_min	0
_diffrn_reflns_limit_h_max	6
_diffrn_reflns_limit_k_min	-17
_diffrn_reflns_limit_k_max	0
_diffrn_reflns_limit_l_min	0
_diffrn_reflns_limit_l_max	22
_diffrn_reflns_theta_min	3.71
_diffrn_reflns_theta_max	61.97

diffrn_reflns_av_R_equivalents (numb) The residual $\left|\sum av |\Delta(I)| / \sum |av(I)|\right|$ for symmetry-equivalent reflections used to calculate the average intensity av(I). The $\operatorname{av}[\Delta(I)]$ term is the average absolute difference between $\operatorname{av}(I)$ and the individual symmetry-equivalent intensities. The permitted range is $0.0 \rightarrow \infty$. [diffrn reflns]

diffrn reflns av sigmaI/netI	(numb)
This definition has been superseded and is retained here only	for archival pur-
<pre>poses. Use instead _diffrn_reflns_av_unetI/netI.</pre>	
<i>Measure</i> $\left[\sum u(\text{net}I) / \sum \text{net}I \right]$ <i>for all measured reflect</i>	tions.
The permitted range is $0.0 \rightarrow \infty$.	[diffrn_reflns]
diffrn reflns av unetI/netI	(numb)

Measure $\left[\sum |u(\text{net}I)| / \sum |\text{net}I|\right]$ for all measured reflections. The permitted range is $0.0 \rightarrow \infty$.

Related item: _diffrn_reflns_av_sigmal/netI (alternate). [diffrn_reflns]

diffrn reflns Laue_measured_fraction_full(*numb*) Fraction of Laue unique reflections (symmetry-independent group) measured out to the resoluthe in Laue _diffrn_reflns_resolution full tion given in or diffrn reflns theta full. The Laue group always contains a centre of symmetry so that the reflection h, k, l is always equivalent to the reflection -h, -k, -l even in space groups without a centre of symmetry. This number should not be less than 0.95, since it represents the fraction of reflections measured in the part of the diffraction pattern that is essentially complete.

The permitted range is $0.95 \rightarrow 1.0$.

Related item: _diffrn_measured_fraction_theta_full (alternate).

[diffrn reflns]

cif_core.dic

(numb)

(char)

4.1. CORE DICTIONARY (CORECIF)

diffrn reflns Laue measured fraction max (numb) Fraction of Laue unique reflections (symmetry-independent the Laue group) measured out in to the lution given in diffrn reflns resolution max or diffrn reflns theta max. The Laue group always contains a centre of symmetry so that the reflection h, k, l is always equivalent to the reflection -h, -k, -l even in space groups without a centre of symmetry.

The permitted range is $0 \rightarrow 1.0$.

Related item: _diffrn_measured_fraction_theta_max (alternate).

diffrn reflns limit h max
diffrn_reflns_limit_k_max
diffrn_reflns_limit_k_min
_diffrn_reflns_limit_l_max
_diffrn_reflns_limit_l_min (numb)
The limits on the Miller indices of the intensities specified by
_diffrn_refln_index_h, *_k, *_1.

[diffrn_reflns]

(numb)

[diffrn reflns]

diffrn reflns number

The total number of measured intensities, excluding reflections that are classed as systematically absent arising from translational symmetry in the crystal unit cell. [diffrn reflns]

The permitted range is $0 \to \infty$.

diffrn reflns point group measured fraction full (numb)

Fraction of crystal point-group unique reflections (i.e. symmetryindependent in the crystal point group) measured out to the resolution given in _diffrn_reflns_resolution_full or diffrn reflns theta full. For space groups that do not contain a centre of symmetry the reflections h, k, l and -h, -k, -l are independent. This number should not be less than 0.95, since it represents the fraction of reflections measured in the part of the diffraction pattern that is essentially complete.

The permitted range is $0.95 \rightarrow 1.0$.

Related item: _diffrn_measured_fraction_theta_full (alternate).

[diffrn reflns]

diffrn reflns point group measured fraction max (numb)

Fraction of crystal point-group unique reflections (i.e. symmetryindependent in the crystal point group) measured out to the resolution given in diffrn reflns resolution max or _diffrn_reflns_theta_max. For space groups that do not contain a centre of symmetry the reflections h, k, l and -h, -k, -l are independent.

The permitted range is $0 \rightarrow 1.0$.

Related item: _diffrn_measured_fraction_theta_max (alternate).

[diffrn reflns]

diffrn reflns reduction_process (char) A description of the process used to reduce the intensities into structure-factor magnitudes.

Example: 'data averaged using Fisher test'. [diffrn reflns]

diffrn reflns resolution full (numb)

The resolution in reciprocal ångströms at which the measured reflection count is close to complete. The fraction of unique reflections measured out to this angle is given by _diffrn_measured_fraction_theta_full.

The permitted range is $0.0 \rightarrow \infty$.

Related item: _diffrn_reflns_theta_full (alternate). [diffrn_reflns]

(numb)

diffrn reflns resolution max Maximum resolution in reciprocal ångströms of the measured diffraction pattern. The fraction of unique reflections measured out to this angle is given by diffrn measured fraction theta max The permitted range is $0.0 \rightarrow \infty$.

Related item: _diffrn_reflns_theta_max (alternate). [diffrn reflns]

diffrn reflns theta full (numb) The θ angle (in degrees) at which the measured reflection count is close to complete. The fraction of unique reflections measured out to this angle is given by _diffrn_measured_fraction_theta_full. The permitted range is $0.0 \rightarrow 90.0$. [diffrn reflns]

diffrn reflns theta max (numb) Maximum θ angle in degrees for the measured intensities. The fraction of unique reflections measured out to this angle is given by diffrn measured fraction theta max

The permitted range is $0.0 \rightarrow 90.0$. [diffrn reflns]

diffrn reflns theta min

(numb)

(numb)

Minimum θ angle in degrees for the measured intensities. The permitted range is $0.0 \rightarrow 90.0$. [diffrn reflns]

_diffrn_reflns_transf_matrix_11
diffrn_reflns_transf_matrix_12
diffrn_reflns_transf_matrix_13
diffrn_reflns_transf_matrix_21
diffrn_reflns_transf_matrix_22
diffrn reflns transf matrix 23
diffrn reflns transf matrix 31
_diffrn_reflns_transf_matrix_32
_diffrn_reflns_transf_matrix_33

Elements of the matrix used to transform the diffraction reflection indices diffrn refln index h, * k, * 1 into the refln index h, * k, * 1 indices.

$$\begin{pmatrix} h & k & l \end{pmatrix}_{\text{diffraction}} \begin{pmatrix} 11 & 12 & 13 \\ 21 & 22 & 23 \\ 31 & 32 & 33 \end{pmatrix} = \begin{pmatrix} h' & k' & l' \end{pmatrix}.$$

[diffrn reflns]

DIFFRN_REFLNS_CLASS

Data items in the DIFFRN REFLNS CLASS category record details about the classes of reflections measured in the diffraction experiment.

Example 1 – example corresponding to the one-dimensional incommensurately modulated structure of K_2SeO_4 .

Each reflection class is defined by the number $m = \sum |m_i|$, where the m_i are the integer coefficients that, in addition to h, k, l, index the corresponding diffraction vector in the basis defined for the reciprocal lattice.

loop_

```
diffrn reflns class d res high
   diffrn reflns class d res low
   diffrn reflns class av R eq
  _diffrn_reflns_class_code
   _diffrn_reflns_class_description
1580 0.551 6.136 0.015 'Main' 'm=0; main reflections'
1045 0.551 6.136 0.010 'Sat1' 'm=1; first-order satellites'
```

(numb) diffrn reflns class av R eq For each reflection class, the residual $\left[\sum av|\Delta(I)|/\sum |av(I)|\right]$ for symmetry-equivalent reflections used to calculate the average intensity av(I). The $av|\Delta(I)|$ term is the average absolute difference between av(I) and the individual symmetry-equivalent intensities.

Appears in list containing _diffrn_reflns_class_code.

The permitted range is $0.0 \rightarrow \infty$. [diffrn_reflns_class]

_diffrn_r	eflns_	class_a	av_s	gI/I	(numb)
This definition l	has been si	iperseded	and is	retaine	ed here only for archival pur-
poses. Use inste	ad diffr	n reflns	class	av u	ιт/т.

Measure $\left[\sum |u(\text{net}I)| / \sum |\text{net}I|\right]$ *for all measured intensities in a reflec*tion class.

Appears in list containing _diffrn_reflns_class_code. The permitted range is $0.0 \rightarrow \infty$. [diffrn reflns_class]

DIFFRN_REFLNS_CLASS

4. DATA DICTIONARIES

(numb)

diffrn reflns class av uI/I (numb) Measure $\left|\sum |u(\text{net}I)| / \sum |\text{net}I|\right|$ for all measured intensities in a reflection class. Appears in list containing _diffrn_reflns_class_code. The permitted range is $0.0 \rightarrow \infty$. Related item: diffrn reflns class av sgI/I (alternate). [diffrn_reflns_class]

diffrn reflns class code (char)The code identifying a certain reflection class. Appears in list as essential element of loop structure. May match child data name(s): _diffrn_refln_class_code. Examples: '1', 'm1', 's2'. [diffrn reflns class]

diffrn reflns class d res high (numb) The smallest value in ångströms of the interplanar spacings of the reflections in each reflection class. This is called the highest resolution for this reflection class.

Appears in list containing _diffrn_reflns_class_code.

The permitted range is $0.0 \rightarrow \infty$. [diffrn reflns class]

diffrn reflns class d res low

The highest value in angströms of the interplanar spacings of the reflections in each reflection class. This is called the lowest resolution for this reflection class.

Appears in list containing _diffrn_reflns_class_code

The permitted range is $0.0 \rightarrow \infty$. [diffrn_reflns_class]

diffrn reflns class description (char) Description of each reflection class.

Appears in list containing _diffrn_reflns_class_code.

Examples: 'm=1 first order satellites', 'HOLO common projection reflections' [diffrn reflns class]

diffrn reflns class number (numb) The total number of measured intensities for each reflection class, excluding the systematic absences arising from centring translations.

Appears in list containing diffrn reflns class code

The permitted range is $0 \to \infty$. [diffrn_reflns_class]

DIFFRN_SCALE_GROUP

Data items in the DIFFRN SCALE GROUP category record details of the scaling factors applied to place all intensities in the reflection lists on a common scale. Scaling groups might, for instance, correspond to each film in a multi-film data set or each crystal in a multi-crystal data set.

Example 1 – hypothetical example. loop _diffrn_scale_group_code 1 .86473 2 1.0654

diffrn scale group code (char) The code identifying a specific measurement group (e.g. for multifilm or multi-crystal data). The code must match a diffrn refln_scale_group_code in the reflection list.

Appears in list as essential element of loop structure. May match child data name(s): _diffrn_refln_scale_group_code.

Examples: '1', '2', '3', 's1', 'A', 'B', 'c1', 'c2', 'c3'. [diffrn_scale_group]

diffrn scale group I net (numb) The scale for a specific measurement group which is to be multiplied with the net intensity to place all intensities in the _diffrn_refln_ or _refln_ list on a common scale.

Appears in list containing _diffrn_scale_group_code. The permitted range is $0.0 \rightarrow \infty$. [diffrn_scale_group] DIFFRN_SOURCE

Data items in the DIFFRN SOURCE category record details of the source of radiation used in the diffraction experiment.

Example 1 – based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

_diffrn_source	'rotating anode X-ray tube'
_diffrn_source_type	'Rigaku RU-200'
_diffrn_source_power	50
_diffrn_source_current	180
_diffrn_source_size	'8 mm x 0.4 mm broad focus'

diffrn radiation source

(char) This definition has been superseded and is retained here only for archival purposes. Use instead diffrn source.

The source of radiation.

[diffrn source]

diffrn source

(char)

The general class of the source of radiation.

Related item: diffrn radiation source (alternate). Examples: 'sealed X-ray tube', 'nuclear reactor', 'spallation source',

'electron microscope', 'rotating-anode X-ray tube', 'synchrotron'. [diffrn source]

_diffrn_source_current The current in milliamperes at which the radiat operated.	(numb) tion source was
The permitted range is $0.0 \rightarrow \infty$.	[diffrn_source]
_diffrn_source_details A description of special aspects of the source.	(char)
	[diffrn_source]
diffrn_source_power The power in kilowatts at which the radiation source The permitted range is $0.0 \rightarrow \infty$.	(numb) ce was operated. [diffrn_source]
_diffrn_source_size	(char)
The dimensions of the source as viewed from the	sample.
Encoder to the second s	
Examples: '8mm x 0.4 mm fine-focus', 'broad focus'.	[diffrn_source]

The complement of the angle in degrees between the normal to the surface of the X-ray tube target and the primary X-ray beam for beams generated by traditional X-ray tubes.

The permitted range is $0 \rightarrow 90$. Example: '1.53'.

[diffrn source]

diffrn source target (char) The chemical element symbol for the X-ray target (usually the anode) used to generate X-rays. This can also be used for spallation sources.

The data value must be one of the following:

H He Li Be B C N O F Ne Na Mg Al Si P Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn S Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Aq Cd In Sn Sb Te I Xe Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

[diffrn_source]

(char)

diffrn source type

The make, model or name of the source of radiation. Examples: 'NSLS beamline X8C', 'Rigaku RU200'. [diffrn source]

diffrn source voltage

(numb) The voltage in kilovolts at which the radiation source was operated.

The permitted range is $0.0 \rightarrow \infty$.

DIFFRN_STANDARD_REFLN

Data items in the DIFFRN_STANDARD_REFLN category record details about the reflections treated as standards during the measurement of the diffraction intensities. Note that these are the individual standard reflections, not the results of the analysis of the standard reflections.

Example 1 – based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276–2277].

loop_ _diffrn_standard_refln_index_h _diffrn_standard_refln_index_k _diffrn_standard_refln_index_1 3 2 4 1 9 1 3 0 10

diffrn standard refln code

(char)

The code identifying a reflection measured as a standard reflection with the indices _diffrn_standard_refln_index_. This is the same code as the _diffrn_refln_standard_code in the _diffrn_refln_list.

Appears in list containing **_diffrn_standard_refln_index**. May match child data name(s): **_diffrn_refln_standard_code**.

Examples: '1', '2', '3', 's1', 'A', 'B'. [diffrn_standard_refln]

_diffrn_standard_refln_index_h

_diffrn_standard_refln_index_k

_diffrn_standard_refln_index_1 (numb) Miller indices of standard reflections used in the diffraction measurement process.

Appears in list as essential element of loop structure. [diffrn_standard_refln]

DIFFRN_STANDARDS

Data items in the DIFFRN_STANDARDS category record details about the set of standard reflections used to monitor intensity stability during the measurement of diffraction intensities. Note that these records describe properties common to the set of standard reflections, not the standard reflections themselves.

Example 1 – based on data set TOZ of Wi (1991), C47, 2276–2277].	illis, Beckwith & Tozer [Acta Cryst.
_diffrn_standards_number	3
_diffrn_standards_interval_time	120
_diffrn_standards_decay_%	0

diffrn standards decay %

(numb, su)

[diffrn standards]

The percentage decrease in the mean intensity of the set of standard reflections measured at the start of the measurement process and at the finish. This value usually affords a measure of the overall decay in crystal quality during the diffraction measurement process. Negative values are used in exceptional instances where the final intensities are greater than the initial ones. If no measurable decay has occurred, the standard uncertainty should be quoted to indicate the maximum possible value the decay might have. A range of 3 standard uncertainties is considered possible. Thus 0.0(1) would indicate a decay of less than 0.3% or an enhancement of less than 0.3%.

The permitted range is $-\infty \rightarrow 100$.

Examples: '0.5(1)' (represents a decay between 0.2% and 0.8%), '-1(1)' (the change in the standards lies between a decay of 2% and an increase of 4%), '0.0(2)' (the change in the standards lies between a decay of 0.6% and an increase of 0.6%.).

_diffrn_standards_interval_count diffrn standards interval time

diffrn standards number (numb)

The number of unique standard reflections used during the measurement of the diffraction intensities.

The permitted range is $0 \to \infty$. [diffrn_standards]

_______diffrn_standards_scale_sigma (numb) This definition has been superseded and is retained here only for archival purposes. Use instead diffrn standards scale u.

The standard uncertainty (e.s.d.) of the individual mean standard scales applied to the intensity data.

The permitted range is $0.0 \rightarrow \infty$. [diffrn_standards] _diffrn_standards_scale_u (numb) The standard uncertainty of the individual uncertainty standard contents

The standard uncertainty of the individual mean standard scales applied to the intensity data.

The permitted range is $0.0 \rightarrow \infty$.

Related item: **__diffrn_standards_scale_sigma** (alternate).

[diffrn_standards]

EXPTL

Data items in the EXPTL category record details about the experimental work prior to the intensity measurements and details about the absorption-correction technique employed.

Example 1 – based on a paper by Steiner [Acta Cryst. (1996), C52, 2554–2556].

_exptl_absorpt_coefficient_mu	0.962
_exptl_absorpt_correction_type	psi-scan
_exptl_absorpt_process_details	
'North, Phillips & Matl	hews (1968)'
_exptl_absorpt_correction_T_min	0.929
_exptl_absorpt_correction_T_max	0.997

_exptl_absorpt_coefficient_mu

The absorption coefficient μ in reciprocal millimetres calculated from the atomic content of the cell, the density and the radiation wavelength.

[expt1]

(char)

(numb)

_exptl_absorpt_correction_T_max

The permitted range is $0.0 \rightarrow \infty$.

__exptl__absorpt_correction_T_min (*numb*) The maximum and minimum transmission factors applied to the diffraction pattern measured in this experiment. These factors are also referred to as the absorption correction A or 1/A*. As this value is the one that is applied to the measured intensities, it includes the correction for absorption by the specimen mount and diffractometer as well as by the specimen itself. The permitted range is $0.0 \rightarrow 1.0$. [expt1]

exptl absorpt correction type

The absorption-correction type and method. The value 'empirical' should *not* be used unless more detailed information is not available.

The data value must be one of the following:

analytical	analytical from crystal shape
cylinder	cylindrical
empirical	empirical from intensities
gaussian	Gaussian from crystal shape
integration	integration from crystal shape
multi-scan	symmetry-related measurements
none	no absorption correction applied
numerical	numerical from crystal shape
psi-scan	ψ -scan corrections
refdelf	refined from ΔF
sphere	spherical

[expt1] (char)

_exptl_absorpt_process_details

Description of the absorption process applied to the intensities. A literature reference should be supplied for ψ -scan techniques. Examples: 'Tompa analytical', 'MolEN (Fair, 1990)',

(North, Phillips & Mathews, 1968)'.

exptl crystals number

The total number of crystals used for the measurement of intensities.

The permitted range is $1 \to \infty$.

[expt1]

(numb)

exptl special details

Any special information about the experimental work prior to the intensity measurements. See also exptl crystal preparation.

> [expt1] (numb. su)

(char)

exptl transmission factor max

The calculated maximum value of the transmission factor for the specimen. Its value does not include the effects of absorption in the specimen mount. The presence of this item does not imply that the structure factors have been corrected for absorption. The applied correction should be given by exptl absorpt correction T max.

The permitted range is $0.0 \rightarrow 1.0$.

[exptl]

[exptl]

(char)

(char)

[exptl_crystal]

exptl transmission factor min (numb, su) The calculated minimum value of the transmission factor for the specimen. Its value does not include the effects of absorption in the specimen mount. The presence of this item does not imply that the structure factors have been corrected for absorption. The applied correction should be given by

exptl absorpt correction T min. The permitted range is $0.0 \rightarrow 1.0$.

EXPTL_CRYSTAL

Data items in the EXPTL CRYSTAL category record details about experimental measurements on the crystal or crystals used, such as shape, size or density.

Example 1 – based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277].

_exptl_crystal_description	prism
_exptl_crystal_colour	colourless
_exptl_crystal_size_max	0.32
_exptl_crystal_size_mid	0.27
_exptl_crystal_size_min	0.10
_exptl_crystal_density_diffrn	1.146
_exptl_crystal_density_meas	?
_exptl_crystal_density_method	'not measured'
_exptl_crystal_F_000	656

Example 2 – using separate items to define upper and lower limits for a value.

2.5

5.0

_exptl_crystal_density_meas_gt _exptl_crystal_density_meas_lt

Example 3 – here the density was measured at some unspecified temperature below room temperature.

exptl_crystal_density_meas_temp_lt 300

exptl_crystal_colour

The colour of the crystal.

May appear in list containing _exptl_crystal_id. Related items: exptl crystal colour lustre (alternate),

_exptl_crystal_colour_modifier (alternate),

_exptl_crystal_colour_primary (alternate).

Example: 'dark green'.

exptl crystal colour lustre

The enumeration list of standardized names developed for the International Centre for Diffraction Data. The colour of a crystal is given by the combination of exptl crystal colour modifier with exptl crystal colour primary, as in 'dark-green' or 'bluish-violet', if necessary combined with exptl crystal colour_lustre, as in 'metallic-green'.

May appear in list containing _exptl_crystal_id.

Related item: _exptl_crystal colour (alternate).

The data value must be one of the following: metallic

dull

clear

[exptl crystal]

cif_core.dic

(char)

exptl crystal colour modifier

The enumeration list of standardized names developed for the International Centre for Diffraction Data. The colour of a crystal is given by the combination of exptl crystal colour modifier with exptl crystal colour primary, as in 'dark-green' or 'bluish-violet', if necessary combined with _exptl_crystal_ colour lustre, as in 'metallic-green'.

May appear in list containing _exptl_crystal_id.

Related item: exptl crystal colour (alternate). The data value must be one of the following:

në data value must be on
light
dark
whitish
blackish
grayish
brownish
reddish
pinkish
orangish
yellowish
greenish
bluish

[exptl crystal]

exptl crystal colour primary (char) The enumeration list of standardized names developed for the International Centre for Diffraction Data. The colour of a crystal is given by the combination of exptl crystal colour modifier with exptl crystal colour primary, as in 'dark-green' or 'bluish-violet', if necessary combined with exptl crystal colour lustre, as in 'metallic-green'.

May appear in list containing _exptl_crystal_id.

Related item: exptl crystal colour (alternate).

The data value must be one of the following:

colourless	
white	
black	
gray	
brown	
red	
pink	
orange	
yellow	
green	
blue	
violet	

exptl crystal density diffrn

(numb)

[exptl crystal]

Density values calculated from the crystal cell and contents. The units are megagrams per cubic metre (grams per cubic centimetre). May appear in list containing _exptl_crystal_id. The permitted range is $0.0 \rightarrow \infty$.

[exptl crystal]

exptl crystal density_meas (numb. su) Density values measured using standard chemical and physical methods. The units are megagrams per cubic metre (grams per cubic centimetre).

May appear in list containing _exptl_crystal_id.

The permitted range is $0.0 \rightarrow \infty$.

[exptl crvstal]

(numb)

exptl crystal density meas gt The value above which the density measured using standard chemical and physical methods lies. The units are megagrams per cubic metre (grams per cubic centimetre). exptl crystal density_meas_gt and _exptl_crystal_density_meas_lt should not be used to report new experimental work, for which _exptl_crystal_density_meas should be used. These items are intended for use in reporting information in existing databases and archives which would be misleading if reported under exptl crystal density meas.

May appear in list containing _exptl_crystal_id.

The permitted range is $0.0 \rightarrow \infty$.

Related item: _exptl_crystal_density_meas (alternate).

Example: '2.5' (lower limit for the density (only the range within which the density lies was given in the original paper)). [exptl crystal]

exptl crystal density meas lt

The value below which the density measured using standard chemical and physical methods lies. The units are megagrams per cubic metre (grams per cubic centimetre). exptl crystal density_meas_gt and _exptl_crystal_density_meas_lt should not be used to report new experimental work, for which exptl crystal density meas should be used. These items are intended for use in reporting information in existing databases and archives which would be misleading if reported under exptl crystal density meas.

May appear in list containing _exptl_crystal_id.

The permitted range is $0.0 \rightarrow \infty$.

Related item: _exptl_crystal_density_meas (alternate).

Examples: '1.0' (specimen floats in water), '5.0' (upper limit for the density (only the range within which the density lies was given in the original paper)). [exptl crvstal]

exptl crystal density meas temp (numb. su) Temperature in kelvins at which _exptl_crystal_density_meas was determined. May appear in list containing exptl crystal id.

The permitted range is $0.0 \rightarrow \infty$. [exptl_crystal]

exptl crystal density meas temp gt (numb) Temperature in kelvins above which exptl crystal density meas was determined. exptl crystal density meas temp gt and exptl crystal density meas temp lt should not be used for reporting new work, for which the correct temperature of measurement should be given. These items are intended for use in reporting information stored in databases or archives which would be misleading if reported under exptl crystal density meas temp.

May appear in list containing _exptl_crystal_id.

The permitted range is $0.0 \rightarrow \infty$.

Related item: exptl crystal density meas temp (alternate).

[exptl_crystal]

exptl crystal density meas temp lt (numb) Temperature in kelvins below which _exptl_crystal_ density meas was determined. exptl crystal_density_meas_ temp gt and exptl crystal density meas temp lt should not be used for reporting new work, for which the correct temperature of measurement should be given. These items are intended for use in reporting information stored in databases or archives which would be misleading if reported under exptl crystal density meas temp.

May appear in list containing **_exptl_crystal_id**.

The permitted range is $0.0 \rightarrow \infty$.

Related item: **_exptl_crystal_density_meas_temp** (alternate).

Example: '300' (The density was measured at some unspecified temperature below room temperature.). [exptl_crystal]

(char)
as.
ystal]

exptl crystal description (char) A description of the quality and habit of the crystal. The crystal dimensions should not normally be reported here; use instead _exptl_crystal_size_ for the gross dimensions of the crystal and exptl crystal face to describe the relationship between individual faces.

May appear in list containing **_exptl_crystal_id**. [exptl crystal]

(numb)

exptl crystal F 000

The effective number of electrons in the crystal unit cell contributing to F(000). This may contain dispersion contributions and is calculated as

$$F(000) = \left[\left(\sum f_r \right)^2 + \left(\sum f_i \right)^2 \right]^{1/2}$$

where f_r = real part of the scattering factors at $\theta = 0^\circ$, f_i = imaginary part of the scattering factors at $\theta = 0^{\circ}$ and the sum is taken over each atom in the unit cell.

May appear in list containing exptl_crystal_id. The permitted range is $0.0 \rightarrow \infty$.

[exptl_crystal]

(char)

exptl crystal id Code identifying each crystal if multiple crystals are used. It is used to link with diffrn refln crystal id in the intensity measurements and with refln crystal id in the refln list. Appears in list as essential element of loop structure. May match child data name(s): _diffrn_refln_crystal_id, _refln_crystal_id. [exptl crystal]

exptl crystal preparation (char) Details of crystal growth and preparation of the crystal (e.g. mounting) prior to the intensity measurements.

May appear in list containing _exptl_crystal_id.

Example: 'mounted in an argon-filled quartz capillary'.

[exptl crystal]

exptl crystal pressure history (char) Relevant details concerning the pressure history of the sample. May appear in list containing _exptl_crystal_id. [exptl_crystal]

exptl crystal recrystallization method (char) Describes the method used to recrystallize the sample. Sufficient details should be given for the procedure to be repeated. The temperature or temperatures should be given as well as details of the solvent, flux or carrier gas with concentrations or pressures and ambient atmosphere.

[exptl_crystal]

(numb)

```
_exptl_crystal_size length
exptl crystal size max
exptl crystal size mid
_exptl_crystal_size_min
 exptl crystal size rad
```

The maximum, medial and minimum dimensions in millimetres of the crystal. If the crystal is a sphere, then the * rad item is its radius. If the crystal is a cylinder, then the * rad item is its radius and the * length item is its length. These may appear in a list with exptl crystal id if multiple crystals are used in the experiment.

May appear in list containing **_exptl_crystal_id**. The permitted range is $0.0 \rightarrow \infty$. [exptl crystal]

exptl crystal thermal history (char) Relevant details concerning the thermal history of the sample.

May appear in list containing _exptl_crystal_id. [exptl crystal]

(numb)

EXPTL_CRYSTAL

4. DATA DICTIONARIES

cif_core.dic

EXPTL_CRYSTAL_FACE

Data items in the EXPTL CRYSTAL FACE category record details of the crystal faces.

Example 1 – based on structure PAWD2 of Vittal & Dean [Acta Cryst. (1996), C52, 1180-1182].

loop_				
_exptl	_crysta	l_fac	e_index_h	
_exptl	_crysta	l_fac	e_index_k	
_exptl	_crysta	l_fac	e_index_1	
_exptl	_crysta	l_fac	e_perp_dist	
0	-1	- 2	.18274	
1	0	- 2	.17571	
-1	1	- 2	.17845	
- 2	1	0	.21010	
-1	0	2	.18849	
1	-1	2	.20605	
2	-1	0	.24680	
-1	2	0	.19688	
0	1	2	.15206	

exptl crystal face diffr chi exptl crystal face diffr kappa exptl crystal face diffr phi exptl crystal face diffr psi

The goniometer angle settings in degrees when the perpendicular to the specified crystal face is aligned along a specified direction (e.g. the bisector of the incident and reflected beams in an optical goniometer).

Appears in list containing **_exptl_crystal_face_index_**

[exptl crystal face]

(numb)

(numb)

_exptl_crystal_face_index_h _exptl_crystal_face_index_k exptl_crystal_face_index_l

Miller indices of the crystal face associated with the value exptl crystal face perp dist.

Appears in list as essential element of loop structure. [exptl crystal face]

exptl crystal face perp dist (numb) The perpendicular distance in millimetres from the face to the centre of rotation of the crystal.

Appears in list containing exptl crystal face index

The permitted range is $0.0 \rightarrow \infty$. [exptl_crystal_face]

GEOM

Data items in the GEOM and related (GEOM ANGLE, GEOM BOND, GEOM CONTACT, GEOM HBOND and GEOM TORSION) categories record details about the molecular and crystal geometry as calculated from the ATOM, CELL and SYMMETRY data. Geometry data are usually redundant, in that they can be calculated from other more fundamental quantities in the data block. However, they serve the dual purposes of providing a check on the correctness of both sets of data and of enabling the most important geometric data to be identified for publication by setting the appropriate publication flag.

Example 1 - based on data set bagan of Yamane & DiSalvo [Acta Cryst. (1996), C52, 760-761].

_geom_special_details

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

geom special details

(char) The description of geometrical information not covered by the existing data names in the geometry categories, such as leastsquares planes.

[geom]

GEOM_ANGLE

Data items in the GEOM ANGLE category record details about the bond angles as calculated from the ATOM, CELL and SYMMETRY data.

Example 1 – based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276–2277].

100

<pre>geom_angle_atom_site_label_1 geom_angle_atom_site_label_2 geom_angle_atom_site_label_3 geom_angle_atom_site_label_3 geom_angle_site_symmetry_1 geom_angle_site_symmetry_2 geom_angle_publ_flag C2 01 C5 111.6(2) 1_555 1_555 1_555 yes 01 C2 021 122.2(3) 1_555 1_555 1_555 yes C3 C2 021 127.0(3) 1_555 1_555 1_555 yes C2 C3 N4 101.3(2) 1_555 1_555 1_555 yes C2 C3 C3 111.3(2) 1_555 1_555 1_555 yes C2 C3 C3 111.3(2) 1_555 1_555 1_555 yes C2 C3 C3 111.3(2) 1_555 1_555 1_555 yes C3 C3 C3 111.3(2) 1_555 1_555 yes C3 C3 C3 111.3(2) 1_555 1_555 yes C3 C3 C3 111.3(2) 1_555 1_555 yes C3 C3 C3 C3 111.3(2) 1_555 1_555 yes C4 C3 C3 C3 111.3(2) 1_555 1_555 yes C5 C3 C3 C3 C3 111.3(2) 1_555 1_555 yes C5 C3 C3 C3 C3 111.3(2) 1_555 1_555 yes C5 C3 C3 C3 C3 111.3(2) 1_555 1_555 yes C5 C3 C3 C3 C3 111.3(2) 1_555 1_555 yes C5 C3 C3 C3 C3 111.3(2) 1_555 1_555 yes C5 C3 C3 C3 C3 111.3(2) 1_555 1_555 yes C5 C3 C3 C3 C3 111.3(2) 1_555 1_555 yes C5 C3 C3 C3 C3 111.3(2) 1_555 1_555 yes C5 C3 C3 C3 C3 111.3(2) 1_555 1_555 yes C5 C3 C3 C3 C3 111.3(2) 1_555 1_555 yes C5 C3 C3 C3 C3 111.3(2) 1_555 1_555 yes C5 C3 C3 C3 C3 111.3(2) 1_555 1_555 yes C5 C3 C3 C3 C3 110.5(2) 1_555 1_555 yes C5 C3 C3 C3 C3 110.5(2) 1_555 1_555 yes C5 C3 C3 C3 C3 110.5(2) 1_555 1_555 yes C5 C3 C3 C3 C3 110.5(2) 1_555 1_555 yes C5 C3 C3 C3 C3 110.5(2) 1_555 1_555 yes C5 C3 C3 C3 C3 C3 110.5(2) yes C5 C3 C3</pre>	Loop	·						
geom_angle_atom_site_label_3 geom_angle_site_symmetry_1 geom_angle_site_symmetry_2 geom_angle_site_symmetry_3 geom_angle_publ_flag C2 01 C5 111.6(2) 1_555 1_555 1_555 yes 01 C2 C3 110.9(2) 1_555 1_555 1_555 yes 01 C2 021 122.2(3) 1_555 1_555 1_555 yes C3 C2 021 127.0(3) 1_555 1_555 1_555 yes C2 C3 N4 101.3(2) 1_555 1_555 1_555 yes C2 C3 C31 111.3(2) 1_555 1_555 1_555 yes C2 C3 H3 107(1) 1_555 1_555 1_555 no N4 C3 C31 116.7(2) 1_555 1_555 1_555 yes	geo	m_an	gle_a	tom_site_1	abel_1			
geom_angle geom_angle_site_symmetry_1 geom_angle_site_symmetry_2 geom_angle_site_symmetry_3 geom_angle_publ_flag C2 01 C5 111.6(2) 1_555 1_555 1_555 yes 01 C2 C3 110.9(2) 1_555 1_555 1_555 yes 01 C2 021 122.2(3) 1_555 1_555 1_555 yes C3 C2 021 127.0(3) 1_555 1_555 1_555 yes C2 C3 N4 101.3(2) 1_555 1_555 1_555 yes C2 C3 H3 107(1) 1_555 1_555 1_555 no N4 C3 C31 116.7(2) 1_555 1_555 1_555 yes	geo	m_an	gle_a	tom_site_1	abel_2			
geom_angle_site_symmetry_1 geom_angle_site_symmetry_2 geom_angle_site_symmetry_3 geom_angle_publ_flag C2 01 C5 111.6(2) 1_555 1_555 1_555 yes 01 C2 C3 110.9(2) 1_555 1_555 1_555 yes C3 C2 021 122.2(3) 1_555 1_555 1_555 yes C2 C3 N4 101.3(2) 1_555 1_555 1_555 yes C2 C3 K1 111.3(2) 1_555 1_555 1_555 yes C2 C3 H3 107(1) 1_555 1_555 1_555 no N4 C3 C31 116.7(2) 1_555 1_555 1_555 yes	geo	m_an	gle_a	tom_site_1	abel_3			
geom_angle_site_symmetry_2 geom_angle_site_symmetry_3 geom_angle_publ_flag C2 01 C5 111.6(2) 1_555 1_555 1_555 yes 01 C2 C3 110.9(2) 1_555 1_555 1_555 yes C3 C2 021 122.2(3) 1_555 1_555 1_555 yes C2 C3 N4 101.3(2) 1_555 1_555 1_555 yes C2 C3 K3 107(1) 1_555 1_555 1_555 yes N4 C3 C31 116.7(2) 1_555 1_555 1_555 yes	geo	m_an	gle					
geom_angle_site symmetry_3 geom_angle_publ_flag C2 01 C5 111.6(2) 1_555 1_555 1_555 yes O1 C2 C3 110.9(2) 1_555 1_555 1_555 yes O1 C2 O21 122.2(3) 1_555 1_555 1_555 yes C3 C2 O21 122.2(3) 1_555 1_555 yes C3 C2 O21 127.0(3) 1_555 1_555 yes C2 C3 N4 101.3(2) 1_555 1_555 yes C2 C3 C31 111.3(2) 1_555 1_555 yes C2 C3 H3 107(1) 1_555 1_555 no N4 C3 C31 116.7(2) 1_555 1_555 yes	geo	m_an	gle_s	ite_symmet	ry_1			
geom_angle_publ_flag C2 O1 C5 111.6(2) 1_555 1_555 1_555 yes O1 C2 C3 110.9(2) 1_555 1_555 1_555 yes O1 C2 O2 1122.2(3) 1_555 1_555 1_555 yes C3 C2 O21 122.2(3) 1_555 1_555 1_555 yes C3 C2 O21 122.2(3) 1_555 1_555 1_555 yes C2 C2 N4 101.3(2) 1_555 1_555 yes C2 C3 N4 101.3(2) 1_555 1_555 yes C2 C3 S31 111.3(2) 1_555 1_555 yes C2 C3 H3 107(1) 1_555 1_555 no N4 C3 C31 116.7(2) 1_555 1_555 1_555 yes	_gec	m_an	gle_s	ite_symmet	ry_2			
C2 01 C5 111.6(2) 1_555 1_555 1_555 yes O1 C2 C3 110.9(2) 1_555 1_555 1_555 yes O1 C2 O21 122.2(3) 1_555 1_555 1_555 yes C3 C2 O21 122.2(3) 1_555 1_555 1_555 yes C3 C2 O21 127.0(3) 1_555 1_555 1_555 yes C2 C3 N4 101.3(2) 1_555 1_555 1_555 yes C2 C3 C31 111.3(2) 1_555 1_555 1_555 yes C2 C3 H3 107(1) 1_555 1_555 1_555 no N4 C3 C31 116.7(2) 1_555 1_555 1_555 yes					ry_3			
01 C2 C3 110.9(2) 1_555 1_555 1_555 yes 01 C2 021 122.2(3) 1_555 1_555 1_555 yes 03 C2 021 122.2(3) 1_555 1_555 1_555 yes C3 C2 021 127.0(3) 1_555 1_555 1_555 yes C2 C3 N4 101.3(2) 1_555 1_555 1_555 yes C2 C3 C31 111.3(2) 1_555 1_555 1_555 yes C2 C3 H3 107(1) 1_555 1_555 1_555 no N4 C3 C31 116.7(2) 1_555 1_555 1_555 yes	_gec	m_an	gle_p	ubl_flag				
01 C2 021 122.2(3) 1_555 1_555 1_555 yes C3 C2 021 127.0(3) 1_555 1_555 1_555 yes C2 C3 N4 101.3(2) 1_555 1_555 1_555 yes C2 C3 C31 111.3(2) 1_555 1_555 1_555 yes C2 C3 H3 107(1) 1_555 1_555 1_555 no N4 C3 C31 116.7(2) 1_555 1_555 1_555 yes	C2	01	C5	111.6(2)	1_555	1_555	1_555	yes
C3 C2 O21 127.0 (3) 1_555 1_555 1_555 yes C2 C3 N4 101.3 (2) 1_555 1_555 1_555 yes C2 C3 C31 111.3 (2) 1_555 1_555 1_555 yes C2 C3 C31 111.3 (2) 1_555 1_555 1_555 yes C2 C3 H3 107 (1) 1_555 1_555 1_555 no N4 C3 C31 116.7 (2) 1_555 1_555 1_555 yes	01	C2	C3	110.9(2)	1_555	1_555	1_555	yes
C2 C3 N4 101.3(2) 1_555 1_555 1_555 yes C2 C3 C31 111.3(2) 1_555 1_555 1_555 yes C2 C3 H3 107(1) 1_555 1_555 1_555 no N4 C3 C31 116.7(2) 1_555 1_555 1_555 yes	01	C2	021	122.2(3)	1_555	1_555	1_555	yes
C2 C3 C31 111.3(2) 1_555 1_555 1_555 yes C2 C3 H3 107(1) 1_555 1_555 1_555 no N4 C3 C31 116.7(2) 1_555 1_555 1_555 yes	C3	C2	021	127.0(3)	1_555	1_555	1_555	yes
C2 C3 H3 107(1) 1_555 1_555 1_555 no N4 C3 C31 116.7(2) 1_555 1_555 1_555 yes	C2	C3	N4	101.3(2)	1_555	1_555	1_555	yes
N4 C3 C31 116.7(2) 1_555 1_555 1_555 yes	C2	C3	C31	111.3(2)	1_555	1_555	1_555	yes
	C2	C3	нз	107(1)	1_555	1_555	1_555	no
t data truncated for brevity	N4	C3	C31	116.7(2)	1_555	1_555	1_555	yes
auto transatica for previty	ŧ -		- dat	a truncate	d for b	revity		

geom angle

(numb. su)

(char)

(char)

Angle in degrees defined by the three sites _geom_angle_atom_ site label 1, * 2 and * 3. The site at * 2 is at the apex of the angle.

Appears in list containing _geom_angle_atom_site_label_. [geom angle]

geom angle atom site label 1

geom angle atom site label 2

geom angle atom site label 3

The labels of the three atom sites which define the angle given by geom angle. These must match labels specified as atom site label in the atom list. Label 2 identifies the site at the apex of the angle.

Appears in list as essential element of loop structure. Must match parent data name _atom_site_label. [geom angle]

geom angle publ flag

This code signals whether the angle is referred to in a publication or should be placed in a table of significant angles.

Appears in list containing _geom_angle_atom_site_label_

The data value must be one of the following:

- do not include angle in special list no
- n abbreviation for 'no
- do include angle in special list yes abbreviation for 'yes' v
- Where no value is given, the assumed value is 'no'.

[geom angle]

_geom_angle_site_symmetry_1 _geom_angle_site_symmetry 2

geom angle site symmetry 3

(char) The symmetry code of each atom site as the symmetry-equivalent position number 'n' and the cell translation number 'klm'. These numbers are combined to form the code 'n klm' or n klm. The character string n klm is composed as follows: *n* refers to the symmetry operation that is applied to the coordinates stored in atom_site_fract_x, _atom_site_fract_y and _atom_site_fract_z. It must match a number given in space group symop id. k, l and m refer to the translations that are subsequently applied to the symmetry-transformed coordinates to generate the atom used in calculating the angle. These translations (x, y, z) are related to (k, l, m) by the relations k = 5 + x,

4.1. CORE DICTIONARY (CORECIF)

GEOM_CONTACT

(numb, su)

(numb)

[geom bond]

l = 5 + y, m = 5 + z. By adding 5 to the translations, the use of negative numbers is avoided.

Appears in list containing _geom_angle_atom_site_label_

Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied), '7_645' (7th symmetry position: +a on x, -b on y). [geom_angle]

GEOM_BOND

Data items in the GEOM_BOND category record details about bonds as calculated from the ATOM, CELL and SYMMETRY data.

Example 1 – based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276–2277].

```
loop_
```

_geom_bond_atom_site_label 1 _geom_bond_atom_site_label_2 _geom_bond_distance geom bond site symmetry 1 geom_bond_site_symmetry_2 geom bond publ flag 1.342(4) 1 555 1 555 01 C2 yes C5 1,439(3) 1 555 1 555 01 ves C2 C3 1.512(4)1 555 1 555 yes C2 021 1,199(4) 1 555 1 555 yes C3 N4 1.465(3) 1_555 1 555 yes C3 C31 1.537(4) 1 555 1 555 yes C3 нз 1.00(3) 1 555 1 555 no 1.472(3) 1 555 1 555 N4 C5 yes - - - - data truncated for brevity - - -

Example 2 – An example showing a listing of only symmetry-unique bonds. In high-symmetry structures when many bonds are related by symmetry, it may not be necessary or desirable to list all the bonds in the environment of the first named atom. Some users may wish to give only the symmetry-independent distances and supply a multiplicity to indicate how many such bonds are found in the atomic environment.

```
loop
```

_geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_multiplicity Cal F1 2.495(9) 1 2.291(10) Cal F2 2 Ca1 F2 2.391(11)2 Ca1 F3 2.214(11)2 Cr1 F1 1.940(11)2 Cr1 F2 1.918(9) 2 Cr1 F3 1.848(10) 2

Example 3 – The same structure as in Example 2, but where the multiplicity is given with a full bond list. Note the use of a value of 0 for <u>geom_bond_multiplicity</u> in such a case.

```
loop
_geom_bond_atom_site_label_1
_geom_bond_site_symmetry_2
geom bond distance
geom bond multiplicity
Cal
     F1
          1 555 2.495(9)
                             1
          1 555 2.291(10)
Ca1
     F2
                             2
Ca1
     F2
          2 555
                2.291(10)
                             ٥
Ca1
     F2
          3_565 2.391(11)
                             2
Ca1
     F2
          4 555
                 2.391(11)
Cal
     F3
          2 545
                 2.214(11)
          5 555
Ca1
     F3
                 2.214(11)
                             0
Cr1
     F1
          1 555
                 1.940(11)
                             2
Cr1
     F1
          2 555
                 1.940(11)
                             0
Cr1
     F2
          1 555
                 1.918(9)
                             2
                 1.918(9)
Cr1
     F2
          2_555
                             0
Cr1
     F3
          1 555
                 1.848(10)
                             2
Cr1
          2 555 1.848(10)
```

_geom_bond_atom_site_label_1

_geom_bond_atom_site_label_2

The labels of two atom sites that form a bond. These must match labels specified as <u>_atom_site_label</u> in the atom list.

Appears in list as essential element of loop structure. Must match parent data name _atom_site_label. [geom_bond]

geom_bond_distance

The intramolecular bond distance in ångströms. Appears in list containing _geom_bond_atom_site_label_.

The permitted range is $0.0 \rightarrow \infty$.

_geom_bond_multiplicity

The number of times the given bond appears in the environment of the atoms labelled _geom_bond_atom_site_label_1. In cases where the full list of bonds is given, one of the series of equivalent bonds may be assigned the appropriate multiplicity while the others are assigned a value of 0.

Appears in list containing _geom_bond_atom_site_label_.

The permitted range is $0 \rightarrow \infty.$ Where no value is given, the assumed value is '1'.

		[geom_bond]
geom bond publ	flag	(char)

This code signals whether the bond distance is referred to in a publication or should be placed in a list of significant bond distances. Appears in list containing _geom_bond_atom_site_label_.

The data value must be one of the following:

- no do not include bond in special list
- n abbreviation for 'no'
- yes do include bond in special list
- y abbreviation for 'yes'

Where no value is given, the assumed value is 'no'.

_geom_bond_site_symmetry_1

_geom_bond_site_symmetry_2 (char) The symmetry code of each atom site as the symmetry-equivalent position number 'n' and the cell translation number 'klm'. These numbers are combined to form the code 'n klm' or n_klm . The character string n_klm is composed as follows: n refers to the symmetry operation that is applied to the coordinates stored in **_atom_site_fract_x**, **_atom_site_fract_y** and **_atom_site_fract_z**. It must match a number given in **_space_group_symop_id**. k, l and m refer to the translations that are subsequently applied to the symmetry-transformed coordinates to generate the atom used in calculating the bond. These translations (x, y, z) are related to (k, l, m) by the relations k = 5 + x, l = 5 + y, m = 5 + z. By adding 5 to the translations, the use of negative numbers is avoided.

Appears in list containing _geom_bond_atom_site_label_.

Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied), '7-645' (7th symmetry position: +a on x, -b on y). [geom bond]

geom bond valence

(numb)

(char)

The bond valence calculated from _geom_bond_distance. Appears in list containing _geom_bond_atom_site_label_. [geom_bond]

GEOM_CONTACT

Data items in the GEOM_CONTACT category record details about interatomic contacts as calculated from the ATOM, CELL and SYM-METRY data.

Example 1 – based on data set CLPHO6 of Ferguson, Ruhl, McKervey & Browne [Acta Cryst. (1992), C48, 2262–2264].

loop_

_geom_contact_atom_site_label_1

_geom_contact_atom_site_label_2

The labels of two atom sites that are within contact distance. The labels must match <u>_atom_site_label</u> codes in the atom list.

Appears in list as essential element of loop structure. Must match parent data name _atom_site_label. [geom_contact]

(char)

[geom_bond]

GEOM_CONTACT

geom contact distance

The interatomic contact distance in ångströms. Appears in list containing _geom_contact_atom_site_label_. The permitted range is $0.0 \rightarrow \infty$.

[geom contact]

(numb, su)

(char)

4. DATA DICTIONARIES

geom contact publ flag

This code signals whether the contact distance is referred to in a publication or should be placed in a list of significant contact distances.

Appears in list containing _geom_contact_atom_site_label_

The data value must be one of the following:

- do not include distance in special list no
- n abbreviation for 'no'

yes do include distance in special list

abbreviation for 'yes' У

Where no value is given, the assumed value is 'no'.

[geom contact]

geom contact site symmetry 1 geom contact site symmetry 2

(char) The symmetry code of each atom site as the symmetry-equivalent position number 'n' and the cell translation number 'klm'. These numbers are combined to form the code 'n klm' or $n_k lm$. The character string $n_k lm$ is composed as follows: *n* refers to the symmetry operation that is applied to the coordinates stored in _atom_site_fract_x, _atom_site_fract_y and atom site fract z. It must match a number given in space group symop id. k, l and m refer to the translations that are subsequently applied to the symmetry-transformed coordinates to generate the atom used in calculating the contact. These translations (x, y, z) are related to (k, l, m) by the relations k = 5 + x, l = 5 + y, m = 5 + z. By adding 5 to the translations, the use of negative numbers is avoided.

Appears in list containing _geom_contact_atom_site_label_.

Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied), '7_645' (7th symmetry position: +a on x, -b on y). [geom contact]

GEOM_HBOND

Data items in the GEOM HBOND category record details about hydrogen bonds as calculated from the ATOM, CELL and SYMME-TRY data.

Example 1 – based on $C_{14}H_{13}ClN_2O.H_2O$, reported by Palmer, Puddle & Lisgarten [Acta Cryst. (1993), C49, 1777-1779].

loop_

geom hbond atom site label D geom hbond atom site label H geom hbond atom site label A _geom_hbond_distance_DH _geom_hbond_distance_HA geom hbond distance DA _geom_hbond_angle_DHA _geom_hbond_publ_flag N6 HN6 OW 0.888(8) 1.921(12)2.801(8) 169.6(8) OW HO2 07 0.917(6)1,923(12)2.793(8)OW HO1 N10 0.894(8) 1.886(11) 2.842(8) 179.7(9)

geom hbond angle DHA

(numb, su)

(char)

ves

yes

yes

153.5(8)

Angle in degrees defined by the three sites geom hbond atom site_label_D, *_H and *_A. The site at *_H (the hydrogen atom participating in the interaction) is at the apex of the angle.

Appears in list containing _geom_hbond_atom_site_label_. [geom hbond]

```
geom hbond atom site label D
geom hbond atom site label H
geom hbond atom site label A
```

The labels of three atom sites (respectively, the donor atom, hydrogen atom and acceptor atom) participating in a hydrogen bond. These must match labels specified as _atom_site_label in the atom list.

Appears in list as essential element of loop structure. Must match parent data name atom site label. [geom hbond]

_geom	hbond	distance	DH
geom	hbond	distance	HA
geom	hbond	distance	DA

(numb, su) Distances in ångströms between the donor and hydrogen (* DH), hydrogen and acceptor (* HA) and donor and acceptor (* DA) sites in a hydrogen bond.

Appears in list containing geom hbond atom site label . The permitted range is $0.0 \rightarrow \infty$.

geom hbond publ flag

[geom_hbond]

(char) This code signals whether the hydrogen-bond information is referred to in a publication or should be placed in a table of significant hydrogen-bond geometry.

Appears in list containing _geom_hbond_atom_site_label_.

The data value must be one of the following:

- no do not include bond in special list
- n abbreviation for 'no'
- do include bond in special list yes

abbreviation for 'yes' У

Where no value is given, the assumed value is 'no'.

geom hbond site symmetry D geom hbond site symmetry H geom hbond site symmetry A

(char)

[geom hbond]

The symmetry code of each atom site as the symmetry-equivalent position number 'n' and the cell translation number 'klm'. These numbers are combined to form the code 'n klm' or $n_k lm$. The character string $n_k lm$ is composed as follows: n refers to the symmetry operation that is applied to the coordinates stored in atom site fract x, atom site fract y and atom site fract z. It must match a number given in $_space_group_symop_id. k, l and m$ refer to the translations that are subsequently applied to the symmetry-transformed coordinates to generate the atom used in calculating the hydrogen bond. These translations (x, y, z) are related to (k, l, m) by the relations k = 5 + x, l = 5 + y, m = 5 + z. By adding 5 to the translations, the use of negative numbers is avoided.

Appears in list containing _geom_hbond_atom_site_label_.

Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied), '7_645' (7th symmetry position: +a on x, -b on y). [geom hbond]

GEOM_TORSION

Data items in the GEOM TORSION category record details about interatomic torsion angles as calculated from the ATOM, CELL and SYMMETRY data.

Example 1 – based on data set CLPHO6 of Ferguson, Ruhl, McKervey & Browne [Acta Cryst. (1992), C48, 2262-2264].

1000

100P_							
_geom	_torsi	on_atom	_site_3	label_1			
_geom	_torsi	on_atom	_site_3	label_2			
_geom	_torsi	on_atom	_site_3	label_3			
_geom	_torsi	on_atom	_site_:	label_4			
_geom	_torsi	on					
_geom	_torsi	on_site	_symme	try_1			
_geom	_torsi	on_site	_symme	try_2			
_geom	_torsi	on_site	_symme	try_3			
_geom	_torsi	on_site	_symme	try_4			
_geom	_torsi	on_publ	_flag				
C(9)	0(2)	C(7)	C(2)	71.8(2)	•	•	yes
C(7)	0(2)	C(9)	C(10)	-168.0(3)	•	2_666	yes
C(10)	0(3)	C(8)	C(6)	-167.7(3)	•	•	yes
C(8)	0(3)	C(10)	C(9)	-69.7(2)	•	2_666	yes
0(1)	C(1)	C(2)	C(3)	-179.5(4)	•	•	no
0(1)	C(1)	C(2)	C(7)	-0.6(1)	•	•	no

(numb, su)

(char)

_geom_torsion

The torsion angle in degrees bounded by the four atom sites identified by the _geom_torsion_atom_site_label_ codes. These must match labels specified as _atom_site_label in the atom list. The torsion-angle definition should be that of Klyne and Prelog.

Reference: Klyne, W. & Prelog, V. (1960). *Experientia*, 16, 521–523.

Appears in list containing _geom_torsion_atom_site_label_. [geom_torsion]

_geom	torsion	atom	site	label_1
geom	torsion	atom	site	label_2
geom	torsion	atom	site	label 3
geom	torsion	atom	site	label 4

The labels of the four atom sites which define the torsion angle specified by _geom_torsion. These must match codes specified as _atom_site_label in the atom list. The torsion-angle definition should be that of Klyne and Prelog. The vector direction *_label_2 to *_label_3 is the viewing direction, and the torsion angle is the angle of twist required to superimpose the projection of the vector between site 2 and site 1 onto the projection of the vector between site 3 and site 4. Clockwise torsions are positive, anticlockwise torsions are negative.

Reference: Klyne, W. & Prelog, V. (1960). *Experientia*, **16**, 521–523.

Appears in list as essential element of loop structure. Must match parent data name _atom_site_label. [geom_torsion]

geom torsion publ flag

(char)

[geom torsion]

(char)

This code signals whether the torsion angle is referred to in a publication or should be placed in a table of significant torsion angles. Appears in list containing _geom_torsion_atom_site_label_.

The data v	alue must be one of the following:
no	do not include angle in special list

- no do not include angle in spec n abbreviation for 'no'
- yes do include angle in special list
- y abbreviation for 'yes'

Where no value is given, the assumed value is 'no'.

_geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4

The symmetry code of each atom site as the symmetry-equivalent position number 'n' and the cell translation number 'klm'. These numbers are combined to form the code 'n klm' or $n_k klm$. The character string $n_k klm$ is composed as follows: n refers to the symmetry operation that is applied to the coordinates stored in <code>_atom_site_fract_x</code>, <code>_atom_site_fract_y</code> and <code>_atom_site_fract_z</code>. It must match a number given in <code>_space_group_symop_id</code>. k, l and m refer to the translations that are subsequently applied to the symmetry-transformed coordinates to generate the atom used in calculating the angle. These translations (x, y, z) are related to (k, l, m) by the relations k = 5 + x, l = 5 + y, m = 5 + z. By adding 5 to the translations, the use of negative numbers is avoided.

Appears in list containing **_geom_torsion_atom_site_label_**.

Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied), '7_645' (7th symmetry position: +a on x, -b on y). [geom_torsion]

JOURNAL

Data items in the JOURNAL category record details about the book-keeping by the journal staff when processing a CIF submitted for publication. The creator of a CIF will not normally specify these data items. The data names are not defined in the dictionary because they are for journal use only.

Example 1 – based on Acta Cryst. file for entry HL0007 [Willis, Beckwith & Tozer (1991). Acta Cryst. C47, 2276–2277].

_journal_date_recd_electroni	.c 91-04-15
_journal_date_from_coeditor	91-04-18
_journal_date_accepted	91-04-18
_journal_date_printers_first	91-08-07
_journal_date_proofs_out	91-08-07
_journal_coeditor_code	HL0007
_journal_techeditor_code	C910963
_journal_coden_ASTM	ACSCEE
_journal_name_full 'A	cta Crystallographica Section C'
_journal_year	1991
_journal_volume	47
_journal_issue	NOV91
_journal_page_first	2276
_journal_page_last	2277

_journal coden ASTM journal coden Cambridge journal coeditor address journal coeditor code journal coeditor email journal coeditor fax journal coeditor name _journal_coeditor notes _journal_coeditor_phone _journal_data_validation number _journal_date_accepted _journal_date_from_coeditor _journal_date_to_coeditor journal_date_printers_final journal_date_printers first journal date proofs in journal date proofs out _journal_date_recd copyright _journal_date recd electronic journal date recd hard copy _journal_issue _journal_language _journal_name full _journal_page_first _journal_page last journal paper category journal_paper_doi journal_suppl_publ_number journal suppl publ pages journal techeditor address _journal_techeditor code _journal_techeditor email _journal_techeditor_fax _journal_techeditor name _journal_techeditor_notes _journal_techeditor phone _journal_volume journal year Data items specified by the journal staff.

(char)

[journal]

JOURNAL_INDEX

Data items in the JOURNAL_INDEX category are used to list terms used to generate the journal indexes. The creator of a CIF will not normally specify these data items.

Example 1 – based on a paper by Zhu, Reynolds, Klein & Trudell [Acta Cryst. (1994), C**50**, 2067–2069] loop_ journal index type journal index term _journal_index_subterm C16H19NO4 0 alkaloids (-)-norcocaine s s (-)-norcocaine S [2R, 3S-(2 b, 3 b)]-methyl

3-(benzovloxy)-8-azabicyclo[3.2.1]octane-2-carboxylate

_journal index subterm _journal_index term

journal index type

Indexing terms supplied by the journal staff.

[journal index]

(char)

PUBL

Data items in the PUBL category are used when submitting a manuscript for publication. They refer either to the paper as a whole, or to specific named elements within a paper (such as the title and abstract, or the Comment and Experimental sections of Acta Crystallographica Section C). The data items in the PUBL BODY category should be used for the text of other submissions. Typically, each journal will supply a list of the specific items it requires in its Notes for Authors.

Example 1 - based on Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277]. _publ_section_title trans-3-Benzoyl-2-(tert-butyl)-4-(iso-butyl)-1,3-oxazolidin-5-one

_publ_section_abstract The oxazolidinone ring is a shallow envelope conformation with the tert-butyl and iso-butyl groups occupying trans-positions with respect to the ring. The angles at the N atom sum to 356.2 $\$, indicating a very small degree of pyramidalization at this atom. This is consistent with electron delocalization between the N atom and the carbonyl centre [N-C=O = 1.374(3) \%A].

Example 2 – based on $C_{31}H_{48}N_4O_4$, reported by Coleman, Patrick, Andersen & Rettig [Acta Cryst. (1996), C52, 1525-1527].

_publ_section_title Hemiasterlin methyl ester _publ_section_title_footnote IUPAC name: methyl 2.5-dimethyl-4-2-[3-methyl-2-methylamino-3-(N-methylbenzo[b]pyrrol-3-vl)butanamido]-3,3-dimethvl-N-methvlbutanamido-2-hexenoate.

publ contact author

(char)

The name and address of the author submitting the manuscript and data block. This is the person contacted by the journal editorial staff. It is preferable to use the separate data items _publ_contact_author_name and _publ_contact_author_ address.

Example: : Professor George Ferguson Department of Chemistry and Biochemistry University of Guelph Ontario Canada N1G 2W1 ;

publ contact author address

cif_core.dic

[pub1]

(char)

(char) The address of the author submitting the manuscript and data block. This is the person contacted by the journal editorial staff. Example: Department of Chemistry and Biochemistry

University of Guelph Ontario Canada N1G 2W1

publ contact author email

E-mail address in a form recognizable to international networks. The format of e-mail addresses is given in Section 3.4, Address Specification, of Internet Message Format, RFC 2822, P. Resnick (Editor), Network Standards Group, April 2001.

[pub1] Examples: 'name@host.domain.country', 'bm@iucr.org'.

_publ_contact_author_fax (char) Facsimile telephone number of the author submitting the manuscript and data block. The recommended style is the international dialing prefix, followed by the area code in parentheses, followed by the local number with no spaces. The earlier convention of including the international dialing prefix in parentheses is no longer recommended.

Examples: '12 (34) 9477334', '12 () 349477334'. [pub1]

publ contact author id iucr (char) Identifier in the IUCr contact database of the author submitting the manuscript and data block. This identifier may be available from the World Directory of Crystallographers (http://wdc.iucr.org). Example: '2985'. [pub1]

publ contact author name

(char)

The name of the author submitting the manuscript and data block. This is the person contacted by the journal editorial staff. Example: 'Professor George Ferguson'. [publ]

publ contact author phone

(char) Telephone number of the author submitting the manuscript and data block. The recommended style is the international dialing prefix, followed by the area code in parentheses, followed by the local number and any extension number prefixed by 'x', with no spaces. The earlier convention of including the international dialing prefix in parentheses is no longer recommended.

Examples: '12 (34) 9477330', '12 () 349477330', '12 (34) 9477330x5543'.

[publ]

publ contact letter

(char)

A letter submitted to the journal editor by the contact author.

[publ]

_publ_manuscript_creation (char) A description of the word-processor package and computer used to create the word-processed manuscript stored as _publ_ manuscript processed.

Example: 'Tex file created by FrameMaker on a Sun 3/280'. [publ]

_publ_manuscript_processed

(char) The full manuscript of a paper (excluding possibly the figures and the tables) output in ASCII characters from a word processor. Information about the generation of this data item must be specified in the data item _publ_manuscript_creation.

[publ]

(char)

publ manuscript text

The full manuscript of a paper (excluding figures and possibly the tables) output as standard ASCII text.

[publ]

(char)

publ requested category

The category of paper submitted. For submission to Acta Crystallographica Section C or Acta Crystallographica Section E, only the codes indicated for use with these journals should be used. The data value must be one of the following:

- FA Full article FΤ Full submission – inorganic (Acta C) FO Full submission - organic (Acta C)
- FΜ Full submission - metal-organic (Acta C)
- CT CIF-access paper - inorganic (Acta C) (no longer in use)
- CIF-access paper organic (Acta C) (no longer in use) CO
- CIF-access paper metal-organic (Acta C) (no longer in use) CM
- Electronic submission inorganic (Acta E) ΕI
- ΕO Electronic submission – organic (Acta E)
- ΕM Electronic submission - metal-organic (Acta E)
- OI Inorganic compounds (Acta E)
- Organic compounds (Acta E) 00
- QM Metal-organic compounds (Acta E)
- AD Addenda and Errata (Acta C, Acta E)
- SC Short communication

Where no value is given, the assumed value is 'FA'. [publ]

publ requested coeditor name (char) The name of the co-editor whom the authors would like to handle the submitted manuscript.

[publ]

publ requested journal (char) The name of the journal to which the manuscript is being submitted.

[publ]

publ section title publ section title footnote publ section synopsis publ section abstract publ section comment publ section introduction _publ_section_experimental _publ_section_exptl_prep _publ_section_exptl_refinement _publ_section exptl solution publ section discussion publ section acknowledgements publ section references publ section related literature publ section figure captions publ section table legends publ section keywords

The sections of a manuscript if submitted in parts. As an alternative, see _publ_manuscript_text and _publ_manuscript_ processed. The _publ_section_exptl_prep, _publ_section_ $exptl_refinement$ and $_publ_section_exptl_solution$ items are preferred for separating the chemical preparation, refinement and structure solution aspects of the experimental description.

[publ]

(char)

PUBL_AUTHOR

Data items in the PUBL AUTHOR category record details of the authors of a manuscript submitted for publication.

Example 1 – based on Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-22771 1000 publ author name publ author address 'Willis, Anthony C.' Research School of Chemistry Australian National University GPO Box 4 Canberra, ACT Australia 2601

publ author address

The address of a publication author. If there is more than one author, this will be looped with publ author name.

May appear in list containing _publ_author_name.

Example Department Institute Street City and postcode COUNTRY

publ author email

The e-mail address of a publication author. If there is more than one author, this will be looped with _publ_author_name. The format of e-mail addresses is given in Section 3.4, Address Specification, of Internet Message Format, RFC 2822, P. Resnick (Editor), Network Standards Group, April 2001. May appear in list containing publ author name

Examples: 'name@host.domain.country', 'bm@iucr.org'. [publ_author]

_publ_author footnote

(char) A footnote accompanying an author's name in the list of authors of a paper. Typically indicates sabbatical address, additional affiliations or date of decease.

May appear in list containing _publ_author_name.

Examples: 'On leave from U. Western Australia', 'Also at Department of Biophysics'.

[publ author]

publ author id iucr (char) Identifier in the IUCr contact database of a publication author. This identifier may be available from the World Directory of Crystallographers (http://wdc.iucr.org). May appear in list. [publ author]

Example: '2985'.

(char)

publ author name The name of a publication author. If there are multiple authors, this will be looped with publ author address. The family name(s), followed by a comma and including any dynastic components, pre-

cedes the first names or initials. May appear in list as essential element of loop structure.

Examples: 'Bleary, Percival R.', 'O'Neil, F.K.', 'Van den Bossche, G.', 'Yang, D.-L.', 'Simonov, Yu.A.', 'M\"uller, H.A.', 'Ross II, C.R.'.

[publ author]

(char)

[publ_author]

(char)

4. DATA DICTIONARIES

W

cif_core.dic

(char)

(char)

[publ body]

PUBL_BODY

Data items in the PUBL BODY category permit the labelling of different text sections within the body of a paper. Note that these should not be used in a paper which has a standard format with sections tagged by specific data names (such as in Acta Crystallographica Section \hat{C}). Typically, each journal will supply a list of the specific items it requires in its Notes for Authors.

Example 1 - based on a paper by R. Restori & D. Schwarzenbach [Acta Cryst. (1996), A52, 369-378].

```
100p
 _publ_body_element
 _publ_body_label
 publ_body_title
 _publ_body_format
 publ_body_contents
                                                                                                                                                                       cif
              section 1
                                                                        Introduction
; X-ray diffraction from a crystalline material provides
     information on the thermally and spatially averaged
      electron density in the crystal..
                                          2
                                                                        Theory
               section
                                                                                                                                                                           tex
; In the rigid-atom approximation, the dynamic electron
     density of an atom is described by the convolution
    product of the static atomic density and a probability
     density function,
     \rightarrow \label{eq:rho_dyn} (\bf r) = \rightarrow \rightarrow
Example 2 – based on a paper by R. J. Papoular, Y. Vekhter & P. Coppens [Acta
Cryst. (1996), A52, 397-407].
loop_
 publ_body_element
 _publ_body_label
 _publ_body_title
 _publ_body_contents
              section
                                                 ٦
; The two-channel method for retrieval of the deformation
     electron density
              subsection 3.1 'The two-channel entropy S[\D\r(r)]'
; As the wide dynamic range involved in the total electron
     density..
               subsection 3.2
 'Uniform vs informative prior model densities'
              subsubsection 3.2.1 'Use of uniform models'
; Straightforward algebra leads to expressions analogous
     to...
```

_publ_body_contents A text section of a paper.	(char)
Appears in list containing _publ_body_label.	[publ_body]
_publ_body_element	(char)
The functional role of the associated text section.	
Appears in list containing _publ_body_label.	
The data value must be one of the following:	
section	
subsection	
subsubsection	
appendix	

footnote

publ body format

Code indicating the appropriate typesetting conventions for accented characters and special symbols in the text section. Appears in list containing publ body label.

The data value must be one of the following:

ascii	no coding for special symbols	
cif	CIF convention	
latex	LaTeX	
rtf	Rich Text Format	
sgml	SGML (ISO 8879)	
tex	TeX	
troff	troff or nroff	
Where no valu	e is given, the assumed value is 'cif'.	[publ_body]

publ body label

Code identifying the section of text. The combination of this with publ body element must be unique. Appears in list as essential element of loop structure.

Examples: '1', '1.1', '2.1.3'.

_publ_body_title	(char)
Title of the associated section of text.	
Appears in list containing _pub1_body_label.	[publ_body]

PUBL MANUSCRIPT INCL

Data items in the PUBL MANUSCRIPT INCL category allow the authors of a manuscript submitted for publication to list data names that should be added to the standard request list used by the journal printing software. Although these fields are primarily intended to identify CIF data items that the author wishes to include in a published paper, they can also be used to identify data names created so that non-CIF items can be included in the publication. Note that * item names *must* be enclosed in single quotes.

Example 1 – directive to include a hydrogen-bonding table, including cosmetic headings in comments.

```
1000
publ_manuscript_incl_extra_item
publ_manuscript_incl_extra info
_publ_manuscript_incl_extra_defn
# Include Hydrogen Bonding Geometry Description
#
 -----
#
 Name
                                 explanation
                                                standard?
#
  ' geom hbond_atom_site_label_D'
                                 'H-bond donor
                                                    ves
                                                   yes
   _geom_hbond_atom_site_label_H'
                                 'H-bond hvdrogen'
   _geom_hbond_atom_site_label_A'
                                 'H-bond acceptor'
                                                    yes
   _geom_hbond_distance_DH'
                                                   yes
                                 'H-bond D-H'
  _geom_hbond_distance_HA'
                                 'H-bond H...A'
                                                    yes
   geom hbond distance DA'
                                 'H-bond D...A'
                                                    yes
  '_geom_hbond_angle_DHA'
                                 'H-bond D-H...A'
                                                    yes
```

Example 2 - hypothetical example including both standard CIF data items and a non-CIF quantity which the author wishes to list.

```
1000
_publ_manuscript_incl_extra_item
_publ_manuscript_incl_extra_info
publ manuscript incl extra defn
  _atom_site_symmetry_multiplicity'
      'to emphasise special sites'
                                          yes
   chemical compound source
      'rare material, unusual source'
                                          yes
   reflns d resolution high'
      'limited data is a problem here'
                                          yes
  '_crystal_magnetic_permeability'
      'unusual value for this material'
                                          no
```

[publ body]

4.1. CORE DICTIONARY (CORECIF)

(char)

publ manuscript incl extra defn

Flags whether the corresponding data item marked for inclusion in a journal request list is a standard CIF definition or not.

Appears in list containing publ manuscript incl extra item.

The data value must be one of the following:

- not a standard CIF data name no
- n abbreviation for 'no'
- a standard CIF data name ves
- abbreviation for 'yes' v

Where no value is given, the assumed value is 'yes'. [publ_manuscript_incl]

publ manuscript incl extra info (char) A short note indicating the reason why the author wishes the corresponding data item marked for inclusion in the journal request list to be published.

Appears in list containing _publ_manuscript_incl_extra_item.

[publ manuscript incl]

publ manuscript incl extra item (char) Specifies the inclusion of specific data into a manuscript which are not normally requested by the journal. The values of this item are the extra data names (which *must* be enclosed in single quotes) that will be added to the journal request list.

Appears in list as essential element of loop structure. [publ manuscript incl]

REFINE

Data items in the REFINE category record details about the structure-refinement parameters.

Example 1 - based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277].

refine_special_details sfls: F calc weight full matrix

_refine_ls_structure_factor_coef	F
_refine_ls_matrix_type	full
_refine_ls_weighting_scheme	calc
_refine_ls_weighting_details	'w=1/(u^2^(F)+0.0004F^2^)'
_refine_ls_hydrogen_treatment	refxyz
_refine_ls_extinction_method	Zachariasen
_refine_ls_extinction_coef	3514(42)
_refine_ls_extinction_expression	
; Larson, A. C. (1970). "Crystall	ographic Computing", edited
by F. R. Ahmed. Eq. (22) p. 292	. Copenhagen: Munksgaard.
;	
_refine_ls_abs_structure_details	
; The absolute configuration was	assigned to agree with that
of its precursor l-leucine at t	he chiral centre C3.
;	
_refine_ls_number_reflns	1408
_refine_ls_number_parameters	272
_refine_ls_number_restraints	0
_refine_ls_number_constraints	0
_refine_ls_R_factor_all	.038
_refine_ls_R_factor_gt	.034
_refine_ls_wR_factor_all	.044
_refine_ls_wR_factor_gt	.042
_refine_ls_goodness_of_fit_all	1.462
_refine_ls_goodness_of_fit_gt	1.515
_refine_ls_shift/su_max	.535
_refine_ls_shift/su_mean	.044
_refine_diff_density_min	108
_refine_diff_density_max	.131

refine diff density max refine diff density min refine diff density rms

The largest and smallest values and the root-mean-square deviation, in electrons per ångström cubed, of the final difference electron density. The * rms value is measured with respect to the arithmetic mean density and is derived from summations over each grid point in the asymmetric unit of the cell. This quantity is useful for assessing the significance of *_min and *_max values, and also for defining suitable contour levels.

refine 1s abs structure details (char) The nature of the absolute structure and how it was determined.

[refine]

REFINE

_refine_ls_abs_structure_Flack	(numb, su)
The measure of absolute structure as defined by Flack	(1983). For
centrosymmetric structures, the only permitted value,	if the data
name is present, is 'inapplicable', represented by '.' . F	For noncen-
trosymmetric structures, the value must lie in the 99.979	% Gaussian
confidence interval $-3u \le x \le 1 + 3u$ and a standard	uncertainty
(e.s.d.) u must be supplied. The _enumeration_range	
1.0 is correctly interpreted as meaning $(0.0-3u) \le x \le$	(1.0+3u).

Reference: Flack, H. D. (1983). Acta Cryst. A39, 876-881. The permitted range is $0.0 \rightarrow 1.0$. [refine]

_refine_ls_abs_structure_Rogers	(numb, su)
The measure of absolute structure as defined by Rogers	(1981).
The value must lie in the 99.97% Gaussian confidence	interval
$-1 - 3u \le \eta \le 1 + 3u$ and a standard uncertainty (e.s.d.) <i>u</i> must
be supplied. The _enumeration_range of $-1.0 ightarrow 1.0$ is a	correctly
interpreted as meaning $(-1.0 - 3u) \le \eta \le (1.0 + 3u)$.	
Reference: Rogers, D. (1981). Acta Cryst. A37, 734-74	41.
The permitted range is $-1.0 \rightarrow 1.0$.	[refine]
refine ls d res high	(numb)
The smallest value in angströms of the interplanar spacing	gs of the
reflections used in the refinement. This is called the high	0
lution.	
The permitted range is $0.0 \rightarrow \infty$.	[refine]
_refine_ls_d_res_low	(numb)

The largest value in angströms of the interplanar spacings of the reflections used in the refinement. This is called the lowest resolution

The permitted range is $0.0 \rightarrow \infty$.

refine 1s extinction coef (numb, su) The extinction coefficient used to calculate the correction factor applied to the structure-factor data. The nature of the extinction coefficient is given in the definitions _refine_ls_extinction_expression and _refine_ls_ of extinction_method. For the 'Zachariasen' method it is the r^* value; for the 'Becker-Coppens type 1 isotropic' method it is the 'g' value and for 'Becker–Coppens type 2 isotropic' corrections it is the ' ρ ' value. Note that the magnitude of these values is usually of the order of 10000.

References: Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147, 148-153. Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564. Larson, A. C. (1967). Acta Cryst. 23, 664-665. Example: '3472 (52)' (Zachariasen coefficient $r^* = 0.347(5)$ E04).

[refine]

refine 1s extinction expression

(char)

A description of or reference to the extinction-correction equation used to apply the data item refine 1s extinction coef. This information must be sufficient to reproduce the extinctioncorrection factors applied to the structure factors. Example:

; Larson, A. C. (1970). "Crystallographic Computing", edited by F. R. Ahmed. Eq. (22), p. 292. Copenhagen: Munksgaard.

(numb, su)

;

[refine]

[refine]

(char)

refine 1s extinction method

A description of the extinction-correction method applied. This description should include information about the correction method, either 'Becker-Coppens' or 'Zachariasen'. The latter is sometimes referred to as the 'Larson' method even though it employs Zachariasen's formula. The Becker-Coppens procedure is referred to as 'type 1' when correcting secondary extinction dominated by the mosaic spread; as 'type 2' when secondary extinction is dominated by particle size and includes a primary extinction component; and as 'mixed' when there is a mixture of types 1 and 2. For the Becker-Coppens method, it is also necessary to set the mosaic distribution as either 'Gaussian' or 'Lorentzian' and the nature of the extinction as 'isotropic' or 'anisotropic'. Note that if either the 'mixed' or 'anisotropic' corrections are applied, the multiple coefficients cannot be contained in * extinction coef and must be listed in _refine_special_details.

References: Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147, 148-153. Zachariasen, W. H. (1967). Acta Cryst. 23, 558–564. Larson, A. C. (1967). Acta Cryst. 23, 664–665. Where no value is given, the assumed value is 'Zachariasen'.

Examples: 'B-C type 2 Gaussian isotropic', 'none'. [refine]

refine 1s F calc details

Details concerning the evaluation of the structure factors using the expression given in refine 1s F calc formula.

Examples: 'Gaussian integration using 16 points',

- ; Bessel functions expansion up to 5th order. Bessel functions estimated accuracy: better
- than 0.001 electrons. [refine] ;

refine ls F calc formula (char) Analytical expression used to calculate the structure factors.

[refine]

(char)

_refine_ls_F_calc_precision (numb) This item gives an estimate of the precision resulting from the numerical approximations made during the evaluation of the structure factors using the expression given in refine 1s F calc formula following the method outlined in _refine_ls_F_calc_details. For X-ray diffraction the result is given in electrons. [refine]

The permitted range is $0.0 \rightarrow \infty$.

refine 1s goodness of fit all (numb, su)

The least-squares goodness-of-fit parameter S for all reflections after the final cycle of refinement. Ideally, account should be taken of parameters restrained in the least-squares refinement. See also refine 1s restrained S definitions.

$$S = \left(\frac{\sum \left|w|Y_{\text{obs}} - Y_{\text{calc}}|^2\right|}{N_{\text{ref}} - N_{\text{param}}}\right)^{1/2},$$

where Y_{obs} = the observed coefficients (see _refine_ls_ structure_factor_coef), Y_{calc} = the calculated coefficients (see refine 1s structure factor coef), w = the least-squares reflection weight $(1/u^2)$, u = the standard uncertainty, $N_{\rm ref} =$ the number of reflections used in the refinement, N_{param} = the number of refined parameters and the sum is taken over the specified reflections.

The permitted range is
$$0.0 \rightarrow \infty$$
.

[refine]

$$S = \left(\frac{\sum |w|Y_{\rm obs} - Y_{\rm calc}|^2|}{N_{\rm ref} - N_{\rm param}}\right)^{1/2}$$

where Y_{obs} = the observed coefficients (see refine 1s structure_factor_coef), Y_{calc} = the calculated coefficients (see refine ls structure factor coef), w = the least-squares reflection weight $(1/u^2)$, u = the standard uncertainty, $N_{\rm ref} =$ the number of reflections used in the refinement, N_{param} = the number of refined parameters; the sum is taken over the specified reflections

The permitted range is $0.0 \rightarrow \infty$.

Related item: refine 1s goodness of fit obs (alternate). [refine]

refine 1s goodness of fit obs (numb. su) This definition has been superseded and is retained here only for archival purposes. Use instead _refine_ls_goodness_of_fit_gt.

The least-squares goodness-of-fit parameter S for observed reflections (see reflns observed criterion) after the final cycle of refinement. Ideally, account should be taken of parameters restrained in the leastsquares refinement. See also _refine_ls_restrained_S_ definitions.

$$S = \left(rac{\sum \left|w|Y_{
m obs} - Y_{
m calc}|^2\right|}{N_{
m ref} - N_{
m param}}
ight)^{1/2},$$

where Y_{obs} = the observed coefficients (see refine 1s structure factor coef), $Y_{calc} = the calculated coefficients (see refine 1s)$ structure factor coef), $w = the \ least-squares \ reflection \ weight$ $(1/u^2)$, u = the standard uncertainty, $N_{ref} =$ the number of reflections used in the refinement, N_{param} = the number of refined parameters; the sum is taken over the specified reflections. The permitted range is $0.0 \rightarrow \infty$.

refine ls goodness of fit ref

[refine]

(char)

(numb, su) The least-squares goodness-of-fit parameter S for all reflections included in the refinement after the final cycle of refinement. Ideally, account should be taken of parameters restrained in the leastsquares refinement. See also refine 1s restrained S definitions.

$$S = \left(\frac{\sum \left|w|Y_{\text{obs}} - Y_{\text{calc}}|^2\right|}{N_{\text{ref}} - N_{\text{param}}}\right)^{1/2},$$

where Y_{obs} = the observed coefficients (see _refine_ls_ structure factor coef), Y_{calc} = the calculated coefficients (see _refine_ls_structure_factor_coef), w = the least-squares reflection weight $(1/u^2)$, u = the standard uncertainty, $N_{ref} =$ the number of reflections used in the refinement, N_{param} = the number of refined parameters; the sum is taken over the specified reflections.

The permitted range is
$$0.0 \rightarrow \infty$$
. [refine]

refine	ls	_hydrogen_	_treatment	:	(char)

Treatment of hydrogen atoms in the least-squares refinement. The data value must be one of the following:

refall	refined all H-atom parameters	
refxyz	refined H-atom coordinates only	
refU	refined H-atom U's only	
noref	no refinement of H-atom parameters	
constr	H-atom parameters constrained	
mixed	some constrained, some independent	
undef	H-atom parameters not defined	
Where no value is given, th	ne assumed value is 'undef'.	[refine]

refine 1s matrix type

Type of matrix used to accumulate the least-squares derivatives. The data value must be one of the following:

full	full
fullcycle	full with fixed elements per cycle
atomblock	block diagonal per atom

4.1. CORE DICTIONARY	(CORECIF)
----------------------	-----------

userblock	user-defined blocks	
diagonal	diagonal elements only	
sparse	selected elements only	
Where no value is given	n, the assumed value is 'full'.	[refine]

refine 1s number constraints (numb) The number of constrained (non-refined or dependent) parameters in the least-squares process. These may be due to symmetry or any other constraint process (e.g. rigid-body refinement). See also _atom_site_constraints and _atom_site_ refinement_flags. A general description of constraints may appear in _refine_special_details.

The permitted range is $0 \to \infty$. Where no value is given, the assumed value is '0'.

[refine]

(numb)

refine 1s number parameters (numb) The number of parameters refined in the least-squares process. If possible, this number should include some contribution from the restrained parameters. The restrained parameters are distinct from the constrained parameters (where one or more parameters are linearly dependent on the refined value of another). Leastsquares restraints often depend on geometry or energy considerations and this makes their direct contribution to this number, and to the goodness-of-fit calculation, difficult to assess. The permitted range is $0 \to \infty$. [refine]

refine 1s number reflns

The number of unique reflections contributing to the least-squares refinement calculation. The permitted range is $0 \rightarrow \infty$. [refine]

refine 1s number restraints (numb) The number of restrained parameters. These are parameters which are not directly dependent on another refined parameter. Restrained parameters often involve geometry or energy dependencies. See also _atom_site_constraints and _atom_site_ refinement_flags. A general description of refinement constraints may appear in _refine_special_details. The permitted range is $0 \to \infty$. [refine]

refine ls R factor all (numb) Residual factor for all reflections satisfying the resolution limits established by refine 1s d res high and refine 1s d res low. This is the conventional R factor. See also refine 1s wR_factor_definitions.

$$R = \frac{\sum |F_{\rm obs} - F_{\rm calc}|}{\sum |F_{\rm obs}|}$$

where F_{obs} = the observed structure-factor amplitudes, F_{calc} = the calculated structure-factor amplitudes and the sum is taken over the specified reflections. [refine]

The permitted range is $0.0 \rightarrow \infty$.

(numb) Residual factor for the reflections (with number given by reflns number gt) judged significantly intense (i.e. satisfying the threshold specified by _reflns_threshold_expression) and included in the refinement. The reflections also satisfy the resolution limits established by refine 1s d res high and refine 1s d res low. This is the conventional R factor. See also _refine_ls_wR_factor_ definitions.

$$R = \frac{\sum |F_{\rm obs} - F_{\rm calc}|}{\sum |F_{\rm obs}|}$$

where F_{obs} = the observed structure-factor amplitudes, F_{calc} = the calculated structure-factor amplitudes and the sum is taken over the specified reflections.

The permitted range is $0.0 \rightarrow \infty$.

Related item: _refine_ls_R_factor_obs (alternate). [refine] (numb)

(numb)

refine 1s R factor obs

This definition has been superseded and is retained here only for archival purposes. Use instead _refine_ls_R_factor_gt.

Residual factor for the reflections classified as 'observed' (see reflns_observed_criterion) and included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_d_res_high and _refine_ls_d_res_low. This is the conventional R factor. See also refine 1s wR factor definitions.

$$R = \frac{\sum |F_{\rm obs} - F_{\rm calc}|}{\sum |F_{\rm obs}|},$$

where F_{obs} = the observed structure-factor amplitudes, F_{calc} = the calculated structure-factor amplitudes and the sum is taken over the specified reflections. [refine]

The permitted range is $0.0 \rightarrow \infty$.

refine ls R Fsqd factor

Residual factor $R(F^2)$, calculated on the squared amplitudes of the observed and calculated structure factors, for significantly intense reflections (satisfying reflns threshold expression) and included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_d_res_high and refine ls d res low.

$$R(F^2) = \frac{\sum |F_{\text{obs}}^2 - F_{\text{calc}}^2|}{\sum |F_{\text{obs}}^2|},$$

where F_{obs}^2 = squares of the observed structure-factor amplitudes, F_{calc}^2 = squares of the calculated structure-factor amplitudes and the sum is taken over the specified reflections. The permitted range is $0.0 \rightarrow \infty$. [refine]

refine ls R I factor (numb) Residual factor R(I) for significantly intense reflections (satisfying

reflns threshold expression) and included in the refinement. This is most often calculated in Rietveld refinements against powder data, where it is referred to as R_B or R_{Bragg} .

$$R(I) = rac{\sum |I_{
m obs} - I_{
m calc}|}{\sum |I_{
m obs}|},$$

where I_{obs} = the net observed intensities, I_{calc} = the net calculated intensities and the sum is taken over the specified reflections. The permitted range is $0.0 \rightarrow \infty$. [refine]

refine 1s restrained S all (numb) The least-squares goodness-of-fit parameter S' for all reflections after the final cycle of least-squares refinement. This parameter explicitly includes the restraints applied in the least-squares process. See also _refine_ls_goodness_of_fit_ definitions.

$$S' = \left(\frac{\sum \left|w|Y_{\text{obs}} - Y_{\text{calc}}\right|^2 \left| + \sum_r \left|w_r|P_{\text{calc}} - P_{\text{targ}}\right|^2 \right|}{N_{\text{ref}} + N_{\text{restr}} - N_{\text{param}}}\right)^{1/2},$$

where Y_{obs} = the observed coefficients (see _refine_ls_ structure_factor_coef), Y_{calc} = the calculated coefficients (see _refine_ls_structure_factor_coef), w = the least-squares reflection weight [1/square of standard uncertainty (e.s.d.)], P_{calc} = the calculated restraint values, P_{targ} = the target restraint values, w_r = the restraint weight, N_{ref} = the number of reflections used in the refinement (see _refine_ls_ number_reflns_obs), N_{restr} = the number of restraints (see _refine_ls_number_restraints) and N_{param} = the number of refined parameters (see _refine_ls_number_parameters); the sum \sum is taken over the specified reflections and the sum \sum_r is taken over the restraints. The permitted range is $0.0 \rightarrow \infty$.

[refine]

The least-squares goodness-of-fit parameter S' for significantly intense reflections (satisfying reflns threshold expression) after the final cycle of least-squares refinement. This parameter explicitly includes the restraints applied in the least-squares process. See also refine 1s goodness of fit definitions.

$$S' = \left(\frac{\sum \left|w|Y_{\text{obs}} - Y_{\text{calc}}\right|^2 \left| + \sum_r \left|w_r|P_{\text{calc}} - P_{\text{targ}}\right|^2 \right|}{N_{\text{ref}} + N_{\text{restr}} - N_{\text{param}}}\right)^{1/2},$$

where Y_{obs} = the observed coefficients (see refine ls structure factor coef), Y_{calc} = the calculated coefficients (see $_refine_ls_structure_factor_coef$), w = the least-squaresreflection weight [1/square of standard uncertainty (e.s.d.)], P_{calc} = the calculated restraint values, P_{targ} = the target restraint values, w_r = the restraint weight, N_{ref} = the number of reflections used in the refinement (see _refine_ls_ number_reflns_obs), N_{restr} = the number of restraints (see _refine_ls_number_restraints) and N_{param} = the number of refined parameters (see _refine_ls_number_parameters); the sum \sum is taken over the specified reflections and the sum \sum_r is taken over the restraints.

The permitted range is $0.0 \rightarrow \infty$.

Related item: **_refine_ls_restrained_S_obs** (alternate). [refine]

refine 1s restrained S obs (numb) This definition has been superseded and is retained here only for archival purposes. Use instead refine 1s restrained S gt.

The least-squares goodness-of-fit parameter S' for observed reflections after the final cycle of least-squares refinement. This parameter explicitly includes the restraints applied in the least-squares process. See also _refine_ls_goodness_of_fit_ definitions.

$$S' = \left(\frac{\sum \left|w|Y_{\text{obs}} - Y_{\text{calc}}|^2\right| + \sum_r \left|w_r|P_{\text{calc}} - P_{\text{targ}}|^2\right|}{N_{\text{ref}} + N_{\text{restr}} - N_{\text{param}}}\right)^{1/2},$$

where Y_{obs} = the observed coefficients (see _refine_ls_structure_ factor coef), $Y_{calc} = the calculated coefficients (see refine ls$ structure factor coef), $w = the \ least-squares \ reflection \ weight$ [1/square of standard uncertainty (e.s.d.)], $P_{calc} = the calculated$ restraint values, P_{targ} = the target restraint values, w_r = the restraint weight, N_{ref} = the number of reflections used in the refinement (see $_refine_ls_number_reflns_obs$), $N_{restr} = the number of restraints$ (see $_refine_ls_number_restraints$) and $N_{param} = the number of$ refined parameters (see _refine_ls_number_parameters); the sum) is taken over the specified reflections and the sum \sum_r is taken over the restraints.

The permitted range is $0.0 \rightarrow \infty$. [refine]

refine 1s shift/esd max This definition has been superseded and is retained here only for archival pur-

poses. Use instead _refine_ls_shift/su_max. The largest ratio of the final least-squares parameter shift to the final standard uncertainty (s.u., formerly described as estimated standard deviation, e.s.d.).

The permitted range is $0.0 \rightarrow \infty$. [refine]

refine ls shift/esd mean This definition has been superseded and is retained here only for archival pur-

poses. Use instead _refine_ls_shift/su_mean. The average ratio of the final least-squares parameter shift to the final standard uncertainty (s.u., formerly described as estimated standard deviation, e.s.d.).

The permitted range is $0.0 \rightarrow \infty$.	[refine]
---	----------

refine 1s shift/su max

The largest ratio of the final least-squares parameter shift to the final standard uncertainty.

The permitted range is $0.0 \rightarrow \infty$.

Related item: **_refine_ls_shift/esd_max** (alternate). [refine]

(numb)

(numb)

(numb)

(numb)

refine 1s shift/su max 1t

An upper limit for the largest ratio of the final least-squares parameter shift to the final standard uncertainty. This item is used when the largest value of the shift divided by the final standard uncertainty is too small to measure.

The permitted range is $0.0 \rightarrow \infty$.

Related item: **_refine_ls_shift/su_max** (alternate). [refine]

refine 1s shift/su mean

The average ratio of the final least-squares parameter shift to the final standard uncertainty.

The permitted range is $0.0 \rightarrow \infty$.

Related item: **_refine_ls_shift/esd_mean** (alternate).

_refine_ls_shift/su_mean_lt	(numb)
An upper limit for the average ratio of the final least-se	quares
parameter shift to the final standard uncertainty. This item i	s used
when the average value of the shift divided by the final sta	andard
uncertainty is too small to measure.	

The permitted range is $0.0 \rightarrow \infty$.

Related item: _refine_ls_shift/su_mean (alternate). [refine]

refine 1s structure factor coef (char) Structure-factor coefficient |F|, F^2 or I used in the least-squares refinement process.

The data value must be one of the following:

F	structure-factor magnitude			
Fsqd	structure factor squared			
Inet	net intensity			
There no value is given the assumed value is (π)				

Where no value is given, the assumed value is 'F'.

refine 1s weighting details (char) A description of special aspects of the weighting scheme used in the least-squares refinement. Used to describe the weighting when the value of _refine_ls_weighting_scheme is specified as 'calc'. Example:

```
; Sigdel model of Konnert-Hendrickson:
 Sigdel = Afsig + Bfsig*(sin(q)/l - 1/6)
 Afsig = 22.0, Bfsig = 150.0 at the beginning of refinement.
 Afsig = 16.0, Bfsig = 60.0 at the end of refinement.
                                                      [refine]
```

refine 1s weighting scheme (char) The weighting scheme applied in the least-squares process. The standard code may be followed by a description of the weight (but see refine 1s weighting details for a preferred approach).

The data value must be one of the following: sigma based on measured s.u.'s

6 ± 9.00	oused on measured stars	
unit	unit or no weights applied	
calc	calculated weights applied	
Where no val	us is given the assumed value is 'gigmo'	

[refine] Where no value is given, the assumed value is 'sigma'.

refine 1s wR factor all (numb) Weighted residual factors for all reflections. The reflections also satisfy the resolution limits established by _refine_ls_d_res_ high and refine 1s d res low. See also the refine 1s R factor_definitions.

$$wR = \left(\frac{\sum \left|w|Y_{\text{obs}} - Y_{\text{calc}}\right|^2}{\sum \left|wY_{\text{obs}}^2\right|}\right)^{1/2},$$

where Y_{obs} = the observed amplitude specified by _refine_ls_ structure_factor_coef, Y_{calc} = the calculated amplitude specified by refine 1s structure factor coef, w = the leastsquares weight and the sum is taken over the specified reflections. The permitted range is $0.0 \rightarrow \infty$. [refine]

(numb)

(numb)

[refine]

[refine]

(numb)

refine 1s wR factor gt

Weighted residual factors for significantly intense reflections (satisfying refins threshold expression) included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_d_res_high and _refine_ls_d_res_low. See also the refine ls R factor definitions.

$$wR = \left(\frac{\sum \left|w|Y_{\text{obs}} - Y_{\text{calc}}|^2\right|}{\sum \left|wY_{\text{obs}}^2\right|}\right)^{1/2},$$

where Y_{obs} = the observed amplitude specified by refine 1s structure_factor_coef, Y_{calc} = the calculated amplitude specified by refine 1s structure factor coef, w = the leastsquares weight and the sum is taken over the specified reflections. The permitted range is $0.0 \rightarrow \infty$.

Related item: **_refine_ls_wR_factor_obs** (alternate). [refine]

_refine_ls_wR_factor_obs (numb) This definition has been superseded and is retained here only for archival purposes. Use instead _refine_ls_wR_factor_gt.

Weighted residual factors for the reflections classified as 'observed' (see _reflns_observed_criterion) and included in the refine-ment. The reflections also satisfy the resolution limits established by _refine_ls_d_res_high and _refine_ls_d_res_low. See also the _refine_ls_R_factor_ definitions.

$$wR = \left(\frac{\sum \left|w|Y_{\text{obs}} - Y_{\text{calc}}\right|^2}{\sum |wY_{\text{obs}}^2|}\right)^{1/2},$$

where Y_{obs} = the observed amplitude specified by _refine_ls_ structure factor coef, Y_{calc} = the calculated amplitude specified by refine 1s structure factor coef, w = the least-squares weight and the sum is taken over the specified reflections. The permitted range is $0.0 \rightarrow \infty$. [refine]

refine 1s wR factor ref (numb) Weighted residual factors for all reflections included in the refinement. The reflections also satisfy the resolution limits established by refine 1s d res high and refine 1s d res low. See also the refine 1s R factor definitions.

$$wR = \left(\frac{\sum \left|w|Y_{\text{obs}} - Y_{\text{calc}}\right|^2}{\sum \left|wY_{\text{obs}}^2\right|}\right)^{1/2},$$

where Y_{obs} = the observed amplitude specified by _refine_ls_ structure_factor_coef, Y_{calc} = the calculated amplitude specified by _refine_ls_structure_factor_coef, w = the leastsquares weight and the sum is taken over the specified reflections. The permitted range is $0.0 \rightarrow \infty$. [refine]

refine special details

(char)

[refine]

Description of special aspects of the refinement process.

REFINE_LS_CLASS

Data items in the REFINE LS CLASS category record details (for each reflection class separately) about the reflections used for the structure refinement.

Example 1 – example for a modulated structure extracted from van Smaalen [J. Phys. Condens. Matter (1991), 3, 1247-1263.]

loop

_refine_ls_class_R factor gt _refine_ls_class_code 0.057 'Main' 0.074 'Com' 0.064 'NbRefls' 0.046 'LaRefls' 'Satl' 0.112 'Sat2' 0.177

refine_ls class code

The code identifying a certain reflection class. This code must match a reflns class code.

Appears in list. Must match parent data name _reflns_class_code.

Examples: '1', 'm1', 's2'. [refine_ls_class]

refine 1s class d res high (numb) For each reflection class, the highest resolution in ångströms for the reflections used in the refinement. This is the lowest d value in a reflection class.

Appears in list containing _refine_ls_class_code. The permitted range is $0.0 \rightarrow \infty$.

[refine ls class]

[refine_ls_class]

(char)

_refine_ls_class_d_res_low (numb) For each reflection class, the lowest resolution in angströms for the reflections used in the refinement. This is the highest d value in a reflection class.

Appears in list containing refine ls class code. The permitted range is $0.0 \rightarrow \infty$.

_refine_ls_class_R_factor_all refine 1s class R factor gt

(numb)

For each reflection class, the residual factors for all reflections, and for significantly intense reflections (see reflns threshold expression), included in the refinement. The reflections also satisfy the resolution limits established by refine ls class d res high and refine 1s class d res low. This is the conventional R factor.

$$R = \frac{\sum |F_{\rm obs} - F_{\rm calc}|}{\sum |F_{\rm obs}|},$$

where F_{obs} = the observed structure-factor amplitudes, F_{calc} = the calculated structure-factor amplitudes and the sum is taken over the specified reflections. See also refine 1s class wR_factor_all definitions.

Appears in list containing **_refine_ls_class_code**. The permitted range is $0.0 \rightarrow \infty$.

[refine ls class]

_refine_ls_class_R_Fsqd_factor (numb) For each reflection class, the residual factor $R(F^2)$ calculated on the squared amplitudes of the observed and calculated structure factors for the reflections judged significantly intense (i.e. satisfying the threshold specified by reflns threshold expression) and included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_class_d_res_high and _refine_ls_class_d_res_low.

$$R(F^{2}) = \frac{\sum |F_{\rm obs}^{2} - F_{\rm calc}^{2}|}{\sum |F_{\rm obs}^{2}|},$$

37

where F_{obs}^2 = squares of the observed structure-factor amplitudes, F_{calc}^2 = squares of the calculated structure-factor amplitudes and the sum is taken over the specified reflections.

Appears in list containing _refine_ls_class_code.

The permitted range is $0.0 \rightarrow \infty$.

[refine_ls_class]

refine 1s class R I factor (numb) For each reflection class, the residual factor R(I) for the reflections judged significantly intense (i.e. satisfying the threshold specified by refins threshold expression) and included in the refinement. This is most often calculated in Rietveld refinements against powder data, where it is referred to as R_B or R_{Bragg} .

$$R(I) = \frac{\sum |I_{\rm obs} - I_{\rm calc}|}{\sum |I_{\rm obs}|},$$

where I_{obs} = the net observed intensities, I_{calc} = the net calculated intensities and the sum is taken over the specified reflections. Appears in list containing refine is class code.

The permitted range is
$$0.0 \rightarrow \infty$$
. [refine ls class]

refine 1s class wR factor all (numb) For each reflection class, the weighted residual factors for all reflections included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_class_ d res high and refine 1s class d res low.

$$wR = \left(\frac{\sum \left|w|Y_{\text{obs}} - Y_{\text{calc}}|^2\right|}{\sum \left|wY_{\text{obs}}^2\right|}\right)^{1/2},$$

where Y_{obs} = the observed amplitudes specified by refine 1s structure factor coef, Y_{calc} = the calculated amplitudes specified by refine 1s structure factor coef, w = the leastsquares weights and the sum is taken over the reflections of this class. See also refine 1s class R factor definitions.

Appears in list containing _refine_ls_class_code. The permitted range is $0.0 \rightarrow \infty$. [refine_ls_class]

REFLN

Data items in the REFLN category record details about the reflections used to determine the ATOM SITE data items. The REFLN data items refer to individual reflections and must be included in looped lists. The REFLNS data items specify the parameters that apply to all reflections. The REFLNS data items are not looped.

Example 1 – based on data set fetod of Todres, Yanovsky, Ermekov & Struchkov [Acta Cryst. (1993), C49, 1352-1354].

loop_								
_refl	_refln_index_h							
_refl	refln_index_k							
_refl	n_in	dex	_1					
_refl	n_F_	squa	ared_calc					
_refl	n_F_	squa	ared_meas					
_refl	n_F_	squa	ared_sigma					
_refl	n_in	clud	de_status					
2	0	0	85.57	58.90	1.45	0		
3	0	0	15718.18	15631.06	30.40	0		
4	0	0	55613.11	49840.09	61.86	0		
5	0	0	246.85	241.86	10.02	0		
6	0	0	82.16	69.97	1.93	0		
7	0	0	1133.62	947.79	11.78	0		
8	0	0	2558.04	2453.33	20.44	0		
9	0	0	283.88	393.66	7.79	0		
10	0	0	283.70	171.98	4.26	0		
7 8 9	0 0 0	0 0 0	1133.62 2558.04 283.88	947.79 2453.33 393.66	11.78 20.44 7.79	0 0 0		

38

Example 2 – based on standard test data set p6122 of the Xtal distribution [Hall, King & Stewart (1995). Xtal3.4 User's Manual. University of Western Australial

loop_								
_refln	_ind	ex_h						
_refln	_ind	ex_k						
_refln								
_refln								
_refln								
_refln								
			_status					
_refln	_sca	le_g	roup_cod	e				
0	0	6	34.935	36.034	3.143	0	1	
0	0	12	42.599	40.855	2.131	o	1	
0	1	0	42.500	42.507	4.719	0	1	
0	1	1	59.172	57.976	4.719	0	1	
0	1	2	89.694	94.741	4.325	о	1	
0	1	3	51.743	52.241	3.850	0	1	
0	1	4	9.294	10.318	2.346	о	1	
0	1	5	41.160	39.951	3.313	o	1	
0	1	6	6.755	7.102	.895	<	1	
0	1	7	30.693	31.171	2.668	0	1	
0	1	8	12.324	12.085	2.391	o	1	
0	1	9	15.348	15.122	2.239	ο	1	
0	1	10	17.622	19.605	1.997	ο	1	

refln A meas

The calculated and measured structure-factor component A (in electrons for X-ray diffraction).

$$A = |F| \cos(\text{phase}).$$

Appears in list containing _refln_index_.

[refln]

(numb)

_refln_B_calc refln B meas

(numb)

The calculated and measured structure-factor component B (in electrons for X-ray diffraction).

 $B = |F| \sin(\text{phase}).$

Appears in list containing _refln_index_.

[refln]

(char)

refln class code The code identifying the class to which this reflection has been assigned. This code must match a value of _reflns_class_code. Reflections may be grouped into classes for a variety of purposes. For example, for modulated structures each reflection class may be defined by the number $m = \sum |m_i|$, where the m_i are the integer coefficients that, in addition to h, k, l, index the corresponding

diffraction vector in the basis defined for the reciprocal lattice. Appears in list containing refln index . Must match parent data name reflns class code. [refln]

refln crystal id	(char)
Code identifying each crystal if multiple crystals are used.	Is used
to link with _exptl_crystal_id in the _exptl_crystal_	list.
Appears in list containing _refln_index_ . Must match parent data name	
_exptl_crystal_id.	[refln]

refln d spacing (numb) The d spacing in angströms for this reflection. This is related to the $(\sin \theta)/\lambda$ value by the expression _refln_d_spacing = 2/(refln sint/lambda).

Appears in list containing _refln_index_. The permitted range is $0.0 \rightarrow \infty$.

[refln]

4.1. CORE DICTIONARY (CORECIF)

REFLN

(numb)

[refln]

(numb)

(numb)

[refln]

_refln_F_calc	_refln_phase_calc
_refln_F_meas	The calculated structure-factor phase in degrees.
_refln_F_sigma (numb)	Appears in list containing _refln_index
The calculated, measured and standard uncertainty (derived from	
measurement) of the structure factors (in electrons for X-ray	
diffraction).	_refln_phase_meas
Appears in list containing _refln_index [refln]	The measured structure-factor phase in degrees.
refln F squared calc	Appears in list containing _refln_index
_refln_F_squared_meas	Appears in its containing _rerin_index
refln F squared sigma (numb)	
Calculated, measured and estimated standard uncertainty (derived	
from measurement) of the squared structure factors (in electrons	_refln_refinement_status
squared for X-ray diffraction).	Status of a reflection in the structure-refinement p
Appears in list containing _refln_index [refln]	Appears in list containing _refln_index
nofin include status	The data value must be one of the following: incl included in least-squares process
_refln_include_status (char)	excl excluded from least-squares process
Classification of a reflection indicating its status with respect to inclusion in the refinement and the calculation of <i>R</i> factors.	extn excluded due to extinction
	Where no value is given, the assumed value is 'incl'.
Appears in list containing _refln_index_ .	
Related item: _refln_observed_status (alternate). The data value must be one of the following:	
• (lower-case letter o for 'observed') satisfies refine ls d	refln scale group code
res_high, satisfies _refine_ls_d_res_low and exceeds	Code identifying the structure-factor scale. This of
_reflns_threshold_expression < satisfies refine ls d_res high, satisfies refine ls	spond to one of the _reflns_scale_group_code
d_res_low and does not exceed _reflns_threshold_	Appears in list containing _refln_index . Must match parent dat
expression	_reflns_scale_group_code.
- systematically absent reflection	Examples: '1', '2', '3', 's1', 'A', 'B', 'c1', 'c2', 'c3'.
x unreliable measurement – not used	• • • • • • • • • •
h does not satisfy _refine_ls_d_res_high l does not satisfy refine ls d res low	
Where no value is given, the assumed value is 'o'. [refln]	refln sint/lambda
	The $(\sin \theta)/\lambda$ value in reciprocal ångströms for th
_refln_index_h	Appears in list containing _refln_index
_refln_index_k	The permitted range is $0.0 \rightarrow \infty$.
_refln_index_l (numb)	
Miller indices of the reflection. The values of the Miller indices in	
the REFLN category must correspond to the cell defined by the cell	
lengths and cell angles in the CELL category.	_refln_symmetry_epsilon The symmetry reinforcement factor correspondin
Appears in list as essential element of loop structure. [refln]	of times the reflection indices are generated ider
_refln_intensity_calc	space-group symmetry operations.
refln_intensity_meas	Appears in list containing _refln_index
_refln_intensity_sigma (numb)	The permitted range is $1 \rightarrow 48$.
The calculated, measured and standard uncertainty (derived from	
measurement) of the intensity, all in the same arbitrary units as	
_refln_intensity_meas.	refln symmetry multiplicity
Appears in list containing _refln_index [refln]	The number of reflections symmetry-equivalent
_refln_mean_path_length_tbar (numb)	symmetry to the present reflection. In the Laue sy
Mean path length in millimetres through the crystal for this reflec-	opposites (<i>hkl</i> and $-h - k - l$) are equivalent. Tabl
tion.	equivalent reflections are available in <i>Internati</i>
Appears in list containing refln index .	<i>Crystallography</i> Volume A (2002), Chapter 10.1.
The permitted range is $0.0 \rightarrow \infty$. [refln]	Appears in list containing _refln_index
mefly sharmed status	The permitted range is $1 \rightarrow 48$.
refln_observed_status (char)	
This definition has been superseded and is retained here only for archival pur- poses. Use instead _refln_include_status.	
Classification of a reflection indicating its status with respect to inclusion	refln wavelength
in the refinement and the calculation of R factors.	The mean wavelength in ångströms of the radiati
Appears in list containing _refln_index	sure this reflection. This is an important parame
The data value must be one of the following:	lected using energy-dispersive detectors or the La
 satisfies _refine_ls_d_res_high, satisfies _refine_ls_ 	Appears in list containing _refln_index
<pre>d_res_low and observed by _reflns_observed_ criterion</pre>	The permitted range is $0.0 \rightarrow \infty$.
<pre>circerion < satisfies _refine_ls_d_res_high, satisfies _refine_ls_</pre>	
d_res_low and unobserved by _reflns_observed_	
criterion	_refln_wavelength_id
- systematically absent reflection x unreliable measurement – not used	Code identifying the wavelength in the _diffrn_
h does not satisfy refine 1s d res high	See _diffrn_radiation_wavelength_id.
1 does not satisfy _refine_ls_d_res_low	Appears in list containing refln_index . Must match parent dat
Where no value is given, the assumed value is '0'. [refln]	

fln phase meas (numb, su) measured structure-factor phase in degrees. rs in list containing _refln_index_. [ref]n] fln refinement status (char) is of a reflection in the structure-refinement process. rs in list containing _refln_index_. ata value must be one of the following: cl included in least-squares process cl excluded from least-squares process excluded due to extinction tn no value is given, the assumed value is 'incl'. [refln] fln scale group code (char) e identifying the structure-factor scale. This code must corred to one of the refins scale group code values. rs in list containing refln index . Must match parent data name lns_scale_group_code.

ples: '1', '2', '3', 's1', 'A', 'B', 'c1', 'c2', 'c3'. [refln]

fln sint/lambda

 $(\sin \theta)/\lambda$ value in reciprocal ångströms for this reflection. rs in list containing **_refln_index_**. ermitted range is $0.0 \rightarrow \infty$. [refln]

fln symmetry_epsilon

symmetry reinforcement factor corresponding to the number mes the reflection indices are generated identically from the e-group symmetry operations.

fln symmetry multiplicity (numb) number of reflections symmetry-equivalent under the Laue metry to the present reflection. In the Laue symmetry, Friedel osites (*hkl* and -h - k - l) are equivalent. Tables of symmetryvalent reflections are available in International Tables for stallography Volume A (2002), Chapter 10.1. rs in list containing _refln_index_. ermitted range is $1 \rightarrow 48$. [refln]

fln wavelength (numb) mean wavelength in ångströms of the radiation used to meathis reflection. This is an important parameter for data cold using energy-dispersive detectors or the Laue method. rs in list containing _refln_index_. ermitted range is $0.0 \rightarrow \infty$. [refln]

_refln_wavelength_id		(char)
Code identifying the wavelength in the	_diffrn	radiation_list.
See diffrn radiation wavelength i	d.	

rs in list containing _refln_index_. Must match parent data name [refln] _diffrn_radiation_wavelength_id.

REFLNS

Data items in the REFLNS category record details about the reflections used to determine the ATOM SITE data items. The REFLN data items refer to individual reflections and must be included in looped lists. The REFLNS data items specify the parameters that apply to all reflections. The REFLNS data items are not looped.

	-
Example 1 – based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst.	
(1991), C 47 , 2276–2277].	
unflue limit b min	0
_reflns_limit_h_min	U
_reflns_limit_h_max	6
_reflns_limit_k_min	0
_reflns_limit_k_max	17
_reflns_limit_l_min	0
_reflns_limit_l_max	22
_reflns_number_total	1592
_reflns_number_gt	1408
_reflns_threshold_expression	'F > 6.0u(F)'
_reflns_d_resolution_high	0.8733
_reflns_d_resolution_low	11.9202

_reflns_d_resolution high

reflns d_resolution_low (numb) The highest and lowest resolution in angströms for the reflections. These are the smallest and largest *d* values. The permitted range is $0.0 \rightarrow \infty$. [reflns]

_reflns_Friedel_coverage (numb) The proportion of Friedel-related reflections present in the

number of 'independent' reflections specified by the item refins number total. This proportion is calculated as the ratio

$$\frac{[N(\text{crystal class}) - N(\text{Laue symmetry})]}{N(\text{Laue symmetry})},$$

where, working from the diffrn refln list, N(crystal class) is the number of reflections obtained on averaging under the symmetry of the crystal class and N(Laue symmetry) is the number of reflections obtained on averaging under the Laue symmetry.

Examples: (a) For centrosymmetric structures, _reflns_ Friedel coverage is necessarily equal to 0.0 as the crystal class is identical to the Laue symmetry. (b) For whole-sphere data for a crystal in the space group P1, reflns Friedel coverage is equal to 1.0, as no reflection hkl is equivalent to -h - k - l in the crystal class and all Friedel pairs $\{hkl; -h - k - l\}$ have been measured. (c) For whole-sphere data in space group Pmm2, refins Friedel coverage will be < 1.0 because although reflections hkl and -h - k - l are not equivalent when hkl indices are nonzero, they are when l = 0. (d) For a crystal in the space group *Pmm2*, measurements of the two inequivalent octants $h \ge 1$ $0, k \ge 0, l$ lead to the same value as in (c), whereas measurements of the two equivalent octants $h \ge 0, k, l \ge 0$ will lead to a value of zero for reflns Friedel coverage. The permitted range is 0.0 \rightarrow 1.0. [reflns]

reflns limit h max	
_reflns_limit_h_min	
reflns_limit_k_max	
reflns_limit_k_min	
reflns_limit_l_max	
reflns_limit_l_min	(numb)
Miller indices limits for the reported reflections. These need not be	

the same as the _diffrn_reflns_limit_ values.

[reflns]

(numb)

reflns number gt

The number of reflections in the _refln_ list (not the diffrn refln list) that are significantly intense, satisfying the criterion specified by _reflns_threshold_expression. This may include Friedel-equivalent reflections (i.e. those which are

symmetry-equivalent under the Laue symmetry but inequivalent under the crystal class) according to the nature of the structure and the procedures used. Special characteristics of the reflections included in the refln list should be given in the item reflns special details.

The permitted range is $0 \to \infty$.

Related item: reflns number observed (alternate). [reflns]

```
reflns number observed
```

This definition has been superseded and is retained here only for archival purposes. Use instead reflns number gt.

The number of 'observed' reflections in the refln list (not the diffrn refln list). The observed reflections satisfy the threshold criterion specified by reflns threshold expression (or the deprecated item reflns observed criterion). They may include Friedelequivalent reflections according to the nature of the structure and the procedures used. Special characteristics of the reflections included in the refln list should be given in the item reflns special details. The permitted range is $0 \to \infty$. [reflns]

reflns number total

(numb)

(char)

(char)

(numb)

The total number of reflections in the <u>_refln_</u> list (not the diffrn refln list). This may include Friedel-equivalent reflections (i.e. those which are symmetry-equivalent under the Laue symmetry but inequivalent under the crystal class) according to the nature of the structure and the procedures used. Special characteristics of the reflections included in the _refln_ list should be given in the item _reflns_special_details. The permitted range is $0 \to \infty$. [reflns]

reflns	observed	criterion

This definition has been superseded and is retained here only for archival purposes. Use instead reflns threshold expression.

The criterion used to classify a reflection as 'observed'. This criterion is usually expressed in terms of a $\sigma(I)$ or $\sigma(F)$ threshold. Example: 'I>2u(I)'.

```
[reflns]
```

reflns special details

Description of the properties of the reported reflection list that are not given in other data items. In particular, this should include information about the averaging (or not) of symmetry-equivalent reflections including Friedel pairs.

[reflns]

reflns threshold expression (char) The threshold, usually based on multiples of u(I), $u(F^2)$ or u(F), that serves to identify significantly intense reflections, the number of which is given by _reflns_number_gt. These reflections are used in the calculation of _refine_ls_R_factor_gt. Related item: _reflns_observed_criterion (alternate).

Example: 'I>2u(I)'.

[reflns]

REFLNS_CLASS

Data items in the REFLNS CLASS category record details, for each reflection class, about the reflections used to determine the structural parameters.

Example 1 - corresponding to the one-dimensional incommensurately modulated structure of K2SeO4.

loop

~ ₽.	_	
	reflns	_class_number_gt
	reflns	_class_code
	584	'Main'
	226	'Sat1'
	50	'Sat2'

reflns class code

The code identifying a certain reflection class. Appears in list. May match child data name(s): _refln_class_code, _refine_ls_class_code.

Examples: '1', 'm1', 's2'.

(char)

(numb)

(numb)

[reflns_class]

[reflns_class]

[reflns_class]

(numb)

(numb)

(numb)

reflns class d res high

For each reflection class, the highest resolution in ångströms for the reflections used in the refinement. This is the smallest d value. Appears in list containing reflns class code. The permitted range is $0.0 \rightarrow \infty$. [reflns class]

reflns class d res low

For each reflection class, the lowest resolution in ångströms for the reflections used in the refinement. This is the largest d value. Appears in list containing reflns class code. The permitted range is $0.0 \rightarrow \infty$. [reflns_class] reflns class description (char)

Description of each reflection class. Appears in list containing _reflns_class_code. Examples: 'm=1 first order satellites', 'HOLO common projection reflections'

reflns class number gt For each reflection class, the number of significantly intense reflections (see reflns threshold expression) in the refln list (not the diffrn refln list). This may include Friedelequivalent reflections (i.e. those which are symmetry-equivalent under the Laue symmetry but inequivalent under the crystal class)

according to the nature of the structure and the procedures used. Special characteristics of the reflections included in the refln list should be given in the item reflns special details. Appears in list containing **_reflns_class_code**.

The permitted range is $0.0 \rightarrow \infty$.

reflns class number total

For each reflection class, the total number of reflections in the refln list (not the diffrn refln list). This may include Friedel-equivalent reflections (i.e. those which are symmetryequivalent under the Laue symmetry but inequivalent under the crystal class) according to the nature of the structure and the procedures used. Special characteristics of the reflections included in the _refln_ list should be given in the item reflns special details.

Appears in list containing **_reflns_class_code**. The permitted range is $0.0 \rightarrow \infty$.

_reflns_class_R_factor_all reflns class R factor gt

For each reflection class, the residual factors for all reflections, and for significantly intense reflections (see reflns threshold expression), included in the refinement. The reflections also satisfy the resolution limits established by reflns class_d_res_high and _reflns_class_d_res_low. This is the conventional R factor.

$$R = \frac{\sum |F_{\rm obs} - F_{\rm calc}|}{\sum |F_{\rm obs}|}$$

where F_{obs} = the observed structure-factor amplitudes, F_{calc} = the calculated structure-factor amplitudes and the sum is taken over the reflections of this class. See also _reflns_class_ wR factor all definitions.

Appears in list containing **_reflns_class_code**. The permitted range is $0.0 \rightarrow \infty$.

reflns class R Fsqd factor

[reflns_class]

(numb) For each reflection class, the residual factor $R(F^2)$ calculated on the squared amplitudes of the observed and calculated structure factors, for the reflections judged significantly intense (i.e. satisfying the threshold specified by _reflns_threshold_expression) and included in the refinement. The reflections also satisfy the resolution limits established by _reflns_class_d_res_high and _reflns_class_d_res_low.

$$R(F^2) = \frac{\sum |F_{\text{obs}}^2 - F_{\text{calc}}^2|}{\sum |F_{\text{obs}}^2|},$$

where F_{obs}^2 = squares of the observed structure-factor amplitudes, F_{calc}^2 = squares of the calculated structure-factor amplitudes and the sum is taken over the reflections of this class. Appears in list containing _reflns_class_code

The permitted range is $0.0 \rightarrow \infty$.

The permitted range is $0.0 \rightarrow \infty$.

(numb)

[reflns_class]

For each reflection class, the residual factor R(I) for the reflections judged significantly intense (i.e. satisfying the threshold specified by reflns threshold expression) and included in the refinement. This is most often calculated in Rietveld refinements against powder data, where it is referred to as R_B or R_{Bragg} .

$$R(I) = \frac{\sum |I_{\rm obs} - I_{\rm calc}|}{\sum |I_{\rm obs}|},$$

where I_{obs} = the net observed intensities, I_{calc} = the net calculated intensities and the sum is taken over the reflections of this class. Appears in list containing _reflns_class_code.

[reflns class]

reflns class wR factor all (numb) For each reflection class, the weighted residual factors for all reflections included in the refinement. The reflections also satisfy the resolution limits established by reflns class d res high and reflns class d res low.

$$wR = \left(\frac{\sum \left|w|Y_{\text{obs}} - Y_{\text{calc}}|^2\right|}{\sum \left|wY_{\text{obs}}^2\right|}\right)^{1/2},$$

where Y_{obs} = the observed amplitudes specified by _refine_ls_ structure_factor_coef, Y_{calc} = the calculated amplitudes specified by _refine_ls_structure_factor_coef, w = the leastsquares weights and the sum is taken over the reflections of this class. See also refins class R factor definitions.

Appears in list containing **_reflns_class_code**. The permitted range is $0.0 \rightarrow \infty$. [reflns class]

REFLNS_SCALE

Data items in the REFLNS SCALE category record details about the structure-factor scales. They are referenced from within the REFLN list through refln scale group code.

Example 1 – based on standard test data set p6122 of the Xtal distribution [Hall, King & Stewart (1995). Xtal3.4 User's Manual. University of Western Australia].

loop _reflns_scale_group_code _reflns_scale_meas_F .895447 1 .912743 2

reflns scale group code

(char)

The code identifying a scale _reflns_scale_meas_. These are linked to the _refln_ list by the _refln scale group code. These codes need not correspond to those in the diffrn scale list

Appears in list as essential element of loop structure. May match child data name(s): refln_scale_group_code. [reflns scale]

reflns scale meas F reflns scale meas F squared

reflns scale meas intensity

Scales associated with refins scale group code.

Appears in list containing _reflns_scale_group_code. The permitted range is $0.0 \rightarrow \infty$.

[reflns scale]

(numb, su)

loop_

4. DATA DICTIONARIES **REFLNS_SHELL** Data items in the REFLNS SHELL category record details about the reflections used to determine the ATOM SITE data items, as broken down by shells of resolution. Example 1 – based on PDB entry 5HVP and laboratory records for the structure Appears in list. corresponding to PDB entry 5HVP. Related items: reflns shell d res high refins shell d res low _reflns_shell_meanI_over_uI_gt reflns shell number measured gt _reflns_shell_number_unique_gt Appears in list. _reflns_shell_percent_possible_gt reflns_shell_Rmerge_F_gt 31.38 3.82 69.8 9024 2540 96.8 1.98 3.82 3.03 26.1 7413 2364 95.1 3.85 3.03 2.65 10.5 2123 6.37 5640 86.2 2.65 2.41 6.4 4322 1882 76.8 8.01 Appears in list. 2.41 2.23 4.3 3247 1714 70.4 9.86 2.23 2.10 3.1 1140 812 33.3 13.99 reflns shell d res high (numb) The highest resolution in ångströms for the reflections in this shell. This is the smallest *d* value. Appears in list. The permitted range is $0.0 \rightarrow \infty$. [reflns shell] Appears in list. reflns shell d res low (numb) The lowest resolution in angströms for the reflections in this shell. This is the largest *d* value. reflection shell. Appears in list. Appears in list. The permitted range is $0.0 \rightarrow \infty$. [reflns shell] reflns shell meanI over sigI all (numb) This definition has been superseded and is retained here only for archival purposes. Use instead _reflns_shell_meanI_over_uI_all. Appears in list. The ratio of the mean of the intensities of all reflections in this shell to the The permitted range is $0 \to \infty$. mean of the standard uncertainties of the intensities of all reflections in the resolution shell. Appears in list. [reflns shell]

reflns shell meanI over sigI gt (numb) This definition has been superseded and is retained here only for archival purposes. Use instead _reflns_shell_meanI_over_uI_gt.

The ratio of the mean of the intensities of the significantly intense reflections (see reflns threshold expression) in this shell to the mean of the standard uncertainties of the intensities of the significantly intense reflections in the resolution shell.

Appears in list. [reflns_shell]

reflns shell meanI over sigI obs (numb) This definition has been superseded and is retained here only for archival purposes. Use instead reflns shell meanI over sigI gt.

The ratio of the mean of the intensities of the reflections classified as 'observed' (see _reflns_observed_criterion) in this shell to the mean of the standard uncertainties of the intensities of the 'observed' reflections in the resolution shell. Appears in list.

[reflns shell]

_reflns_shell_meanI_over_uI_all

The ratio of the mean of the intensities of all reflections in this shell to the mean of the standard uncertainties of the intensities of all reflections in the resolution shell.

Appears in list

Related item: _reflns_shell_meanI_over_sigI_all (alternate).

[reflns shell]

(numb)

42

reflns shell meanI over uI gt (numb) The ratio of the mean of the intensities of the significantly intense reflections (see refins threshold expression) in this shell to the mean of the standard uncertainties of the intensities of the significantly intense reflections in the resolution shell. _reflns_shell_meanI_over_sigI_gt (alternate), reflns shell meanI over sigI obs (alternate). [reflns shell] reflns shell number measured all (numb) The total number of reflections measured for this resolution shell. The permitted range is $0.0 \rightarrow \infty$. [reflns shell] reflns shell number measured gt (numb) The number of significantly intense reflections (see reflns threshold expression) measured for this resolution shell. The permitted range is $0.0 \rightarrow \infty$. Related item: reflns shell number measured obs (alternate). [reflns_shell] reflns shell number measured obs (numb) This definition has been superseded and is retained here only for archival purposes. Use instead reflns shell number measured gt. The number of reflections classified as 'observed' (see _reflns_ observed criterion) measured for this resolution shell. The permitted range is $0.0 \rightarrow \infty$. [reflns_shell] reflns shell number possible (numb) The number of unique reflections it is possible to measure in this The permitted range is $0 \to \infty$. [reflns_shell]

reflns shell number unique all (numb) The total number of measured reflections resulting from merging measured symmetry-equivalent reflections for this resolution shell. [reflns_shell]

reflns shell number unique gt (numb) The total number of significantly intense reflections (see

_reflns_threshold_expression) resulting from merging measured symmetry-equivalent reflections for this resolution shell. Appears in list.

The permitted range is $0 \to \infty$.

Related item: **_reflns_shell_number_unique_obs** (alternate). **[reflns_shell]**

reflns shell number unique obs (numb) This definition has been superseded and is retained here only for archival purposes. Use instead reflns shell number unique gt.

The total number of reflections classified as 'observed' (see reflns observed_criterion) resulting from merging measured symmetryequivalent reflections for this resolution shell. Appears in list.

The permitted range is $0 \to \infty$.

[reflns_shell]

reflns shell percent possible all (numb) The percentage of geometrically possible reflections represented by all reflections measured for this resolution shell. Appears in list.

The permitted range is $0.0 \rightarrow 100.0$. [reflns shell]

_reflns_shell_percent_possible_gt (numb) The percentage of geometrically possible reflections represented by significantly intense reflections (see reflns threshold expression) measured for this resolution shell. Appears in list.

The permitted range is $0.0 \rightarrow 100.0$.

Related item: _reflns_shell_percent_possible_obs (alternate).

[reflns shell]

[reflns shell]

reflns shell percent possible obs (numb) This definition has been superseded and is retained here only for archival purposes. Use instead _reflns_shell_percent_possible_gt.

The percentage of geometrically possible reflections represented by reflections classified as 'observed' (see _reflns_observed_criterion) measured for this resolution shell.

Appears in list.

The permitted range is $0.0 \rightarrow 100.0$.

reflns shell Rmerge F all (numb) The value of $R_{\text{merge}}(F)$ for all reflections in a given shell.

$$R_{ ext{merge}} = rac{\sum_i (\sum_j |F_j - \langle F
angle|)}{\sum_i (\sum_j \langle F
angle)},$$

where F_i = the amplitude of the *j*th observation of reflection *i*, $\langle F \rangle$ = the mean of the amplitudes of all observations of reflection i, \sum_{i}^{j} is taken over all reflections and \sum_{j}^{j} is taken over all observations of each reflection.

Appears in list

The permitted range is $0.0 \rightarrow \infty$. [reflns_shell]

reflns_shell_Rmerge_F_gt (numb) The value of $R_{merge}(F)$ for significantly intense reflections (see reflns threshold expression) in a given shell.

$$R_{\text{merge}} = \frac{\sum_{i} (\sum_{j} |F_{j} - \langle F \rangle|)}{\sum_{i} (\sum_{j} \langle F \rangle)}$$

where F_j = the amplitude of the *j*th observation of reflection *i*, $\langle F \rangle$ = the mean of the amplitudes of all observations of reflection i, \sum_{i} is taken over all reflections and \sum_{i} is taken over all observations of each reflection.

Appears in list

The permitted range is $0.0 \rightarrow \infty$.

Related item: **_reflns_shell_Rmerge_F_obs** (alternate). [reflns shell]

reflns shell Rmerge F obs (numb) This definition has been superseded and is retained here only for archival purposes. Use instead _reflns_shell_Rmerge_F_gt.

The value of $R_{merge}(F)$ for reflections classified as 'observed' (see reflns observed criterion) in a given shell.

$$R_{\text{merge}} = \frac{\sum_{i} (\sum_{j} |F_{j} - \langle F \rangle|)}{\sum_{i} (\sum_{j} \langle F \rangle)}$$

where F_j = the amplitude of the *j*th observation of reflection *i*, $\langle F \rangle$ = the mean of the amplitudes of all observations of reflection i, \sum_{i} is taken over all reflections and \sum_{i} is taken over all observations of each reflection. Appears in list.

The permitted range is $0.0 \rightarrow \infty$. [reflns shell]

The value of $R_{merge}(I)$ for all reflections in a given shell.

$$R_{\text{merge}}(I) = \frac{\sum_{i} (\sum_{j} |I_{j} - \langle I \rangle|)}{\sum_{i} (\sum_{j} \langle I \rangle)}$$

where I_i = the intensity of the *j*th observation of reflection *i*, $\langle I \rangle$ = the mean of the intensities of all observations of reflection $i, \sum_{i=1}^{n} i$ is taken over all reflections and \sum_{i} is taken over all observations of each reflection.

Appears in list.

The permitted range is $0.0 \rightarrow \infty$. [reflns shell] reflns shell Rmerge I gt

(numb) The value of $R_{merge}(I)$ for significantly intense reflections (see reflns threshold expression) in a given shell.

$$R_{\text{merge}}(I) = \frac{\sum_{i} (\sum_{j} |I_{j} - \langle I \rangle|)}{\sum_{i} (\sum_{j} \langle I \rangle)},$$

where I_i = the intensity of the *j*th observation of reflection *i*, $\langle I \rangle$ = the mean of the intensities of all observations of reflection *i*, \sum_i is taken over all reflections and \sum_{i} is taken over all observations of each reflection.

Appears in list.

The permitted range is $0.0 \rightarrow \infty$.

Related item: **_reflns_shell_Rmerge_I_obs** (alternate). [reflns shell]

reflns shell Rmerge I obs (numb) This definition has been superseded and is retained here only for archival pur-

poses. Use instead _reflns_shell_Rmerge_I_gt. The value of $R_{merge}(I)$ for reflections classified as 'observed' (see reflns observed criterion) in a given shell.

$$R_{ ext{merge}}(I) = rac{\sum_{i} (\sum_{j} |I_{j} - \langle I
angle|)}{\sum_{i} (\sum_{j} \langle I
angle)},$$

where I_j = the intensity of the *j*th observation of reflection *i*, $\langle I \rangle$ = the mean of the intensities of all observations of reflection i, \sum_{i} is taken over all reflections and \sum_{i} is taken over all observations of each reflection. Appears in list.

The permitted range is $0.0 \rightarrow \infty$.

[reflns_shell]

SPACE_GROUP

Contains all the data items that refer to the space group as a whole, such as its name or crystal system. They may be looped, for example, in a list of space groups and their properties. Only a subset of the SPACE GROUP category items appear in the core dictionary. The remainder are found in the symmetry CIF dictionary. Space-group types are identified by their number as given in International Tables for Crystallography Vol. A. Specific settings of the space groups can be identified either by their Hall symbol or by specifying their symmetry operations. The commonly used Hermann-Mauguin symbol determines the spacegroup type uniquely but several different Hermann-Mauguin symbols may refer to the same space-group type. A Hermann-Mauguin symbol contains information on the choice of the basis, but not on the choice of origin. Different formats for the Hermann-Mauguin symbol are found in the symmetry CIF dictionary.

Example 1 – the monoclinic space group No. 15 with unique axis b.	
_space_group_id	1
_space_group_name_H-M_alt	'C 2/c'
_space_group_IT_number	15
_space_group_name_Hall	'-C 2yc'
_space_group_crystal_system	monoclinic

space group crystal system

(char)

The name of the system of geometric crystal classes of space groups (crystal system) to which the space group belongs. Note that rhombohedral space groups belong to the trigonal system.

May appear in list containing _space_group_id.

Related item: _symmetry_cell_setting (alternate).

The data value must be one of the following: triclinic monoclinic orthorhombic tetragonal trigonal hexagonal cubic

SPACE_GROUP

(char)

(numb)

space group id

This is an identifier needed if space group items are looped. Appears in list as essential element of loop structure. May match child data name(s): _space_group_symop_sg_id. [space_group]

space group IT number The number as assigned in International Tables for Crystallogra-

phy Vol. A, specifying the proper affine class (i.e. the orientationpreserving affine class) of space groups (crystallographic spacegroup type) to which the space group belongs. This number defines the space-group type but not the coordinate system in which it is expressed.

May appear in list containing _space_group_id.

The permitted range is $1 \rightarrow 230$.

Related item: _symmetry_Int_Tables_number (alternate).

space group name H-M alt

(char)

[space_group]

_space_group_name_H-M alt allows any Hermann-Mauguin symbol to be given. The way in which this item is used is determined by the user and in general is not intended to be interpreted by computer. It may, for example, be used to give one of the extended Hermann-Mauguin symbols given in Table 4.3.2.1 of International Tables for Crystallography Vol. A (2002) or a Hermann-Mauguin symbol for a conventional or unconventional setting. Each component of the space-group name is separated by a space or an underscore. The use of a space is strongly recommended. The underscore is only retained because it was used in older files. It should not be used in new CIFs. Subscripts should appear without special symbols. Bars should be given as negative signs before the numbers to which they apply. The commonly used Hermann-Mauguin symbol determines the space-group type uniquely but a given space-group type may be described by more than one Hermann-Mauguin symbol. The space-group type is best described using _space_group_IT_number. The Hermann-Mauguin symbol may contain information on the choice of basis. but not on the choice of origin. To define the setting uniquely, use space group name Hall or list the symmetry operations.

May appear in list containing _space_group_id.

Related item: _symmetry_space_group_name_H-M (alternate).

Example:

; loop. _space_group_id _space_group_name_H-M_alt 'Cmcm' 1 'C 2/c 2/m 21/m 2 'Amam'

(three examples for space group No. 63)

[space_group]

space group name Hall (char) Space-group symbol defined by Hall. Each component of the space-group name is separated by a space or an underscore. The use of a space is strongly recommended. The underscore is only retained because it was used in older files. It should not be used in new CIFs. space group name Hall uniquely defines the space group and its reference to a particular coordinate system.

References: Hall, S. R. (1981). Acta Cryst. A37, 517-525; erratum (1981), A37, 921. [See also International Tables for Crystallography, Vol. B (2001), Chapter 1.4, Appendix 1.4.2]. May appear in list containing space group id.

Related item: _symmetry_space_group_name_Hall (alternate).

Examples: 'P 2c -2ac' (equivalent to $Pca2_1$), '-I 4bd 2ab 3' (equivalent to $Ia\bar{3}d$).

[space_group]

Contains information about the symmetry operations of the space group.

Example 1 – the symmetry operations for the space group P2 $_1/c$.

loop

_space_group_symop_id

space group symop operation xyz 1 x,y,z

2 -x,-y,-z

3 -x, 1/2+y, 1/2-z

4 x,1/2-y,1/2+z

space group symop id (char) An arbitrary identifier that uniquely labels each svmmetry operation in the list. In order for the defaults work correctly, the identity operation should have to _space_group_symop_id Of symmetry equiv pos site id set to 1, and _space_group_symop_operation_xyz or symmetry equiv pos as xyz set to x, y, z; *i.e.* the operation labelled 1 should be the identity operation.

Appears in list as essential element of loop structure.

Related item: _symmetry_equiv_pos_site_id (alternate). Where no value is given, the assumed value is '1'. [space group symop]

space group symop operation xyz

(char)

A parsable string giving one of the symmetry operations of the space group in algebraic form. If W is a matrix representation of the rotational part of the symmetry operation defined by the positions and signs of x, y and z, and w is a column of translations defined by fractions, an equivalent position x' is generated from a given position x by

$\mathbf{x}' = W\mathbf{x} + \mathbf{w}.$

When a list of symmetry operations is given, it must contain a complete set of coordinate representatives which generates all the operations of the space group by the addition of all primitive translations of the space group. Such representatives are to be found as the coordinates of the general-equivalent position in International Tables for Crystallography Vol. A (2002), to which it is necessary to add any centring translations shown above the general-equivalent position. That is to say, it is necessary to list explicitly all the symmetry operations required to generate all the atoms in the unit cell defined by the setting used. In order for the defaults to work correctly, the identity operation should have _space_group_symop_id Of _symmetry_equiv_pos_site_id 1, and _space_group_symop_operation_xyz set to or $symmetry_equiv_pos_as_xyz$ set to x, y, z; *i.e.* the operation labelled 1 should be the identity operation.

May appear in list containing space group symop id.

Related item: _symmetry_equiv_pos_as_xyz (alternate). Where no value is given, the assumed value is 'x, y, z'.

Example: 'x, 1/2-y, 1/2+z' (glide reflection through the plane (x, 1/4, z), with glide vector (1/2)c). [space_group_symop]

space group symop sg id (numb) This must match a particular value of space group id, allow-

ing the symmetry operation to be identified with a particular space group.

May appear in list. containing _space_group_symop_id. Must match parent data name _space_group_id. [space_group_symop]

cif_core.dic

SYMMETRY

Data items in the SYMMETRY category record details about the space-group symmetry.

Example 1 – based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277].

_symmetry_cell_setting	orthorhombic
_symmetry_space_group_name_H-M	'P 21 21 21'
_symmetry_space_group_name_Hall	'P 2ac 2ab'

symmetry cell setting

(char)

This definition has been superseded and is retained here only for archival purposes. Use instead _space_group_crystal_system.

The cell settings for this space-group symmetry.

The data value must be one of the following:

triclinic monoclinic orthorhombic tetragonal rhombohedral trigonal hexagonal cubic

[symmetry]

symmetry Int Tables number (numb) This definition has been superseded and is retained here only for archival purposes. Use instead space group IT number.

Space-group number from International Tables for Crystallography Vol. A (2002)

The permitted range is $1 \rightarrow 230$.

[symmetry]

(char)

symmetry space group name H-M This definition has been superseded and is retained here only for archival purposes. Use instead _space_group_name_H-M_alt.

Hermann-Mauguin space-group symbol. Note that the Hermann-Mauguin symbol does not necessarily contain complete information about the symmetry and the space-group origin. If used, always supply the full symbol from International Tables for Crystallography Vol. A (2002) and indicate the origin and the setting if it is not implicit. If there is any doubt that the equivalent positions can be uniquely deduced from this symbol, specify the symmetry equiv pos as xyz or * Hall data items as well. Leave spaces between symbols referring to different axes.

Examples: 'P 1 21/m 1', 'P 2/n 2/n 2/n (origin at -1)', 'R -3 2/m'. [symmetry]

symmetry space group name Hall (char) This definition has been superseded and is retained here only for archival purposes. Use instead _space_group_name_Hall.

Space-group symbol as described by Hall. This symbol gives the spacegroup setting explicitly. Leave spaces between the separate components of the symbol.

Reference: Hall, S. R. (1981). Acta Cryst. A37, 517-525; erratum (1981), A37, 921.

Examples: '-P 2ac 2n', '-R 3 2"', 'P 61 2 2 (0 0 -1)'. [symmetry]

SYMMETRY_EQUIV

Data items in the SYMMETRY EQUIV category list the symmetryequivalent positions for the space group.

Example 1 – based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276–2277].

loop

_symmetry_equiv_pos_as_xyz

+x,+y,+z 1/2-x,-y,1/2+z 1/2+x,1/2-y,-z -x,1/2+y,1/2-z

Example 2 - based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276–2277]. Formally, the value of symmetry equiv pos site id can be any unique character string; it is recommended that it be assigned the sequence number of the list of equivalent positions for compatibility with older files in which it did not appear. loop_ symmetry equiv pos site id 5

· / / _	
symmetry_	_equiv_pos_as_xyz
1	x,y,z
2	1/2-x,-y,1/2+z
3	1/2+x,1/2-y,-z
4	-x,1/2+y,1/2-z

(char)

symmetry equiv pos as xyz This definition has been superseded and is retained here only for archival purposes. Use instead _space_group_symop_operation_xyz.

Symmetry-equivalent position in the 'xyz' representation. Except for the space group P1, these data will be repeated in a loop. The format of the data item is as per International Tables for Crystallography Vol. A. (2002). All equivalent positions should be entered, including those for lattice centring and a centre of symmetry, if present. In order for the defaults to work correctly, the identity operation should have _space_group_symop_id or _symmetry_equiv_pos_site_id set to 1, and space group symop operation xyz **symmetry_equiv_pos_as_xyz** set to x, y, z; i.e. the operation labelled *I* should be the identity operation.

May appear in list. Where no value is given, the assumed value is 'x, y, z'. Example: '-y+x, -y, 1/3+z'.

[symmetry equiv]

symmetry equiv pos site id (numb) This definition has been superseded and is retained here only for archival purposes. Use instead space group symop id.

A code identifying each entry in the _symmetry_equiv_pos_as_xyz list. It is normally the sequence number of the entry in that list, and should be identified with the code 'n' in _geom_*_symmetry_ codes of the form 'n klm'. In order for the defaults to work correctly, the identity operation should have _symmetry_equiv_pos site id _space_group_symop_id Or set to 1, and _space_group_symop_operation_xyz or symmetry equiv pos as xyz set to x, y, z; i.e. the operation labelled 1 should be the identity operation.

Appears in list containing **_symmetry_equiv_pos_as_xyz**. Where no value is given, the assumed value is '1'. [symmetry equiv]

VALENCE_PARAM

Data items in the VALENCE PARAM category define the parameters used for calculating bond valences from bond lengths. In addition to the parameters, a pointer is given to the reference (in VALENCE REF) from which the bond-valence parameters were taken

Example 1 – a bond-valence parameter list with accompanying references.

1000 valence param id _valence_param_atom_1 _valence_param_atom_1_valence _valence_param_atom_2 valence_param_atom_2_valence valence param Ro valence param B valence param ref id valence param details 1 Cu 2 O -2 1.679 0.37 a . 2 Cu 2 O -2 1.649 0.37 j . Cu 2 N -3 1.64 0.37 m '2-coordinate N' 3 4 Cu 2 N -3 1.76 0.37 m '3-coordinate N' loop valence_ref_id valence ref reference 'Brown & Altermatt (1985), Acta Cryst. B41, 244-247' а i

'Liu & Thorp (1993), Inorg. Chem. 32, 4102-4205' 'See, Krause & Strub (1998), Inorg. Chem. 37, 5369-5375'

VALENCE_PARAM

valence param atom 1

The element symbol of the first atom forming the bond whose bond-valence parameters are given in this category. Appears in list containing valence param id. [valence param]

(numb) valence param atom 1 valence The valence (formal charge) of the first atom whose bond-valence parameters are given in this category.

Appears in list containing _valence_param_id. [valence param] valence param atom 2 (char)

The element symbol of the second atom forming the bond whose bond-valence parameters are given in this category. Appears in list containing _valence_param_id. [valence_param]

valence param atom 2 valence (numb) The valence (formal charge) of the second atom whose bondvalence parameters are given in this category.

Appears in list containing _valence_param_id. [valence param]

valence param B (numb)

The bond-valence parameter B used in the expression

 $s = \exp[(R_o - R)/B],$

where s is the valence of a bond of length R. Appears in list containing valence param id. [valence param] valence param details (char) Details of or comments on the bond-valence parameters. Appears in list containing valence param id. [valence param]

valence param id (char) An identifier for the valence parameters of a bond between the given atoms. Appears in list.

[valence_param]

An identifier which links to the reference to the source from which the bond-valence parameters are taken. A child of valence ref id, which it must match.

Appears in list containing _valence_param_id. Must match parent data name valence ref id. [valence param]

valence param Ro

 $s = \exp[(R_o - R)/B],$

The bond-valence parameter R_o used in the expression

where s is the valence of a bond of length R. Appears in list containing _valence_param_id.

VALENCE_REF

Data items in the VALENCE REF category list the references from which the bond-valence parameters have been taken.

valence ref id (char) An identifier for items in this category. Parent of valence param ref id, which must have the same value. Appears in list containing _valence_ref_id. May match child data name(s): _valence_param_ref_id. [valence ref]

valence ref reference (char) Literature reference from which the valence parameters identified by valence param id were taken. Appears in list containing _valence_ref_id. [valence_ref]

valence param ref id

4. DATA DICTIONARIES

(char)

cif_core.dic

(char)

(numb)

[valence_param]