4.6. Image dictionary (imgCIF)

BY A. P. HAMMERSLEY, H. J. BERNSTEIN AND J. D. WESTBROOK

This is version 1.3.2 of the image CIF dictionary (imgCIF) and crystallographic binary file dictionary (CBF) extending the macromolecular CIF dictionary (Chapter 4.5). Use of the dictionary is described in Chapter 3.7. See also Chapter 2.3 for a description of the CBF format and Chapter 5.6 for discussion of a software library for manipulating image data.

There are three category groups in this dictionary: array_data_group contains categories that describe array data; axis_group contains categories that describe axes; and diffrn_group contains categories that describe details of the diffraction experiment.

ARRAY DATA

Data items in the ARRAY_DATA category are the containers for the array data items described in the category ARRAY STRUCTURE.

Example 1.

This example shows two binary data blocks. The first one was compressed by the CBF_CANONICAL compression algorithm and is presented as hexadecimal data. The first character 'H' on the data lines means hexadecimal. It could have been 'O' for octal o 'D' for decimal. The second character on the line shows the number of bytes in each word (in this case '4'), which then requires eight hexadecimal digits per word. The third character gives the order of octets within a word, in this case '<' for the ordering 4321 (i.e. 'bigendian'). Alternatively, the character '>' could have been used for the ordering 1234 (i.e. 'little-endian'). The block has a 'message digest' to check the integrity of the data. The second block is similar, but uses CBF_PACKED compression and BASE64 encoding. Note that the size and the digest are different.

Affiliations: Andrew P. Hammersley, ESRF/EMBL Grenoble, 6 rue Jules Horowitz, France; Herbert J. Bernstein, Department of Mathematics and Computer Science, Kramer Science Center, Dowling College, Idle Hour Blvd, Oakdale, NY 11769, USA; John D. Westbrook, Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers, The State University of New Jersey, Department of Chemistry and Chemical Biology, 610 Taylor Road, Piscataway, NJ 08854-8087, USA.

```
image_2 2
;
--CIF-BINARY-FORMAT-SECTION--
Content-Type: application/octet-stream;
conversions="x-CBF-PACKED"
Content-Transfer-Encoding: BASE64
X-Binary-Size: 3745758
X-Binary-ID: 2
Content-MD5: lzsJjWPfol2GYl2V+QSXrw==

ELhQAAAAAAAAA...
...
--CIF-BINARY-FORMAT-SECTION----;
```

* array data.array id

(code)

This item is a pointer to _array_structure.id in the ARRAY_STRUCTURE category.

[array data]

(*) array data.binary id

(int)

This item is an integer identifier which, along with <code>_array_data.array_id</code>, should uniquely identify the particular block of array data. If <code>_array_data.binary_id</code> is not explicitly given, it defaults to 1. The value of <code>_array_data.binary_id</code> distinguishes among multiple sets of data with the same array structure. If the MIME header of the data array specifies a value for X-Binary-ID, the value of <code>_array_data.binary_id</code> should be equal to the value given for X-Binary-ID.

The following item(s) have an equivalent role in their respective categories:

```
_diffrn_data_frame.binary_id,
_array_intensities.binary_id.
```

The permitted range is $[1, \infty)$. Where no value is given, the assumed value is '1'.

[array_data]

*_array_data.data

(binary)

The value of _array_data.data contains the array data encapsulated in a STAR string. The representation used is a variant on the Multipurpose Internet Mail Extensions (MIME) specified in RFC 2045-2049 by N. Freed et al. The boundary delimiter used in writing an imgCIF or CBF is --CIF-BINARY-FORMAT-SECTION-- (including the required initial --). The Content-Type may be any of the discrete types permitted in RFC 2045; 'application/octet-stream' is recommended. If an octet stream was compressed, the compression should be specified by the parameter conversions="x-CBF PACKED" or the parameter conversions="x-CBF CANONICAL". The Content-Transfer-Encoding may be 'BASE64', 'Quoted-Printable', 'X-BASE8', 'X-BASE10' or 'X-BASE16' for an imgCIF or 'BINARY' for a CBF. The octal, decimal and hexadecimal transfer encodings are for convenience in debugging and are not recommended for archiving and data interchange. In an imgCIF file, the encoded binary data begin after the empty line terminating the header. In a CBF, the raw binary data begin after an empty line terminating the header and after the sequence

Octet	Hexadecimal	Decimal	Purpose
0	0C	12	Ctrl-L: page break
1	1A	26	Ctrl-Z: stop listings, MS-DOS
2	04	04	Ctrl-D: stop listings, UNIX
3	D5	213	binary section begins

None of these octets are included in the calculation of the message size or in the calculation of the message digest. The X-Binary-Size

header specifies the size of the equivalent binary data in octets. If compression was used, this size is the size after compression, including any book-keeping fields. An adjustment is made for the deprecated binary formats in which eight bytes of binary header are used for the compression type. In this case, the eight bytes used for the compression type are subtracted from the size, so that the same size will be reported if the compression type is supplied in the MIME header. Use of the MIME header is the recommended way to supply the compression type. In general, no portion of the binary header is included in the calculation of the size. The X-Binary-Element-Type header specifies the type of binary data in the octets, using the same descriptive phrases as in array structure.encoding type. The default value is 'unsigned 32-bit integer'. An MD5 message digest may, optionally, be used. The RSA Data Security, Inc. MD5 Message-Digest Algorithm should be used. No portion of the header is included in the calculation of the message digest. If the Transfer Encoding is 'X-BASE8', 'X-BASE10' or 'X-BASE16', the data are presented as octal, decimal or hexadecimal data organized into lines or words. Each word is created by composing octets of data in fixed groups of 2, 3, 4, 6 or 8 octets, either in the order ...4321 ('big-endian') or 1234... ('little-endian'). If there are fewer than the specified number of octets to fill the last word, then the missing octets are presented as '==' for each missing octet. Exactly two equal signs are used for each missing octet even for octal and decimal encoding. The format of lines is

rnd xxxxxx xxxxxx xxxxxx

where r is 'H', 'O' or 'D' for hexadecimal, octal or decimal, n is the number of octets per word and d is '<' or '>' for the '...4321' and '1234...' octet orderings, respectively. The '==' padding for the last word should be on the appropriate side to correspond to the missing octets, e.g.

```
H4< FFFFFFF FFFFFFF 07FFFFFF ====0000
```

or

H3> FF0700 00====

For these hexadecimal, octal and decimal formats only, comments beginning with '#' are permitted to improve readability.

BASE64 encoding follows MIME conventions. Octets are in groups of three: c1, c2, c3. The resulting 24 bits are broken into four six-bit quantities, starting with the high-order six bits (c1 \gg 2) of the first octet, then the low-order two bits of the first octet followed by the high-order four bits of the second octet [(c1 & 3) $\ll 4 \mid (c2 \gg 4)$], then the bottom four bits of the second octet followed by the high-order two bits of the last octet [(c2 & 15) \ll 2 | $(c3 \gg 6)$], then the bottom six bits of the last octet (c3 & 63). Each of these four quantities is translated into an ASCII character using the mapping

```
\tt 0123456789012345678901234567890123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmn
```

```
5
         6
012345678901234567890123
        opqrstuvwxyz0123456789+/
```

with short groups of octets padded on the right with one '=' if c3 (*)_array_intensities.binary_id is missing, and with '==' if both c2 and c3 are missing.

QUOTED-PRINTABLE encoding also follows MIME conventions, copying octets without translation if their ASCII values are 32...38, 42, 48...57, 59, 60, 62, 64...126 and the octet is not a ';' in column 1. All other characters are translated to =nn, where nnis the hexadecimal encoding of the octet. All lines are 'wrapped' with a terminating = (i.e. the MIME conventions for an implicit line terminator are never used).

[array data]

ARRAY_ELEMENT_SIZE

Data items in the ARRAY ELEMENT SIZE category record the physical size of array elements along each array dimension.

```
Category group(s): inclusive_group
              array data group
Category key(s): _array_element_size.array_id
```

Example 1 - a regular 2D array with a uniform element dimension of 1220 nm.

_array_element_size.index

```
array element size.array id
_array_element_size.index
array element size.size
 image_1
         1
               1.22e-6
 image 1
```

array element size.array id

(code)

This item is a pointer to array structure.id in the ARRAY STRUCTURE category.

[array element size]

* array element size.index

This item is a pointer to array structure list.index in the ARRAY STRUCTURE LIST category.

[array_element_size]

* array element size.size

The size in metres of an image element in this dimension. This supposes that the elements are arranged on a regular grid.

The permitted range is $[0.0, \infty)$.

[array_element_size]

ARRAY_INTENSITIES

Data items in the ARRAY_INTENSITIES category record the information required to recover the intensity data from the set of data values stored in the ARRAY DATA category. The detector may have a complex relationship between the raw intensity values and the number of incident photons. In most cases, the number stored in the final array will have a simple linear relationship to the actual number of incident photons, given by _array_intensities.gain. If raw, uncorrected values are presented (e.g. for calibration experiments), the value of array intensities.linearity will be 'raw' and array intensities.gain will not be used.

```
Category group(s): inclusive_group
             array_data_group
Category key(s): _array_intensities.array_id
             _array_intensities.binary_id
Example 1.
  _array_intensities.array_id
  array intensities.linearity
  _array_intensities.gain
  array intensities.overload
   _array_intensities.undefined_value
```

array intensities.array id

linear 1.2

(code)

This item is a pointer to _array_structure.id in the ARRAY_STRUCTURE category.

655535

[array_intensities]

(int)

This item is a pointer to _array_data.binary_id in the ARRAY_DATA category.

[array_intensities]

* array intensities.gain

Detector 'gain'. The factor by which linearized intensity count values should be divided to produce true photon counts.

The permitted range is $[0.0, \infty)$.

image 1

Related item: _array_intensities.gain_esd(associated value).

[array intensities]

* array intensities.gain esd

(float)

The estimated standard deviation in detector 'gain'.

The permitted range is $[0.0, \infty)$.

Related item: _array_intensities.gain (associated esd).

[array_intensities]

* array intensities.linearity

The intensity linearity scaling method used to convert from the raw intensity to the stored element value. 'linear' is linear. 'offset' means that the value defined by _array_intensities.offset should be added to each element value. 'scaling' means that the value defined by _array_intensities.scaling should be multiplied with each element value. 'scaling_offset' is the combination of the two previous cases, with the scale factor applied before the offset value. 'sqrt_scaled' means that the square root of raw intensities multiplied by array intensities.scaling is calculated and stored, perhaps rounded to the nearest integer. Thus, linearization involves dividing the stored values by array intensities.scaling and squaring the result. 'logarithmic_scaled' means that the logarithm base 10 of raw intensities multiplied by array intensities.scaling is calculated and stored, perhaps rounded to the nearest integer. Thus, linearization involves dividing the stored values by array intensities.scaling and calculating 10 to the power of this number. 'raw' means that the data are a set of raw values straight from the detector.

The data value must be one of the following:

linear Linear

offset The value defined by array intensities.

offset should be added to each element value.

The value defined by scaling array intensities.

scaling should be multiplied with each element

value.

scaling_offset The combination of scaling and offset with the scale

factor applied before the offset value.

sort scaled The square root of raw intensities multiplied

by _array_intensities.scaling is calculated and stored, perhaps rounded to the nearest integer. Thus, linearization involves dividing the stored values by _array_intensities.scaling and

squaring the result.

logarithmic_scaled The logarithm base 10 of raw intensities multiplied by _array_intensities.scaling is calculated

and stored, perhaps rounded to the nearest integer. Thus, linearization involves dividing the stored values by _array_intensities.scaling and cal-

culating 10 to the power of this number.

The array consists of raw values to which no correcraw tions have been applied. While the handling of the data is similar to that given for 'linear' data with no offset, the meaning of the data differs in that

the number of incident photons is not necessarily linearly related to the number of counts reported. This value is intended for use either in calibration experiments or to allow for handling more complex data-fitting algorithms than are allowed for by this

data item.

[array_intensities]

array intensities.offset

Offset value to add to array element values in the manner described by the item _array_intensities.linearity.

[array_intensities]

array intensities.overload

(float)

The saturation intensity level for this data array.

[array_intensities]

array intensities.scaling

Multiplicative scaling value to be applied to array data in the manner described by item _array_intensities.linearity.

[array_intensities]

array intensities.undefined value

A value to be substituted for undefined values in the data array.

[array intensities]

ARRAY_STRUCTURE

Data items in the ARRAY STRUCTURE category record the organization and encoding of array data in the ARRAY_DATA category. Category group(s): inclusive_group

array data group

Category key(s): _array_structure.id

Example 1.

loop_ _array_structure.id

_array_structure.encoding_type

array_structure.compression_type

array structure.byte order

"unsigned 16-bit integer" none little endian image_1

* array structure.byte order

(code)

The order of bytes for integer values which require more than 1 byte. (IBM PCs and compatibles, and Dec VAXs use low-byte-first ordered integers, whereas Hewlett Packard 700 series, Sun-4 and Silicon Graphics use high-byte-first ordered integers. Dec Alphas can produce/use either depending on a compiler switch.)

The data value must be one of the following:

big_endian The first byte in the byte stream of the bytes which

make up an integer value is the most significant byte

of an integer.

little endian The last byte in the byte stream of the bytes which make up an integer value is the most significant byte

of an integer.

[array_structure]

array structure.compression type

Type of data-compression method used to compress the array data. The data value must be one of the following:

none

Data are stored in normal format as defined _array_structure.encoding_type

_array_structure.byte_order.

Using the 'packed' compression scheme, a CCP4-style packed

packing (International Tables for Crystallography

Volume G, Section 5.6.3.2)

Using the 'canonical' compression scheme (Internacanonical tional Tables for Crystallography Volume G, Section

5.6.3.1)

Where no value is given, the assumed value is 'none'.

[array_structure]

array structure.encoding type

Data encoding of a single element of array data. In several cases, the IEEE format is referenced. See IEEE Standard 754-1985 (IEEE, 1985).

Reference: IEEE (1985). IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-1985. New York: Institute of Electrical and Electronics Engineers.

The data value must be one of the following:

'unsigned 8-bit integer'

'signed 8-bit integer'

'unsigned 16-bit integer'

'signed 16-bit integer'

'unsigned 32-bit integer'

'signed 32-bit integer'

'signed 32-bit real IEEE' 'signed 64-bit real IEEE'

'signed 32-bit complex IEEE'

[array_structure]

* array structure.id

(code)

The value of array structure.id must uniquely identify each item of array data.

The following item(s) have an equivalent role in their respective categories:

```
_array_data.array_id,
```

_array_structure_list.array_id,

_array_intensities.array_id, diffrn data frame.array id.

[array structure]

ARRAY_STRUCTURE_LIST

Data items in the ARRAY_STRUCTURE_LIST category record the size and organization of each array dimension. The relationship to physical axes may be given.

Category group(s): inclusive_group

array data group

Category key(s): _array_structure_list.array_id array structure list.index

Example 1 – an image array of 1300×1200 elements.

The raster order of the image is left to right (increasing) in the first dimension and bottom to top (decreasing) in the second dimension.

loop_

```
array_structure_list.array_id
array_structure_list.index
array_structure_list.dimension
array_structure_list.precedence
array_structure_list.direction
array_structure_list.axis_set_id
```

image 1 1 1300 1 increasing ELEMENT_X image 1 2 1200 2 decreasing ELEMENY_Y

* array structure_list.array_id

(code)

This item is a pointer to _array_structure.id in the ARRAY STRUCTURE category.

[array_structure_list]

* array structure list.axis set id

(code)

This is a descriptor for the physical axis or set of axes corresponding to an array index. This data item is related to the axes of the detector itself given in DIFFRN_DETECTOR_AXIS, but usually differs in that the axes in this category are the axes of the coordinate system of reported data points, while the axes in DIFFRN_DETECTOR_AXIS are the physical axes of the detector describing the 'poise' of the detector as an overall physical object. If there is only one axis in the set, the identifier of that axis should be used as the identifier of the set.

The following item(s) have an equivalent role in their respective categories:

_array_structure_list_axis.axis_set_id. [array_structure_list]

* array structure list.dimension

The number of elements stored in the array structure in this dimension.

The permitted range is $[1, \infty)$. [array_structure_list]

*_array_structure_list.direction

(int)

Identifies the direction in which this array index changes.

The data value must be one of the following:

increasing Indicates the index changes from 1 to the maximum dimension

decreasing Indicates the index changes from the maximum dimen-

sion to 1

[array_structure_list]

*_array_structure_list.index

(int)

Identifies the one-based index of the row or column in the array structure.

 $\label{thm:continuity} The \ following \ item(s) \ have \ an \ equivalent \ role \ in \ their \ respective \ categories:$

_array_element_size.index.

The permitted range is $[1, \infty)$. [array_structure_list]

* array structure list.precedence (in

Identifies the rank order in which this array index changes with respect to other array indices. The precedence of 1 indicates the index which changes fastest.

The permitted range is $[1, \infty)$.

[array structure list]

ARRAY_STRUCTURE_LIST_AXIS

Data items in the ARRAY_STRUCTURE_LIST_AXIS category describe the physical settings of sets of axes for the centres of pixels that correspond to data points described in the ARRAY_STRUCTURE_LIST category. In the simplest cases, the physical increments of a single axis correspond to the increments of a single array index. More complex organizations, *e.g.* spiral scans, may require coupled motions along multiple axes. Note that a spiral scan uses two coupled axes: one for the angular direction and one for the radial direction. This differs from a cylindrical scan for which the two axes are not coupled into one set.

Category group(s): inclusive_group
array_data_group

Category key(s): _array_structure_list_axis.axis_set_id _array_structure_list_axis.axis_id

array structure list axis.angle

(float)

The setting of the specified axis in degrees for the first data point of the array index with the corresponding value of _array_structure_list.axis_set_id. If the index is specified as 'increasing', this will be the centre of the pixel with index value 1. If the index is specified as 'decreasing', this will be the centre of the pixel with maximum index value.

Where no value is given, the assumed value is '0.0'.

[array_structure_list axis]

_array_structure_list_axis.angle_increment (float)
The pixel-centre-to-pixel-centre increment in the angular setting
of the specified axis in degrees. This is not meaningful in the case
of 'constant velocity' spiral scans and should not be specified for
this case. See array structure list axis.angular pitch.

Where no value is given, the assumed value is '0.0'.

[array structure list axis]

_array_structure_list_axis.angular_pitch (float)
The pixel-centre-to-pixel-centre distance for a one-step change
in the setting of the specified axis in millimetres. This is
meaningful only for 'constant velocity' spiral scans or for
uncoupled angular scans at a constant radius (cylindrical scans)
and should not be specified for cases in which the angle between
pixels (rather than the distance between pixels) is uniform. See
array structure list axis.angle increment.

Where no value is given, the assumed value is '0.0'.

[array_structure_list_axis]

*_array_structure_list_axis.axis_id (code)
The value of this data item is the identifier of one of the axes in the set of axes for which settings are being specified. Multiple axes may be specified for the same value.

ified. Multiple axes may be specified for the same value of _array_structure_list_axis.axis_set_id. This item is a pointer to _axis.id in the AXIS category.

[array_structure_list_axis]

(*)_array_structure_list_axis.axis_set_id (code)
The value of this data item is the identifier of the set of axes for which axis settings are being specified. Multiple axes may be specified for the same value of _array_structure_list_axis.axis_set_id. This item is a pointer to _array_structure_list.axis_set_id in the ARRAY_STRUCTURE_LIST category. If this item is not specified, it defaults to the correspond-

[array_structure_list_axis]

_array_structure_list_axis.displacement (float)
The setting of the specified axis in millimetres for the first data point of the array index with the corresponding value of _array_structure_list.axis_set_id. If the index is specified as 'increasing', this will be the centre of the pixel with index value 1. If the index is specified as 'decreasing', this will be the centre of the pixel with maximum index value.

Where no value is given, the assumed value is '0.0'

ing axis identifier.

[array structure list axis]

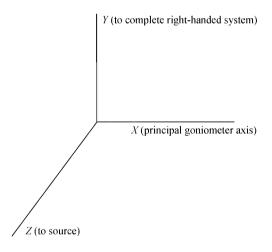
_array_structure_list_axis.displacement_increment

(float

The pixel-centre-to-pixel-centre increment for the displacement setting of the specified axis in millimetres.

Where no value is given, the assumed value is '0.0'.

[array_structure_list_axis]


_array_structure_list_axis.radial_pitch (float)
The radial distance from one 'cylinder' of pixels to the next in
millimetres. If the scan is a 'constant velocity' scan with differing angular displacements between pixels, the value of this item
may differ significantly from the value of _array_structure_
list axis.displacement increment.

Where no value is given, the assumed value is '0.0'.

[array_structure_list_axis]

AXIS

Data items in the AXIS category record the information required to describe the various goniometer, detector, source and other axes needed to specify a data collection. The location of each axis is specified by two vectors: the axis itself, given as a unit vector, and an offset to the base of the unit vector. These vectors are referenced to a right-handed laboratory coordinate system with its origin in the sample or specimen:

Axis 1 (X): The X axis is aligned to the mechanical axis pointing from the sample or specimen along the principal axis of the goniometer. Axis 2 (Y): The Y axis completes an orthogonal right-handed system defined by the X axis and the Z axis (see below). Axis 3 (Z): The Z axis is derived from the source axis which goes from the sample to the source. The Z axis is the component of the source axis in the direction of the source orthogonal to the X axis in the plane defined by the X axis and the source axis. These axes are based on the goniometer, not on the orientation of the detector, gravity etc. The vectors necessary to specify all other axes are given by sets of three components in the order (X, Y, Z). If the axis involved is a rotation axis, it is right-handed, *i.e.* as one views the object to be rotated from the origin (the tail) of the unit vector, the rotation is clockwise. If a translation axis is specified, the direction of the unit vector specifies the sense of positive translation. Note: This choice of coordinate system is similar to but significantly different from the choice in MOS-FLM (Leslie & Powell, 2004). In MOSFLM, X is along the X-ray beam (the CBF/imgCIF Z axis) and Z is along the rotation axis.

All rotations are given in degrees and all translations are given in millimetres. Axes may be dependent on one another. The X axis is the only goniometer axis the direction of which is strictly connected to the hardware. All other axes are specified by the positions they would assume when the axes upon which they depend are at their zero points.

When specifying detector axes, the axis is given to the beam centre. The location of the beam centre on the detector should be given in the DIFFRN_DETECTOR category in distortion-corrected millimetres from the $(0,\,0)$ corner of the detector. It should be noted that many different origins arise in the definition of an experiment. In particular, as noted above, it is necessary to specify the location of the beam centre on the detector in terms of the origin of the detector, which is, of course, not coincident with the centre of the sample.

Reference: Leslie, A. G. W. & Powell, H. (2004). *MOS-FLM* v6.11. MRC Laboratory of Molecular Biology, Hills Road, Cambridge, England. http://www.CCP4.ac.uk/dist/x-windows/Mosflm/.

```
Category group(s): inclusive_group
axis_group
diffrn_group
Category key(s): _axis.id
axis.equipment
```

Example 1.

This example shows the axis specification of the axes of a kappa-geometry goniometer [see Stout, G. H. & Jensen, L. H. (1989). *X-ray structure determination. A practical guide*, 2nd ed. p. 134. New York: Wiley Interscience]. There are three axes specified, and no offsets. The outermost axis, ω , is pointed along the *X* axis. The next innermost axis, κ , is at a 50° angle to the *X* axis, pointed away from the source. The innermost axis, φ , aligns with the *X* axis when ω and φ are at their zero points. If T_{ω} , T_{κ} and T_{φ} are the transformation matrices derived from the axis settings, the complete transformation would be $x' = T_{\omega} T_{\kappa} T_{\varphi} x$.

```
loop_
    _axis.id
    _axis.type
    _axis.equipment
    _axis.vector[1] _axis.vector[2] _axis.vector[3]
omega rotation goniometer . 1 0 0 0
kappa rotation goniometer omega -.64279 0 -.76604
phi rotation goniometer kappa 1 0 0
```

Example 2.

This example show the axis specification of the axes of a detector, source and gravity. The order has been changed as a reminder that the ordering of presentation of tokens is not significant. The centre of rotation of the detector has been taken to be 68 mm in the direction away from the source.

```
loop
 _axis.id
  axis.type
  axis.equipment
  _axis.depends_on
  _axis.vector[1] _axis.vector[2] _axis.vector[3]
  _axis.offset[1] _axis.offset[2] _axis.offset[3]
source
                      source
                                           0
                                              0
                                                   1
                                                   0
gravity
                      gravity
          translation detector rotz
                                           0
                                               0
                                                   1 0 0 -68
tranz
twotheta
          rotation
                      detector
                                               0
                                                   0
                                           1
                                                   0 0 0 -68
                                           0
rotv
          rotation
                      detector twotheta
                                               1
rotz
          rotation
                      detector rotv
                                           n
                                                      0 0 -68
```

_axis.depends_on

The value of _axis.depends_on specifies the next outermost axis upon which this axis depends. This item is a pointer to _axis.id in the same category.

[axis]

axis.equipment

(unada)

The value of _axis.equipment specifies the type of equipment using the axis: 'goniometer', 'detector', 'gravity', 'source' or 'general'.

The data value must be one of the following:

```
goniometer equipment used to orient or position samples detector equipment used to detect reflections general equipment used for general purposes gravity axis specifying the downward direction source axis specifying the direction sample to source
```

Where no value is given, the assumed value is 'general'.

* axis.id

(code

The value of <code>_axis.id</code> must uniquely identify each axis relevant to the experiment. Note that multiple pieces of equipment may share the same axis (e.g. a 2θ arm), so the category key for AXIS also includes the equipment.

The following item(s) have an equivalent role in their respective categories:

```
_axis.depends_on,
_array_structure_list_axis.axis_id,
_diffrn_detector_axis.axis_id,
_diffrn_measurement_axis.axis_id,
_diffrn_scan_axis.axis_id,
_diffrn_scan_frame_axis.axis_id.
```

axis.offset[1]

(float)

[axis]

The [1] element of the three-element vector used to specify the offset to the base of a rotation or translation axis. The vector is specified in millimetres.

Where no value is given, the assumed value is '0.0'.

[avis

axis.offset[2]

(floa

The [2] element of the three-element vector used to specify the offset to the base of a rotation or translation axis. The vector is specified in millimetres.

Where no value is given, the assumed value is '0 . 0'.

[axis]

axis.offset[3]

(float)

The [3] element of the three-element vector used to specify the offset to the base of a rotation or translation axis. The vector is specified in millimetres.

Where no value is given, the assumed value is '0 . 0'.

[axis]

axis.type

(ucode)

The value of _axis.type specifies the type of axis: 'rotation' or 'translation' (or 'general' when the type is not relevant, as for gravity).

The data value must be one of the following:

rotation right-handed axis of rotation translation translation in the direction of the axis general axis for which the type is not relevant

Where no value is given, the assumed value is 'general'.

axis.vector[1]

(flo

[axis]

The [1] element of the three-element vector used to specify the direction of a rotation or translation axis. The vector should be normalized to be a unit vector and is dimensionless.

Where no value is given, the assumed value is '0 . 0'.

axis.vector[2]

(float)

[axis]

The [2] element of the three-element vector used to specify the direction of a rotation or translation axis. The vector should be normalized to be a unit vector and is dimensionless.

Where no value is given, the assumed value is '0.0'. [axis]

axis.vector[3]

(float

The [3] element of the three-element vector used to specify the direction of a rotation or translation axis. The vector should be normalized to be a unit vector and is dimensionless.

Where no value is given, the assumed value is '0.0'.

(поат)

[axis]

DIFFRN_DATA_FRAME

Data items in the DIFFRN_DATA_FRAME category record the details about each frame of data. The items in this category were previously in a DIFFRN_FRAME_DATA category, which is now deprecated. The items from the old category are provided as aliases but should not be used for new work.

```
Category group(s): inclusive_group

array_data_group

Category key(s): _diffrn_data_frame.id
   __diffrn_data_frame.detector_element_id
```

Example 1 - a frame containing data from four frame elements.

Each frame element has a common array configuration 'array_1' described in ARRAY_STRUCTURE and related categories. The data for each detector element are stored in four groups of binary data in the ARRAY_DATA category, linked by the array_id and binary_id.

```
loop___diffrn_data_frame.id
_diffrn_data_frame.detector_element_id
_diffrn_data_frame.array_id
_diffrn_data_frame.binary_id
frame_1 d1_ccd_1 array_1 1
frame_1 d1_ccd_2 array_1 2
frame_1 d1_ccd_3 array_1 3
frame_1 d1_ccd_4 array_1 4
```

*_diffrn_data_frame.array_id (code)

_diffrn_frame_data.array_id(cif_img.dic 1.0)

This item is a pointer to _array_structure.id in the ARRAY_STRUCTURE category.

[diffrn_data_frame]

(*) diffrn data frame.binary id

(int)

__diffrn_frame_data.binary_id(cif_img.dic 1.0)

This item is a pointer to _array_data.binary_id in the ARRAY_DATA category.

[diffrn_data_frame]

*_diffrn_data_frame.detector_element_id (code) diffrn frame data.detector_element_id(cif.img.dic 1.0)

This item is a pointer to _diffrn_detector_element.id in the DIFFRN DETECTOR ELEMENT category.

[diffrn data frame]

* diffrn data frame.id

(code)

__diffrn_frame_data.id(cif_img.dic 1.0)

The value of _diffrn_data_frame.id must uniquely identify each complete frame of data.

The following item(s) have an equivalent role in their respective categories:

```
_diffrn_refln.frame_id,
_diffrn_scan.frame_id_start,
_diffrn_scan.frame_id_end,
_diffrn_scan_frame.frame_id,
_diffrn_scan_frame_axis.frame_id.
```

[diffrn_data_frame]

DIFFRN_DETECTOR

Data items in the DIFFRN_DETECTOR category describe the detector used to measure the scattered radiation, including any analyser and post-sample collimation.

```
Category group(s): inclusive_group
diffrn_group
Category key(s): _diffrn_detector.diffrn_id
_diffrn_detector.id
```

Example 1 – based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

```
_diffrn_detector.diffrn_id 'd1'
_diffrn_detector.detector 'multiwire'
_diffrn_detector.type 'Siemens'
```

diffrn detector.details

(text)

___diffrn_detector_details(cif_core.dic 2.0.1)

A description of special aspects of the radiation detector.

Example: 'slow mode'. [diffrn detector]

diffrn detector.detector

(te

__diffrn_radiation_detector(cifdic.c91 1.0)

_diffrn_detector(cif_core.dic 2.0)

The general class of the radiation detector.

Examples: 'photographic film', 'scintillation counter', 'CCD plate', 'BF~3~ counter'. [diffrn_detector]

* diffrn detector.diffrn id

(code)

This data item is a pointer to _diffrn.id in the DIFFRN category. The value of _diffrn.id uniquely defines a set of diffraction data.

diffrn detector.dtime

(float

 $_{\tt diffrn_radiation_detector_dtime} (cifdic.c91\ 1.0)$

__diffrn_detector_dtime(cif_core.dic 2.0)

The deadtime in microseconds of the detector(s) used to measure the diffraction intensities.

The permitted range is $[0.0,\infty)$.

[diffrn_detector]

(*) diffrn detector.id

(code)

The value of _diffrn_detector.id must uniquely identify each detector used to collect each diffraction data set. If the value of _diffrn_detector.id is not given, it is implicitly equal to the value of _diffrn_detector.diffrn_id.

The following item(s) have an equivalent role in their respective categories:

_diffrn_detector_axis.detector_id.

[diffrn detector]

diffrn detector.number of axes

(int)

The value of _diffrn_detector.number_of_axes gives the number of axes of the positioner for the detector identified by _diffrn_detector.id. The word 'positioner' is a general term used in instrumentation design for devices that are used to change the positions of portions of apparatus by linear translation, rotation or combinations of such motions. Axes which are used to provide a coordinate system for the face of an area detector should not be counted for this data item. The description of each axis should be provided by entries in DIFFRN_DETECTOR_AXIS.

The permitted range is $[1, \infty)$.

[diffrn_detector]

diffrn detector.type

(text)

_diffrn_detector_type(cif_core.dic 2.0.1)

The make, model or name of the detector device used.

[diffrn_detector]

DIFFRN_DETECTOR_AXIS

Data items in the DIFFRN_DETECTOR_AXIS category associate axes with detectors.

 $Category\ group(s)\hbox{:}\ \textbf{inclusive_group}$

diffrn_group

Category key(s): _diffrn_detector_axis.detector_id

_diffrn_detector_axis.axis_id

* diffrn detector axis.axis id (co

This data item is a pointer to axis.id in the AXIS category.

[diffrn_detector_axis]

*_diffrn_detector_axis.detector_id (code)

_diffrn_detector_axis.id(cif_img.dic 1.0)

This data item is a pointer to <code>_diffrn_detector.id</code> in the <code>DIFFRN_DETECTOR</code> category. This item was previously named <code>_diffrn_detector_axis.id</code>, which is now a deprecated name. The old name is provided as an alias but should not be used for new work.

[diffrn_detector_axis]

*_diffrn_detector_axis.id

(code)

This data item is a pointer to _diffrn_detector.id in the DIFFRN_DETECTOR category. Deprecated: do not use.

[diffrn detector axis]

DIFFRN_DETECTOR_ELEMENT

Data items in the DIFFRN_DETECTOR_ELEMENT category record the details about spatial layout and other characteristics of each element of a detector which may have multiple elements. In most cases, giving more detailed information in ARRAY_STRUCTURE_LIST and ARRAY_STRUCTURE_LIST_AXIS is preferable to simply providing the centre of the detector element. Category group(s): inclusive_group

array_data_group

Category key(s): _diffrn_detector_element.id

diffrn detector element.detector id

Example 1

Detector d1 is composed of four CCD detector elements, each 200 by 200 mm, arranged in a square, in the pattern

1 *

3

Note that the beam centre is slightly displaced from each of the detector elements, just beyond the lower right corner of 1, the lower left corner of 2, the upper right corner of 3 and the upper left corner of 4.

```
Toob
```

d1

```
diffrn_detector_element.detector_id
diffrn_detector_element.id
diffrn_detector_element.center[1]
diffrn_detector_element.center[2]
d1 d1_ccd_1 201.5 -1.5
d1 d1_ccd_2 -1.8 -1.5
d1 d1_ccd_3 201.6 201.4
```

d1 ccd 4

diffrn detector element.center[1]

(float)

The value of $_{\tt diffrn_detector_element.center[1]}$ is the X component of the distortion-corrected beam centre in millimetres from the (0,0) (lower-left) corner of the detector element viewed from the sample side. The X and Y axes are the laboratory coordinate system coordinates defined in the AXIS category measured when all positioning axes for the detector are at their zero settings. If the resulting X or Y axis is then orthogonal to the detector, the Z axis is used instead of the orthogonal axis.

Where no value is given, the assumed value is '0.0'. [diffrn_detector_element]

diffrn detector element.center[2]

(float)

The value of $_{\tt diffrn_detector_element.center[2]}$ is the Y component of the distortion-corrected beam centre in millimetres from the (0,0) (lower-left) corner of the detector element viewed from the sample side. The X and Y axes are the laboratory coordinate system coordinates defined in the AXIS category measured when all positioning axes for the detector are at their zero settings. If the resulting X or Y axis is then orthogonal to the detector, the Z axis is used instead of the orthogonal axis.

Where no value is given, the assumed value is '0.0'. $[\texttt{diffrn_detector_element}]$

* diffrn detector element.detector id (

This item is a pointer to _diffrn_detector.id in the DIFFRN_ DETECTOR category.

[diffrn_detector_element]

*_diffrn_detector_element.id

(code)

The value of _diffrn_detector_element.id must uniquely identify each element of a detector.

[diffrn detector element]

DIFFRN_FRAME_DATA

Data items in the DIFFRN FRAME DATA category record the details about each frame of data. The items in this category are now in the DIFFRN DATA FRAME category. The items in the DIFFRN FRAME DATA category are now deprecated. The items from this category are provided as aliases in version 1.0 of the dictionary but should not be used for new work. The items from the old category are provided in this dictionary for completeness but should not be used or cited. To avoid confusion, the example has been removed and the redundant parent-child links to other categories have been removed.

 $Category \ group(s) \hbox{:} \ \textbf{inclusive_group}$ array_data_group Category key(s): _diffrn_frame_data.id diffrn frame data.detector element id

THE DIFFRN FRAME DATA category is deprecated and should not be used.

EXAMPLE REMOVED

* diffrn frame_data.array_id

This item is a pointer to _array_structure.id in the ARRAY_ STRUCTURE category. Deprecated: do not use.

[diffrn_frame_data]

(*) diffrn frame data.binary id

This item is a pointer to _array_data.binary_id in the ARRAY_ STRUCTURE category. Deprecated: do not use.

[diffrn_frame_data]

* diffrn frame data.detector element id

This item is a pointer to diffrn detector element.id in the DIFFRN DETECTOR ELEMENT category. Deprecated: do not use.

[diffrn frame data]

* diffrn frame data.id

(code)

(int)

The value of $_\mathtt{diffrn_frame_data.id}$ must uniquely identify each complete frame of data. Deprecated: do not use.

[diffrn frame data]

DIFFRN_MEASUREMENT

Data items in the DIFFRN_MEASUREMENT category record details about the device used to orient and/or position the crystal during data measurement and the manner in which the diffraction data were measured.

Category group(s): inclusive_group diffrn group

 $Category \; key(s) \hbox{:} \; _{\tt diffrn_measurement.device}$

_diffrn_measurement.diffrn_id

_diffrn_measurement.id

Example 1 – based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

diffrn measurement.diffrn id 'd1' _diffrn_measurement.device

'3-circle camera' diffrn measurement.device type 'Supper model x' _diffrn_measurement.device_details 'none'

diffrn measurement.method diffrn measurement.details

: 440 frames, 0.20 degrees, 150 sec, detector distance 12 cm, detector angle 22.5 degrees

'omega scan'

Example 2 - based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C**47**, 2276–2277].

```
diffrn measurement.diffrn id
diffrn measurement.device type
```

'Philips PW1100/20 diffractometer'

diffrn_measurement.method 'theta/2theta ($\q/2\q$)'

```
diffrn measurement.details
```

(text)

____diffrn_measurement_details(cif_core.dic 2.0.1)

A description of special aspects of the intensity measurement.

```
; 440 frames, 0.20 degrees, 150 sec, detector
 distance 12 cm, detector angle 22.5 degrees
                                           [diffrn_measurement]
```

(*) diffrn measurement.device

(text)

diffrn_measurement_device(cif_core.dic 2.0.1)

The general class of goniometer or device used to support and orient the specimen. If the value of _diffrn_ measurement.device is not given, it is implicitly equal to the value of diffrn measurement.diffrn id. Either diffrn measurement.device or diffrn measurement.id may be used to link to other categories. If the experimental setup admits multiple devices, then diffrn measurement.id is used to provide a unique link.

The following item(s) have an equivalent role in their respective categories:

diffrn measurement axis.measurement device

Examples: '3-circle camera', '4-circle camera',

'kappa-geometry camera', 'oscillation camera', 'precession camera'.

[diffrn measurement]

diffrn measurement.device details (text)

diffrn_measurement_device_details(cif_core.dic 2.0.1)

A description of special aspects of the device used to measure the diffraction intensities.

Example:

```
; commercial goniometer modified locally to allow for 90\% \t
arc
                                            [diffrn measurement]
```

diffrn measurement.device type (text)

diffrn measurement device type(cif_core.dic 2.0.1)

The make, model or name of the measurement device (goniometer) used.

Examples: 'Supper model q', 'Huber model r', 'Enraf-Nonius model s', 'home-made'. [diffrn measurement]

* diffrn measurement.diffrn id

This data item is a pointer to diffrn.id in the DIFFRN category.

(*) diffrn measurement.id

(code)

(text)

The value of diffrn measurement.id must uniquely identify the set of mechanical characteristics of the device used to orient and/or position the sample used during the collection of each diffraction data set. If the value of diffrn measurement.id is not given, it is implicitly equal to the value of diffrn measurement.diffrn id. Either diffrn measurement.device Or _diffrn_measurement.id may be used to link to other categories. If the experimental setup admits multiple devices, then _diffrn_measurement.id is used to provide a unique link.

The following item(s) have an equivalent role in their respective categories:

diffrn measurement axis.measurement id. [diffrn measurement]

_diffrn_measurement.method

diffrn measurement method(cif_core.dic 2.0.1) Method used to measure intensities.

Example: 'profile data from theta/2theta ($\sqrt{q/2}$) scans'.

[diffrn_measurement]

diffrn measurement.number of axes

The value of diffrn measurement.number of axes gives the number of axes of the positioner for the goniometer or other sample orientation or positioning device identified by diffrn measurement.id. The description of the axes should be provided by entries in DIFFRN_MEASUREMENT_AXIS.

The permitted range is $[1, \infty)$. [diffrn measurement]

diffrn measurement.specimen support

diffrn_measurement_specimen_support(cif_core.dic 2.0.1)

The physical device used to support the crystal during data collec-

Examples: 'glass capillary', 'quartz capillary', 'fiber', 'metal loop'. [diffrn measurement]

DIFFRN_MEASUREMENT_AXIS

Data items in the DIFFRN MEASUREMENT AXIS category associate axes with goniometers.

Category group(s): inclusive_group diffrn group

 $Category\; key(s) : \verb|_diffrn_measurement_axis.measurement_device|$ _diffrn_measurement_axis.measurement_id _diffrn_measurement_axis.axis_id

* diffrn measurement_axis.axis_id

(code)

This data item is a pointer to axis.id in the AXIS category.

[diffrn measurement axis]

* diffrn measurement axis.id

(code)

This data item is a pointer to _diffrn_measurement.id in the DIFFRN MEASUREMENT category. Deprecated: do not use.

[diffrn_measurement_axis]

(*) diffrn measurement axis.measurement device (text) This data item is a pointer to diffrn measurement.device in the DIFFRN MEASUREMENT category.

[diffrn measurement axis]

(*) diffrn measurement axis.measurement id diffrn_measurement_axis.id(cif_img.dic 1.0)

This data item is a pointer to _diffrn_measurement.id in the DIFFRN MEASUREMENT category. This item was previously named diffrn measurement axis.id, which is now a deprecated name. The old name is provided as an alias but should not be used for new work

[diffrn measurement axis]

DIFFRN_RADIATION

Data items in the DIFFRN RADIATION category describe the radiation used for measuring diffraction intensities, its collimation and monochromatization before the sample. Post-sample treatment of the beam is described by data items in the DIFFRN DETECTOR category.

Category group(s): inclusive_group

diffrn group

Category key(s): diffrn radiation.diffrn id

Example 1 – based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

diffrn radiation.diffrn id 'set1'

diffrn radiation.collimation '0.3 mm double pinhole'

_diffrn_radiation.monochromator

'graphite'

_diffrn_radiation.type

diffrn radiation.wavelength id

'Cu K\a'

Example 2 – based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276–2277].

_diffrn_radiation.wavelength_id

diffrn radiation.type 'Cu K\a'

diffrn_radiation.monochromator 'graphite'

diffrn radiation.collimation

(text)

diffrn_radiation_collimation(cif_core.dic 2.0.1)

The collimation or focusing applied to the radiation.

Examples: '0.3 mm double-pinhole', '0.5 mm', 'focusing mirrors'.

[diffrn radiation]

* diffrn radiation.diffrn id

This data item is a pointer to diffrn.id in the DIFFRN category.

diffrn radiation.div x source

(float)

Beam crossfire in degrees parallel to the laboratory X axis (see AXIS category). This is a characteristic of the X-ray beam as it illuminates the sample (or specimen) after all monochromation and collimation. This is the standard uncertainty (e.s.d.) of the directions of photons in the XZ plane around the mean source beam direction. Note that for some synchrotrons this value is specified in milliradians, in which case a conversion is needed. To convert a value in milliradians to a value in degrees, multiply by 0.180 and divide by π .

[diffrn_radiation]

diffrn radiation.div x y source

(float)

Beam crossfire correlation in degrees squared between the crossfire laboratory X axis component and the crossfire laboratory Yaxis component (see AXIS category). This is a characteristic of the X-ray beam as it illuminates the sample (or specimen) after all monochromation and collimation. This is the mean of the products of the deviations of the direction of each photon in the XZ plane times the deviations of the direction of the same photon in the YZ plane around the mean source beam direction. This will be zero for uncorrelated crossfire. Note that for some synchrotrons this value is specified in milliradians squared, in which case a conversion is needed. To convert a value in milliradians squared to a value in degrees squared, multiply by 0.180^2 and divide by π^2 .

Where no value is given, the assumed value is '0.0'.

[diffrn radiation]

diffrn radiation.div y source

(float)

Beam crossfire in degrees parallel to the laboratory Y axis (see AXIS category). This is a characteristic of the X-ray beam as it illuminates the sample (or specimen) after all monochromation and collimation. This is the standard uncertainty (e.s.d.) of the directions of photons in the YZ plane around the mean source beam direction. Note that for some synchrotrons this value is specified in milliradians, in which case a conversion is needed. To convert a value in milliradians to a value in degrees, multiply by 0.180 and divide by π .

Where no value is given, the assumed value is '0.0'.

[diffrn_radiation]

_diffrn_radiation.filter_edge

(float)

_diffrn_radiation_filter_edge(cif_core.dic 2.0.1)

Absorption edge in ångströms of the radiation filter used.

The permitted range is $[0.0, \infty)$.

[diffrn_radiation]

_diffrn_radiation.inhomogeneity

(float)

diffrn_radiation_inhomogeneity(cif_core.dic 2.0.1)

Half-width in millimetres of the incident beam in the direction perpendicular to the diffraction plane.

The permitted range is $[0.0, \infty)$.

[diffrn_radiation]

diffrn radiation.monochromator

(text)

diffrn_radiation_monochromator(cif_core.dic 2.0.1)

The method used to obtain monochromatic radiation. If a monochromator crystal is used, the material and the indices of the Bragg reflection are specified.

Examples: 'Zr filter', 'Ge 220', 'none', 'equatorial mounted graphite'.

[diffrn_radiation]

diffrn radiation.polarisn norm

(float)

diffrn radiation polarism norm(cif_core.dic 2.0.1)

The angle in degrees, as viewed from the specimen, between the perpendicular component of the polarization and the diffraction plane. See _diffrn_radiation_polarisn_ratio.

The permitted range is [-90.0, 90.0].

[diffrn radiation]

diffrn radiation.polarisn ratio

diffrn radiation polarisn ratio(cif_core.dic 2.0.1)

Polarization ratio of the diffraction beam incident on the crystal. This is the ratio of the perpendicularly polarized to the parallel polarized component of the radiation. The perpendicular component forms an angle of _diffrn_radiation.polarisn_norm to the normal to the diffraction plane of the sample (i.e. the plane containing the incident and reflected beams).

The permitted range is $[0.0, \infty)$.

[diffrn radiation]

diffrn radiation.polarizn source norm

The angle in degrees, as viewed from the specimen, between the normal to the polarization plane and the laboratory Y axis as defined in the AXIS category. Note that this is the angle of polarization of the source photons, either directly from a synchrotron beamline or from a monchromator. This differs from the value of <code>_diffrn_radiation.polarisn_norm</code> in that <code>_diffrn_radiation.polarisn_norm</code> refers to polarization relative to the diffraction plane rather than to the laboratory axis system. In the case of an unpolarized beam, or a beam with true circular polarization, in which no single plane of polarization can be determined, the plane should be taken as the XZ plane and the angle as 0. See <code>diffrn_radiation.polarizn_source_ratio</code>.

The permitted range is [-90.0,90.0]. Where no value is given, the assumed value is '0 . 0'.

[diffrn_radiation]

diffrn radiation.polarizn source ratio $(I_n - I_n)/(I_n + I_n)$, where I_n is the intensity (amplitude squared) of the electric vector in the plane of polarization and I_n is the intensity (amplitude squared) of the electric vector in the plane of the normal to the plane of polarization. In the case of an unpolarized beam, or a beam with true circular polarization, in which no single plane of polarization can be determined, the plane is to be taken as the XZ plane and the normal is parallel to the Y axis. Thus, if there was complete polarization in the plane of polarization, the value of _diffrn_radiation.polarizn_source_ratio would be 1, and for an unpolarized beam _diffrn_radiation.polarizn_ source ratio would have a value of 0. If the X axis has been chosen to lie in the plane of polarization, this definition will agree with the definition of 'MONOCHROMATOR' in the Denzo glossary, and values of near 1 should be expected for a bending-magnet source. However, if the X axis were perpendicular to the polarization plane (not a common choice), then the Denzo value would be the negative of diffrn radiation.polarizn source ratio. [See http://www.hkl-xray.com for information on Denzo, and Otwinowski & Minor (1997).] This differs both in the choice of ratio and choice of orientation from _diffrn_ radiation.polarism ratio, which, unlike diffrm radiation.

polarizn_source_ratio, is unbounded.

Reference: Otwinowski, Z. & Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326.

The permitted range is [-1.0, 1.0]

[diffrn_radiation]

_diffrn_radiation.probe

(line)

__diffrn_radiation_probe(cif_core.dic 2.0.1)

Name of the type of radiation used. It is strongly recommended that this be given so that the probe radiation is clearly specified.

The data value must be one of the following:

x-ray neutron electron

gamma [diffrn_radiation]

diffrn radiation.type

(line)

_diffrn_radiation_type(cif.core.dic 2.0.1)
The nature of the radiation. This is typical

The nature of the radiation. This is typically a description of the X-ray wavelength in Siegbahn notation.

Examples: 'CuK\a', 'Cu K\a~1~', 'Cu K-L~2,3~', 'white-beam'.

[diffrn radiation]

* diffrn radiation.wavelength id

(code)

This data item is a pointer to _diffrn_radiation_wavelength.id in the DIFFRN RADIATION WAVELENGTH category.

[diffrn_radiation]

diffrn radiation.xray symbol

(line)

diffrn radiation xray symbol(cif_core.dic 2.0.1)

The IUPAC symbol for the X-ray wavelength for the probe radiation

The data value must be one of the following:

K-L~3~ $K\alpha_1$ in older Siegbahn notationK-L~2~ $K\alpha_2$ in older Siegbahn notationK-M~3~ $K\beta$ in older Siegbahn notation

K-L~2 , 3~ use where K-L $_3$ and K-L $_2$ are not resolved

[diffrn_radiation]

DIFFRN_REFLN

This category redefinition has been added to extend the key of the standard DIFFRN_REFLN category.

Category group(s): inclusive_group
diffrn_group
Category key(s): _diffrn_refln.frame_id

* diffrn refln.frame id

(code)

This item is a pointer to _diffrn_data_frame.id in the DIFFRN_ DATA FRAME category.

[diffrn refln]

DIFFRN_SCAN

Data items in the DIFFRN_SCAN category describe the parameters of one or more scans, relating axis positions to frames.

Category group(s): inclusive_group diffrn_group Category key(s): diffrn scan.id

Example 1 – derived from a suggestion by R. M. Sweet.

The vector of each axis is not given here, because it is provided in the AXIS category. By making _diffrn_scan_axis.scan_idand _diffrn_scan_axis.axis_id keys of the DIFFRN_SCAN_AXIS category, an arbitrary number of scanning and fixed axes can be specified for a scan. In this example, three rotation axes and one translation axis at nonzero values are specified, with one axis stepping. There is no reason why more axes could not have been specified to step. Range information has been specified, but note that it can be calculated from the number of frames and the increment, so the data item _diffrn_scan_axis.angle_range could be dropped. Both the sweep data and the data for a single frame are specified. Note that the information on how the axes are stepped is given twice, once in terms of the overall averages in the value of _diffrn_scan.integration_time and the values for DIFFRN_SCAN_AXIS, and precisely for the given frame in the value for _diffrn_scan_frame.integration_time and the values for DIFFRN_SCAN_FRAME_AXIS. If dose-related adjustments are made to scan times and nonlinear stepping is done, these values may differ. Therefore, in interpreting the data for a particular frame it is important to use the frame-specific data.

```
diffrn_scan.id
diffrn scan.date start
                                 '2001-11-18T03:26:42'
diffrn scan.date end
                                 '2001-11-18T03:36:45
diffrn scan.integration time
                                  3.0
_diffrn_scan.frame_id_start
                                  mad L2 000
_diffrn_scan.frame_id_end
                                  mad_L2_200
diffrn scan.frames
                                  201
loop
diffrn scan axis.scan id
diffrn scan axis.axis id
{\tt \_diffrn\_scan\_axis.angle\_start}
_diffrn_scan_axis.angle_range
\_\mathtt{diffrn}\_\mathtt{scan}\_\mathtt{axis.angle}\_\mathtt{increment}
_diffrn_scan_axis.displacement_start
diffrn_scan_axis.displacement_range
diffrn scan axis.displacement increment
  1 omega 200.0 20.0 0.1 . . .
  1 kappa -40.0 0.0 0.0 . . .
  1 phi
          127.5 0.0 0.0 .
  1 tranz . . .
                     2.3 0.0 0.0
```

```
diffrn scan frame.scan id
                                    '2001-11-18T03:27:33'
diffrm scan frame.date
diffrn_scan_frame.integration_time
                                   3.0
diffrn_scan_frame.frame_id
                                     mad_L2_018
diffrn scan frame.frame number
                                     18
diffrn scan frame axis.frame id
diffrn scan frame axis.axis id
diffrn scan frame axis.angle
_diffrn_scan_frame_axis.angle_increment
diffrn_scan_frame_axis.displacement
_diffrn_scan_frame_axis.displacement_increment
  mad L2 018 omega 201.8 0.1 . .
  mad L2 018 kappa -40.0 0.0 . .
  mad L2 018 phi 127.5 0.0 . .
  mad L2_018 tranz .
                         . 2.3 0.0
```

Example 2 – a more extensive example (R. M. Sweet, P. J. Ellis & H. J. Bernstein).

A detector is placed 240 mm along the Z axis from the goniometer. This leads to a choice: either the axes of the detector are defined at the origin, and then a Z setting of -240 is entered, or the axes are defined with the necessary Z offset. In this case, the setting is used and the offset is left as zero. This axis is called DETECTOR Z. The axis for positioning the detector in the Y direction depends on the detector Z axis. This axis is called DETECTOR Y. The axis for positioning the detector in the X direction depends on the detector Y axis (and therefore on the detector Z axis). This axis is called DETECTOR X. This detector may be rotated around the Y axis. This rotation axis depends on the three translation axes. It is called DETECTOR PITCH. A coordinate system is defined on the face of the detector in terms of 2300 0.150 mm pixels in each direction. The ELEMENT X axis is used to index the first array index of the data array and the ELEMENT Y axis is used to index the second array index. Because the pixels are 0.150×0.150 mm, the centre of the first pixel is at (0.075, 0.075) in this coordinate system.

```
###CBF: VERSION 1.1
data image 1
# category DIFFRN
diffrn.id P6MB
_diffrn.crystal_id P6MB_CRYSTAL7
# category DIFFRN_SOURCE
1000
diffrn_source.diffrn_id
diffrn source.source
diffrn source.type
 P6MB synchrotron 'SSRL beamline 9-1'
# category DIFFRN_RADIATION
loop
diffrn_radiation.diffrn_id
diffrn radiation.wavelength id
diffrn radiation.monochromator
diffrn_radiation.polarizn_source_ratio
diffrn_radiation.polarizn_source_norm
diffrn_radiation.div_x_source
diffrn_radiation.div_y_source
P6MB WAVELENGTH1 'Si 111' 0.8 0.0 0.08 0.01 0.00
# category DIFFRN RADIATION WAVELENGTH
_diffrn_radiation_wavelength.id
_diffrn_radiation_wavelength.wavelength
_diffrn_radiation_wavelength.wt
 WAVELENGTH1 0.98 1.0
# category DIFFRN DETECTOR
1000
diffrn detector.diffrn id
diffrn_detector.id
diffrn detector.type
diffrn_detector.number_of_axes
 P6MB MAR345-SN26 'MAR 345' 4
# category DIFFRN DETECTOR AXIS
loop
diffrn_detector_axis.detector_id
diffrn_detector_axis.axis_id
 MAR345-SN26 DETECTOR X
 MAR345-SN26 DETECTOR_Y
```

```
MAR345-SN26 DETECTOR Z
  MAR345-SN26 DETECTOR PITCH
# category DIFFRN_DETECTOR ELEMENT
loop
diffrn detector element.id
diffrn detector element.detector id
 ELEMENT1 MAR345-SN26
# category DIFFRN DATA FRAME
1000
diffrn data frame.id
diffrn_data_frame.detector_element_id
diffrn data frame.array id
____diffrn_data_frame.binary_id
  FRAME1 ELEMENT1 ARRAY1 1
# category DIFFRN MEASUREMENT
loop
diffrn measurement.diffrn id
diffrn measurement.id
diffrn measurement.number of axes
diffrn measurement.method
  P6MB GONIOMETER 3 rotation
# category DIFFRN MEASUREMENT AXIS
loop_
_diffrn_measurement_axis.measurement_id
diffrn measurement axis.axis id
  GONIOMETER GONIOMETER PHI
  GONIOMETER GONIOMETER KAPPA
  GONIOMETER GONIOMETER OMEGA
# category DIFFRN SCAN
loop
diffrn_scan.id
diffrn scan.frame id start
diffrn_scan.frame_id_end
diffrn scan.frames
  SCAN1 FRAME1 FRAME1 1
# category DIFFRN SCAN AXIS
loop_
_diffrn_scan_axis.scan_id
_diffrn_scan_axis.axis_id
diffrn scan axis.angle start
diffrn scan axis.angle range
diffrn scan axis.angle increment
diffrn scan axis.displacement start
_diffrn_scan_axis.displacement_range
_diffrn_scan_axis.displacement_increment
  SCAN1 GONIOMETER OMEGA 12.0 1.0 1.0 0.0 0.0 0.0
  SCAN1 GONIOMETER_KAPPA 23.3 0.0 0.0 0.0 0.0 0.0
  SCAN1 GONIOMETER_PHI -165.8 0.0 0.0 0.0 0.0 0.0
  SCAN1 DETECTOR Z 0.0 0.0 0.0 -240.0 0.0 0.0
  SCAN1 DETECTOR Y 0.0 0.0 0.0 0.6 0.0 0.0
  SCAN1 DETECTOR X 0.0 0.0 0.0 -0.5 0.0 0.0
  SCAN1 DETECTOR_PITCH 0.0 0.0 0.0 0.0 0.0 0.0
# category DIFFRN_SCAN_FRAME
loop
diffrn scan frame.frame id
diffrn scan frame.frame number
diffrn scan frame.integration time
_diffrn_scan_frame.scan_id
diffrn scan frame.date
 FRAME1 1 20.0 SCAN1 1997-12-04T10:23:48
# category DIFFRN SCAN FRAME AXIS
loop
_diffrn_scan_frame_axis.frame_id
_diffrn_scan_frame_axis.axis_id
_diffrn_scan_frame_axis.angle
_diffrn_scan_frame_axis.displacement
 FRAME1 GONIOMETER_OMEGA 12.0 0.0
  FRAME1 GONIOMETER_KAPPA 23.3 0.0
  FRAME1 GONIOMETER PHI -165.8 0.0
  FRAME1 DETECTOR Z 0.0 -240.0
  FRAME1 DETECTOR Y 0.0 0.6
  FRAME1 DETECTOR X 0.0 -0.5
  FRAME1 DETECTOR_PITCH 0.0 0.0
```

```
# category AXIS
loop_
axis.id
axis.type
_axis.equipment
axis.depends on
_axis.vector[1] _axis.vector[2] _axis.vector[3] _axis.offset[1] _axis.offset[2] _axis.offset[3]
GONIOMETER OMEGA rotation goniometer . 1 0 0 . .
GONIOMETER KAPPA rotation goniometer GONIOMETER OMEGA
    0.64279 0 0.76604 . . .
GONIOMETER_PHI rotation goniometer GONIOMETER_KAPPA
    100...
SOURCE
                general source . 0 0 1 . . .
GRAVITY
                general gravity . 0 -1 0 . .
DETECTOR Z
                translation detector . 0 0 1 0 0 0
DETECTOR Y
                translation detector DETECTOR Z 0 1 0 0 0 0
                translation detector DETECTOR Y 1 0 0 0 0 0
DETECTOR X
DETECTOR PITCH rotation detector DETECTOR X 0 1 0 0 0 0
ELEMENT X
                translation detector DETECTOR_PITCH
    1 0 0 172.43 -172.43 0
ELEMENT_Y
                translation detector ELEMENT_X
    0 1 0 0 0 0
# category ARRAY STRUCTURE LIST
loop
_array_structure_list.array_id
_array_structure_list.index
_array_structure_list.dimension
array structure list.precedence
array structure list.direction
array structure list.axis set id
 ARRAY1 1 2300 1 increasing ELEMENT X
 ARRAY1 2 2300 2 increasing ELEMENT_Y
# category ARRAY_STRUCTURE_LIST_AXIS
array structure list axis.axis set id
_array_structure_list_axis.axis id
_array_structure_list_axis.displacement_increment
 ELEMENT X ELEMENT X 0.075 0.150
 ELEMENT_Y ELEMENT_Y 0.075 0.150
# category ARRAY_ELEMENT_SIZE
loop
array element size.array id
_array_element_size.index
_array_element_size.size
 ARRAY1 1 150e-6
 ARRAY1 2 150e-6
# category ARRAY INTENSITIES
loop
array intensities.array id
_array_intensities.binary_id
_array_intensities.linearity
_array_intensities.gain
_array_intensities.gain_esd
_array_intensities.overload
_array_intensities.undefined_value
 ARRAY1 1 linear 1.15 0.2 240000 0
# category ARRAY STRUCTURE
loop
_array_structure.id
_array_structure.encoding_type
_array_structure.compression_type
array structure.byte order
 ARRAY1 "signed 32-bit integer" packed little_endian
# category ARRAY_DATA
loop
_array_data.array_id
_array_data.binary_id
_array_data.data
ARRAY1 1
--CIF-BINARY-FORMAT-SECTION--
Content-Type: application/octet-stream;
conversions="x-CBF_PACKED"
Content-Transfer-Encoding: BASE64
```

```
X-Binary-Size: 3801324
X-Binary-TD: 1
X-Binary-Element-Type: "signed 32-bit integer"
Content-MD5: 071ZFvF+a0cW85IN7us18A==
AABRAAAAAAAAAAAAAAAAAA ...AAZBQSr1sKNBOeOe9HITdMdDUnbq7bg
8REo6TtBrxJlvKqAvx9YDMD6...r/tgssjMIJMXATDsZobL90AEXc4KigE
--CIF-BINARY-FORMAT-SECTION----
Example 3 - Example 2 revised for a spiral scan (R. M. Sweet, P. J. Ellis & H. J.
Rernstein)
A detector is placed 240 mm along the Z axis from the goniometer, as in Example 2 above,
but in this example the image plate is scanned in a spiral pattern from the outside edge in. The axis for positioning the detector in the Y direction depends on the detector Z axis. This axis
is called DETECTOR_Y. The axis for positioning the detector in the X direction depends on
the detector Y axis (and therefore on the detector Z axis). This axis is called DETECTOR_X.
This detector may be rotated around the Y axis. This rotation axis depends on the three translation axes. It is called DETECTOR_PITCH. A coordinate system is defined on the face of
the detector in terms of a coupled rotation axis and radial scan axis to form a spiral scan.
The rotation axis is called ELEMENT_ROT and the radial axis is called ELEMENT_RAD.
A 150 \mum radial pitch and a 75 \mum 'constant velocity' angular pitch are assumed. Indexing
is carried out first on the rotation axis and the radial axis is made to be dependent on it. The
two axes are coupled to form an axis set ELEMENT_SPIRAL.
###CBF: VERSION 1.1
data image 1
# category DIFFRN
diffrn.id P6MB
diffrn.crystal id P6MB CRYSTAL7
# category DIFFRN_SOURCE
diffrn source.diffrn id
diffrn source.source
__diffrn_source.type
  P6MB synchrotron 'SSRL beamline 9-1'
# category DIFFRN_RADIATION
loop_
diffrn radiation.diffrn id
 diffrn_radiation.wavelength_id
diffrn_radiation.monochromator
diffrn radiation.polarizn source ratio
 ____diffrn_radiation.polarizn_source_norm
 _{	t diffrn\_radiation.div\_x\_source}
_diffrn_radiation.div_y_source
_diffrn_radiation.div_x_y_source
  P6MB WAVELENGTH1 'Si 111' 0.8 0.0 0.08 0.01 0.00
# category DIFFRN RADIATION WAVELENGTH
loop
diffrn radiation wavelength.id
 diffrn radiation wavelength.wavelength
_diffrn_radiation_wavelength.wt
  WAVELENGTH1 0.98 1.0
# category DIFFRN_DETECTOR
loop
diffrn detector.diffrn id
 diffrn detector.id
 diffrn detector.tvpe
_diffrn_detector.number_of_axes
  P6MB MAR345-SN26 'MAR 345' 4
# category DIFFRN_DETECTOR_AXIS
1000
diffrn detector axis.detector id
_diffrn_detector_axis.axis_id
  MAR345-SN26 DETECTOR X
  MAR345-SN26 DETECTOR Y
  MAR345-SN26 DETECTOR Z
  MAR345-SN26 DETECTOR_PITCH
# category DIFFRN_DETECTOR ELEMENT
loop
 _diffrn_detector_element.id
_diffrn_detector_element.detector_id
```

ELEMENT1 MAR345-SN26

```
# category DIFFRN DATA FRAME
1000
diffrn data frame.id
diffrn_data_frame.detector_element_id
diffrn data frame.array id
diffrn data frame.binary id
 FRAME1 ELEMENT1 ARRAY1 1
# category DIFFRN MEASUREMENT
loop
diffrn measurement.diffrn id
diffrn measurement.id
diffrn measurement.number of axes
____diffrn measurement.method
 P6MB GONIOMETER 3 rotation
# category DIFFRN MEASUREMENT AXIS
1000
_diffrn_measurement_axis.measurement_id
diffrn_measurement_axis.axis_id
  GONIOMETER GONIOMETER PHI
  GONIOMETER GONIOMETER KAPPA
  GONIOMETER GONIOMETER OMEGA
# category DIFFRN SCAN
loop
diffrn_scan.id
diffrn_scan.frame_id_start
diffrn scan.frame id end
diffrn scan.frames
 SCAN1 FRAME1 FRAME1 1
# category DIFFRN SCAN AXIS
loop
_diffrn_scan_axis.scan_id
diffrn scan axis.axis id
diffrn scan axis.angle start
diffrn scan axis.angle range
diffrn scan axis.angle increment
diffrn scan axis.displacement start
_diffrn_scan_axis.displacement_range
_diffrn_scan_axis.displacement_increment
  SCAN1 GONIOMETER_OMEGA 12.0 1.0 1.0 0.0 0.0 0.0
  SCAN1 GONIOMETER_KAPPA 23.3 0.0 0.0 0.0 0.0 0.0
  SCAN1 GONIOMETER_PHI -165.8 0.0 0.0 0.0 0.0 0.0
  SCAN1 DETECTOR Z 0.0 0.0 0.0 -240.0 0.0 0.0
  SCAN1 DETECTOR Y 0.0 0.0 0.6 0.0 0.0
  SCAN1 DETECTOR X 0.0 0.0 0.0 -0.5 0.0 0.0
  SCAN1 DETECTOR_PITCH 0.0 0.0 0.0 0.0 0.0 0.0
# category DIFFRN_SCAN_FRAME
diffrn scan frame.frame id
diffrn scan frame.frame number
diffrn scan frame.integration time
diffrn scan frame.scan id
diffrn scan frame.date
 FRAME1 1 20.0 SCAN1 1997-12-04T10:23:48
# category DIFFRN SCAN FRAME AXIS
loop
diffrn scan_frame_axis.frame_id
diffrn_scan_frame_axis.axis_id
diffrn_scan_frame_axis.angle
_diffrn_scan_frame_axis.displacement
  FRAME1 GONIOMETER_OMEGA 12.0 0.0
  FRAME1 GONIOMETER KAPPA 23.3 0.0
  FRAME1 GONIOMETER PHI -165.8 0.0
 FRAME1 DETECTOR Z 0.0 -240.0
  FRAME1 DETECTOR Y 0.0 0.6
 FRAME1 DETECTOR X 0.0 -0.5
 FRAME1 DETECTOR_PITCH 0.0 0.0
# category AXIS
_axis.id _axis.type _axis.equipment _axis.depends_on
_axis.vector[1] _axis.vector[2] _axis.vector[3] _axis.offset[1] _axis.offset[2] _axis.offset[3]
GONIOMETER OMEGA rotation goniometer . 1 0 0 . . .
GONIOMETER_KAPPA rotation goniometer GONIOMETER_OMEGA
     0.64279 0 0.76604 . . .
```

```
GONIOMETER PHI rotation goniometer GONIOMETER KAPPA
    100...
SOURCE
               general source . 0 0 1 . . .
CDAVITV
               general gravity . 0 -1 0 . .
DETECTOR_Z
               translation detector . 0 0 1 0 0 0 \,
DETECTOR Y
               translation detector DETECTOR Z 0 1 0 0 0
               translation detector DETECTOR Y 1 0 0 0 0
DETECTOR X
DETECTOR PITCH rotation detector DETECTOR X 0 1 0 0 0 0
ELEMENT_ROT translation detector DETECTOR_PITCH 0 0 1 0 0
ELEMENT RAD
              translation detector ELEMENT ROT 0 1 0 0 0 0
# category ARRAY_STRUCTURE_LIST
array structure list.array id
array structure list.index
array structure list.dimension
_array_structure_list.precedence
_array_structure_list.direction
_array_structure_list.axis_set_id
 ARRAY1 1 8309900 1 increasing ELEMENT_SPIRAL
# category ARRAY_STRUCTURE_LIST_AXIS
loop
_array_structure_list_axis.axis set id
_array_structure_list_axis.axis_id
_array_structure_list_axis.angle
_array_structure_list_axis.displacement
_array_structure_list_axis.angular_pitch
_array_structure_list_axis.radial_pitch
  ELEMENT SPIRAL ELEMENT ROT 0 . 0.075
  ELEMENT SPIRAL ELEMENT RAD . 172.5 .
                                         -0.150
# category ARRAY ELEMENT SIZE
# The actual pixels are 0.075 by 0.150 mm.
# We give the coarser dimension here.
loop
array element size.array id
_array_element_size.index
_array_element_size.size
  ARRAY1 1 150e-6
# category ARRAY_INTENSITIES
loop
_array_intensities.array id
array intensities.binary id
array intensities.linearity
__array_intensities.gain
array_intensities.gain esd
array intensities.overload
_array_intensities.undefined_value
 ARRAY1 1 linear 1.15 0.2 240000 0
# category ARRAY STRUCTURE
loop
array structure.id
_array_structure.encoding_type
_array_structure.compression_type
_array_structure.byte_order
  ARRAY1 "signed 32-bit integer" packed little endian
# category ARRAY DATA
1000
array data.array id
array_data.binary_id
_array_data.data
ARRAY1 1
--CIF-BINARY-FORMAT-SECTION--
Content-Type: application/octet-stream;
conversions="x-CBF PACKED"
Content-Transfer-Encoding: BASE64
X-Binary-Size: 3801324
X-Binary-ID: 1
X-Binary-Element-Type: "signed 32-bit integer"
Content-MD5: 071ZFvF+a0cW85IN7us18A==
AABRAAAAAAAAAAAAAAAAAA ...AAZBQSr1sKNBOeOe9HITdMdDUnbq7bg
8REo6TtBrxJ1vKqAvx9YDMD6...r/tgssjMIJMXATDsZobL90AEXc4KigE
--CIF-BINARY-FORMAT-SECTION----
```

diffrn scan.date end

(vvvv-mm-dd)

The date and time of the end of the scan. Note that this may be an estimate generated during the scan, before the precise time of the end of the scan is known.

[diffrn scan]

diffrn scan.date start

(yyyy-mm-dd)

The date and time of the start of the scan.

[diffrn scan]

* diffrn scan.frame id end

(code)

The value of this data item is the identifier of the last frame in the scan. This item is a pointer to <code>_diffrn_data_frame.id</code> in the DIFFRN DATA FRAME category.

[diffrn_scan]

* diffrn scan.frame id start

(code

The value of this data item is the identifier of the first frame in the scan. This item is a pointer to <code>_diffrn_data_frame.id</code> in the DIFFRN DATA FRAME category.

[diffrn_scan]

diffrn scan.frames

(int

The value of this data item is the number of frames in the scan. The permitted range is $[1,\infty)$. [diffrn_scan]

* diffrn scan.id

(cod

The value of _diffrn_scan.id uniquely identifies each scan. The identifier is used to tie together all the information about the scan.

The following item(s) have an equivalent role in their respective categories:

_diffrn_scan_axis.scan_id,

_diffrn_scan_frame.scan_id.

[diffrn_scan]

_diffrn_scan.integration_time

(float)

Approximate average time in seconds to integrate each step of the scan. The precise time for integration of each particular step must be provided in _diffrn_scan_frame.integration_time, even if all steps have the same integration time.

The permitted range is $[0.0, \infty)$.

[diffrn_scan]

DIFFRN_SCAN_AXIS

Data items in the DIFFRN_SCAN_AXIS category describe the settings of axes for particular scans. Unspecified axes are assumed to be at their zero points.

Category group(s): inclusive_group
diffrn_group

Category key(s): _diffrn_scan_axis.scan_id

_diffrn_scan_axis.axis_id

diffrn scan axis.angle increment

The increment for each step for the specified axis in degrees. In general, this will agree with <code>_diffrn_scan_frame_axis.angle_increment</code>. The sum of the values of <code>_diffrn_scan_frame_axis.angle</code> and <code>_diffrn_scan_frame_axis.angle</code> and <code>_diffrn_scan_frame_axis.angle_increment</code> is the angular setting of the axis at the end of the integration time for a given frame. If the individual frame values vary, then the value of <code>_diffrn_scan_axis.angle_increment</code> will be representative of the ensemble of values of <code>_diffrn_scan_frame_axis.angle_increment</code> (e.g. the mean).

Where no value is given, the assumed value is '0.0'.

[diffrn scan axis]

diffrn scan axis.angle range

(float)

The range from the starting position for the specified axis in degrees.

Where no value is given, the assumed value is '0.0'.

[diffrn scan axis]

diffrn scan axis.angle rstrt incr

The increment after each step for the specified axis in degrees. In general, this will agree with _diffrn_scan_frame_axis.angle_rstrt_incr. The sum of the values of _diffrn_scan_frame_axis.angle, _diffrn_scan_frame_axis.angle_increment and _diffrn_scan_frame_axis.angle_rstrt_incr is the angular setting of the axis at the start of the integration time for the next frame relative to a given frame and should equal _diffrn_scan_frame_axis.angle for this next frame. If the individual frame values vary, then the value of _diffrn_scan_axis.angle_rstrt_incr will be representative of the ensemble of values of _diffrn_scan_frame_axis.angle_rstrt_incr will be representative of the ensemble of values of _diffrn_scan_frame_axis.angle_rstrt_incr (e.g. the mean).

Where no value is given, the assumed value is '0.0'.

[diffrn scan axis]

diffrn_scan_axis.angle_start

(float)

The starting position for the specified axis in degrees.

Where no value is given, the assumed value is '0.0'.

[diffrn scan axis]

* diffrn scan axis.axis id

(code)

The value of this data item is the identifier of one of the axes for the scan for which settings are being specified. Multiple axes may be specified for the same value of <code>_diffrn_scan.id</code>. This item is a pointer to <code>_axis.id</code> in the AXIS category.

diffrn scan axis.displacement increment

[diffrn_scan_axis]

The increment for each step for the specified axis in millimetres. In general, this will agree with _diffrn_scan_frame_axis.displacement_increment. The sum of the values of _diffrn_scan_frame_axis.displacement and _diffrn_scan_frame_axis.displacement is the angular setting of the axis at the end of the integration time for a given frame. If the individual frame values vary, then the value of _diffrn_scan_axis.displacement_increment will be repre-

axis.displacement_increment (e.g. the mean). Where no value is given, the assumed value is '0.0'.

[diffrn scan axis]

diffrn scan axis.displacement range (float)

sentative of the ensemble of values of _diffrn_scan_frame_

The range from the starting position for the specified axis in millimetres.

Where no value is given, the assumed value is '0.0'.

[diffrn_scan_axis]

_diffrn_scan_axis.displacement_rstrt_incr (float)
The increment for each step for the specified axis in millimetres. In general, this will agree with _diffrn_scan_frame_axis.displacement_rstrt_incr. The sum of the values of _diffrn_scan_frame_axis.displacement, _diffrn_scan_frame_axis.displacement and _diffrn_scan_frame_axis.displacement_increment and _diffrn_scan_frame_axis.displacement_rstrt_incr is the angular setting of the axis at the start of the integration time for the next frame relative to a given frame and should equal _diffrn_scan_frame_axis.displacement for this next frame. If the individual frame values vary, then the value of _diffrn_scan_axis.displacement_rstrt_incr will be representative of the ensemble of values of _diffrn_scan_frame_axis.displacement_rstrt_incr(e.g. the mean).

Where no value is given, the assumed value is '0.0'.

[diffrn_scan_axis]

(code)

_diffrn_scan_axis.displacement_start

The starting position for the specified axis in millimetres.

Where no value is given, the assumed value is '0.0'. [diffrn_scan_axis

* diffrn scan axis.scan id

The value of this data item is the identifier of the scan for which axis settings are being specified. Multiple axes may be specified for the same value of _diffrn_scan.id. This item is a pointer to diffrn scan.id in the DIFFRN SCAN category.

[diffrn_scan_axis]

DIFFRN_SCAN_FRAME

Data items in the DIFFRN_SCAN_FRAME category describe the relationships of particular frames to scans.

Category group(s): inclusive_group diffrn_group

Category key(s): _diffrn_scan_frame.scan_id _diffrn_scan_frame.frame_id

diffrn scan frame.date

(yyyy-mm-dd)

The date and time of the start of the frame being scanned.

[diffrn_scan_frame]

* diffrn scan frame.frame id (code)

The value of this data item is the identifier of the frame being examined. This item is a pointer to _diffrn_data_frame.id in the DIFFRN DATA FRAME category.

[diffrn_scan_frame]

_diffrn_scan_frame.frame_number (in

The value of this data item is the number of the frame within the scan, starting with 1. It is not necessarily the same as the value of diffrn scan frame.frame id, but it may be.

The permitted range is $[0,\infty)$. [diffrn_scan_frame]

* diffrn scan frame.integration time (float)

The time in seconds to integrate this step of the scan. This should be the precise time of integration of each particular frame. The value of this data item should be given explicitly for each frame and not inferred from the value of <code>_diffrn_scan.integration time</code>.

The permitted range is $[0.0, \infty)$.

[diffrn_scan_frame]

* diffrn scan frame.scan id (code)

The value of _diffrn_scan_frame.scan_id identifies the scan containing this frame. This item is a pointer to _diffrn_scan.id in the DIFFRN SCAN category.

[diffrn_scan_frame]

DIFFRN_SCAN_FRAME_AXIS

Data items in the DIFFRN_SCAN_FRAME_AXIS category describe the settings of axes for particular frames. Unspecified axes are assumed to be at their zero points. If, for any given frame, nonzero values apply for any of the data items in this category, those values should be given explicitly in this category and not simply inferred from values in DIFFRN_SCAN_AXIS.

Category group(s): inclusive_group

diffrn_group

Category key(s): _diffrn_scan_frame_axis.frame_id

_diffrn_scan_frame_axis.axis_id

diffrn scan frame axis.angle

(float)

The setting of the specified axis in degrees for this frame. This is the setting at the start of the integration time.

Where no value is given, the assumed value is '0.0'. [diffrn_scan_frame_axis]

_diffrn_scan_frame_axis.angle_increment (float)
The increment for this frame for the angular setting
of the specified axis in degrees. The sum of the values of
_diffrn_scan_frame_axis.angle and _diffrn_scan_frame_
axis.angle_increment is the angular setting of the axis at the
end of the integration time for this frame.

Where no value is given, the assumed value is '0.0'. [diffrn_scan_frame_axis]

_diffrn_scan_frame_axis.angle_rstrt_incr (float)
The increment after this frame for the angular setting
of the specified axis in degrees. The sum of the values of _diffrn_scan_frame_axis.angle, _diffrn_scan_frame_
axis.angle_increment and _diffrn_scan_frame_axis.angle_
rstrt_incr is the angular setting of the axis at the start
of the integration time for the next frame and should equal
diffrn scan frame axis.angle for this next frame.

Where no value is given, the assumed value is '0.0'. [diffrn_scan_frame_axis]

* diffrn scan frame axis.axis id

The value of this data item is the identifier of one of the axes for the frame for which settings are being specified. Multiple axes may be specified for the same value of _diffrn_scan_frame_id. This item is a pointer to axis.id in the AXIS category.

[diffrn scan frame axis]

_diffrn_scan_frame_axis.displacement (float)

The setting of the specified axis in millimetres for this frame. This is the setting at the start of the integration time.

Where no value is given, the assumed value is '0.0'. [diffrn scan frame axis]

_diffrn_scan_frame_axis.displacement_increment

The increment for this frame for the displacement setting of the specified axis in millimetres. The sum of the values of _diffrn_scan_frame_axis.displacement and _diffrn_scan_frame_axis.displacement is the angular setting of the axis at the end of the integration time for this frame.

Where no value is given, the assumed value is '0.0'. [diffrn_scan_frame_axis]

_diffrn_scan_frame_axis.displacement_rstrt_incr (float)

The increment for this frame for the displacement setting of the specified axis in millimetres. The sum of the values of _diffrn_scan_frame_axis.displacement, _diffrn_scan_frame_axis.displacement_increment and _diffrn_scan_frame_axis.displacement_rstrt_incr is the angular setting of the axis at the start of the integration time for the next frame and should equal _diffrn_scan_frame_axis.displacement for this next frame.

Where no value is given, the assumed value is '0.0'. [diffrn_scan_frame_axis]

* diffrn scan frame axis.frame id

(code)

The value of this data item is the identifier of the frame for which axis settings are being specified. Multiple axes may be specified for the same value of <code>_diffrn_scan_frame.frame_id</code>. This item is a pointer to <code>_diffrn_data_frame.id</code> in the DIFFRN_DATA_FRAME category.

[diffrn scan frame axis]