#\#CIF_2.0 ###################################################################### # # # MAGNETIC CIF DICTIONARY # # # ###################################################################### data_MAGNETIC_CIF _dictionary.title MAGNETIC_CIF _dictionary.class Instance _dictionary.version 0.9.8 _dictionary.date 2020-07-28 _dictionary.ddl_conformance 3.13.1 _description.text ; The magnetic CIF dictionary is an extension to the core CIF dictionary. It defines datanames for describing magnetic structures. ; save_MAGNETIC _definition.id MAGNETIC _definition.scope Category _definition.class Head _name.object_id MAGNETIC _description.text ; This category is the parent of all categories in the dictionary. Head categories from other dictionaries are reparented to this category. ; _import.get [{"file":"cif_core.dic" "save":"CIF_CORE" "mode":"Full"} {"file":"cif_ms.dic" "save":"CIF_MS" "mode":"Full"}] save_ ################################### ## ATOM_SITE_FOURIER_WAVE_VECTOR ## ################################### save_atom_site_Fourier_wave_vector _definition.id atom_site_Fourier_wave_vector _name.object_id atom_site_Fourier_wave_vector _name.category_id MS_GROUP _definition.update 2016-05-24 _description.text ; Data items in the ATOM_SITE_FOURIER_WAVE_VECTOR category record details about the wave vectors of the Fourier terms used in the structural model. This category is fully defined in the modulated structures dictionary. ; _definition.scope Category _definition.class Loop loop_ _description_example.case _description_example.detail # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ; loop_ _cell_wave_vector_seq_id _cell_wave_vector_x _cell_wave_vector_y _cell_wave_vector_z 1 0.30000 0.30000 0.00000 2 -0.60000 0.30000 0.00000 loop_ _atom_site_Fourier_wave_vector_seq_id _atom_site_Fourier_wave_vector_x _atom_site_Fourier_wave_vector_y _atom_site_Fourier_wave_vector_z _atom_site_Fourier_wave_vector_q_coeff 1 -0.30000 0.60000 0.00000 [1 1] 2 -0.60000 0.30000 0.00000 [0 1] 3 -0.30000 -0.30000 0.00000 [-1 0] ; ; Example 1 - Hypothetical example showing the modulation wave vector components expressed using the array data item _atom_site_Fourier_wave_vector_q_coeff. ; ; loop_ _cell_wave_vector_seq_id _cell_wave_vector_x _cell_wave_vector_y _cell_wave_vector_z 1 0.30000 0.30000 0.00000 2 -0.60000 0.30000 0.00000 loop_ _atom_site_Fourier_wave_vector_seq_id _atom_site_Fourier_wave_vector_x _atom_site_Fourier_wave_vector_y _atom_site_Fourier_wave_vector_z _atom_site_Fourier_wave_vector_q1_coeff _atom_site_Fourier_wave_vector_q2_coeff 1 -0.30000 0.60000 0.00000 1 1 2 -0.60000 0.30000 0.00000 0 1 3 -0.30000 -0.30000 0.00000 -1 0 ; ; Example 2 - As example 1, but using separate data items for each individual component of the modulation wave vector. ; # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - save_ save__atom_site_Fourier_wave_vector.q_coeff _definition.id '_atom_site_Fourier_wave_vector.q_coeff' _name.category_id atom_site_Fourier_wave_vector _name.object_id q_coeff loop_ _alias.definition_id '_atom_site_Fourier_wave_vector_q_coeff' _definition.update 2016-06-21 _description.text ; For a given incommensurate modulation that contributes to the structure, the wave vector of the modulation can be expressed as an integer linear combination of the d independent wave vectors that define the (3+d)-dimensional superspace. This tag holds each of the integer coefficients as an array. At the time of this writing, no examples with more than three independent wave vectors are known, though there is no theoretical limit to the number that could occur. These tags are not explicitly magnetic; they are equally applicable to any incommensurate modulation. ; _type.contents Integer _type.container Array _type.dimension [] save_ save__atom_site_Fourier_wave_vector.q1_coeff _definition.id '_atom_site_Fourier_wave_vector.q1_coeff' _name.category_id atom_site_Fourier_wave_vector _name.object_id q1_coeff loop_ _alias.definition_id '_atom_site_Fourier_wave_vector_q1_coeff' _definition.update 2016-06-21 _description.text ; For a given incommensurate modulation that contributes to the structure, the wave vector of the modulation can be expressed as an integer linear combination of the d independent wave vectors that define the (3+d)-dimensional superspace. The q1_coeff tag holds the integer coefficient of the contribution of the first independent wave vector, the q2_coeff tag holds the integer coefficient of the contribution of the second independent wave vector, and so on. At the time of this writing, no examples with more than three independent wave vectors are known, though there is no theoretical limit to the number that could occur. These tags are not explicitly magnetic; they are equally applicable to any incommensurate modulation. ; _type.contents Integer _type.container Single loop_ _method.purpose _method.expression Evaluation ; with a as atom_site_Fourier_wave_vector a.q1_coeff = a.q_coeff[0] ; save_ save__atom_site_Fourier_wave_vector.q2_coeff _definition.id '_atom_site_Fourier_wave_vector.q2_coeff' _name.category_id atom_site_Fourier_wave_vector _name.object_id q2_coeff loop_ _alias.definition_id '_atom_site_Fourier_wave_vector_q2_coeff' _definition.update 2016-06-21 _description.text ; For a given incommensurate modulation that contributes to the structure, the wave vector of the modulation can be expressed as an integer linear combination of the d independent wave vectors that define the (3+d)-dimensional superspace. The q1_coeff tag holds the integer coefficient of the contribution of the first independent wave vector, the q2_coeff tag holds the integer coefficient of the contribution of the second independent wave vector, and so on. At the time of this writing, no examples with more than three independent wave vectors are known, though there is no theoretical limit to the number that could occur. These tags are not explicitly magnetic; they are equally applicable to any incommensurate modulation. ; _type.contents Integer _type.container Single loop_ _method.purpose _method.expression Evaluation ; with a as atom_site_Fourier_wave_vector a.q2_coeff = a.q_coeff[1] ; save_ save__atom_site_Fourier_wave_vector.q3_coeff _definition.id '_atom_site_Fourier_wave_vector.q3_coeff' _name.category_id atom_site_Fourier_wave_vector _name.object_id q3_coeff loop_ _alias.definition_id '_atom_site_Fourier_wave_vector_q3_coeff' _definition.update 2016-06-21 _description.text ; For a given incommensurate modulation that contributes to the structure, the wave vector of the modulation can be expressed as an integer linear combination of the d independent wave vectors that define the (3+d)-dimensional superspace. The q1_coeff tag holds the integer coefficient of the contribution of the first independent wave vector, the q2_coeff tag holds the integer coefficient of the contribution of the second independent wave vector, and so on. At the time of this writing, no examples with more than three independent wave vectors are known, though there is no theoretical limit to the number that could occur. These tags are not explicitly magnetic; they are equally applicable to any incommensurate modulation. ; _type.contents Integer _type.container Single save_ ###################### ## ATOM_SITE_MOMENT ## ###################### save_atom_site_moment _definition.id atom_site_moment _name.category_id atom_site _name.object_id atom_site_moment _definition.update 2016-05-24 _description.text ; This category provides a loop for presenting the magnetic moments of atoms in one of several coordinate systems. This is a child category of the ATOM_SITE category, so that the magnetic moments can either be listed alongside the non-magnetic atom properties in the main ATOM_SITE loop, or be listed in a separate loop. ; _definition.scope Category _definition.class Loop loop_ _category_key.name '_atom_site_moment.label' save_ save__atom_site_moment.Cartn _definition.id '_atom_site_moment.Cartn' _name.category_id atom_site_moment _name.object_id Cartn loop_ _alias.definition_id '_atom_site_moment_Cartn' _definition.update 2016-05-24 _description.text ; The atom-site magnetic moment vector specified according to a set of orthogonal Cartesian axes where x||a and z||c* with y completing a right-hand set. ; _type.contents Real _type.dimension [3] _type.container Matrix _type.purpose Measurand _units.code Bohr_magnetons loop_ _method.purpose _method.expression Evaluation ; with a as atom_site_moment a.Cartn = [a.Cartn_x,a.Cartn_y,a.Cartn_z] ; save_ save__atom_site_moment.Cartn_x _definition.id '_atom_site_moment.Cartn_x' _name.category_id atom_site_moment _name.object_id Cartn_x loop_ _alias.definition_id '_atom_site_moment_Cartn_x' _definition.update 2016-05-24 _type.contents Real _type.container Single _type.purpose Measurand _description.text ; The x component of the atom-site magnetic moment vector (see _atom_site_moment.Cartn). ; _units.code Bohr_magnetons save_ save__atom_site_moment.Cartn_y _definition.id '_atom_site_moment.Cartn_y' _name.category_id atom_site_moment _name.object_id Cartn_y loop_ _alias.definition_id '_atom_site_moment_Cartn_y' _definition.update 2016-05-24 _type.contents Real _type.container Single _type.purpose Measurand _description.text ; The y component of the atom-site magnetic moment vector (see _atom_site_moment.Cartn). ; _units.code Bohr_magnetons save_ save__atom_site_moment.Cartn_z _definition.id '_atom_site_moment.Cartn_z' _name.category_id atom_site_moment _name.object_id Cartn_z loop_ _alias.definition_id '_atom_site_moment_Cartn_z' _definition.update 2016-05-24 _type.contents Real _type.container Single _type.purpose Measurand _description.text ; The z component of the atom-site magnetic moment vector (see _atom_site_moment.Cartn). ; _units.code Bohr_magnetons save_ save__atom_site_moment.crystalaxis _definition.id '_atom_site_moment.crystalaxis' _name.category_id atom_site_moment _name.object_id crystalaxis loop_ _alias.definition_id '_atom_site_moment_crystalaxis' _definition.update 2016-05-24 _description.text ; The atom-site magnetic moment vector specified using components parallel to each of the unit cell axes. This is the recommended coordinate system for most magnetic structures. ; _type.contents Real _type.container Matrix _type.dimension [3] _type.purpose Measurand _units.code Bohr_magnetons loop_ _method.purpose _method.expression Evaluation ; with a as atom_site_moment a.crystalaxis = [a.crystalaxis_x,a.crystalaxis_y,a.crystalaxis_z] ; save_ save__atom_site_moment.crystalaxis_x _definition.id '_atom_site_moment.crystalaxis_x' _name.category_id atom_site_moment _name.object_id crystalaxis_x loop_ _alias.definition_id '_atom_site_moment_crystalaxis_x' _definition.update 2016-05-24 _type.contents Real _type.container Single _type.purpose Measurand _description.text ; The component of the atom-site magnetic-moment vector parallel to the first unit-cell axis. See _atom_site_moment.crystalaxis. ; _units.code Bohr_magnetons save_ save__atom_site_moment.crystalaxis_y _definition.id '_atom_site_moment.crystalaxis_y' _name.category_id atom_site_moment _name.object_id crystalaxis_y loop_ _alias.definition_id '_atom_site_moment_crystalaxis_y' _definition.update 2016-05-24 _type.contents Real _type.container Single _type.purpose Measurand _description.text ; The component of the atom-site magnetic-moment vector parallel to the second unit-cell axis. See _atom_site_moment.crystalaxis. ; _units.code Bohr_magnetons save_ save__atom_site_moment.crystalaxis_z _definition.id '_atom_site_moment.crystalaxis_z' _name.category_id atom_site_moment _name.object_id crystalaxis_z loop_ _alias.definition_id '_atom_site_moment_crystalaxis_z' _definition.update 2016-05-24 _type.contents Real _type.container Single _type.purpose Measurand _description.text ; The component of the atom-site magnetic-moment vector parallel to the third unit-cell axis. See _atom_site_moment.crystalaxis. ; _units.code Bohr_magnetons save_ save__atom_site_moment.label _definition.id '_atom_site_moment.label' _name.category_id atom_site_moment _name.object_id label loop_ _alias.definition_id '_atom_site_moment_label' _import.get [{"save":atom_site_id "file":templ_attr.cif}] _definition.update 2016-05-24 save_ save__atom_site_moment.magnitude _definition.id '_atom_site_moment.magnitude' _name.category_id atom_site_moment _name.object_id magnitude loop_ _alias.definition_id '_atom_site_moment_magnitude' _definition.update 2018-07-18 _type.contents Real _type.container Single _type.purpose Measurand _description.text ; The magnitude of a magnetic moment vector. ; _units.code Bohr_magnetons save_ save__atom_site_moment.modulation_flag _definition.id '_atom_site_moment.modulation_flag' _name.category_id atom_site_moment _name.object_id modulation_flag loop_ _alias.definition_id '_atom_site_moment_modulation_flag' _definition.update 2016-05-24 _description.text ; A code that signals whether the structural model includes the modulation of the magnetic moment of a given atom site. ; _type.contents Code _type.container Single loop_ _enumeration_set.state _enumeration_set.detail 'yes' 'magnetic modulation' 'y' 'abbreviation for "yes"' 'no' 'no magnetic modulation' 'n' 'abbreviation for "no"' save_ save__atom_site_moment.refinement_flags_magnetic _definition.id '_atom_site_moment.refinement_flags_magnetic' _name.category_id atom_site_moment _name.object_id refinement_flags_magnetic loop_ _alias.definition_id '_atom_site_moment_refinement_flags_magnetic' _definition.update 2016-05-24 _type.container Single _type.purpose State _description.text ; The constraints/restraints placed on the magnetic moment during model refinement. ; _type.contents Code loop_ _enumeration_set.state _enumeration_set.detail . 'no constraint on magnetic moment' S 'special position constraint on magnetic moment' M 'modulus restraint on magnetic moment' A 'direction restraints on magnetic moment' SM 'superposition of S and M constraints/restraints' SA 'superposition of S and A constraints/restraints' MA 'superposition of M and A constraints/restraints' SMA 'superposition of S, M and A constraints/restraints' save_ save__atom_site_moment.spherical_azimuthal _definition.id '_atom_site_moment.spherical_azimuthal' _name.category_id atom_site_moment _name.object_id spherical_azimuthal loop_ _alias.definition_id '_atom_site_moment_spherical_azimuthal' _definition.update 2016-05-24 _enumeration.range 0.0:6.2831854 _units.code radians _description.text ; The azimuthal angle of the atom-site magnetic moment vector specified in spherical coordinates relative to a set of orthogonal Cartesian axes where x||a and z||c* with y completing a right-hand set. The azimuthal angle is a right-handed rotation around the +z axis starting from the +x side of the x-z plane. ; _type.contents Real _type.container Single _type.purpose Measurand save_ save__atom_site_moment.spherical_modulus _definition.id '_atom_site_moment.spherical_modulus' _name.category_id atom_site_moment _name.object_id spherical_modulus loop_ _alias.definition_id '_atom_site_moment_spherical_modulus' _definition.update 2016-05-24 _units.code Bohr_magnetons _description.text ; The modulus of the atom-site magnetic moment vector specified in spherical coordinates relative to a set of orthogonal Cartesian axes where x||a and z||c* with y completing a right-hand set. ; _type.contents Real _type.container Single _type.purpose Measurand save_ save__atom_site_moment.spherical_polar _definition.id '_atom_site_moment.spherical_polar' _name.category_id atom_site_moment _name.object_id spherical_polar loop_ _alias.definition_id '_atom_site_moment_spherical_polar' _definition.update 2016-05-24 _enumeration.range 0.0:3.1415927 _units.code radians _description.text ; The polar angle of the atom-site magnetic moment vector specified in spherical coordinates relative to a set of orthogonal Cartesian axes where x||a and z||c* with y completing a right-hand set. The polar angle is measured relative to the +z axis. ; _type.contents Real _type.container Single _type.purpose Measurand save_ save__atom_site_moment.symmform _definition.id '_atom_site_moment.symmform' _name.category_id atom_site_moment _name.object_id symmform loop_ _alias.definition_id '_atom_site_moment_symmform' _definition.update 2016-05-24 _description.text ; A symbolic expression that indicates the symmetry-restricted form of the components of the magnetic moment vector of the atom. Unlike the positional coordinates of an atom, its magnetic moment has no translational component to be represented. ; _type.contents Text _type.container Single loop_ _description_example.case _description_example.detail 'mx,my,mz' 'no symmetry restrictions' 'mx,-mx,0' ; y component equal and opposite to x component with z component zero ; 'mx,0,mz' 'y component zero' save_ save_atom_site_rotation _definition.id atom_site_rotation _name.category_id atom_site _name.object_id atom_site_rotation _definition.update 2018-07-18 _description.text ; This category provides a loop for presenting atom-site axial-vector rotations in several coordinate systems. Such axial vectors can be applied to describe the rotations of molecular or polyhedral rigid bodies about their pivot atoms or sites, though the use of this category to describe patterns of rotations does not require that rigid bodies be explicitly defined. Because magnetic moments and rotations are both axial rather than polar vectors, their descriptive requirements are highly analogous, except that static rotations are insensitive to time-reversal, so that normal (non-magnetic) symmetry groups are appropriate. This is a child category of the ATOM_SITE category, though pivot-site rotations will typically be listed in a separate loop; the category items mirror those of defined for the ATOM_SITE_MOMENT category. ; _definition.scope Category _definition.class Loop loop_ _category_key.name '_atom_site_rotation.label' save_ save__atom_site_rotation.Cartn _definition.id '_atom_site_rotation.Cartn' _name.category_id atom_site_rotation _name.object_id Cartn loop_ _alias.definition_id '_atom_site_rotation_Cartn' _definition.update 2018-07-18 _description.text ; The atom-site rotation vector specified according to a set of orthogonal Cartesian axes where x||a and z||c* with y completing a right-hand set. ; _type.contents Real _type.dimension [3] _type.container Matrix _type.purpose Measurand _units.code radians loop_ _method.purpose _method.expression Evaluation ; with a as atom_site_rotation a.Cartn = [a.Cartn_x,a.Cartn_y,a.Cartn_z] ; save_ save__atom_site_rotation.Cartn_x _definition.id '_atom_site_rotation.Cartn_x' _name.category_id atom_site_rotation _name.object_id Cartn_x loop_ _alias.definition_id '_atom_site_rotation_Cartn_x' _definition.update 2018-07-18 _type.contents Real _type.container Single _type.purpose Measurand _description.text ; The x component of the atom-site rotation vector (see _atom_site_rotation.Cartn). ; _units.code radians save_ save__atom_site_rotation.Cartn_y _definition.id '_atom_site_rotation.Cartn_y' _name.category_id atom_site_rotation _name.object_id Cartn_y loop_ _alias.definition_id '_atom_site_rotation_Cartn_y' _definition.update 2018-07-18 _type.contents Real _type.container Single _type.purpose Measurand _description.text ; The y component of the atom-site rotation vector (see _atom_site_rotation.Cartn). ; _units.code radians save_ save__atom_site_rotation.Cartn_z _definition.id '_atom_site_rotation.Cartn_z' _name.category_id atom_site_rotation _name.object_id Cartn_z loop_ _alias.definition_id '_atom_site_rotation_Cartn_z' _definition.update 2018-07-18 _type.contents Real _type.container Single _type.purpose Measurand _description.text ; The z component of the atom-site rotation vector (see _atom_site_rotation.Cartn). ; _units.code radians save_ save__atom_site_rotation.crystalaxis _definition.id '_atom_site_rotation.crystalaxis' _name.category_id atom_site_rotation _name.object_id crystalaxis loop_ _alias.definition_id '_atom_site_rotation_crystalaxis' _definition.update 2018-07-18 _description.text ; The atom-site rotation vector specified using the components parallel to each of the unit-cell axes. This is the recommended coordinate system for presenting axial rotation vectors. ; _type.contents Real _type.container Matrix _type.dimension [3] _type.purpose Measurand _units.code radians loop_ _method.purpose _method.expression Evaluation ; with a as atom_site_rotation a.crystalaxis = [a.crystalaxis_x,a.crystalaxis_y,a.crystalaxis_z] ; save_ save__atom_site_rotation.crystalaxis_x _definition.id '_atom_site_rotation.crystalaxis_x' _name.category_id atom_site_rotation _name.object_id crystalaxis_x loop_ _alias.definition_id '_atom_site_rotation_crystalaxis_x' _definition.update 2018-07-18 _type.contents Real _type.container Single _type.purpose Measurand _description.text ; The component of the atom-site rotation vector parallel to the first unit-cell axis. See _atom_site_rotation.crystalaxis. ; _units.code radians save_ save__atom_site_rotation.crystalaxis_y _definition.id '_atom_site_rotation.crystalaxis_y' _name.category_id atom_site_rotation _name.object_id crystalaxis_y loop_ _alias.definition_id '_atom_site_rotation_crystalaxis_y' _definition.update 2018-07-18 _type.contents Real _type.container Single _type.purpose Measurand _description.text ; The component of the atom-site rotation vector parallel to the second unit-cell axis. See _atom_site_rotation.crystalaxis. ; _units.code radians save_ save__atom_site_rotation.crystalaxis_z _definition.id '_atom_site_rotation.crystalaxis_z' _name.category_id atom_site_rotation _name.object_id crystalaxis_z loop_ _alias.definition_id '_atom_site_rotation_crystalaxis_z' _definition.update 2018-07-18 _type.contents Real _type.container Single _type.purpose radians _description.text ; The component of the atom-site rotation vector parallel to the third unit-cell axis. See _atom_site_rotation.crystalaxis. ; _units.code radians save_ save__atom_site_rotation.label _definition.id '_atom_site_rotation.label' _name.category_id atom_site_rotation _name.object_id label loop_ _alias.definition_id '_atom_site_rotation_label' _import.get [{"save":atom_site_id "file":templ_attr.cif}] _definition.update 2018-07-18 save_ save__atom_site_rotation.modulation_flag _definition.id '_atom_site_rotation.modulation_flag' _name.category_id atom_site_rotation _name.object_id modulation_flag loop_ _alias.definition_id '_atom_site_rotation_modulation_flag' _definition.update 2018-07-18 _description.text ; A code that signals whether the structural model includes the modulation of the rotation of a given atom site. ; _type.contents Code _type.container Single loop_ _enumeration_set.state _enumeration_set.detail 'yes' 'rotational modulation' 'y' 'abbreviation for "yes"' 'no' 'no rotational modulation' 'n' 'abbreviation for "no"' save_ save__atom_site_rotation.refinement_flags_rotational _definition.id '_atom_site_rotation.refinement_flags_rotational' _name.category_id atom_site_rotation _name.object_id refinement_flags_rotational loop_ _alias.definition_id '_atom_site_rotation_refinement_flags_rotational' _definition.update 2018-07-18 _type.container Single _type.purpose State _description.text ; The constraints/restraints placed on the rotation vector during model refinement. ; _type.contents Code loop_ _enumeration_set.state _enumeration_set.detail . 'no constraint on rotation' S 'special position constraint on rotation' M 'modulus restraint on rotation' A 'direction restraints on rotation' SM 'superposition of S and M constraints/restraints' SA 'superposition of S and A constraints/restraints' MA 'superposition of M and A constraints/restraints' SMA 'superposition of S, M and A constraints/restraints' save_ save__atom_site_rotation.spherical_azimuthal _definition.id '_atom_site_rotation.spherical_azimuthal' _name.category_id atom_site_rotation _name.object_id spherical_azimuthal loop_ _alias.definition_id '_atom_site_rotation_spherical_azimuthal' _definition.update 2018-07-18 _enumeration.range 0.0:6.2831854 _units.code radians _description.text ; The azimuthal angle of the atom-site rotation vector specified in spherical coordinates relative to a set of orthogonal Cartesian axes where x||a and z||c* with y completing a right-hand set. The azimuthal angle is a right-handed rotation around the +z axis starting from the +x side of the x-z plane. ; _type.contents Real _type.container Single _type.purpose Measurand save_ save__atom_site_rotation.spherical_modulus _definition.id '_atom_site_rotation.spherical_modulus' _name.category_id atom_site_rotation _name.object_id spherical_modulus loop_ _alias.definition_id '_atom_site_rotation_spherical_modulus' _definition.update 2018-07-18 _units.code radians _description.text ; The modulus of the atom-site rotation vector specified in spherical coordinates relative to a set of orthogonal Cartesian axes where x||a and z||c* with y completing a right-hand set. ; _type.contents Real _type.container Single _type.purpose Measurand save_ save__atom_site_rotation.spherical_polar _definition.id '_atom_site_rotation.spherical_polar' _name.category_id atom_site_rotation _name.object_id spherical_polar loop_ _alias.definition_id '_atom_site_rotation_spherical_polar' _definition.update 2018-07-18 _enumeration.range 0.0:3.1415927 _units.code radians _description.text ; The polar angle of the atom-site rotation vector specified in spherical coordinates relative to a set of orthogonal Cartesian axes where x||a and z||c* with y completing a right-hand set. The polar angle is measured relative to the +z axis. ; _type.contents Real _type.container Single _type.purpose Measurand save_ save__atom_site_rotation.symmform _definition.id '_atom_site_rotation.symmform' _name.category_id atom_site_rotation _name.object_id symmform loop_ _alias.definition_id '_atom_site_rotation_symmform' _definition.update 2018-07-18 _description.text ; A symbolic expression that indicates the symmetry-restricted form of the components of the rotation vector of the atom. Unlike the positional coordinates of an atom, its rotation has no translational component to be represented. ; _type.contents Text _type.container Single loop_ _description_example.case _description_example.detail 'rx,ry,rz' 'no symmetry restrictions' 'rx,-rx,0' ; y component equal and opposite to x component with z component zero ; 'rx,0,rz' 'y component zero' save_ save__atom_site_rotation.magnitude _definition.id '_atom_site_rotation.magnitude' _name.category_id atom_site_rotation _name.object_id magnitude loop_ _alias.definition_id '_atom_site_rotation_magnitude' _definition.update 2018-07-18 _type.contents Real _type.container Single _type.purpose Measurand _description.text ; The magnitude of a rotation vector. ; _units.code radians save_ save_atom_site_moment_Fourier _definition.id atom_site_moment_Fourier _name.category_id MAGNETIC _name.object_id atom_site_moment_Fourier _definition.update 2016-05-24 _description.text ; Data items in the ATOM_SITE_MOMENT_FOURIER category record details about the Fourier components of the magnetic modulation of an atom site in a modulated structure. The (in general complex) coefficients of each Fourier component belong to the child category ATOM_SITE_MOMENT_FOURIER_PARAM, which may be listed separately. ; _definition.scope Category _definition.class Loop _category.key_id '_atom_site_moment_Fourier.id' loop_ _category_key.name '_atom_site_moment_Fourier.id' save_ save__atom_site_moment_Fourier.atom_site_label _definition.id '_atom_site_moment_Fourier.atom_site_label' _name.category_id atom_site_moment_Fourier _name.object_id atom_site_label _definition.update 2016-05-24 _description.text ; This string uniquely identifies the atom for which the Fourier modulation components are to be specified. The Fourier modulation components are always presented in a separate loop (not in the ATOM_SITE loop). This string must match an _atom_site.label from the ATOM_SITE loop, and otherwise conform to the rules for _atom_site_label. ; _type.contents Code _type.container Single _type.purpose Encode _type.source Assigned _name.linked_item_id '_atom_site_moment.label' save_ save__atom_site_moment_Fourier.axis _definition.id '_atom_site_moment_Fourier.axis' _name.category_id atom_site_moment_Fourier _name.object_id axis _definition.update 2016-05-24 _description.text ; Specifies the coordinate system in which the Fourier modulation components are to be presented and an axis in that coordinate system. Analogous tags: msCIF:_atom_site_displace_Fourier.axis, msCIF:_atom_site_rot_Fourier.axis, msCIF:_atom_site_U_Fourier.tens_elem ; _type.contents Code _type.container Single _type.source Assigned _type.purpose State loop_ _enumeration_set.state _enumeration_set.detail Cx 'Cartesian x coordinate' Cy 'Cartesian y coordinate' Cz 'Cartesian z coordinate' x 'crystal a-axis coordinate' y 'crystal b-axis coordinate' z 'crystal c-axis coordinate' mod 'length part of spherical coordinate' pol 'polar angle in spherical coordinates' azi 'azimuthal angle in spherical coordinates' a1 'user-defined coordinate 1' a2 'user-defined coordinate 2' a3 'user-defined coordinate 3' save_ save__atom_site_moment_Fourier.id _definition.id '_atom_site_moment_Fourier.id' _name.category_id atom_site_moment_Fourier _name.object_id id _definition.update 2016-05-24 _description.text ; An arbitrary code that uniquely identifies each of the components of each of the magnetic Fourier modulations of each of the atoms in the structure. It will typically include an atom name, a wave-vector id, and a coordinate axis. A sequence of positive integers could also be used. ; _type.contents Text _type.container Single _type.purpose Key loop_ _description_example.case K2_1_z Se1_2_x save_ save__atom_site_moment_Fourier.wave_vector_seq_id _definition.id '_atom_site_moment_Fourier.wave_vector_seq_id' _name.category_id atom_site_moment_Fourier _name.object_id wave_vector_seq_id _definition.update 2016-05-24 _description.text ; An arbitrary code that uniquely identifies the wave vector for which magnetic Fourier modulation components are to be described within the ATOM_SITE_MOMENT_FOURIER loop. It must match one of the _atom_site_Fourier_wave_vector.seq_id values in the ATOM_SITE_FOURIER_WAVE_VECTOR loop. Analogous tags: msCIF:_atom_site_displace_Fourier_wave_vector.seq_id, msCIF:_atom_site_rot_Fourier_wave_vector.seq_id, msCIF:_atom_site_occ_Fourier_wave_vector.seq_id, msCIF:_atom_site_U_Fourier_wave_vector.seq_id ; _type.contents Text _type.container Single save_ #################################### ## ATOM_SITE_MOMENT_FOURIER_PARAM ## #################################### save_atom_site_moment_Fourier_param _definition.id atom_site_moment_Fourier_param _name.category_id atom_site_moment_Fourier _name.object_id atom_site_moment_Fourier_param _definition.update 2016-05-24 _description.text ; Data items in this category record details about the coefficients of the Fourier series used to describe the magnetic modulation of an atom. This is a child category of the ATOM_SITE_MOMENT_FOURIER category; so that magnetic Fourier components can either be listed within the ATOM_SITE_MOMENT_FOURIER loop, or else listed in a separate loop. Analogous tags: _atom_site_displace_Fourier_param.*, _atom_site_rot_Fourier_param.*, _atom_site_occ_Fourier_param.*, _atom_site_U_Fourier_param.* ; _definition.scope Category _definition.class Loop _category.key_id '_atom_site_moment_Fourier_param.id' loop_ _category_key.name '_atom_site_moment_Fourier_param.id' loop_ _description_example.case _description_example.detail # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ; loop_ _cell_wave_vector_seq_id _cell_wave_vector_x _cell_wave_vector_y _cell_wave_vector_z 1 0.30000 0.30000 0.00000 2 -0.60000 0.30000 0.00000 loop_ _atom_site_Fourier_wave_vector_seq_id _atom_site_Fourier_wave_vector_x _atom_site_Fourier_wave_vector_y _atom_site_Fourier_wave_vector_z _atom_site_Fourier_wave_vector_q1_coeff _atom_site_Fourier_wave_vector_q2_coeff 1 -0.30000 0.60000 0.00000 1 1 2 -0.60000 0.30000 0.00000 0 1 3 -0.30000 -0.30000 0.00000 -1 0 loop_ _atom_site_moment_Fourier.id _atom_site_moment_Fourier.atom_site_label _atom_site_moment_Fourier.wave_vector_seq_id _atom_site_moment_Fourier.axis _atom_site_moment_Fourier_param.cos _atom_site_moment_Fourier_param.sin _atom_site_moment_Fourier_param.cos_symmform _atom_site_moment_Fourier_param.sin_symmform 1 Fe_1 1 x 0.00000 0.84852 0 mxs 2 Fe_1 1 y 0.00000 0.42426 0 0.50000*mxs 3 Fe_1 1 z 0.00000 0.00000 0 0 4 Fe_1 2 x 0.00000 -0.42426 0 -0.50000*mxs 5 Fe_1 2 y 0.00000 -0.84852 0 -mxs 6 Fe_1 2 z 0.00000 0.00000 0 0 7 Fe_1 3 x -0.42426 0.00000 -0.50000*mxs 0 8 Fe_1 3 y 0.42426 0.00000 0.50000*mxs 0 9 Fe_1 3 z 0.00000 0.00000 0 0 ; ; Example 1 - Hypothetical example showing the symmetry-restricted form of cosine and sine components of the modulation vector for a specific Wyckoff site. ; # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - save_ save__atom_site_moment_Fourier_param.cos _definition.id '_atom_site_moment_Fourier_param.cos' _name.category_id atom_site_moment_Fourier_param _name.object_id cos loop_ _alias.definition_id '_atom_site_moment_Fourier_param_cos' _definition.update 2016-05-24 _units.code Bohr_magnetons _description.text ; The cosine component of the magnetic Fourier modulation of a specific atom, wave vector and coordinate axis. It is always used together with the sine component, but not with the modulus or phase components. Analogous tags: msCIF:_atom_site_displace_Fourier_param.cos, msCIF:_atom_site_rot_Fourier_param.cos, msCIF:_atom_site_occ_Fourier_param.cos, msCIF:_atom_site_U_Fourier_param.cos Also see the technical descriptions of the analogous tags. ; _type.contents Real _type.container Single _type.purpose Measurand save_ save__atom_site_moment_Fourier_param.cos_symmform _definition.id '_atom_site_moment_Fourier_param.cos_symmform' _name.category_id atom_site_moment_Fourier_param _name.object_id cos_symmform loop_ _alias.definition_id '_atom_site_moment_Fourier_param_cos_symmform' _definition.update 2016-05-24 _type.contents Text _type.container Single _description.text ; A symbolic expression that indicates the symmetry-restricted form of this modulation component for the affected Wyckoff site. The expression can include a zero, a symbol, or a symbol multiplied ('*') by a numerical prefactor. An allowed symbol is a string that contains the following parts. (1) The 1st character is "m" for magnetic. (2) The 2nd character is one of "x", "y", or "z", to indicate the magnetic component to be modulated. (3) The 3rd character is one of "m" for modulus, "p" for phase, "c" for cosine, or "s" for sine. (4) The 4th character is an integer that indicates the modulation vector. To use the same symbol with modulation components belonging to symmetry related axes and/or wave vectors, is to point out symmetry relationships amongst them. Obviously, modulation components belonging to symmetry-distinct atoms, axes, or wave vectors cannot be related by symmetry. Analogous tags: none, though analogous tags are needed for displace, occ, U, and aniso waves. ; save_ save__atom_site_moment_Fourier_param.id _definition.id '_atom_site_moment_Fourier_param.id' _name.category_id atom_site_moment_Fourier_param _name.object_id id loop_ _alias.definition_id '_atom_site_moment_Fourier_param_id' _definition.update 2016-05-24 _description.text ; An arbitrary code that uniquely identifies each of the components of each of the magnetic Fourier modulations of each of the atoms in the structure. It will typically include an atom name, a wave-vector id, and a coordinate axis. A sequence of positive integers could also be used. This tag is only used when the magnetic Fourier modulation components are split off into a separate loop, which is less typical. When used, its value must match one of the _atom_site_moment_Fourier.id values in the ATOM_SITE_MOMENT_FOURIER loop. ; _type.contents Text _type.container Single _type.purpose Link _name.linked_item_id '_atom_site_moment_Fourier.id' save_ save__atom_site_moment_Fourier_param.modulus _definition.id '_atom_site_moment_Fourier_param.modulus' _name.category_id atom_site_moment_Fourier_param _name.object_id modulus loop_ _alias.definition_id '_atom_site_moment_Fourier_param_modulus' _definition.update 2016-05-24 _units.code Bohr_magnetons _description.text ; The modulus component of the magnetic Fourier modulation of a specific atom, wave vector and coordinate axis. It is always used together with the phase component, but not with the cosine or sine components. Analogous tags: msCIF:_atom_site_displace_Fourier_param.modulus, msCIF:_atom_site_rot_Fourier_param.modulus, msCIF:_atom_site_occ_Fourier_param.modulus, msCIF:_atom_site_U_Fourier_param.modulus Also see the technical descriptions of the analogous tags. ; _type.contents Real _type.container Single _type.purpose Measurand save_ save__atom_site_moment_Fourier_param.modulus_symmform _definition.id '_atom_site_moment_Fourier_param.modulus_symmform' _name.category_id atom_site_moment_Fourier_param _name.object_id modulus_symmform loop_ _alias.definition_id '_atom_site_moment_Fourier_param_modulus_symmform' _definition.update 2016-05-24 _type.contents Text _type.container Single _description.text ; See the description and example given for the _atom_site_moment_Fourier_param.cos_symmform item. ; save_ save__atom_site_moment_Fourier_param.phase _definition.id '_atom_site_moment_Fourier_param.phase' _name.category_id atom_site_moment_Fourier_param _name.object_id phase loop_ _alias.definition_id '_atom_site_moment_Fourier_param_phase' _definition.update 2016-05-24 _enumeration.range -1.0:1.0 _units.code cycles _description.text ; The phase component of the magnetic Fourier modulation of a specific atom, wave vector and coordinate axis. It is always used together with the modulus component, but not with the cosine or sine components. This parameter will be unitless regardless of the coordinate system used. Analogous tags: msCIF:_atom_site_displacive_Fourier_param.phase, msCIF:_atom_site_rot_Fourier_param.phase, msCIF:_atom_site_occ_Fourier_param.phase, msCIF:_atom_site_U_Fourier_param.phase Also see the technical descriptions of the analogous tags. ; _type.contents Real _type.container Single _type.purpose Measurand save_ save__atom_site_moment_Fourier_param.phase_symmform _definition.id '_atom_site_moment_Fourier_param.phase_symmform' _name.category_id atom_site_moment_Fourier_param _name.object_id phase_symmform loop_ _alias.definition_id '_atom_site_moment_Fourier_param_phase_symmform' _definition.update 2016-05-24 _type.contents Text _type.container Single _description.text ; See the description and example given for the _atom_site_moment_Fourier_param.cos_symmform item. ; save_ save__atom_site_moment_Fourier_param.sin _definition.id '_atom_site_moment_Fourier_param.sin' _name.category_id atom_site_moment_Fourier_param _name.object_id sin loop_ _alias.definition_id '_atom_site_moment_Fourier_param_sin' _definition.update 2016-05-24 _units.code Bohr_magnetons _description.text ; The sine component of the magnetic Fourier modulation of a specific atom, wave vector and coordinate axis. It is always used together with the cosine component, but not with the modulus or phase components. Analogous tags: msCIF:_atom_site_displace_Fourier_param.sin, msCIF:_atom_site_rot_Fourier_param.sin, msCIF:_atom_site_occ_Fourier_param.sin, msCIF:_atom_site_U_Fourier_param.sin Also see the technical descriptions of the analogous tags. ; _type.contents Real _type.container Single _type.purpose Measurand save_ save__atom_site_moment_Fourier_param.sin_symmform _definition.id '_atom_site_moment_Fourier_param.sin_symmform' _name.category_id atom_site_moment_Fourier_param _name.object_id sin_symmform loop_ _alias.definition_id '_atom_site_moment_Fourier_param_sin_symmform' _definition.update 2016-05-24 _type.contents Text _type.container Single _description.text ; See the description and example given for the _atom_site_moment_Fourier_param.cos_symmform item. ; save_ ################################### ## ATOM_SITE_MOMENT_SPECIAL_FUNC ## ################################### save_atom_site_moment_special_func _definition.id atom_site_moment_special_func _name.category_id MAGNETIC _name.object_id atom_site_moment_special_func _definition.update 2016-05-24 _description.text ; Data items in the ATOM_SITE_MOMENT_SPECIAL_FUNC category record details about the magnetic modulation of an atom site in a modulated structure when it is not described by Fourier series. Special functions are effective in some cases where the modulations are highly anharmonic, since the number of parameters is drastically reduced. However, they are in general discontinuous or with discontinuous derivatives and therefore these functions describe an ideal situation that never occurs in a real modulated crystal. Up to now, only a few types of special functions have been used and all of them come from the JANA suite of programs. Although this approach is far from being general, it has the advantage that the functions are tightly defined and therefore the relevant parameters can be calculated easily. In this dictionary, only the special functions available in JANA2000 have been included. These are: (1) Sawtooth functions for atomic displacive modulation along x, y and z. (2) Crenel functions for the occupational modulation of atoms and rigid groups. Both of these only apply to one-dimensional modulated structures. Analogous tags: _atom_site_displace_special_func.*, _atom_site_occ_special_func.* ; _definition.scope Category _definition.class Loop _category.key_id '_atom_site_moment_special_func.atom_site_label' loop_ _category_key.name '_atom_site_moment_special_func.atom_site_label' save_ save__atom_site_moment_special_func.atom_site_label _definition.id '_atom_site_moment_special_func.atom_site_label' _name.category_id atom_site_moment_special_func _name.object_id atom_site_label _import.get [{'save':atom_site_id 'file':templ_attr.cif}] save_ save__atom_site_moment_special_func.sawtooth_ax _definition.id '_atom_site_moment_special_func.sawtooth_ax' _name.category_id atom_site_moment_special_func _name.object_id sawtooth_ax loop_ _alias.definition_id '_atom_site_moment_special_func_sawtooth_ax' _definition.update 2016-05-24 _type.contents Real _type.container Single _type.purpose Measurand _description.text ; _atom_site_moment_special_func.sawtooth_ items are the adjustable parameters of a magnetic sawtooth function. A magnetic sawtooth function is only used when working in the crystal-axis coordinate system. It is defined along the internal space direction as follows: mx=2*ax[(x4-c)/w] my=2*ay[(x4-c)/w] mz=2*az[(x4-c)/w] with x4 belonging to the interval [c-(w/2), c+(w/2)], where ax, ay and az are the amplitudes (maximum magnetic moments) along each crystallographic axis, w is its width, x4 is the internal coordinate and c is the centre of the function in internal space. The use of this function is restricted to one-dimensional modulated structures. For more details, see the manual for JANA2000 (Petricek & Dusek, 2000). Calculated parameters mx, my and mz must be in Bohr-magneton units and can vary in the range (-infinity,infinity). Ref: Petricek, V. & Dusek, M. (2000). JANA2000. The crystallographic computing system. Institute of Physics, Prague, Czech Republic. Analogous tags: _atom_site_displace_special_func.sawtooth_*, _atom_site_occ_special_func.cresnel_* ; _units.code Bohr_magnetons save_ save__atom_site_moment_special_func.sawtooth_ay _definition.id '_atom_site_moment_special_func.sawtooth_ay' _name.category_id atom_site_moment_special_func _name.object_id sawtooth_ay loop_ _alias.definition_id '_atom_site_moment_special_func_sawtooth_ay' _definition.update 2016-05-24 _type.contents Real _type.container Single _type.purpose Measurand _description.text ; _atom_site_moment_special_func.sawtooth_ items are the adjustable parameters of a magnetic sawtooth function. A magnetic sawtooth function is only used when working in the crystal-axis coordinate system. It is defined along the internal space direction as follows: mx=2*ax[(x4-c)/w] my=2*ay[(x4-c)/w] mz=2*az[(x4-c)/w] with x4 belonging to the interval [c-(w/2), c+(w/2)], where ax, ay and az are the amplitudes (maximum magnetic moments) along each crystallographic axis, w is its width, x4 is the internal coordinate and c is the centre of the function in internal space. The use of this function is restricted to one-dimensional modulated structures. For more details, see the manual for JANA2000 (Petricek & Dusek, 2000). Calculated parameters mx, my and mz must be in Bohr-magneton units and can vary in the range (-infinity,infinity). Ref: Petricek, V. & Dusek, M. (2000). JANA2000. The crystallographic computing system. Institute of Physics, Prague, Czech Republic. Analogous tags: _atom_site_displace_special_func.sawtooth_*, _atom_site_occ_special_func.cresnel_* ; _units.code Bohr_magnetons save_ save__atom_site_moment_special_func.sawtooth_az _definition.id '_atom_site_moment_special_func.sawtooth_az' _name.category_id atom_site_moment_special_func _name.object_id sawtooth_az loop_ _alias.definition_id '_atom_site_moment_special_func_sawtooth_az' _definition.update 2016-05-24 _type.contents Real _type.container Single _type.purpose Measurand _description.text ; _atom_site_moment_special_func.sawtooth_ items are the adjustable parameters of a magnetic sawtooth function. A magnetic sawtooth function is only used when working in the crystal-axis coordinate system. It is defined along the internal space direction as follows: mx=2*ax[(x4-c)/w] my=2*ay[(x4-c)/w] mz=2*az[(x4-c)/w] with x4 belonging to the interval [c-(w/2), c+(w/2)], where ax, ay and az are the amplitudes (maximum magnetic moments) along each crystallographic axis, w is its width, x4 is the internal coordinate and c is the centre of the function in internal space. The use of this function is restricted to one-dimensional modulated structures. For more details, see the manual for JANA2000 (Petricek & Dusek, 2000). Calculated parameters mx, my and mz must be in Bohr-magneton units and can vary in the range (-infinity,infinity). Ref: Petricek, V. & Dusek, M. (2000). JANA2000. The crystallographic computing system. Institute of Physics, Prague, Czech Republic. Analogous tags: _atom_site_displace_special_func.sawtooth_*, _atom_site_occ_special_func.cresnel_* ; _units.code Bohr_magnetons save_ save__atom_site_moment_special_func.sawtooth_c _definition.id '_atom_site_moment_special_func.sawtooth_c' _name.category_id atom_site_moment_special_func _name.object_id sawtooth_c loop_ _alias.definition_id '_atom_site_moment_special_func_sawtooth_c' _definition.update 2016-05-24 _type.contents Real _type.container Single _type.purpose Measurand _description.text ; _atom_site_moment_special_func.sawtooth_ items are the adjustable parameters of a magnetic sawtooth function. A magnetic sawtooth function is only used when working in the crystal-axis coordinate system. It is defined along the internal space direction as follows: mx=2*ax[(x4-c)/w] my=2*ay[(x4-c)/w] mz=2*az[(x4-c)/w] with x4 belonging to the interval [c-(w/2), c+(w/2)], where ax, ay and az are the amplitudes (maximum magnetic moments) along each crystallographic axis, w is its width, x4 is the internal coordinate and c is the centre of the function in internal space. The use of this function is restricted to one-dimensional modulated structures. For more details, see the manual for JANA2000 (Petricek & Dusek, 2000). Calculated parameters mx, my and mz must be in Bohr-magneton units and can vary in the range (-infinity,infinity). Ref: Petricek, V. & Dusek, M. (2000). JANA2000. The crystallographic computing system. Institute of Physics, Prague, Czech Republic. Analogous tags: _atom_site_displace_special_func.sawtooth_*, _atom_site_occ_special_func.cresnel_* ; _units.code Bohr_magnetons save_ save__atom_site_moment_special_func.sawtooth_w _definition.id '_atom_site_moment_special_func.sawtooth_w' _name.category_id atom_site_moment_special_func _name.object_id sawtooth_w loop_ _alias.definition_id '_atom_site_moment_special_func_sawtooth_w' _definition.update 2016-05-24 _type.contents Real _type.container Single _type.purpose Measurand _description.text ; _atom_site_moment_special_func.sawtooth_ items are the adjustable parameters of a magnetic sawtooth function. A magnetic sawtooth function is only used when working in the crystal-axis coordinate system. It is defined along the internal space direction as follows: mx=2*ax[(x4-c)/w] my=2*ay[(x4-c)/w] mz=2*az[(x4-c)/w] with x4 belonging to the interval [c-(w/2), c+(w/2)], where ax, ay and az are the amplitudes (maximum magnetic moments) along each crystallographic axis, w is its width, x4 is the internal coordinate and c is the centre of the function in internal space. The use of this function is restricted to one-dimensional modulated structures. For more details, see the manual for JANA2000 (Petricek & Dusek, 2000). Calculated parameters mx, my and mz must be in Bohr-magneton units and can vary in the range (-infinity,infinity). Ref: Petricek, V. & Dusek, M. (2000). JANA2000. The crystallographic computing system. Institute of Physics, Prague, Czech Republic. Analogous tags: _atom_site_displace_special_func.sawtooth_*, _atom_site_occ_special_func.cresnel_* ; _units.code Bohr_magnetons save_ ############################### ## ATOM_SITES_MOMENT_FOURIER ## ############################### save_atom_sites_moment_Fourier _definition.id atom_sites_moment_Fourier _name.category_id MAGNETIC _name.object_id atom_sites_moment_Fourier _definition.update 2016-05-24 _description.text ; Data items in the ATOM_SITES_MOMENT_FOURIER category record details common to the magnetic modulations of atom sites in a modulated structure. Details for individual atom sites are described by data items in the ATOM_SITE_MOMENT_FOURIER category. Analogous tags: _atom_sites_displace_Fourier.*, _atom_sites_rot_Fourier.*, _atom_sites_occ_Fourier.*, _atom_sites_U_Fourier.* ; _definition.scope Category _definition.class Set save_ save__atom_sites_moment_Fourier.axes_description _definition.id '_atom_sites_moment_Fourier.axes_description' _name.category_id atom_sites_moment_Fourier _name.object_id axes_description _definition.update 2016-05-24 _description.text ; Describes a user-defined coordinate system for which magnetic Fourier modulation components are to be presented. Only used when different from those described by _atom_site_moment_Fourier.axis. Analogous tags: msCIF:_atom_sites_displace_Fourier.axes_description It is not difficult to imagine an _atom_sites_rot_Fourier.axes_description tag. ; _type.contents Text _type.container Single loop_ _description_example.case ; a1 and a2 are respectively the long molecular axis and the axis normal to the mean molecular plane. Extracted from Baudour & Sanquer [Acta Cryst. (1983), B39, 75-84]. ; save_ #################### ## ATOM_TYPE_SCAT ## #################### save__atom_type_scat.neutron_magnetic_j0_A1 _definition.id '_atom_type_scat.neutron_magnetic_j0_A1' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j0_A1 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; First, the parameters are used directly to approximate spatial averages of spherical Bessel functions over the electronic wave functions of unpaired electrons of the given atom type as a function of s = sin(theta)/lambda. = [A1*e^(-a2*s^2) + B1*e^(-b2*s^2) + C1*e^(-c2*s^2) + D]*[1 if n=0, s^2 if n=2,4,6] The are then combined to determine the spin and orbital contributions to the magnetic form factor of the atom. The "e" parameter is a measure of error in the approximation. Analogous tags: coreCIF:_atom_site.scat_Cromer_Mann_* Ref: International Tables for Crystallography (2006). Vol. C, Sections 4.4.5 and 6.1.2.3 (and references therein). ; save_ save__atom_type_scat.neutron_magnetic_j0_a2 _definition.id '_atom_type_scat.neutron_magnetic_j0_a2' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j0_a2 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; _units.code 'angstrom_squared' save_ save__atom_type_scat.neutron_magnetic_j0_B1 _definition.id '_atom_type_scat.neutron_magnetic_j0_B1' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j0_B1 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; save_ save__atom_type_scat.neutron_magnetic_j0_b2 _definition.id '_atom_type_scat.neutron_magnetic_j0_b2' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j0_b2 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; _units.code 'angstrom_squared' save_ save__atom_type_scat.neutron_magnetic_j0_C1 _definition.id '_atom_type_scat.neutron_magnetic_j0_C1' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j0_C1 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; save_ save__atom_type_scat.neutron_magnetic_j0_c2 _definition.id '_atom_type_scat.neutron_magnetic_j0_c2' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j0_c2 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; _units.code 'angstrom_squared' save_ save__atom_type_scat.neutron_magnetic_j0_D _definition.id '_atom_type_scat.neutron_magnetic_j0_D' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j0_D _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; save_ save__atom_type_scat.neutron_magnetic_j0_e _definition.id '_atom_type_scat.neutron_magnetic_j0_e' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j0_e _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; save_ save__atom_type_scat.neutron_magnetic_j2_A1 _definition.id '_atom_type_scat.neutron_magnetic_j2_A1' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j2_A1 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; save_ save__atom_type_scat.neutron_magnetic_j2_a2 _definition.id '_atom_type_scat.neutron_magnetic_j2_a2' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j2_a2 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; _units.code 'angstrom_squared' save_ save__atom_type_scat.neutron_magnetic_j2_B1 _definition.id '_atom_type_scat.neutron_magnetic_j2_B1' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j2_B1 _definition.update 2016-05-24 _type.container Single _type.contents Real _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; save_ save__atom_type_scat.neutron_magnetic_j2_b2 _definition.id '_atom_type_scat.neutron_magnetic_j2_b2' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j2_b2 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; _units.code 'angstrom_squared' save_ save__atom_type_scat.neutron_magnetic_j2_C1 _definition.id '_atom_type_scat.neutron_magnetic_j2_C1' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j2_C1 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; save_ save__atom_type_scat.neutron_magnetic_j2_c2 _definition.id '_atom_type_scat.neutron_magnetic_j2_c2' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j2_c2 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; _units.code 'angstrom_squared' save_ save__atom_type_scat.neutron_magnetic_j2_D _definition.id '_atom_type_scat.neutron_magnetic_j2_D' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j2_D _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; save_ save__atom_type_scat.neutron_magnetic_j2_e _definition.id '_atom_type_scat.neutron_magnetic_j2_e' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j2_e _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; save_ save__atom_type_scat.neutron_magnetic_j4_A1 _definition.id '_atom_type_scat.neutron_magnetic_j4_A1' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j4_A1 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; save_ save__atom_type_scat.neutron_magnetic_j4_a2 _definition.id '_atom_type_scat.neutron_magnetic_j4_a2' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j4_a2 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; _units.code 'angstrom_squared' save_ save__atom_type_scat.neutron_magnetic_j4_B1 _definition.id '_atom_type_scat.neutron_magnetic_j4_B1' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j4_B1 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; save_ save__atom_type_scat.neutron_magnetic_j4_b2 _definition.id '_atom_type_scat.neutron_magnetic_j4_b2' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j4_b2 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; _units.code 'angstrom_squared' save_ save__atom_type_scat.neutron_magnetic_j4_C1 _definition.id '_atom_type_scat.neutron_magnetic_j4_C1' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j4_C1 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; save_ save__atom_type_scat.neutron_magnetic_j4_c2 _definition.id '_atom_type_scat.neutron_magnetic_j4_c2' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j4_c2 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; _units.code 'angstrom_squared' save_ save__atom_type_scat.neutron_magnetic_j4_D _definition.id '_atom_type_scat.neutron_magnetic_j4_D' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j4_D _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; save_ save__atom_type_scat.neutron_magnetic_j4_e _definition.id '_atom_type_scat.neutron_magnetic_j4_e' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j4_e _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; save_ save__atom_type_scat.neutron_magnetic_j6_A1 _definition.id '_atom_type_scat.neutron_magnetic_j6_A1' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j6_A1 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; save_ save__atom_type_scat.neutron_magnetic_j6_a2 _definition.id '_atom_type_scat.neutron_magnetic_j6_a2' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j6_a2 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; _units.code 'angstrom_squared' save_ save__atom_type_scat.neutron_magnetic_j6_B1 _definition.id '_atom_type_scat.neutron_magnetic_j6_B1' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j6_B1 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; save_ save__atom_type_scat.neutron_magnetic_j6_b2 _definition.id '_atom_type_scat.neutron_magnetic_j6_b2' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j6_b2 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; _units.code 'angstrom_squared' save_ save__atom_type_scat.neutron_magnetic_j6_C1 _definition.id '_atom_type_scat.neutron_magnetic_j6_C1' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j6_C1 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; save_ save__atom_type_scat.neutron_magnetic_j6_c2 _definition.id '_atom_type_scat.neutron_magnetic_j6_c2' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j6_c2 _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; _units.code 'angstrom_squared' save_ save__atom_type_scat.neutron_magnetic_j6_D _definition.id '_atom_type_scat.neutron_magnetic_j6_D' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j6_D _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; save_ save__atom_type_scat.neutron_magnetic_j6_e _definition.id '_atom_type_scat.neutron_magnetic_j6_e' _name.category_id atom_type_scat _name.object_id neutron_magnetic_j6_e _definition.update 2016-05-24 _type.contents Real _type.container Single _description.text ; See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; save_ save__atom_type_scat.neutron_magnetic_source _definition.id '_atom_type_scat.neutron_magnetic_source' _name.category_id atom_type_scat _name.object_id neutron_magnetic_source _definition.update 2016-05-24 _description.text ; Reference to the source of magnetic neutron scattering factors for a given atom type. Analogous tags: coreCIF:_atom_site.scat_source ; _type.contents Text _type.container Single loop_ _description_example.case ; International Tables for Crystallography (2006). Vol. C, Section 4.4.5. ; save_ ############################### ## PARENT_PROPAGATION_VECTOR ## ############################### save_parent_propagation_vector _definition.id parent_propagation_vector _name.category_id MAGNETIC _name.object_id parent_propagation_vector _definition.update 2016-06-09 _description.text ; This looped category allows for the presentation of the fundamental magnetic wave vectors in the setting of the parent structure. In general, there can be more than one fundamental magnetic wave vector. See the PARENT_SPACE_GROUP category for more information about parent space groups. ; _definition.scope Category _definition.class Loop _category.key_id '_parent_propagation_vector.id' loop_ _category_key.name '_parent_propagation_vector.id' loop_ _description_example.case ; loop_ _parent_propagation_vector.id _parent_propagation_vector.kxkykz k1 [0 0 1] k2 [0 1 0] k3 [1 0 0] ; save_ save__parent_propagation_vector.id _definition.id '_parent_propagation_vector.id' _name.category_id parent_propagation_vector _name.object_id id _definition.update 2016-06-09 _description.text ; A code that uniquely identifies a fundamental magnetic propagation vector. ; _type.contents Text _type.container Single _type.purpose Key save_ save__parent_propagation_vector.kxkykz _definition.id '_parent_propagation_vector.kxkykz' _name.category_id parent_propagation_vector _name.object_id kxkykz _definition.update 2016-06-09 _description.text ; A fundamental magnetic propagation vector in unitless reciprocal-lattice units of the parent space group setting. ; _type.contents Real _type.container Matrix _type.dimension [3] save_ ######################## ## PARENT_SPACE_GROUP ## ######################## save_parent_space_group _definition.id parent_space_group _name.category_id MAGNETIC _name.object_id parent_space_group _definition.update 2016-06-09 _description.text ; This category provides information about the space group and setting of a non-magnetic parent structure which is related to the present magnetic structure by a group-subgroup relationship. In general, the choice of a parent structure is not unique; it could be the lowest-symmetry non-magnetic structure obtained by simply setting all magnetic moments to zero, or a higher-symmetry approximation to this structure which idealizes some of the atomic coordinates. The designation of a parent structure is common but optional for a magnetic-structure description. This category could also be used to designate high-symmetry parent structures of low-symmetry non-magnetic structures. As an alternative to this category, one can define a parent structure in a separate data block, and then relate the parent and child space-group settings by conveying an appropriate inter-data-block basis transformation in each data block. Analogous tags: none ; _definition.scope Category _definition.class Set save_ save__parent_space_group.child_transform_Pp_abc _definition.id '_parent_space_group.child_transform_Pp_abc' _name.category_id parent_space_group _name.object_id child_transform_Pp_abc _definition.update 2016-06-09 _description.text ; This item specifies the transformation (P,p) of the basis vectors and origin of the present setting of the parent space group to those of the present setting of the child space group. The basis vectors (a',b',c') of the child are described as linear combinations of the basis vectors (a,b,c) of the parent, and the origin shift (ox,oy,oz) is displayed in the lattice coordinates of the parent. The Jones-Faithful notation and possible values are identical to those of symCIF:_space_group.transform_Pp_abc, except that the point and translational components are separated by a semicolon. If the child structure is incommensurate, the transformation applies to the present setting of the basic space group of the incommensurate structure. Analogous tags: symCIF:_space_group.transform_Pp_abc ; _type.contents Real _type.dimension [4,4] _type.container Matrix _type.purpose Number _type.source Assigned save_ save__parent_space_group.IT_number _definition.id '_parent_space_group.IT_number' _name.category_id parent_space_group _name.object_id IT_number _definition.update 2016-06-09 _description.text ; Analogous tags: Perfectly analogous to symCIF:_space_group.IT_number except that it applies to the parent structure. ; _type.contents Text _type.container Single save_ save__parent_space_group.name_H-M_alt _definition.id '_parent_space_group.name_H-M_alt' _name.category_id parent_space_group _name.object_id name_H-M_alt _definition.update 2016-06-09 _description.text ; Analogous tags: Perfectly analogous to symCIF:_space_group.name_H-M_alt except that it applies to the parent structure. ; _type.contents Text _type.container Single save_ save__parent_space_group.reference_setting _definition.id '_parent_space_group.reference_setting' _name.category_id parent_space_group _name.object_id reference_setting _definition.update 2016-06-09 _description.text ; Analogous tags: Perfectly analogous to symCIF:_space_group.reference_setting except that it applies to the parent structure. ; _type.contents Text _type.container Single save_ save__parent_space_group.transform_Pp_abc _definition.id '_parent_space_group.transform_Pp_abc' _name.category_id parent_space_group _name.object_id transform_Pp_abc _definition.update 2016-06-09 _description.text ; Analogous tags: Notation and usage is analogous to symCIF:_space_group.transform_Pp_abc except that it applies to the parent structure, and that the point and translational components are separated by a semicolon. ; _type.contents Real _type.container Matrix _type.dimension [4,4] _type.purpose Number _type.source Assigned save_ ###################### ## SPACE_GROUP_MAGN ## ###################### save_SPACE_GROUP_MAGN _definition.id space_group_magn _name.category_id MAGNETIC _name.object_id space_group_magn _definition.update 2016-10-10 _description.text ; The data items in this category provide identifying and/or descriptive information about the relevant magnetic symmetry group and setting. ; _definition.scope Category _definition.class Set save_ save__space_group_magn.name_BNS _definition.id '_space_group_magn.name_BNS' _name.category_id space_group_magn _name.object_id name_BNS _definition.update 2016-05-24 _description.text ; See _space_group_magn_number_OG for a description of magnetic space groups (MSGs). The Belov-Neronova-Smirnova (BNS) symbol for a MSG is based on the short Hermann-Mauguin space-group symbol of non-magnetic space group F for MSGs of types 1-3 or its subgroup D for MSGs of type 4. For a type-1 MSG, the symbol for the MSG is identical with the unprimed symbol of F. For a type-2 MSG, its symbol is the symbol of the space group F followed by 1'. For a type-3 MSG, one starts with the symbol for F and then primes any non-translational generators whose corresponding MSG elements are time reversed. For a type-4 MSG, the non-translational generators are never primed. A subscript always appears on the first (lattice) character of the symbol of a type-4 MSG, and communicates that a pure time-reversal element is included in the point group of the MSG. The value of this subscript indicates the magnetic lattice of the MSG, and specifically indicates the translational part of the generator whose point part is the pure time reversal. Note that OG and BNS symbols are identical for MSGs of types 1-3, but differ substantially for MSGs of type 4. Analogous tags: symCIF:_space_group.name_H-M_ref Ref: 'Magnetic Group Tables' by D.B. Litvin at http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. ; _type.contents Text _type.container Single loop_ _description_example.case "P 1" "P 1 1'" "P_S 1" "P -1" "P -1 1'" "P -1'" "P_2s -1" "I a' -3 d'" save_ save__space_group_magn.name_OG _definition.id '_space_group_magn.name_OG' _name.category_id space_group_magn _name.object_id name_OG _definition.update 2016-05-24 _description.text ; See _space_group_magn.number_OG for more information on magnetic space groups (MSGs). The Opechowski-Guccione (OG) symbol for an MSG is based on the short Hermann-Mauguin space-group symbol of non-magnetic space group F. For a type-1 MSG, the OG symbol for the MSG is identical with the unprimed symbol of F. For a type-2 MSG, the OG symbol is the symbol of the non-magnetic space group F followed by 1'. For a type-3 or type-4 MSG, the OG symbol is constructed by starting with the symbol for F and then priming the symbols of any non-translational generators whose corresponding MSG elements are time reversed. When a non-translational generator symbol could potentially represent both time-reversed and non-time-reversed symmetry elements, the prime placement is as described in the Magnetic Group Tables of Litvin. A subscript always appears on the first (lattice) character of the symbol of a type-4 MSG, and communicates that a pure time-reversal element is included in the point group of the MSG. The value of this subscript indicates the magnetic lattice of the MSG. Note that OG and BNS symbols are identical for MSGs of types 1-3, but differ substantially for MSGs of type 4. Analogous tags: symCIF:_space_group.name_H-M_ref Ref: 'Magnetic Group Tables' by D.B. Litvin at http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. ; _type.contents Text _type.container Single loop_ _description_example.case "P 1" "P 1 1'" "P_S 1" "P -1" "P -1 1'" "P -1'" "P_2s -1" "I a' -3' d'" save_ save__space_group_magn.number_BNS _definition.id '_space_group_magn.number_BNS' _name.category_id space_group_magn _name.object_id number_BNS _definition.update 2016-10-10 _description.text ; See _space_group_magn.number_OG for a description of magnetic space groups (MSGs). The Belov-Neronova-Smirnova (BNS) number for an MSG is composed of two positive integers separated by a period. The first integer lies in the range [1-230] and indicates the non-magnetic space group F for MSGs of types 1-3 or the non-magnetic space group of the subgroup D for MSGs of type 4. The second integer is sequential over all MSGs associated with the same crystal family. There are 1651 distinct equivalence classes of MSGs, each of which has a unique BNS number. These equivalence classes are most accurately referred to as magnetic space-group "types", following the usage in the International Tables for Crystallography. But the word "type" is also commonly used to indicate the four-fold classification of MSGs presented above. To avoid confusion, the word "type" is only used in the latter sense here. Analogous tags: symCIF:_space_group.number_IT Ref: 'Magnetic Group Tables' by D.B. Litvin at http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. ; _type.contents Text _type.container Single loop_ _description_example.case 1.1 1.2 1.3 2.4 2.5 2.6 2.7 230.149 save_ save__space_group_magn.OG_wavevector_kxkykz _definition.id '_space_group_magn.OG_wavevector_kxkykz' _name.category_id space_group_magn _name.object_id OG_wavevector_kxkykz _definition.update 2016-05-24 _description.text ; The magnetic propagation vector (k) of the OG(k)-supercell description, which determines the time-reversal component of each translation vector (x) of the OG lattice (including the centering vectors if a centered setting is used) according to the expression cos(2*pi*k.x) = +/-1, where x is defined in the unitless coordinates of the direct-space OG lattice and k is defined in the unitless coordinates of the corresponding reciprocal-space lattice. If 2*k.x has a non-integer value for any OG lattice (or centering) translation, the definition of k is incorrect. The value of OG wave vector is essential to the OG(k) description of the magnetic space group symmetry; it cannot be omitted from such a description without ambiguity. ; _type.container Matrix _type.contents Real _type.dimension [3] _type.purpose Number save_ save__space_group_magn.point_group_name _definition.id '_space_group_magn.point_group_name' _name.category_id space_group_magn _name.object_id point_group_name _definition.update 2016-05-24 _description.text ; Any magnetic point group (MPG) can be constructed by starting with a non-magnetic point group P, and then by adding a time-reversal component to some or all or none of its elements. For a type-1 MPG, M = P, there are no time-reversed elements. For a type-2 MPG, M = P + P1', there is both a time-reversed and a non-time-reversed copy of each element in P. For a type-3 MPG, M = Q + (P - Q)1', there is a subgroup Q of P of index 2 whose elements are not time reversed, whereas the remaining elements in P-Q are time reversed. For a type-1 MPG, the symbol is identical with the symbol for the non-magnetic point group P. For a type-2 MPG, the symbol is the symbol for P followed by the symbol 1'. For a type-3 MPG, the symbol is that of P with a prime added to each time-reversed generator. Analogous tags: symCIF:_space_group.point_group_H-M Ref: 'Magnetic Group Tables' by D.B. Litvin at http://www.iucr.org/publ/978-0-9553602-2-0 ; _type.contents Text _type.container Single loop_ _description_example.case 1 "1 1'" -1 "-1 1'" "-1'" "4 m m" "4' m' m" "4' m m'" save_ save__space_group_magn.point_group_number _definition.id '_space_group_magn.point_group_number' _name.category_id space_group_magn _name.object_id point_group_number _definition.update 2016-10-10 _description.text ; Each of the 122 crystallographic magnetic point groups can be associated with exactly one crystallographic non-magnetic space group by removing the time-reversal component from each group operator. The identifying number for each such group is taken from the "Survey of 3-dimensional magnetic point group types" from the "Magnetic Group Tables" of D.B. Litvin. This number is composed of three integers: (1) an integer from 1 to 32 that corresponds to the non-magnetic point group; (2) an integer that runs sequentially over each of the magnetic point groups associated with a given non-magnetic point group; and (3) a redundant third integer that runs from 1 to 122. Ref: 'Magnetic Group Tables' by D.B. Litvin at http://www.iucr.org/publ/978-0-9553602-2-0 ; _type.contents Text _type.container Single loop_ _description_example.case "1.1.1" "32.5.122" save_ save__space_group_magn.ssg_name _definition.id '_space_group_magn.ssg_name' _name.category_id space_group_magn _name.object_id ssg_name _definition.update 2016-10-10 _description.text ; The Belov-Neronova-Smirnova (BNS) symbol for a magnetic superspace group (MSSG) is based on the symbol of the non-magnetic superspace group (SSG) obtained by eliminating all time-reversed operators from the group, as listed in the ISO(3+d)D tables of Stokes and Campbell. If the magnetic basic space group (MBSG) is of type-1 or type-3 (also known as type-3a), its BNS symbol merely replaces that of the basic space-group (BSG). If the MBSG is of type-2 or type-4 (also known as type-3b), an additional phase-shift symbol associated with the time-reversal generator is added to each modulation vector. If the MBSG is of type-4, the BNS symbol of the MSSG is further modified to explicitly show the time-reversal generator (1') at the end, and the anti-centering subscript is moved from the lattice symbol to the 1' so as to clearly indicate the fractional external-space translation of this generator. The examples are based on SSG 47.1.9.3 Pmmm(0,0,g)ss0 in (3+1)D. Analogous tags: msCIF:_space_group.ssg_name Ref: ISO-MAG tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. ISO(3+d)D tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. ; _type.contents Text _type.container Single loop_ _description_example.case _description_example.detail "Pmmm(0,0,g)ss0" "type-1 MBSG Pmmm" "Pmmm1'(0,0,g)ss00" ; type-2 MBSG Pmmm1', with no basic-cell or modulated moments allowed ; "Pmmm1'(0,0,g)ss0s" ; type-2 MBSG Pmmm1', with magnetic modulations allowed, but not basic-cell moments ; "Pm'm'm(0,0,g)ss0" "type-3 MBSG Pm'm'm" "Pmmm1'_a(0,0,g)ss00" "type-4 MBSG P_ammm with purely external anti-centering" "Pmmm1'_a(0,0,g)ss0s" "type-4 MBSG P_ammm with superspace anti-centering" save_ save__space_group_magn.ssg_number _definition.id '_space_group_magn.ssg_number' _name.category_id space_group_magn _name.object_id ssg_number _definition.update 2016-10-10 _description.text ; The Belov-Neronova-Smirnova (BNS) number for a magnetic superspace group. This tag is being held in reserve until a future numbering scheme is approved. Analogous tags: msCIF:_space_group.ssg_number ; _type.contents Text _type.container Single save_ save__space_group_magn.transform_BNS_Pp _definition.id '_space_group_magn.transform_BNS_Pp' _name.category_id space_group_magn _name.object_id transform_BNS_Pp _definition.update 2016-10-10 _description.text ; This item specifies the transformation matrix Pp of the basis vectors and origin of the current setting to those of the Belov-Neronova-Smirnova setting presented in the ISO-MAG tables. The basis vectors (a',b',c') of the BNS setting are obtained as (a',b',c',1) = Pp (a,b,c,1) where (a,b,c) are the current basis vectors. Ref: ISO-MAG tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu Wondratschek, H., Aroyo, M. I., Souvignier, B. and Chapuis, G. Transformation of coordinate systems. In International Tables for Crystallography (2016). Volume A, Space-group symmetry, edited by M. Aroyo, 6th ed. ch 1.5. Chichester: Wiley. ; _type.contents Text _type.container Matrix _type.dimension [4,4] loop_ _description_example.case _description_example.detail ; [[1 0 0 0.25] [0 1 0 0 ] [0 0 1 0 ] [0 0 0 1 ]] ; "Transformation from OG 5.6.24 C_P2' to BNS 4.12 P_C2_1" ; [[0 0 1 0 ] [0 -1 0 0.25] [1 0 0 0 ] [0 0 0 1 ]] ; "Transformation from OG 8.7.44 C_Pm' to BNS 7.31 P_Ac" save_ save__space_group_magn.transform_BNS_Pp_abc _definition.id '_space_group_magn.transform_BNS_Pp_abc' _name.category_id space_group_magn _name.object_id transform_BNS_Pp_abc _definition.update 2016-10-10 _description.text ; This item specifies the transformation (P,p) of the basis vectors and origin of the current setting to those of the Belov-Neronova-Smirnova setting presented in the ISO-MAG tables. The basis vectors (a',b',c') of the BNS setting are described as linear combinations of the current basis vectors (a,b,c), and the origin shift (ox,oy,oz) is displayed in the lattice coordinates of the current setting. The Jones-Faithful notation and possible values are identical to those of symCIF:_space_group.transform_Pp_abc, except that the point and translational components are separated by a semicolon. Analogous tags: symCIF:_space_group.transform_Pp_abc Ref: ISO-MAG tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu ; _type.contents Text _type.container Single save_ save__space_group_magn.transform_OG_Pp _definition.id '_space_group_magn.transform_OG_Pp' _name.category_id space_group_magn _name.object_id transform_OG_Pp _definition.update 2016-10-10 _description.text ; This item specifies the transformation (P,p) of the basis vectors and origin of the current setting to those of the Opechowski-Guccione setting presented in the Magnetic Group Tables of D.B. Litvin. The basis vectors (a',b',c') of the OG setting are obtained as (a',b',c',1) = Pp (a,b,c,1) where (a,b,c) are the current basis vectors. Ref: 'Magnetic Group Tables' by D.B. Litvin at http://www.iucr.org/publ/978-0-9553602-2-0 Wondratschek, H., Aroyo, M. I., Souvignier, B. and Chapuis, G. Transformation of coordinate systems. In International Tables for Crystallography (2016). Volume A, Space-group symmetry, edited by M. Aroyo, 6th ed. ch 1.5. Chichester: Wiley. ; _type.contents Text _type.container Matrix _type.dimension [4,4] save_ save__space_group_magn.transform_OG_Pp_abc _definition.id '_space_group_magn.transform_OG_Pp_abc' _name.category_id space_group_magn _name.object_id transform_OG_Pp_abc _definition.update 2016-10-10 _description.text ; This item specifies the transformation (P,p) of the basis vectors and origin of the current setting to those of the Opechowski-Guccione setting presented in the Magnetic Group Tables of D.B. Litvin. The basis vectors (a',b',c') of the reference setting are described as linear combinations of the current basis vectors (a,b,c), and the origin shift (ox,oy,oz) is displayed in the lattice coordinates of the current setting. The Jones-Faithful notation and possible values are identical to those of symCIF:_space_group.transform_Pp_abc, except that the point and translational components are separated by a semicolon. Analogous tags: symCIF:_space_group.transform_Pp_abc Ref: 'Magnetic Group Tables' by D.B. Litvin at http://www.iucr.org/publ/978-0-9553602-2-0 ; _type.contents Text _type.container Single save_ ##################################### ## SPACE_GROUP_MAGN_SSG_TRANSFORMS ## ##################################### save_space_group_magn_ssg_transforms _definition.id space_group_magn_ssg_transforms _name.category_id MAGNETIC _name.object_id space_group_magn_ssg_transforms _definition.update 2016-06-09 _description.text ; This loop provides a list of matrix transformations to one or more settings of the magnetic superspace group, including transformations to both standard and non-standard settings. A transformation loop is particularly helpful for magnetic superspace groups, which often have several reference settings of interest. Analogous tags: transform loops have not yet been approved in other dictionaries. ; _definition.scope Category _definition.class Loop loop_ _category_key.name '_space_group_magn_ssg_transforms.id' save_ save__space_group_magn_ssg_transforms.description _definition.id '_space_group_magn_ssg_transforms.description' _name.category_id space_group_magn_ssg_transforms _name.object_id description _definition.update 2016-06-21 _description.text ; A string that describes the source of a reference setting for the magnetic superspace group. The item _space_group_magn_ssg_transforms.source should be used if the reference source is one of those provided in that definition. Otherwise, arbitrary free text can be used to describe reference settings of interest, such as might appear in a specific publication, though care should be taken to make the description clear and unambiguous. ; _type.contents Text _type.container Single save_ save__space_group_magn_ssg_transforms.id _definition.id '_space_group_magn_ssg_transforms.id' _name.category_id space_group_magn_ssg_transforms _name.object_id id _definition.update 2016-06-09 _description.text ; An arbitrary identifier that uniquely labels each setting transformation of interest in a looped list of superspace-group transformations. Most commonly, a sequence of positive integers is used for this identification. Analogous tags: transform loops have not yet been approved in other dictionaries. ; _type.contents Text _type.container Single _type.purpose Key save_ save__space_group_magn_ssg_transforms.Pp_superspace _definition.id '_space_group_magn_ssg_transforms.Pp_superspace' _name.category_id space_group_magn_ssg_transforms _name.object_id Pp_superspace _definition.update 2016-06-09 _description.text ; This item specifies the transformation (P,p) of the superspace basis vectors from the current setting (a1,...,a(3+d)) to a reference setting (a1',...,a(3+d)') given by _space_group_magn_ssg_transforms.description. The origin shift is presented in the unitless lattice coordinates of the current setting. The notation and usage are analogous to those of _space_group.transform_Pp_abc, except that P now represents a superspace point operation, that p now represents a superspace translation, and that the point and translational components are now separated with a semicolon. Analogous tags: symCIF:_space_group.transform_Pp_abc ; _type.contents Text _type.container Single _type.purpose Encode loop_ _description_example.case _description_example.detail 'a1,a2,a3,a4,a5;0,0,0,0,0' "Identity transformation" '-a2,a1,1/2a3,-a1+a5,-1/2a3+a4;1/4,-1/4,0,1/4,0' ; Transforms from a supercentered setting to the ISO(3+d)D setting of 65.2.43.64.m481.1 Cmmm(0,b1,1/2)000(1,0,g2)0s0. ; save_ save__space_group_magn_ssg_transforms.source _definition.id '_space_group_magn_ssg_transforms.source' _name.category_id space_group_magn_ssg_transforms _name.object_id source _definition.update 2016-06-21 _description.text ; A string that describes the source of a reference setting for the magnetic superspace group. If the reference source does not appear in the list below, use _space_group_magn_ssg_transforms.description Ref: 'Magnetic Group Tables' of D.B. Litvin at http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. ISO(3+d)D tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. ; _type.contents Text _type.container Single _type.purpose State loop_ _enumeration_set.state _enumeration_set.detail 'ISO(3+d)D-MAG' ; This superspace transformation simultaneously takes the setting of the basic magnetic space group (BMSG) to the setting of the corresponding entry in the ISO-MAG tables, and takes the setting of the derived non-magnetic superspace group (DNMSG) to within a purely external operation of the setting of the corresponding entry in the ISO(3+d)D tables. The external components of this superspace transformation are those that take the setting of the BMSG to the setting of the corresponding entry in the ISO-MAG tables, while the internal components are those of the transformation that takes the setting of the DNMSG to the setting of the corresponding superspace group in the ISO(3+d)D tables. Such a transformation is unique for any setting of a magnetic superspace group. ; save_ ################################# ## SPACE_GROUP_MAGN_TRANSFORMS ## ################################# save_space_group_magn_transforms _definition.id space_group_magn_transforms _name.category_id MAGNETIC _name.object_id space_group_magn_transforms _definition.update 2016-06-09 _description.text ; This category provides a list of matrix transformations to multiple settings of the magnetic space group, including transformations to both standard and non-standard settings. A transformation loop is particularly helpful for a magnetic space group, which often have several reference settings of interest. ; _definition.scope Category _definition.class Loop _category.key_id '_space_group_magn_transforms.id' loop_ _category_key.name '_space_group_magn_transforms.id' loop_ _description_example.case ; loop_ _space_group_magn_transforms.id _space_group_magn_transforms.Pp_abc _space_group_magn_transforms.description _space_group_magn_transforms.source 1 'a,b,c;0,0,0' . "data_block_CURRENT" 2 'a/2,b,c;0,0,0' "data_block_205763" . 3 'a,b,c;0,0,0' . "BNS" 4 'a/2,b,c;0,0,0' . "OG" 5 'a/4,b,c;0,0,0' "literature citation to a nuclear parent structure" . ; save_ save__space_group_magn_transforms.description _definition.id '_space_group_magn_transforms.description' _name.category_id space_group_magn_transforms _name.object_id description _definition.update 2016-06-09 _description.text ; A string that describes the source of the magnetic-space-group reference setting indicated by the _space_group_magn_transforms.Pp_abc tag. _space_group_magn_transforms.source should be used if the reference source is one of those provided in that definition. The value string "data_block_" refers to the setting used in a separate data block named "blockname" within the same file. Otherwise, arbitrary free text can be used to describe other reference settings of interest, such as might appear in a specific publication, though care should be taken to make the description clear and unambiguous. ; _type.contents Text _type.container Single save_ save__space_group_magn_transforms.id _definition.id '_space_group_magn_transforms.id' _name.category_id space_group_magn_transforms _name.object_id id _definition.update 2016-06-09 _description.text ; An arbitrary identifier that uniquely labels each setting transformation of interest in a looped list of space-group transformations. Analogous tags: transform loops have not been approved in other dictionaries. ; _type.contents Text _type.container Single _type.purpose Key save_ save__space_group_magn_transforms.Pp _definition.id '_space_group_magn_transforms.Pp' _name.category_id space_group_magn_transforms _name.object_id Pp _definition.update 2016-06-23 _description.text ; This item specifies the transformation (P,p) of the basis vectors and origin in the current setting of the CIF file to the reference setting described by the _space_group_magn_transforms.description or _space_group_magn_transforms.source tags, and should not be used without this description. The basis vectors (a',b',c') of the reference setting are obtained as (a',b',c',1) = Pp (a,b,c,1) where (a,b,c) are the current basis vectors. Ref: Wondratschek, H., Maroto, M. I., Souvignier, B. and Chapuis, G. Transformation of coordinate systems. In International Tables for Crystallography (2016). Volume A, Space-group symmetry, edited by M. Aroyo, 6th ed. ch 1.5. Chichester: Wiley. ; _type.contents Text _type.container Matrix _type.dimension [4,4] save_ save__space_group_magn_transforms.Pp_abc _definition.id '_space_group_magn_transforms.Pp_abc' _name.category_id space_group_magn_transforms _name.object_id Pp_abc _definition.update 2016-06-09 _description.text ; This item specifies the transformation (P,p) of the basis vectors and origin in the current setting of the CIF file to the reference setting described by the _space_group_magn_transforms.description or _space_group_magn_transforms.source tags, and should not be used without this description. The basis vectors (a',b',c') of the reference setting are described as linear combinations of the current basis vectors (a,b,c), and the origin shift (ox,oy,oz) is displayed in the lattice coordinates of the current setting. The Jones-Faithful notation and possible values are identical to those of symCIF:_space_group_transform_Pp_abc, except that the point and translational components are separated by a semicolon. Analogous tags: symCIF:_space_group.transform_Pp_abc ; _type.contents Text _type.container Single save_ save__space_group_magn_transforms.source _definition.id '_space_group_magn_transforms.source' _name.category_id space_group_magn_transforms _name.object_id source _definition.update 2016-06-22 _description.text ; A string that describes the source of the magnetic space group reference indicated by the _space_group_magnetic_transforms.Pp_abc tag. If the reference source does not appear in the list below, use _space_group_magn_transforms.description Ref: 'Magnetic Group Tables' of D.B. Litvin at http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. ISO(3+d)D tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. ; _type.contents Text _type.container Single _type.purpose State loop_ _enumeration_set.state _enumeration_set.detail "data_block_CURRENT" ; The setting used in the current data block. Obviously, the basis transformation to this setting is the identity. The ability to reference the current setting can be useful when communicating the same magnetic propagation vector in multiple settings. ; 'BNS' ; The Belov-Neronova-Smirnova group setting presented in the ISO-MAG tables. ; 'OG' ; The Opechowski-Guccione group setting presented in the Magnetic Group Tables of D.B. Litvin. ; save_ ###################################### ## SPACE_GROUP_SYMOP_MAGN_CENTERING ## ###################################### save_space_group_symop_magn_centering _definition.id space_group_symop_magn_centering _name.category_id MAGNETIC _name.object_id space_group_symop_magn_centering _definition.update 2016-05-24 _description.text ; This loop provides a list of centering or anti-centering translation in a BNS-supercell description of a magnetic space group. Keeping the centering and anti-centering translations in a separate loop leaves only representative point operations in the main SPACE_GROUP_SYMOP_MAGN_OPERATION loop. The direct sum of the two loops produces the full set of representative operations of the magnetic space group. This centering loop is optional, so that it is always possible to include all of the symmetry operations in the main loop. When this centering loop is employed, the representative point operations in the main SPACE_GROUP_SYMOP_MAGN_OPERATION loop may not form a closed subgroup, but instead generate some of the fractional translations of the centering loop. Despite this annoyance, a separate centering loop is important because magnetic structures tend to have a relatively large number of centering and anti-centering translations, which can make the resulting list of operators very long and unintuitive, especially when working in non-standard settings. One could argue that anti-centering operations belong in the main representative- point-operation loop since they are not actually translations of the magnetic lattice. In fact, a pure time reversal is a generator of the magnetic point group of a type-4 magnetic space group. Nevertheless, this centering loop is defined to include the anti-centerings due to the common practice of referring to a "black and white" lattice of centerings and anti-centerings. ; _definition.scope Category _definition.class Loop loop_ _category_key.name '_space_group_symop_magn_centering.id' loop_ _description_example.case ; loop_ _space_group_symop_magn_centering.id _space_group_symop_magn_centering.xyz _space_group_symop_magn_centering.description 1 'x+1/2,y+1/2,z,+1' 'a non-time-reversed (1/2,1/2,0) translation' 2 'x+1/2,y+1/2,z,-1' 'a time-reversed (1/2,1/2,0) translation' ; save_ save__space_group_symop_magn_centering.description _definition.id '_space_group_symop_magn_centering.description' _name.category_id space_group_symop_magn_centering _name.object_id description _definition.update 2016-05-24 _description.text ; An optional free text description of a particular centering or anti-centering translation in the BNS-supercell description of a magnetic space group. ; _type.contents Text _type.container Single loop_ _description_example.case ; "(1|1/2,1/2,0)'", "(1'|1/2,1/2,0)" or "(1/2,1/2,0) anti-centering translation" would adequately describe "x+1/2,y+1/2,z,-1" ; save_ save__space_group_symop_magn_centering.id _definition.id '_space_group_symop_magn_centering.id' _name.category_id space_group_symop_magn_centering _name.object_id id _definition.update 2016-05-24 _description.text ; An arbitrary identifier that uniquely labels each centering or anti-centering translation in a BNS-supercell description of a magnetic space group. Most commonly, a sequence of positive integers is used for this identification. ; _type.contents Text _type.container Single _type.purpose Key save_ save__space_group_symop_magn_centering.xyz _definition.id '_space_group_symop_magn_centering.xyz' _name.category_id space_group_symop_magn_centering _name.object_id xyz _definition.update 2016-05-24 _description.text ; A parsable string giving one of the centering or anti-centering translations in the BNS-supercell description of a magnetic space group in algebraic form. The form of such a string is identical to that expected for _space_group_symop_magn_operation.xyz, except that the rotational part of a translation must always be the identity element. ; _type.contents Text _type.container Single _type.purpose Encode save_ ######################################### ## SPACE_GROUP_SYMOP_MAGN_OG_CENTERING ## ######################################### save_space_group_symop_magn_OG_centering _definition.id space_group_symop_magn_OG_centering _name.category_id MAGNETIC _name.object_id space_group_symop_magn_OG_centering _definition.update 2016-05-24 _description.text ; This loop provides a list of centering translations in an OG(k)-supercell description of a magnetic space group. For an OG(k)-supercell description, this loop is mandatory and entirely distinct from the optional SPACE_GROUP_SYMOP_MAGN_CENTERING loop used to simplify the presentation of a BNS-supercell description. An integer translation in an OG setting of a type-4 magnetic space group may have a time-reversal component of -1, in which case it is actually an anti-translation vector rather than a lattice vector. This loop should include all centering and anti-centering translations, but does not include the time-reversal components, which are instead determined using the value of the _space_group_magn.OG_wavevector_kxkykz tag. Because the centering translations are listed in a separate loop in the OG(k) description, only representative point operations remain in the main SPACE_GROUP_SYMOP_MAGN_OPERATION loop. ; _definition.scope Category _definition.class Loop loop_ _category_key.name '_space_group_symop_magn_OG_centering.id' save_ save__space_group_symop_magn_OG_centering.description _definition.id '_space_group_symop_magn_OG_centering.description' _name.category_id space_group_symop_magn_OG_centering _name.object_id description _definition.update 2016-05-24 _description.text ; An optional free-text description of a particular centering operation from the OG(k)-supercell description of a magnetic space group, without the time-reversal component. Analogous tags: centering loops have not been approved for other dictionaries. ; _type.contents Text _type.container Single loop_ _description_example.case _description_example.detail "(1/2,1/2,0)" 'Adequately describes x+1/2,y+1/2,z' save_ save__space_group_symop_magn_OG_centering.id _definition.id '_space_group_symop_magn_OG_centering.id' _name.category_id space_group_symop_magn_OG_centering _name.object_id id _definition.update 2016-05-24 _description.text ; An arbitrary loop identifier that uniquely labels each centering translation in an OG(k)-supercell description of a magnetic space group. Most commonly, a sequence of positive integers is used for this identification. Analogous tags: centering loops have not been approved for other dictionaries. ; _type.contents Text _type.container Single _type.purpose Key save_ save__space_group_symop_magn_OG_centering.xyz _definition.id '_space_group_symop_magn_OG_centering.xyz' _name.category_id space_group_symop_magn_OG_centering _name.object_id xyz _definition.update 2016-05-24 _description.text ; A parsable string giving one of the centering operations of the OG(k)-supercell description of a magnetic space group in algebraic form. The form of such a string is identical to that expected for _space_group_symop_operation.xyz, except that the rotational part of a translation must always be the identity element. The magnetic component of the centering vector is not given in the value of this tag, but should instead be separately established using the value of the _space_group_magn.OG_wavevector_kxkykz tag. ; _type.contents Text _type.container Single _type.purpose Encode loop_ _description_example.case _description_example.detail "x+1/2,y+1/2,z" "a centering translation of (1/2,1/2,0)" save_ ######################################### ## SPACE_GROUP_SYMOP_MAGN_OG_CENTERING ## ######################################### save_space_group_symop_magn_operation _definition.id space_group_symop_magn_operation _name.category_id MAGNETIC _name.object_id space_group_symop_magn_operation _definition.update 2016-05-24 _description.text ; A list of magnetic space-group symmetry operations. ; _definition.scope Category _definition.class Loop loop_ _category_key.name '_space_group_symop_magn_operation.id' save_ save__space_group_symop_magn_operation.description _definition.id '_space_group_symop_magn_operation.description' _name.category_id space_group_symop_magn_operation _name.object_id description _definition.update 2016-05-24 _description.text ; The description of a particular symmetry operation of the magnetic space group, which can be presented in either the geometric notation presented in the International Tables for Crystallography (2006), Volume A, section 11.1.2, or the Seitz notation as presented in Acta Cryst. (2014), A70, 300-302. This tag is intended for use with the BNS-supercell description of a magnetic structure. Analogous tags: symCIF:_space_group_symop.operation_description Ref: 'Magnetic Group Tables' by D.B. Litvin at http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. ; _type.contents Text _type.container Single save_ save__space_group_symop_magn_operation.id _definition.id '_space_group_symop_magn_operation.id' _name.category_id space_group_symop_magn_operation _name.object_id id _definition.update 2016-05-24 loop_ _alias.definition_id _alias.deprecation_date '_space_group_symop_magn.id' 2016-05-24 _description.text ; An arbitrary identifier that uniquely labels each symmetry operation in a looped list of magnetic space-group symmetry operations. Most commonly, a sequence of positive integers is used for this identification. The _space_group_symop_magn.id alias provides backwards compatibility with the established magCIF prototype. ; _type.contents Text _type.container Single _type.purpose Key save_ save__space_group_symop_magn_operation.xyz _definition.id '_space_group_symop_magn_operation.xyz' _name.category_id space_group_symop_magn_operation _name.object_id xyz _definition.update 2016-05-24 _description.text ; A parsable string giving one of the symmetry operations of the magnetic space group in algebraic form. The analogy between parsable labels for magnetic and non-magnetic symmetry operations is perfect except for the fact that a magnetic symop label ends with an additional piece of information ("-1" or "+1") indicating that the operation is or is not time-reversed, respectively. This tag is intended for use with the BNS-supercell description of a magnetic structure. Analogous tags: symCIF:_space_group_symop.operation_xyz Ref: 'Magnetic Group Tables' by D.B. Litvin at http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. ; _type.contents Text _type.container Single _type.purpose Encode loop_ _description_example.case _description_example.detail "x+1/2,y+1/2,z,-1" ; a time-reversed (1/2,1/2,0) translation, i.e. anti-centering vector ; "-y,x,z+1/2,-1" "a time-reversed 4_2 screw along (00z)." "-y,x,z+1/2,+1" "a non-time-reversed 4_2 screw along (00z)." save_ ########################################## ## SPACE_GROUP_SYMOP_MAGN_SSG_CENTERING ## ########################################## save_space_group_symop_magn_ssg_centering _definition.id space_group_symop_magn_ssg_centering _name.category_id MAGNETIC _name.object_id space_group_symop_magn_ssg_centering _definition.update 2016-05-24 _description.text ; This loop provides a list of the centering and anti-centering translations of a magnetic superspace-group. ; _definition.scope Category _definition.class Loop loop_ _category_key.name '_space_group_symop_magn_ssg_centering.id' save_ save__space_group_symop_magn_ssg_centering.algebraic _definition.id '_space_group_symop_magn_ssg_centering.algebraic' _name.category_id space_group_symop_magn_ssg_centering _name.object_id algebraic _definition.update 2016-05-24 _description.text ; A parsable string giving one of the centering or anti-centering operations of the magnetic superspace group in algebraic form. The form of such a string is identical to that expected for _space_group_symop_magn_ssg_operation.algebraic, except that the rotational part of a translation must always be the identity element. See the description of _space_group_symop_magn_centering.id for more information about centering loops. This tag is intended for use with the BNS description of the magnetic basic cell. ; _type.contents Text _type.container Single _type.purpose Encode loop_ _description_example.case _description_example.detail 'x1,x2,x3,x4,x5,+1' 'the identity element in (3+2)D' 'x1,x2,x3,x4+1/2,-1' ; a time-reversed superspace translation in (3+1)D based on a simple 180-degree phase shift of a single modulation vector' ; 'x1+1/2,x2+1/2,x3+1/2,x4,+1' ; a non-time-reversed external body-center translation in (3+1)D ; 'x1+1/2,x2,x3,x4,x5,x6+3/2,-1' ; a time-reversed superspace translation in (3+3)D that combines internal and external shifts ; save_ save__space_group_symop_magn_ssg_centering.id _definition.id '_space_group_symop_magn_ssg_centering.id' _name.category_id space_group_symop_magn_ssg_centering _name.object_id id _definition.update 2016-05-24 _description.text ; An arbitrary identifier that uniquely labels each centering or anti-centering translations in a looped list of magnetic superspace-group symmetry operations. Most commonly, a sequence of positive integers is used for this identification. This tag is intended for use with the BNS description of the magnetic basic cell. Analogous to the case of magnetic space groups, the magCIF dictionary allows the subgroup of time-reversed and non-time-reversed fractional translations of a magnetic superspace group to be split off into a separate loop. See the description of _space_group_symop_magn_centering.id for more information about centering loops. ; _type.contents Text _type.container Single _type.purpose Key save_ ########################################## ## SPACE_GROUP_SYMOP_MAGN_SSG_OPERATION ## ########################################## save_space_group_symop_magn_ssg_operation _definition.id space_group_symop_magn_ssg_operation _name.category_id MAGNETIC _name.object_id space_group_symop_magn_ssg_operation _definition.update 2016-05-24 _description.text ; A looped list of magnetic superspace-group symmetry operations. Analogous tags: msCIF:_space_group_symop.ssg_* ; _definition.scope Category _definition.class Loop loop_ _category_key.name '_space_group_symop_magn_ssg_operation.id' save_ save__space_group_symop_magn_ssg_operation.algebraic _definition.id '_space_group_symop_magn_ssg_operation.algebraic' _name.category_id space_group_symop_magn_ssg_operation _name.object_id algebraic _definition.update 2016-05-24 _description.text ; A parsable string giving one of the symmetry operations of the magnetic superspace group in algebraic form. The analogy between parsable labels for magnetic and non-magnetic symmetry operations is perfect except for the fact that a magnetic symop label ends with an additional piece of information ("-1" or "+1") indicating that the operation is or is not time-reversed, respectively. This tag is intended for use with the BNS description of the magnetic basic cell. Analogous tags: msCIF:_space_group_symop.ssg_operation_algebraic ; _type.contents Text _type.container Single _type.purpose Describe loop_ _description_example.case _description_example.detail "x1,x2,x3,x4,x5,x6,+1" "the identity element in (3+3)D." 'x1,x2,x3,x4+1/2,-1' ; a superspace anti-centering translation based on a simple 180-degree phase shift of a single modulation vector ; 'x1+1/2,x2+1/2,-x3,-x4,-1' ; a time-reversed n-glide perpendicular to a z-axis modulation ; 'x1-x2,x1,x3+1/3,x4-1/6,x5,+1' ; a non-time-reversed 6_2 screw axis with phase shift along a pair of z-axis modulations ; save_ save__space_group_symop_magn_ssg_operation.id _definition.id '_space_group_symop_magn_ssg_operation.id' _name.category_id space_group_symop_magn_ssg_operation _name.object_id id _definition.update 2016-05-24 loop_ _alias.definition_id _alias.deprecation_date '_space_group_symop_magn_ssg.id' 2016-05-24 _description.text ; An arbitrary identifier that uniquely labels each symmetry operation in a looped list of magnetic superspace-group symmetry operations. Most commonly, a sequence of positive integers is used for this identification. The _space_group_symop_magn_ssg.id alias provides backwards compatibility with the established magCIF prototype. Analogous tags: msCIF:_space_group_symop_ssg_id ; _type.contents Text _type.container Single _type.purpose Key save_ #============================================================================= # The dictionary's audit trail and creation history. #============================================================================ loop_ _dictionary_audit.version _dictionary_audit.date _dictionary_audit.revision 0.1 2016-05-24 ; Initial automatic conversion from draft magCIF format (James Hester) ; 0.9 2016-05-27 ; Manual editing of examples and definition text to remove conversion artefacts. Reparenting of categories that are children of cif_core categories. ; 0.9.1 2016-05-30 ; Added import of cif_core dictionary. Added category keys and linked items. ; 0.9.2 2016-06-10 ; Added missing transformation and parent space group items. Enhanced type information ; 0.9.3 2016-06-23 ; Finalised outstanding issues from conversion. ; 0.9.4 2016-06-28 ; Added underscore aliases for datanames already in common use ; 0.9.5 2016-07-05 ; Added _space_group.magn_point_group_number; changed _space_group.magn_point_group to _space_group.magn_point_group_name ; 0.9.6 2016-10-10 ; Moved _space_group.magn_ items to new category _space_group_magn ; 0.9.7 2016-12-16 ; Editorial/consistency changes (B. McMahon) ; 0.9.8 2020-07-28 ; Added _atom_site_moment.magnitude, improved descriptions of _atom_site_moment.cartesion* items, corrected and improved *_symmform descriptions. Created the atom_site_rotation category. (B. Campbell) 2018-08-24 Editorial/consistency changes (B. McMahon) ;