4.5. Macromolecular dictionary (mmCIF)

By P. M. D. Fitzgerald, J. D. Westbrook, P. E. Bourne, B. McMahon, K. D. Watenpaugh and H. M. Berman

This is version 2.0.09 of the macromolecular CIF dictionary (mmCIF). The philosophy behind this dictionary and the history of its development are described in Chapter 1.1. A detailed commentary on the use of the dictionary is given in Chapter 3.6.

Category groups

atom_group	Categories that describe the properties of atoms.
audit_group	Categories that describe dictionary maintenance and identification.
cell	Categories that describe the unit cell.
chemical_group	Categories that describe chemical properties and nomenclature.
chem_comp_grou	Categories that describe components of chemical structure.
chem_link_group	Categories that describe links between components of chemical structure.
citation_group	Categories that provide bibliographic references.
computing_group	Categories that describe the computational details of the experiment.
compliance _group	Categories that are included in this dictionary specifically to comply with previous dictionaries.
database_group	Categories that hold references to entries in databases that contain related information.
diffrn group	Categories that describe details of the diffraction experiment.
	Categories th
entry_group	Categories that pertain to the entire data block.
exptl_group	Categories that hold details of the experimental conditions.
geom_group	Categories that hold details of molecular and crystal geometry.
iucr_group	Categories that are used for manuscript submission and internal processing by the staff of the International Union of Crystallography.
pdb_group	Categories that pertain to the file-format or data-processing codes used by the Protein Data Bank.

[^0]phasing_group
refine_group
refln_group
struct_group
symmetry_group

Categories that describe phasing.
Categories that describe refinement.
Categories that describe the details of reflection measurements.
Categories that contain details about the crystallographic structure.
Categories that describe symmetry information.

ATOM_SITE

Data items in the ATOM SITE category record details about the atom sites in a macromolecular crystal structure, such as the positional coordinates, atomic displacement parameters, magnetic moments and directions. The data items for describing anisotropic atomic displacement factors are only used if the corresponding items are not given in the ATOM_SITE_ANISOTROP category.
Category group(s): inclusive_group atom_group
Category key(s): _atom_site.id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry $5 H V P$.

loop_

_atom_site.group_PDB
_atom_site.type_symbol
_atom_site.label_atom_id
_atom_site.label_comp_id
atom site.label asym id
_atom_site.label_seq_id
_atom_site.label_alt_id
atom site.Cartn x
_atom_site.Cartn_y
_atom_site.Cartn_z
_atom_site.occupancy
_atom_site.B_iso_or_equiv
_atom_site.footnote_id
atom_site.auth_seq id
_atom_site.id
ATOM N N VAL A 11 . $25.369 \quad 30.691 \quad 11.795 \quad 1.00$ 17.93 . 111
$\begin{array}{lllllllllll}\text { ATOM C CA VAL A } & 11 & 25.970 & 31.965 & 12.332 & 1.00\end{array}$ 17.75 . 112

ATOM C C VAL A 11 . $25.569 \quad 32.010 \quad 13.808 \quad 1.00$ 17.83 . 113
$\begin{array}{lllllllllll}\text { ATOM O } O \quad \text { VAL } A & 11 & 24.735 & 31.190 & 14.167 & 1.00\end{array}$ 17.53 . 114

ATOM C CB VAL A 11 . $25.379 \quad 33.146 \quad 11.540 \quad 1.00$ 17.66 . 115

ATOM C CG1 VAL A 11 . $25.584 \quad 33.034 \quad 10.030 \quad 1.00$ 18.86 . 116

ATOM C CG2 VAL A 11 . $23.933 \quad 33.309 \quad 11.872 \quad 1.00$ 17.12 . 117 (71 $\begin{array}{lllllllllll}\text { ATOM N N THR A } & \text { N } & 26.095 \quad 32.930 & 14.590 & 1.00\end{array}$ $\begin{array}{llll}18.97 & 4 & 12 & 8\end{array}$
ATOM C CA THR A 12 . $25.734 \quad 32.995 \quad 16.032 \quad 1.00$ $\begin{array}{llll}19.80 & 4 & 12 & 9\end{array}$
$\begin{array}{llllllllll}\text { ATOM C C THR A } 12 & 24.695 & 34.106 & 16.113 & 1.00\end{array}$ $20.92 \quad 4 \quad 12 \quad 10$

| ATOM O | 0 | THR | A | 12 | 24.869 | 35.118 | 15.421 | 1.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llll}21.84 & 4 & 12 & 11\end{array}$

ATOM C CB THR A 12 . $26.911 \quad 33.346 \quad 17.018 \quad 1.00$ $20.51 \quad 4 \quad 12 \quad 12$
$\begin{array}{llllllllll}\text { ATOM O OG1 THR A } & 12 & 3 & 27.946 & 33.921 & 16.183 & 0.50\end{array}$ $20.29 \quad 4 \quad 12 \quad 13$

```
ATOM O OG1 THR A 12 4 27.769 32.142 17.103 0.50
    20.59 4 12 14
ATOM C CG2 THR A 12 3 27.418 32.181 17.878
    20.47 4 12 15
ATOM C CG2 THR A 12 4 26.489 33.778 18.426 0.50
    20.00 4 12 16
ATOM N N ILE A 13 . 23.664 33.855 16.884 1.00
    22.08 . 13 17
ATOM C CA ILE A 13 . 22.623 34.850 17.093 1.00
    23.44 . 13 18
ATOM C C ILE A 13 . 22.657 35.113 18.610 1.00
    25.77 . 13 19
ATOM O O ILE A 13 . 23.123 34.250 19.406 1.00
    26.28 . 13 20
ATOM C CB ILE A 13 . 21.236 34.463 16.492 1.00
    22.67 . 13 21
ATOM C CG1 ILE A 13 . 20.478 33.469 17.371 1.00
    22.14 . 13 22
ATOM C CG2 ILE A 13 . 21.357 33.986 15.016 1.00
    21.75 . 13 23
# - - - - data truncated for brevity - - - -
HETATM C C1 APS C . 1 1 4.171 29.012 
    17.27 1 300 101
HETATM C C2 APS C . 1 4.949 27.758 6.793 0.58
    16.95 1 300 102
HETATM O O3 APS C . 1 4.800 26.678 7.393 0.58
    16.85 1 300 103
HETATM N N4 APS C . 1 5 5.930 27.841 5.869 0.58
    16.43 1 300 104
# - - - - data truncated for brevity - - - -
```

_atom_site.adp_type
_atom_site_adp_type(cif_core.dic 2.3)

A standard code used to describe the type of atomic displacement parameters used for the site.
Related item: _atom_site.thermal_displace_type (alternate).
The data value must be one of the following:
$\begin{array}{ll}\text { Uani } & \text { anisotropic } U^{i j} \\ \text { Uiso } & \text { isotropic } U\end{array}$
UOVl
Uovl overall U
Umpe multipole expansion U
Bani anisotropic $B^{i j}$
Biso isotropic B
Bovl overall B

_atom_site.aniso_B[1] [1]

\bar{T} The $[1][1]$ element of the anisotropic atomic displacement matrix
B, which appears in the structure-factor term as

$$
T=\exp \left\{-(1 / 4) \sum_{i}\left[\sum_{j}\left(B^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\}
$$

where $h=$ the Miller indices and $a^{*}=$ the reciprocal-space cell lengths.
These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B 's or U 's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of \mathbf{B} for reporting atomic displacement parameters. \mathbf{U}, being directly proportional to \mathbf{B}, is preferred.

```
Related items: _atom_site.aniso_B[1] [1]_esd (associated esd),
_atom_site.aniso_U[1] [1] (conversion constant),
_atom_site_anisotrop.U[1] [1] (conversion constant),
_atom_site.aniso_U[1] [1] (alternate exclusive),
_atom_site_anisotrop.B[1] [1] (alternate exclusive),
_atom_site_anisotrop.U[1] [1] (alternate exclusive).
_atom_site.aniso_B[1] [1]_esd (foat)
The standard uncertainty (estimated standard deviation) of _atom_site.aniso_B[1] [1].
Related items: _atom_site.aniso_B[1] [1] (associated value),
_atom_site.aniso_U[1] [1]_esd (conversion constant),
_atom_site_anisotrop.U[1] [1]_esd (conversion constant),
_atom_site.aniso_U[1] [1]_esd(alternate exclusive),
_atom_site_anisotrop.B[1] [1]_esd (alternate exclusive),
_atom_site_anisotrop.U[1] [1]_esd(alternate exclusive). [atom_site]
_atom_site.aniso_B[1] [2]
(float, su)
The [1][2] element of the anisotropic atomic displacement matrix B, which appears in the structure-factor term as
\[
T=\exp \left\{-(1 / 4) \sum_{i}\left[\sum_{j}\left(B^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\},
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.
These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either \(B\) 's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of \(\mathbf{B}\) for reporting atomic displacement parameters. \(\mathbf{U}\), being directly proportional to \(\mathbf{B}\), is preferred.
Related items: _atom_site.aniso_B[1] [2]_esd (associated esd),
_atom_site.aniso_U [1] [2] (conversion constant),
_atom_site_anisotrop.U[1] [2] (conversion constant),
_atom_site.aniso_U[1] [2] (alternate exclusive),
_atom_site_anisotrop.B[1] [2] (alternate exclusive),
_atom_site_anisotrop.U[1] [2] (alternate exclusive).
[atom_site]
_atom_site.aniso_B [1] [2]_esd (float)
The standard uncertainty (estimated standard deviation) of _atom_site.aniso_B[1] [2].
Related items: _atom_site.aniso_B [1] [2] (associated value),
_atom_site.aniso_U[1] [2]_esd (conversion constant),
_atom_site_anisotrop.U[1] [2]_esd (conversion constant),
_atom_site.aniso_U[1] [2]_esd (alternate exclusive),
_atom_site_anisotrop.B[1] [2]_esd (alternate exclusive),
_atom_site_anisotrop.U[1] [2]_esd(alternate exclusive). [atom_site]
_atom_site.aniso_B[1] [3]
(float, su)
\(\bar{T}\) he [1][3] element of the anisotropic atomic displacement matrix B, which appears in the structure-factor term as
\[
T=\exp \left\{-(1 / 4) \sum_{i}\left[\sum_{j}\left(B^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\},
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.
These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either \(B\) 's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on

Nomenclature recommends against the use of B for reporting atomic displacement parameters. \(\mathbf{U}\), being directly proportional to \(\mathbf{B}\), is preferred.
```

Related items: _atom_site.aniso_B[1] [3]_esd(associated esd),
_atom_site.aniso_U[1] [3] (conversion constant),
_atom_site_anisotrop.U[1] [3] (conversion constant),
_atom_site.aniso_U [1] [3] (alternate exclusive),
_atom_site_anisotrop.B[1] [3] (alternate exclusive),
_atom_site_anisotrop.U[1] [3] (alternate exclusive).

```
[atom_site]

\section*{_atom_site.aniso_B [1] [3]_esd \\ (float)}
\(\bar{T}\) The standard uncertainty (estimated standard deviation) of _atom_site.aniso_B[1] [3].
Related items:_atom_site.aniso_B[1] [3] (associated value),
_atom_site.aniso_U[1] [3]_esd (conversion constant),
_atom_site_anisotrop. U[1] [3]_esd (conversion constant),
_atom_site.aniso_U[1] [3]_esd (alternate exclusive),
_atom_site_anisotrop.B[1] [3]_esd (alternate exclusive),
_atom_site_anisotrop.U[1] [3]_esd(alternate exclusive).
[atom_site]

\section*{atom_site.aniso B[2] [2]}
(float, su)
The [2][2] element of the anisotropic atomic displacement matrix B, which appears in the structure-factor term as
\[
T=\exp \left\{-(1 / 4) \sum_{i}\left[\sum_{j}\left(B^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\}
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.
These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either \(B\) 's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of \(\mathbf{B}\) for reporting atomic displacement parameters. \(\mathbf{U}\), being directly proportional to \(\mathbf{B}\), is preferred.
```

Related items:_atom_site.aniso_B[2] [2]_esd(associated esd),
_atom_site.aniso_U[2] [2] (conversion constant),
_atom_site_anisotrop.U[2] [2] (conversion constant),
_atom_site.aniso_U[2] [2] (alternate exclusive),
_atom_site_anisotrop.B[2] [2] (alternate exclusive),
_atom_site_anisotrop.U[2] [2] (alternate exclusive).

```
[atom_site]
_atom_site.aniso_B [2] [2]_esd
(float)
The standard uncertainty (estimated standard deviation) of _atom_site.aniso_B[2] [2].
Related items: _atom_site.aniso_B[2] [2] (associated value), _atom_site.aniso_U[2] [2]_esd(conversion constant), _atom_site_anisotrop.U[2] [2]_esd (conversion constant),
_atom_site.aniso_U[2] [2]_esd(alternate exclusive),
_atom_site_anisotrop.B[2] [2]_esd(alternate exclusive),
_atom_site_anisotrop.U[2] [2]_esd(alternate exclusive).
[atom_site]

\section*{_atom_site.aniso_B[2] [3]}
(float, su)
The [2][3] element of the anisotropic atomic displacement matrix \(\mathbf{B}\), which appears in the structure-factor term as
\[
T=\exp \left\{-(1 / 4) \sum_{i}\left[\sum_{j}\left(B^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\}
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.

These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either \(B\) 's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of \(\mathbf{B}\) for reporting atomic displacement parameters. \(\mathbf{U}\), being directly proportional to \(\mathbf{B}\), is preferred.
```

Related items:_atom_site.aniso_B[2] [3]_esd(associated esd),
_atom_site.aniso_U[2] [3] (conversion constant),
_atom_site_anisotrop.U[2] [3] (conversion constant),
_atom_site.aniso_U[2] [3] (alternate exclusive),
_atom_site_anisotrop.B[2] [3] (alternate exclusive),
_atom_site_anisotrop.U[2] [3] (alternate exclusive).
[atom_site]
_atom_site.aniso_B[2] [3]_esd (float)
The standard uncertainty (estimated standard deviation) of _atom_site.aniso_B[2] [3].
Related items:_atom_site.aniso_B[2] [3] (associated value),
_atom_site.aniso_U[2] [3]_esd (conversion constant),
_atom_site_anisotrop.U[2] [3]_esd (conversion constant),
_atom_site.aniso_U[2] [3]_esd (alternate exclusive),
_atom_site_anisotrop.B[2] [3]_esd (alternate exclusive),
_atom_site_anisotrop.U[2] [3]_esd(alternate exclusive). [atom_site]

```

\section*{atom_site.aniso_B[3] [3]}
(float, su)
The [3][3] element of the anisotropic atomic displacement matrix B, which appears in the structure-factor term as
\[
T=\exp \left\{-(1 / 4) \sum_{i}\left[\sum_{j}\left(B^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\},
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.

These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either \(B\) 's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of \(\mathbf{B}\) for reporting atomic displacement parameters. \(\mathbf{U}\), being directly proportional to \(\mathbf{B}\), is preferred.
```

Related items:_atom_site.aniso_B[3] [3]_esd(associated esd),

```
_atom_site.aniso_U[3] [3] (conversion constant),
_atom_site_anisotrop.U[3] [3] (conversion constant),
_atom_site.aniso_U[3] [3] (alternate exclusive),
_atom_site_anisotrop.B[3] [3] (alternate exclusive),
_atom_site_anisotrop.U[3] [3] (alternate exclusive).
[atom_site]
_atom_site.aniso_B[3] [3]_esd (float)
\(\bar{T}\) The standard uncertainty (estimated standard deviation) of _atom_site.aniso_B[3] [3].
Related items:_atom_site.aniso_B[3][3] (associated value),
_atom_site.aniso_U[3] [3]_esd (conversion constant),
_atom_site_anisotrop.U[3] [3]_esd (conversion constant),
_atom_site.aniso_U[3] [3]_esd (alternate exclusive),
_atom_site_anisotrop.B[3] [3]_esd(alternate exclusive),
_atom_site_anisotrop.U[3] [3]_esd(alternate exclusive).
[atom_site]

> _atom_site.aniso_ratio (float)
\(\bar{R}\) atio of the maximum to minimum principal axes of displacement (thermal) ellipsoids.
The permitted range is \([1.0, \infty)\).
Related item: _atom_site_anisotrop.ratio (alternate exclusive). [atom_site]
atom_site.aniso_U[1] [1]
(float, su) \(\bar{T}\) he [1][1] element of the standard anisotropic atomic displacement matrix \(\mathbf{U}\), which appears in the structure-factor term as
\[
T=\exp \left\{-2 \pi^{2} \sum_{i}\left[\sum_{j}\left(U^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\}
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.

These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either \(B\) 's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row
Related items: _atom_site.aniso_U[1] [1]_esd (associated esd),
_atom_site.aniso_B[1] [1] (conversion constant),
_atom_site_anisotrop.B[1] [1] (conversion constant),
_atom_site.aniso_B [1] [1] (alternate exclusive),
_atom_site_anisotrop.B[1] [1] (alternate exclusive),
_atom_site_anisotrop.U[1] [1] (alternate exclusive). [atom_site]

\section*{atom site.aniso U[1] [1] esd}
(float)
The standard uncertainty (estimated standard deviation) of _atom_site.aniso_U[1] [1].
Related items: _atom_site.aniso_U [1] [1] (associated value),
_atom_site.aniso_B [1] [1]_esd (conversion constant),
_atom_site_anisotrop.B[1] [1]_esd(conversion constant),
_atom_site.aniso_B[1] [1]_esd (alternate exclusive),
_atom_site_anisotrop.B[1] [1]_esd (alternate exclusive),
_atom_site_anisotrop.U[1] [1]_esd (alternate exclusive).
[atom_site]
_atom_site.aniso_U[1][3]
(float, su)
The [1][3] element of the standard anisotropic atomic displacement matrix \(\mathbf{U}\), which appears in the structure-factor term as
\[
T=\exp \left\{-2 \pi^{2} \sum_{i}\left[\sum_{j}\left(U^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\},
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.

These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either \(B\) 's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row.
Related items: _atom_site.aniso_U[1] [3]_esd (associated esd),
_atom_site.aniso_B[1] [3] (conversion constant),
_atom_site_anisotrop.B[1] [3] (conversion constant),
_atom_site.aniso_B[1] [3] (alternate exclusive),
_atom_site_anisotrop.B[1] [3] (alternate exclusive),
_atom_site_anisotrop.U[1] [3] (alternate exclusive).
[atom_site]
\(\bar{T}\) The standard uncertainty (estimated standard deviation) of _atom_site.aniso_U[1] [3].
Related items: _atom_site.aniso_U[1] [3] (associated value),
_atom_site.aniso_B[1] [3]_esd (conversion constant),
_atom_site_anisotrop.B[1] [3]_esd (conversion constant),
_atom_site.aniso_B[1] [3]_esd (alternate exclusive),
_atom_site_anisotrop.B[1] [3]_esd (alternate exclusive),
_atom_site_anisotrop.U[1] [3]_esd (alternate exclusive).
[atom_site]

\section*{_atom_site.aniso_U[1] [2]}

The [1][2] element of the standard anisotropic atomic displacement matrix \(\mathbf{U}\), which appears in the structure-factor term as
\[
T=\exp \left\{-2 \pi^{2} \sum_{i}\left[\sum_{j}\left(U^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\}
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.
These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either \(B\) 's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row.
Related items: _atom_site.aniso_U[1] [2]_esd (associated esd),
_atom_site.aniso_B[1] [2] (conversion constant),
_atom_site_anisotrop.B[1] [2] (conversion constant),
_atom_site.aniso_B[1] [2] (alternate exclusive),
_atom_site_anisotrop.B[1] [2] (alternate exclusive),
_atom_site_anisotrop.U[1] [2] (alternate exclusive). [atom_site]
atom_site.aniso_U [2] [2]
(float, su)
The [2][2] element of the standard anisotropic atomic displacement matrix \(\mathbf{U}\), which appears in the structure-factor term as
\[
T=\exp \left\{-2 \pi^{2} \sum_{i}\left[\sum_{j}\left(U^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\},
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.
These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either \(B\) 's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row.
Related items: _atom_site.aniso_U[2] [2]_esd (associated esd),
_atom_site.aniso_B[2] [2] (conversion constant),
_atom_site_anisotrop.B[2] [2] (conversion constant),
_atom_site.aniso_B[2] [2] (alternate exclusive),
_atom_site_anisotrop.B[2] [2] (alternate exclusive),
_atom_site_anisotrop.U[2] [2] (alternate exclusive).
_atom_site.aniso_U[1] [2]_esd (float)
The standard uncertainty (estimated standard deviation) of _atom_site.aniso_U[1] [2].
Related items: _atom_site.aniso_U [1] [2] (associated value),
_atom_site.aniso_B [1] [2]_esd (conversion constant),
_atom_site_anisotrop.B[1] [2]_esd (conversion constant),
_atom_site.aniso_B[1] [2]_esd(alternate exclusive),
_atom_site_anisotrop.B[1] [2]_esd(alternate exclusive),
_atom_site_anisotrop.U[1] [2]_esd(alternate exclusive). [atom_site]
_atom_site.aniso_U[2][2]_esd (float)
\(\overline{\text { The }}\) - andard uncertainty (estimated standard deviation) of _atom_site.aniso_U[2] [2].
Related items: _atom_site.aniso_U[2] [2] (associated value),
_atom_site.aniso_B[2] [2]_esd (conversion constant),
_atom_site_anisotrop.B[2] [2]_esd(conversion constant),
_atom_site.aniso_B[2] [2]_esd (alternate exclusive),
_atom_site_anisotrop.B[2] [2]_esd (alternate exclusive),
_atom_site_anisotrop.U[2] [2]_esd (alternate exclusive).
[atom_site]
_atom_site.aniso_U [2] [3]
(float, su)
The [2][3] element of the standard anisotropic atomic displacement matrix \(\mathbf{U}\), which appears in the structure-factor term as
\[
T=\exp \left\{-2 \pi^{2} \sum_{i}\left[\sum_{j}\left(U^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\},
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.
These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either \(B\) 's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row.
Related items: _atom_site.aniso_u[2] [3]_esd (associated esd),
_atom_site.aniso_B[2] [3] (conversion constant),
_atom_site_anisotrop.B[2] [3] (conversion constant),
_atom_site.aniso_B[2] [3] (alternate exclusive),
_atom_site_anisotrop.B[2] [3] (alternate exclusive),
_atom_site_anisotrop.U[2] [3] (alternate exclusive). [atom_site]

\section*{atom site.aniso U[2] [3] esd}
(float)
The standard uncertainty (estimated standard deviation) of _atom_site.aniso_U[2][3].
Related items: _atom_site.aniso_U [2] [3] (associated value),
_atom_site.aniso_B[2] [3]_esd (conversion constant),
_atom_site_anisotrop.B[2] [3]_esd (conversion constant),
_atom_site.aniso_B[2] [3]_esd(alternate exclusive),
_atom_site_anisotrop.B[2] [3]_esd(alternate exclusive),
_atom_site_anisotrop.U[2] [3]_esd(alternate exclusive).
[atom_site]

\section*{_atom_site.aniso_U[3] [3]}
(float, su)
The [3][3] element of the standard anisotropic atomic displacement matrix \(\mathbf{U}\), which appears in the structure-factor term as
\[
T=\exp \left\{-2 \pi^{2} \sum_{i}\left[\sum_{j}\left(U^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\},
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.
These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either \(B\) 's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row.
Related items: _atom_site.aniso_U[3] [3]_esd (associated esd),
_atom_site.aniso_B[3] [3] (conversion constant),
_atom_site_anisotrop.B[3] [3] (conversion constant),
_atom_site.aniso_B[3] [3] (alternate exclusive),
_atom_site_anisotrop.B[3] [3] (alternate exclusive),
_atom_site_anisotrop.U[3] [3] (alternate exclusive).
[atom_site]

\footnotetext{
_atom_site.aniso_U[3] [3]_esd
(float)
The standard uncertainty (estimated standard deviation) of _atom_site.aniso_U[3] [3].
Related items: _atom_site.aniso_U [3] [3] (associated value),
_atom_site.aniso_B [3] [3]_esd (conversion constant),
_atom_site_anisotrop.B[3] [3]_esd (conversion constant),
_atom_site.aniso_B[3] [3]_esd(alternate exclusive),
_atom_site_anisotrop.B[3] [3]_esd(alternate exclusive),
_atom_site_anisotrop.U[3] [3]_esd (alternate exclusive).
[atom_site]
}

\section*{_atom_site.attached_hydrogens}
(int)
_atom_site_attached_hydrogens(cif_core.dic 2.0.1)
The number of hydrogen atoms attached to the atom at this site excluding any hydrogen atoms for which coordinates (measured or calculated) are given.
The permitted range is \([0,8]\).
Examples: '2' (water oxygen), '1' (hydroxyl oxygen), '4' (ammonium nitrogen).
[atom_site]
*_atom_site.auth_asym_id (code)
An alternative identifier for _atom_site.label_asym_id that may be provided by an author in order to match the identification used in the publication that describes the structure.
The following item(s) have an equivalent role in their respective categories:
_geom_angle.atom_site_auth_asym_id_1,
_geom_angle.atom_site_auth_asym_id_2,
_geom_angle.atom_site_auth_asym_id_3,
_geom_bond.atom_site_auth_asym_id_1,
_geom_bond.atom_site_auth_asym_id_2,
_geom_contact.atom_site_auth_asym_id_1,
_geom_contact.atom_site_auth_asym_id_2,
_geom_hbond.atom_site_auth_asym_id_A,
_geom_hbond.atom_site_auth_asym_id_D,
_geom_hbond.atom_site_auth_asym_id_H,
_geom_torsion.atom_site_auth_asym_id_1,
_geom_torsion.atom_site_auth_asym_id_2,
_geom_torsion.atom_site_auth_asym_id_3,
_geom_torsion.atom_site_auth_asym_id_4,
_struct_conf.beg_auth_asym_id,
_struct_conf.end_auth_asym_id,
_struct_conn.ptnr1_auth_asym_id,
_struct_conn.ptnr2_auth_asym_id,
_struct_mon_nucl.auth_asym_id,
_struct_mon_prot.auth_asym_id,
_struct_mon_prot_cis.auth_asym_id,
_struct_ncs_dom_lim.beg_auth_asym_id,
_struct_ncs_dom_lim.end_auth_asym_id,
_struct_sheet_range.beg_auth_asym_id,
_struct_sheet_range.end_auth_asym_id,
_struct_site_gen.auth_asym_id.
[atom_site]
_atom_site.auth_atom_id

\section*{(atcode)}

An alternative identifier for_atom_site.label_atom_id that may be provided by an author in order to match the identification used in the publication that describes the structure.
The following item(s) have an equivalent role in their respective categories:
_geom_angle.atom_site_auth_atom_id_1,
_geom_angle.atom_site_auth_atom_id_2,
_geom_angle.atom_site_auth_atom_id_3,
_geom_bond.atom_site_auth_atom_id_1,
_geom_bond.atom_site_auth_atom_id_2,
_geom_contact.atom_site_auth_atom_id_1,
_geom_contact.atom_site_auth_atom_id_2,
_geom_hbond.atom_site_auth_atom_id_A,
_geom_hbond.atom_site_auth_atom_id_D,
_geom_hbond.atom_site_auth_atom_id_H,
_geom_torsion.atom_site_auth_atom_id_1,
_geom_torsion.atom_site_auth_atom_id_2,
_geom_torsion.atom_site_auth_atom_id_3,
_geom_torsion.atom_site_auth_atom_id_4,
_struct_conn.ptnr1_auth_atom_id,
_struct_conn.ptnr2_auth_atom_id,
_struct_sheet_hbond.range_1_beg_auth_atom_id,
_struct_sheet_hbond.range_1_end_auth_atom_id,
_struct_sheet_hbond.range_2_beg_auth_atom_id,
_struct_sheet_hbond.range_2_end_auth_atom_id,
_struct_site_gen.auth_atom_id.
[atom_site]
_atom_site.auth_comp_id
(code)
An alternative identifier for_atom_site.label_comp_id that may be provided by an author in order to match the identification used in the publication that describes the structure.
```

The following item(s) have an equivalent role in their respective categories:
_geom_angle.atom_site_auth_comp_id_1,
_geom_angle.atom_site_auth_comp_id_2,
_geom_angle.atom_site_auth_comp_id_3,
_geom_bond.atom_site_auth_comp_id_1,
_geom_bond.atom_site_auth_comp_id_2,
_geom_contact.atom_site_auth_comp_id_1,
_geom_contact.atom_site_auth_comp_id_2,
_geom_hbond.atom_site_auth_comp_id_A,
_geom_hbond.atom_site_auth_comp_id_D,
_geom_hbond.atom_site_auth_comp_id_H,
_geom_torsion.atom_site_auth_comp_id_1,
_geom_torsion.atom_site_auth_comp_id_2,
_geom_torsion.atom_site_auth_comp_id_3,
_geom_torsion.atom_site_auth_comp_id_4,
_struct_conf.beg_auth_comp_id,
_struct_conf.end_auth_comp_id,
_struct_conn.ptnrl_auth_comp_id,
_struct_conn.ptnr2_auth_comp_id,
_struct_mon_nucl.auth_comp_id,
_struct_mon_prot.auth_comp_id,
_struct_mon_prot_cis.auth_comp_id,
_struct_ncs_dom_lim.beg_auth_comp_id,
_struct_ncs_dom_lim.end_auth_comp_id
_struct_sheet_range.beg_auth_comp_id,
_struct_sheet_range.end_auth_comp_id,
_struct_site_gen.auth_comp_id.
[atom_site]
_atom_site.auth_seq_id (code)

```

An alternative identifier for _atom_site.label_seq_id that may be provided by an author in order to match the identification used in the publication that describes the structure. Note that this is not necessarily a number, that the values do not have to be positive, and that the value does not have to correspond to the value of _atom_site.label_seq_id. The value of atom_site.label_seq_id is required to be a sequential list of positive integers. The author may assign values to _atom_site.auth_seq_id in any desired way. For instance, the values may be used to relate this structure to a numbering scheme in a homologous structure, including sequence gaps or insertion codes. Alternatively, a scheme may be used for a truncated polymer that maintains the numbering scheme of the full length polymer. In all cases, the scheme used here must match the scheme used in the publication that describes the structure
```

The following item(s) have an equivalent role in their respective categories.
_geom_angle.atom_site_auth_seq_id_1,
geom_angle.atom_site_auth_seq_id_2,
_geom_angle.atom_site_auth_seq_id_3,
_geom_bond.atom_site_auth_seq_id_1,
_geom_bond.atom_site_auth_seq_id_2,
_geom_contact.atom_site_auth_seq_id_1,
geom_contact.atom_site_auth_seq_id_2,
_geom_hbond.atom_site_auth_seq_id_A,
_geom_hbond.atom_site_auth_seq_id_D,
_geom_hbond.atom_site_auth_seq_id_H,
_geom_torsion.atom_site_auth_seq_id_1,
_geom_torsion.atom_site_auth_seq_id_2,
_geom_torsion.atom_site_auth_seq_id_3,
_geom_torsion.atom_site_auth_seq_id_4,
_struct_conf.beg_auth_seq_id,
_struct_conf.end_auth_seq_id
_struct_conn.ptnrl_auth_seq_id
_struct_conn.ptnr2_auth_seq_id,
_struct_mon_nucl.auth_seq_id,

```
_struct_mon_prot.auth_seq_id,
_struct_mon_prot_cis.auth_seq_id,
_struct_ncs_dom_lim.beg_auth_seq_id,
_struct_ncs_dom_lim.end_auth_seq_id,
_struct_sheet_hbond.range_1_beg_auth_seq_id,
_struct_sheet_hbond.range_1_end_auth_seq_id,
_struct_sheet_hbond.range_2_beg_auth_seq_id,
_struct_sheet_hbond.range_2_end_auth_seq_id,
_struct_sheet_range.beg_auth_seq_id,
_struct_sheet_range.end_auth_seq_id,
_struct_site_gen.auth_seq_id.
[atom_site]
_atom_site.B_equiv_geom_mean (float, su)
_atom_site_B_equiv_geom_mean(cif_core.dic 2.0.1)
Equivalent isotropic atomic displacement parameter, \(B_{\text {eq }}\), in ångströms squared, calculated as the geometric mean of the anisotropic atomic displacement parameters.
\[
B_{\mathrm{eq}}=\left(B_{i} B_{j} B_{k}\right)^{1 / 3}
\]
where \(B_{n}=\) the principal components of the orthogonalized \(B^{i j}\).
The IUCr Commission on Nomenclature recommends against the use of \(\mathbf{B}\) for reporting atomic displacement parameters. \(\mathbf{U}\), being directly proportional to \(\mathbf{B}\), is preferred.
The permitted range is \([0.0, \infty)\).
Related items: _atom_site.B_equiv_geom_mean_esd (associated esd),
_atom_site.U_equiv_geom_mean (conversion constant). [atom_site]

\section*{atom_site.B equiv geom mean esd \\ (float)}

The standard uncertainty (estimated standard deviation) of _atom_site.B_equiv_geom_mean.
Related items: _atom_site.B_equiv_geom_mean (associated value),
_atom_site.U_equiv_geom_mean (conversion constant).
[atom_site]
_atom_site.B_iso_or_equiv
(float, su)
_atom_site_B_iso_or_equiv(cif_core.dic 2.0.1)
Isotropic atomic displacement parameter, or equivalent isotropic atomic displacement parameter, \(B_{\text {eq }}\), calculated from the anisotropic displacement parameters.
\[
B_{\mathrm{eq}}=(1 / 3) \sum_{i}\left[\sum_{j}\left(B^{i j} A_{i} A_{j} a_{i}^{*} a_{j}^{*}\right)\right]
\]
where \(A=\) the real-space cell lengths and \(a^{*}=\) the reciprocal-space cell lengths; \(B^{i j}=8 \pi^{2} U^{i j}\).
Reference: Fischer, R. X. \& Tillmanns, E. (1988). Acta Cryst. C44, 775-776.
The IUCr Commission on Nomenclature recommends against the use of \(\mathbf{B}\) for reporting atomic displacement parameters. \(\mathbf{U}\), being directly proportional to \(\mathbf{B}\), is preferred.
Related items: _atom_site.B_iso_or_equiv_esd (associated esd),
_atom_site.U_iso_or_equiv(conversion constant). [atom_site]
_atom_site.B_iso_or_equiv_esd (float)
The standard uncertainty (estimated standard deviation) of _atom_site.B_iso_or_equiv.
Related items: _atom_site.B_iso_or_equiv (associated value), atom site.U iso or equiv esd (conversion constant).
[atom_site]
```

_atom_site.calc_attached_atom
(code)
_atom_site_calc_attached_atom(cif_core.dic 2.0.1)
The _atom_site.id of the atom site to which the 'geometry-

``` calculated' atom site is attached.

\section*{_atom_site.calc_flag \\ _atom_site_calc_flag(cif_core.dic 2.0.1)}
(ucode)
A standard code to signal whether the site coordinates have been determined from the intensities or calculated from the geometry of surrounding sites, or have been assigned dummy values. The abbreviation ' \(c\) ' may be used in place of 'calc'.
The data value must be one of the following:
d determined from experimental measurements
calc calculated from molecular geometry
c abbreviation for 'calc'
dum dummy site with meaningless coordinates

> [atom_site]
_atom_site.Cartn_x
(float, su)
_atom_site_Cartn_x (cif_core.dic 2.0.1)
The \(x\) atom-site coordinate in ångströms specified according to a set of orthogonal Cartesian axes related to the cell axes as specified by the description given in _atom_sites.Cartn_transform_axes. Related item: _atom_site.Cartn_x_esd (associated esd).
[atom_site]
```

_atom_site.Cartn_x_esd
(float)
The standard uncertainty (estimated standard deviation) of atom_site.Cartn_x.

```

Related item: _atom_site.Cartn_x (associated value). [atom_site]

\section*{_atom_site.Cartn_y}
(float, su)
_atom_site_Cartn_y (cif_core.dic 2.0.1)
The \(y\) atom-site coordinate in ångströms specified according to a set of orthogonal Cartesian axes related to the cell axes as specified by the description given in _atom_sites.Cartn_transform_axes. Related item: _atom_site.Cartn_y_esd (associated esd). [atom_site]
```

_atom_site.Cartn_y_esd
(float)
The standard uncertainty (estimated standard deviation) of _atom_site.Cartn_y.

```

Related item:_atom_site.Cartn_y (associated value). [atom_site]
```

_atom_site.Cartn_z
_atom_site_Cartn_z (cif_core.dic 2.0.1)

```
(float, su)
The \(z\) atom-site coordinate in ångströms specified according to a set of orthogonal Cartesian axes related to the cell axes as specified by the description given in _atom_sites.Cartn_transform_axes. Related item: _atom_site.Cartn_z_esd (associated esd). [atom_site]
atom_site. Cartn_z_esd
The standard uncertainty (estimated standard deviation) of
atom_site.Cartn_z.
Related item:_atom_site.Cartn_z (associated value).
[atom_site]

\section*{_atom_site.chemical_conn_number}
atom_site_chemical_conn_number(cif_coredic 2.0.1)
This data item is a pointer to chemical conn atom.number in the CHEMICAL_CONN_ATOM category.

\section*{_atom_site.constraints}
(line)
atom site_constraints(cif_core.dic 2.0.1)
A description of the constraints applied to parameters at this site during refinement. See also _atom_site.refinement_flags and refine.ls_number_constraints.
Example: 'pop=1.0-pop (Zn3)'.
[atom_site]
_atom_site.details
A description of special aspects of this site. See also
A des.refinement_flags.
Example: ‘Ag/Si disordered’.
[atom_site]
_atom_site.disorder_assembly
(code)
_atom_site_disorder_assembly (cif_core.dic 2.0.1)
A code which identifies a cluster of atoms that show long-range positional disorder but are locally ordered. Within each such cluster of atoms, _atom_site.disorder_group is used to identify the sites that are simultaneously occupied. This field is only needed if there is more than one cluster of disordered atoms showing independent local order.

Note: This data item would not in general be used in a macromolecular data block.
[atom_site]
_atom_site.disorder_group
(code)
_atom_site_disorder_group(cif_core.dic 2.0.1)
A code which identifies a group of positionally disordered atom sites that are locally simultaneously occupied. Atoms that are positionally disordered over two or more sites (e.g. the hydrogen atoms of a methyl group that exists in two orientations) can be assigned to two or more groups. Sites belonging to the same group are simultaneously occupied, but those belonging to different groups are not. A minus prefix (e.g. '-1') is used to indicate sites disordered about a special position.

Note: This data item would not in general be used in a macromolecular data block.
Where no value is given, the assumed value is '.'
[atom_site]

\section*{_atom_site.footnote_id}

The value of _atom_site.footnote_id must match an ID specified by _atom_sites_footnote.idin the ATOM_SITES_FOOTNOTE list.
```

_atom_site.fract_x (float,su)

```
_atom_site_fract_x (cif_core.dic 2.0.1)

The \(x\) coordinate of the atom-site position specified as a fraction of _cell.length_a.
Related item:_atom_site.fract_x_esd (associated esd). [atom_site]
_atom_site.fract_x_esd (float)
The standard uncertainty (estimated standard deviation) of _atom_site.fract_x.
Related item: _atom_site.fract_x (associated value). [atom_site]
atom site.fract
(float, su)
-atom_site_fract_y (cif_core.dic 2.0.1)
The \(y\) coordinate of the atom-site position specified as a fraction of _cell.length_b.
Related item: _atom_site.fract_y_esd (associated esd). [atom_site]
_atom_site.fract_y_esd (float)
The standard uncertainty (estimated standard deviation) of _atom_site.fract_y.
Related item: _atom_site.fract_y (associated value). [atom_site]

> _atom_site.fract_z
> _atom_site_fract_z(cif_core.dic 2.0.1)
(float, su)

The \(z\) coordinate of the atom-site position specified as a fraction of _cell.length_c.
Related item: _atom_site.fract_z_esd (associated esd).
[atom_site]
atom_site.fract_z_esd
The standard uncertainty \(\quad\)\begin{tabular}{r} 
(float) \\
(estimated
\end{tabular}
\begin{tabular}{l} 
atom_site.fract_z. \\
Related item:_atom_site.fract_z (associated value). \\
[atom_site]
\end{tabular}
(code)

The group of atoms to which the atom site belongs. This data item is provided for compatibility with the original Protein Data Bank format, and only for that purpose.
The data value must be one of the following:
ATOM
HETATM [atom site]
* atom_site.id
(code)
_atom_site_label(cif_core.dic 2.0.1)
The value of _atom_site.id must uniquely identify a record in the ATOM_SITE list. Note that this item need not be a number; it can be any unique identifier. This data item was introduced to provide compatibility between small-molecule and macromolecular CIFs. In a small-molecule CIF, _atom_site_label is the identifier for the atom. In a macromolecular CIF, the atom identifier is the aggregate of _atom_site.label_alt_id, _atom_site.label_asym_id, _atom_site.label_atom_id, _atom_site.label_comp_id and _atom_site.label_seq_id. For the two types of files to be compatible, a formal identifier for the category had to be introduced that was independent of the different modes of identifying the atoms. For compatibility with older CIFs, _atom_site_label is aliased to _atom_site.id.
The following item(s) have an equivalent role in their respective categories:
_atom_site_anisotrop.id,
_geom_angle.atom_site_id_1,
_geom_angle.atom_site_id_2,
_geom_angle.atom_site_id_3,
_geom_bond.atom_site_id_1,
_geom_bond.atom_site_id_2,
_geom_contact.atom_site_id_1,
_geom_contact.atom_site_id_2,
_geom_hbond.atom_site_id_A,
_geom_hbond.atom_site_id_D,
_geom_hbond.atom_site_id_H,
_geom_torsion.atom_site_id_1,
_geom_torsion.atom_site_id_2,
_geom_torsion.atom_site_id_3,
_geom_torsion.atom_site_id_4
Examples: ‘5', 'C12', 'Ca3g28', 'Fe3+17', 'H*251', 'boron2a', 'C_a_phe_83_a_0', 'Zn_Zn_301_A_0’. [atom_site]

\section*{*_atom_site.label_alt_id}

A component of the identifier for this atom site. For further details, see the definition of the ATOM_SITE_ALT category. This data item is a pointer to _atom_sites_alt.id in the ATOM_SITES_ALT category.
*_atom_site.label_asym_id
A component of the identifier for this atom site. For further details, see the definition of the STRUCT_ASYM category. This data item is a pointer to _struct_asym.id in the STRUCT_ASYM category.
*_atom_site.label_atom_id
A component of the identifier for this atom site. This data item is a pointer to _chem_comp_atom.atom_id in the CHEM_COMP_ATOM category.
*_atom_site.label_comp_id
A component of the identifier for this atom site. This data item is a pointer to _chem_comp.id in the CHEM_COMP category.
*_atom_site.label_entity_id
This data item is a pointer to _entity.id in the ENTITY category.
*_atom_site.label_seq_id
This data item is a pointer to _entity_poly_seq.num in the ENTITY_POLY_SEQ category.

\section*{_atom_site.occupancy}
(float, su)
_atom_site_occupancy (cif_core.dic 2.0.1)
The fraction of the atom type present at this site. The sum of the occupancies of all the atom types at this site may not significantly exceed 1.0 unless it is a dummy site.
Related item: _atom_site.occupancy_esd (associated esd). Where no value is given, the assumed value is ' 1.0 '.
[atom_site]
_atom_site.occupancy_esd (float)
The standard uncertainty (estimated standard deviation) of _atom_site.occupancy.
Related item: _atom_site.occupancy (associated value). [atom_site]

\section*{_atom_site.refinement_flags}
(code)
_atom_site_refinement_flags(cif_core.dic 2.3)
A concatenated series of single-letter codes which indicate the refinement restraints or constraints applied to this site. This item should not be used. It has been replaced by _atom_site.refinement_flags_posn, *_adp and *_occupancy. It is retained in this dictionary only to provide compatibility with old CIFs.
Related items: _atom_site.refinement_flags_posn(replaces),
_atom_site.refinement_flags_adp (replaces),
_atom_site.refinement_flags_occupancy (replaces).
The data value must be one of the following:
no refinement constraints
special-position constraint on site rigid-group refinement of site riding-atom site attached to non-riding atom distance or angle restraint on site thermal displacement constraints \(U_{\text {iso }}\) or \(U^{i j}\) restraint (rigid bond) partial occupancy constraint
[atom_site]
_atom_site.refinement_flags_adp
(code)
_atom_site_refinement_flags_adp(cif_core.dic 2.3)
A code which indicates the refinement restraints or constraints applied to the atomic displacement parameters of this site.
Related item: _atom_site.refinement_flags_posn(alternate).
The data value must be one of the following: no constraints on atomic displacement parameters
T special-position constraints on atomic displacement parameters \(U_{\text {iso }}\) or \(U^{i j}\) restraint (rigid bond) both constraints applied
[atom_site]

\section*{atom site.refinement flags occupancy}
(code)
_atom_site_refinement_flags_occupancy(cif_core.dic 2.3)
A code which indicates that refinement restraints or constraints were applied to the occupancy of this site.
Related item:_atom_site.refinement_flags_posn (alternate).
The data value must be one of the following:
\begin{tabular}{cl}
. no constraints on site-occupancy parameters \\
P & site-occupancy constraint
\end{tabular}
[atom_site]
_atom_site.refinement_flags_posn
(code)
_atom_site_refinement_flags_posn(cif_core.dic 2.3)
A code which indicates the refinement restraints or constraints applied to the positional coordinates of this site.
Related item: _atom_site.refinement_flags_posn (alternate).
The data value must be one of the following: no constraints on positional coordinates distance or angle restraint on positional coordinates rigid-group refinement of positional coordinates riding-atom site attached to non-riding atom special-position constraint on positional coordinates combination of the above constraints combination of the above constraints
GRS combination of the above constraints
DGRS combination of the above constraints
_atom_site.restraints
_atom_site_restraints(cif_core.dic 2.0.1)
A description of restraints applied to specific parameters at this site during refinement. See also _atom_site.refinement_flags and _refine.ls_number_restraints.
Example: 'restrained to planar ring'. [atom_site]
_atom_site.symmetry_multiplicity
(int)
_atom_site_symmetry_multiplicity(cif_core.dic 2.0.1)
The multiplicity of a site due to the space-group symmetry as is given in International Tables for Crystallography Vol. A (2002). The permitted range is [1, 192].
[atom_site]

\section*{_atom_site.thermal_displace_type}
(ucode)
_atom_site_thermal_displace_type(cif_core.dic 2.0.1)
A standard code used to describe the type of atomic displacement parameters used for the site.
The data value must be one of the following:
\begin{tabular}{ll} 
Uani & anisotropic \(U^{i j}\) \\
Uiso & isotropic \(U\) \\
Uovl & overall \(U\) \\
Umpe & multipole expansion \(U\) \\
Bani & anisotropic \(B^{i j}\) \\
Biso & isotropic \(B\) \\
Bovl & overall \(B\)
\end{tabular}
[atom_site]
*_atom_site.type_symbol
_atom_site_type_symbol (cif_core.dic 2.0.1)
This data item is a pointer to _atom_type.symbol in the ATOM_TYPE category.
```

_atom_site.U_equiv_geom_mean _atom_site_U_equiv_geom_mean(cif_-core.dic 2.0.1)

```
(float, su)
Equivalent isotropic atomic displacement parameter, \(U_{\text {eq }}\), in ångströms squared, calculated as the geometric mean of the anisotropic atomic displacement parameters.
\[
U_{\mathrm{eq}}=\left(U_{i} U_{j} U_{k}\right)^{1 / 3}
\]
where \(U_{n}=\) the principal components of the orthogonalized \(U^{i j}\). The permitted range is \([0.0,10.0]\).
Related items:_atom_site.U_equiv_geom_mean_esd (associated esd),
_atom_site.B_equiv_geom_mean (conversion constant).
[atom_site]
_atom_site.U_equiv_geom_mean_esd (float)
The standard uncertainty (estimated standard deviation) of _atom_site.U_equiv_geom_mean.
Related items: _atom_site.U_equiv_geom_mean (associated value), _atom_site.B_equiv_geom_mean (conversion constant). [atom_site]

\section*{_atom_site.U_iso_or_equiv \\ _atom_site_U_iso_or_equiv(cif_core.dic 2.0.1)}
(float, su)
Isotropic atomic displacement parameter, or equivalent isotropic atomic displacement parameter, \(U_{\text {eq }}\), calculated from anisotropic atomic displacement parameters.
\[
U_{\mathrm{eq}}=(1 / 3) \sum_{i}\left[\sum_{j}\left(U^{i j} A_{i} A_{j} a_{i}^{*} a_{j}^{*}\right)\right]
\]
where \(A=\) the real-space cell lengths and \(a^{*}=\) the reciprocal-space cell lengths.

Reference: Fischer, R. X. \& Tillmanns, E. (1988). Acta Cryst. C44, 775-776.
The permitted range is \([0.0,10.0]\).
Related items: _atom_site.U_iso_or_equiv_esd (associated esd),
_atom_site.B_iso_or_equiv(conversion constant). [atom_site]
_atom_site.U_iso_or_equiv_esd (float)
The standard uncertainty (estimated standard deviation) of _atom_site.U_iso_or_equiv.
Related items: _atom_site.U_iso_or_equiv (associated value),
_atom_site.B_iso_or_equiv_esd (conversion constant). [atom_site]
_atom_site.Wyckoff_symbol
(line)
_atom_site_Wyckoff_symbol (cif_core.dic 2.0.1)
The Wyckoff symbol (letter) as listed in the space-group tables of International Tables for Crystallography Vol. A (2002).

\section*{ATOM_SITE_ANISOTROP}

Data items in the ATOM_SITE_ANISOTROP category record details about anisotropic displacement parameters. If the ATOM_SITE_ANISOTROP category is used for storing these data, the corresponding ATOM_SITE data items are not used.
Category group(s): inclusive_group
atom_group

Category key(s): _atom_site_anisotrop.id
Example 1 - based on NDB structure BDLO05 of Holbrook, Dickerson \& Kim [Acta Cryst. (1985), B41, 255-262].

\section*{loop_}
_atom_site_anisotrop.id
-atom_site_anisotrop.type_symbol
_atom_site_anisotrop.U[1] [1]
-atom_site_anisotrop.U[1] [2]
-atom_site_-anisotrop.U[1] [3]
atom_site_anisotrop.U[2] [2]
-atom_site_anisotrop.U[2] [3]
-atom_site_anisotrop.U[3] [3]
\(\begin{array}{llllllll}1 & 0 & 8642 & 4866 & 7299 & -342 & -258 & -1427\end{array}\)
\(\begin{array}{llllllll}2 & C & 5174 & 4871 & 6243 & -1885 & -2051 & -1377\end{array}\)
\(3 \begin{array}{llllllll}3 & C & 6202 & 5020 & 4395 & -1130 & -556 & -632\end{array}\)
\(\begin{array}{llllllll}4 & 0 & 4224 & 4700 & 5046 & 1105 & -161 & 345\end{array}\)
\(\begin{array}{llllllll}5 & C & 8684 & 4688 & 4171 & -1850 & -433 & -292\end{array}\)
\(\begin{array}{rrrrrrrr}6 & 0 & 11226 & 5255 & 3532 & -341 & 2685 & 1328 \\ 7 & C & 10214 & 2428 & 5614 & -2610 & -1940 & 902\end{array}\)
\(\begin{array}{rrrrrrrr}7 & \mathrm{C} & 10214 & 2428 & 5614 & -2610 & -1940 & 902 \\ 8 & \mathrm{C} & 4590 & 3488 & 5827 & 751 & -770 & 986\end{array}\)
\(\begin{array}{llllllll}9 & \mathrm{~N} & 5014 & 4434 & 3447 & -17 & -1593 & 539\end{array}\)
\# ---- abbreviated ----

\section*{_atom_site_anisotrop.B[1] [1]}
(float, su) _atom_site_aniso_B_11(cif_core.dic 2.0.1)
The [1][1] element of the anisotropic atomic displacement matrix B, which appears in the structure-factor term as
\[
T=\exp \left\{-(1 / 4) \sum_{i}\left[\sum_{j}\left(B^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\}
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.
These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either \(B\) 's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of \(\mathbf{B}\) for reporting atomic displacement parameters. \(\mathbf{U}\), being directly proportional to \(\mathbf{B}\), is preferred.
```

Related items:_atom_site_anisotrop.B[1] [1]_esd(associated esd),
_atom_site.aniso_U[1] [1] (conversion constant),
_atom_site_anisotrop.U[1] [1] (conversion constant),
_atom_site.aniso_B[1] [1] (alternate exclusive),
_atom_site.aniso_U[1] [1] (alternate exclusive),
_atom_site_anisotrop.U[1] [1] (alternate exclusive).

```
[atom_site_anisotrop]

\section*{_atom_site_anisotrop.B[1] [1]_esd (float)}

The standard uncertainty (estimated standard deviation) of _atom_site_anisotrop.B[1] [1].
Related items: _atom_site_anisotrop.B[1] [1] (associated value),
_atom_site.aniso_U [1] [1]_esd (conversion constant),
_atom_site_anisotrop.U[1] [1]_esd (conversion constant),
_atom_site.aniso_B [1] [1]_esd (alternate exclusive),
_atom_site.aniso_U [1] [1]_esd (alternate exclusive),
_atom_site_anisotrop.U[1] [1]_esd(alternate exclusive).
[atom_site_anisotrop]

\section*{_atom_site_anisotrop.B[1] [2]}
(float, su)
_atom_site_aniso_B_12(cif_core.dic 2.0.1)
The [1][2] element of the anisotropic atomic displacement matrix B, which appears in the structure-factor term as
\[
T=\exp \left\{-(1 / 4) \sum_{i}\left[\sum_{j}\left(B^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\}
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.
These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either \(B\) 's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of \(\mathbf{B}\) for reporting atomic displacement parameters. \(\mathbf{U}\), being directly proportional to \(\mathbf{B}\), is preferred.
```

Related items:_atom_site_anisotrop.B[1] [2]_esd(associated esd),
_atom_site.aniso_U[1] [2] (conversion constant),
_atom_site_anisotrop.U[1] [2] (conversion constant),
_atom_site.aniso_B [1] [2] (alternate exclusive),
_atom_site.aniso_U[1] [2] (alternate exclusive),
_atom_site_anisotrop.U[1] [2] (alternate exclusive).

```
[atom_site_anisotrop]
_atom_site_anisotrop.B[1] [2]_esd (float)
\(\overline{\text { The standard }}\) - uncertainty (estimated \({ }^{-}\)standard deviation) of _atom_site_anisotrop.B[1] [2].
Related items: _atom_site_anisotrop.B[1] [2] (associated value),
_atom_site.aniso_U[1] [2]_esd(conversion constant),
_atom_site_anisotrop.U[1] [2]_esd (conversion constant),
_atom_site.aniso_B [1] [2]_esd (alternate exclusive),
_atom_site.aniso_U[1] [2]_esd (alternate exclusive),
_atom_site_anisotrop.U[1] [2]_esd(alternate exclusive).
[atom_site_anisotrop]
_atom_site_anisotrop.B[1] [3]
(float, su)
_atom_site_aniso_B_13(cif_core.dic 2.0.1)
The [1][3] element of the anisotropic atomic displacement matrix B, which appears in the structure-factor term as
\[
T=\exp \left\{-(1 / 4) \sum_{i}\left[\sum_{j}\left(B^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\},
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.

These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either \(B\) 's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of \(\mathbf{B}\) for reporting atomic displacement parameters. \(\mathbf{U}\), being directly proportional to \(\mathbf{B}\), is preferred.
Related items: _atom_site_anisotrop.B[1] [3]_esd (associated esd),
_atom_site.aniso_U[1] [3] (conversion constant),
_atom_site_anisotrop.U[1] [3] (conversion constant),
_atom_site.aniso_B[1] [3] (alternate exclusive),
_atom_site.aniso_U[1] [3] (alternate exclusive),
atom_site_anisotrop.U[1] [3] (alternate exclusive).
[atom_site_anisotrop]
atom_site_anisotrop.B[1] [3]_esd
The standard uncertainty (estimated standard deviation) of
atom_site_anisotrop.B[1] [3].
Related items:_atom_site_anisotrop.B[1] [3] (associated value),
-atom_site.aniso_U[1][3]_esd(conversion constant),
-atom_site_anisotrop.U [1] [3]_esd(conversion constant),
-atom_site.aniso_B[1][3]_esd(alternate exclusive),
-atom_site.aniso_U[1][3]_esd(alternate exclusive),
_atom_site_anisotrop.U[1] [3]_esd(alternate exclusive).
[atom site anisotrop]
_atom_site_anisotrop.B[2] [2]
(float, su) _atom_site_aniso_B_22(cif_core.dic 2.0.1)
The [2][2] element of the anisotropic atomic displacement matrix \(\mathbf{B}\), which appears in the structure-factor term as
\[
T=\exp \left\{-(1 / 4) \sum_{i}\left[\sum_{j}\left(B^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\},
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.
These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either \(B\) 's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of \(\mathbf{B}\) for reporting
atomic displacement parameters. \(\mathbf{U}\), being directly proportional to \(\mathbf{B}\), is preferred.
Related items: _atom_site_anisotrop.B[2] [2]_esd (associated esd),
_atom_site.aniso_U[2] [2] (conversion constant),
atom site anisotrop.U[2] [2] (conversion constant),
_atom_site.aniso_B[2][2] (alternate exclusive)
_atom_site.aniso_U [2] [2] (alternate exclusive),
_atom_site_anisotrop.U[2] [2] (alternate exclusive).
[atom site anisotrop]

\section*{atom_site_anisotrop.B[2] [2]_esd (float)}

The standard uncertainty (estimated standard deviation) of _atom_site_anisotrop.B[2][2].
Related items:_atom_site_anisotrop.B[2] [2] (associated value),
_atom_site.aniso_U[2] [2]_esd (conversion constant),
_atom_site_anisotrop.U[2] [2]_esd (conversion constant),
_atom_site.aniso_B[2] [2]_esd(alternate exclusive),
_atom_site.aniso_U [2] [2]_esd (alternate exclusive),
_atom_site_anisotrop.U[2] [2]_esd(alternate exclusive).
[atom_site_anisotrop]

\section*{_atom_site_anisotrop.B[2] [3]}
(float, su)
_atom_site_aniso_B_23(cif_core.dic 2.0.1)
The [2][3] element of the anisotropic atomic displacement matrix \(\mathbf{B}\), which appears in the structure-factor term as
\[
T=\exp \left\{-(1 / 4) \sum_{i}\left[\sum_{j}\left(B^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\}
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.
These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either \(B\) 's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of \(\mathbf{B}\) for reporting atomic displacement parameters. \(\mathbf{U}\), being directly proportional to \(\mathbf{B}\), is preferred.
```

Related items:_atom_site_anisotrop.B[2] [3]_esd(associated esd),
_atom_site.aniso_U[2] [3] (conversion constant),
atom site anisotrop.U[2] [3] (conversion constant),
_atom_site.aniso_B[2] [3] (alternate exclusive)
_atom_site.aniso_U[2] [3] (alternate exclusive),
_atom_site_anisotrop.U[2] [3] (alternate exclusive).

```
[atom site anisotrop]
_atom_site_anisotrop.B[2] [3]_esd (float)

The standard uncertainty (estimated standard deviation) of _atom_site_anisotrop.B[2][3].
Related items: _atom_site_anisotrop.B[2] [3] (associated value),
_atom_site.aniso_U[2] [3]_esd (conversion constant),
_atom_site_anisotrop.U[2] [3]_esd(conversion constant),
_atom_site.aniso_B[2] [3]_esd(alternate exclusive),
_atom_site.aniso_U[2] [3]_esd(alternate exclusive),
_atom_site_anisotrop.U[2] [3]_esd(alternate exclusive).
[atom_site_anisotrop]

\section*{_atom_site_anisotrop.B[3] [3]}
(float, su)
atom_site_aniso_B_33(cif_core.dic 2.0.1)
The [3][3] element of the anisotropic atomic displacement matrix B, which appears in the structure-factor term as
\[
T=\exp \left\{-(1 / 4) \sum_{i}\left[\sum_{j}\left(B^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\},
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.

These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either \(B\) 's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of \(\mathbf{B}\) for reporting atomic displacement parameters. \(\mathbf{U}\), being directly proportional to \(\mathbf{B}\), is preferred.
Related items: _atom_site_anisotrop.B[3] [3]_esd(associated esd),
_atom_site.aniso_U[3] [3] (conversion constant),
_atom_site_anisotrop.U[3] [3] (conversion constant),
_atom_site.aniso_B[3] [3] (alternate exclusive),
_atom_site.aniso_U[3] [3] (alternate exclusive),
_atom_site_anisotrop.U[3] [3] (alternate exclusive).
[atom_site_anisotrop]
_atom_site_anisotrop.B[3] [3]_esd (float)
The standard uncertainty (estimated standard deviation) of _atom_site_anisotrop.B[3] [3].
Related items: _atom_site_anisotrop.B[3] [3] (associated value),
_atom_site.aniso_U[3] [3]_esd (conversion constant),
_atom_site_anisotrop.U [3] [3]_esd (conversion constant),
_atom_site.aniso_B[3] [3]_esd (alternate exclusive),
_atom_site.aniso_U [3] [3]_esd (alternate exclusive),
_atom_site_anisotrop.U[3] [3]_esd(alternate exclusive).
[atom_site_anisotrop]
*_atom_site_anisotrop.id
_atom_site_aniso_label (cif_core.dic 2.0.1)
This data item is a pointer to _atom_site.id in the ATOM_SITE category.
_atom_site_anisotrop.ratio (float)
_atom_site_aniso_ratio(cif_core.dic 2.0.1)
Ratio of the maximum to minimum principal axes of displacement (thermal) ellipsoids.
The permitted range is \([1.0, \infty)\).
Related item: _atom_site.aniso_ratio (alternate exclusive).
[atom_site_anisotrop]
```

*_atom_site_anisotrop.type_symbol
_atom_site_aniso_type_symbol(cif_core.dic 2.0.1)
This data item is a pointer to _atom_type.symbol in the ATOM_TYPE category.

```
_atom_site_anisotrop.U[1] [1]
(float, su)
_atom_site_aniso_U_11(cif_core.dic 2.0.1)
The [1][1] element of the standard anisotropic atomic displacement matrix \(\mathbf{U}\), which appears in the structure-factor term as
\[
T=\exp \left\{-2 \pi^{2} \sum_{i}\left[\sum_{j}\left(U^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\},
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.

These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either \(B\) 's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row.
```

Related items:_atom_site_anisotrop.U[1] [1]_esd(associated esd),
_atom_site.aniso_B[1] [1] (conversion constant),
_atom_site_anisotrop.B[1] [1] (conversion constant),
_atom_site.aniso_B[1] [1] (alternate exclusive),
_atom_site.aniso_U[1] [1] (alternate exclusive),
_atom_site_anisotrop.B[1] [1] (alternate exclusive).

```
[atom_site_anisotrop]
_atom_site_anisotrop.U[1][1]_esd (float)
\(\bar{T}\) The standard \({ }^{-}\)uncertainty (estimated \({ }^{-}\)standard deviation) of _atom_site_anisotrop.U[1] [1].
Related items: _atom_site_anisotrop.U[1] [1] (associated value),
_atom_site.aniso_B[1] [1]_esd (conversion constant),
_atom_site_anisotrop.B[1] [1]_esd (conversion constant),
_atom_site.aniso_B[1] [1]_esd(alternate exclusive),
_atom_site.aniso_U [1] [1]_esd(alternate exclusive),
_atom_site_anisotrop.B[1] [1]_esd(alternate exclusive).
[atom_site_anisotrop]

\section*{atom_site_anisotrop.U[1] [2]}
(float, su)
_atom_site_aniso_U_12(cif_core.dic 2.0.1)
The [1][2] element of the standard anisotropic atomic displacement matrix \(\mathbf{U}\), which appears in the structure-factor term as
\[
T=\exp \left\{-2 \pi^{2} \sum_{i}\left[\sum_{j}\left(U^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\}
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.

These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row.
Related items: _atom_site_anisotrop.U[1] [2]_esd (associated esd),
_atom_site.aniso_B[1] [2] (conversion constant),
_atom_site_anisotrop.B[1] [2] (conversion constant),
_atom_site.aniso_B[1] [2] (alternate exclusive),
_atom_site.aniso_U [1] [2] (alternate exclusive),
_atom_site_anisotrop.B[1] [2] (alternate exclusive).
[atom_site_anisotrop]

\section*{atom_site_anisotrop.U[1] [2] esd \\ (float)}

The standard uncertainty (estimated standard deviation) of _atom_site_anisotrop.U[1] [2].
Related items: _atom_site_anisotrop.U[1] [2] (associated value),
_atom_site.aniso_B [1] [2]_esd (conversion constant),
_atom_site_anisotrop.B[1] [2]_esd(conversion constant),
_atom_site.aniso_B[1] [2]_esd (alternate exclusive),
_atom_site.aniso_U [1] [2]_esd (alternate exclusive),
_atom_site_anisotrop.B[1] [2]_esd (alternate exclusive).
[atom_site_anisotrop]
_atom_site_anisotrop.U[1] [3]_esd (float)
The standard uncertainty (estimated standard deviation) of _atom_site_anisotrop.U[1] [3].
Related items: _atom_site_anisotrop.U[1] [3] (associated value),
_atom_site.aniso_B[1] [3]_esd (conversion constant),
_atom_site_anisotrop.B[1] [3]_esd (conversion constant),
_atom_site.aniso_B[1] [3] _esd (alternate exclusive),
_atom_site.aniso_U[1] [3]_esd (alternate exclusive),
_atom_site_anisotrop.B[1] [3]_esd (alternate exclusive).
[atom_site_anisotrop]
_atom_site_anisotrop.U[2][2]
(float, su)
_atom_site_aniso_U_22(cif_core.dic 2.0.1)
The [2][2] element of the standard anisotropic atomic displacement matrix \(\mathbf{U}\), which appears in the structure-factor term as
\[
T=\exp \left\{-2 \pi^{2} \sum_{i}\left[\sum_{j}\left(U^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\}
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.

These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either \(B\) 's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row.
Related items: _atom_site_anisotrop.U[2] [2]_esd (associated esd),
_atom_site.aniso_B[2][2] (conversion constant),
_atom_site_anisotrop.B[2] [2] (conversion constant),
_atom_site.aniso_B[2] [2] (alternate exclusive),
_atom_site.aniso_U[2] [2] (alternate exclusive),
_atom_site_anisotrop.B[2] [2] (alternate exclusive).
[atom_site_anisotrop]

\section*{atom_site_anisotrop.U[2] [2]_esd \\ (float)}

The standard uncertainty (estimated standard deviation) of _atom_site_anisotrop.U[2] [2].
Related items: _atom_site_anisotrop.U[2][2] (associated value),
_atom_site.aniso_B[2] [2]_esd (conversion constant),
_atom_site_anisotrop.B[2][2]_esd(conversion constant),
_atom_site.aniso_B[2][2]_esd (alternate exclusive),
_atom_site.aniso_U[2] [2]_esd (alternate exclusive),
_atom_site_anisotrop.B[2][2]_esd (alternate exclusive).
[atom_site_anisotrop]
_atom_site_anisotrop.U[2] [3]
(float, su)
_atom_site_aniso_U_23(cif_core.dic 2.0.1)
The [2][3] element of the standard anisotropic atomic displacement matrix \(\mathbf{U}\), which appears in the structure-factor term as
\[
T=\exp \left\{-2 \pi^{2} \sum_{i}\left[\sum_{j}\left(U^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\}
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.

These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either \(B\) 's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row.
```

Related items:_atom_site_anisotrop.v[2] [3]_esd(associated esd),
_atom_site.aniso_B[2][3] (conversion constant),
_atom_site_anisotrop.B[2] [3] (conversion constant),
_atom_site.aniso_B[2] [3] (alternate exclusive),
_atom_site.aniso_U[2] [3] (alternate exclusive),
_atom_site_anisotrop.B[2] [3] (alternate exclusive).

```
_atom_site_anisotrop.U[2] [3]_esd
(float)
The standard uncertainty (estimated standard deviation) of _atom_site_anisotrop.U[2] [3].
Related items: _atom_site_anisotrop.U[2] [3] (associated value),
_atom_site.aniso_B[2] [3]_esd (conversion constant),
_atom_site_anisotrop.B[2] [3]_esd(conversion constant),
_atom_site.aniso_B[2] [3]_esd (alternate exclusive),
_atom_site.aniso_U [2] [3]_esd (alternate exclusive),
_atom_site_anisotrop.B[2] [3]_esd(alternate exclusive).
[atom_site_anisotrop]
_atom_site_anisotrop.U[3] [3]
(float, su)
_atom_site_aniso_u_33(cif_core.dic 2.0.1)
The [3][3] element of the standard anisotropic atomic displacement matrix \(\mathbf{U}\), which appears in the structure-factor term as
\[
T=\exp \left\{-2 \pi^{2} \sum_{i}\left[\sum_{j}\left(U^{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)\right]\right\}
\]
where \(h=\) the Miller indices and \(a^{*}=\) the reciprocal-space cell lengths.
These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either \(B\) 's or \(U\) 's, but not as both. The unique elements of the real symmetric matrix are entered by row.
```

Related items: _atom_site_anisotrop.U[3] [3]_esd(associated esd),
_atom_site.aniso_B[3] [3] (conversion constant),
_atom_site_anisotrop.B[3] [3] (conversion constant),
_atom_site.aniso_B[3] [3] (alternate exclusive),
_atom_site.aniso_U [3] [3] (alternate exclusive),
_atom_site_anisotrop.B[3] [3] (alternate exclusive).

```
[atom_site_anisotrop]
```

_atom_site_anisotrop.U[3][3]_esd (float)

```
\(\bar{T}\) The standard uncertainty (estimated standard deviation) of _atom_site_anisotrop. U[3] [3].
Related items: _atom_site_anisotrop.U[3] [3] (associated value),
_atom_site.aniso_B [3] [3]_esd (conversion constant),
_atom_site_anisotrop.B[3] [3]_esd (conversion constant),
_atom_site.aniso_B [3] [3]_esd (alternate exclusive),
_atom_site.aniso_U[3] [3]_esd(alternate exclusive),
_atom_site_anisotrop.B[3] [3]_esd(alternate exclusive)

\section*{ATOM_SITES}

Data items in the ATOM_SITES category record details about the crystallographic cell and cell transformations, which are common to all atom sites.
\[
\left.\begin{array}{rl}
\text { Category group(s): inclusive_group } \\
& \text { atom_group }
\end{array}\right] \begin{gathered}
\text { Category key(s):_atom_sites.entry_id }
\end{gathered}
\]

Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to \(P D B\) entry \(5 H V P\).
```

_atom_sites.entry_id '5HVP'
_atom_sites.Cartn_transform_axes
'c along z, astar along x, b along y'
atom_sites.Cartn_transf_matrix[1] [1] 58.39
_atom_sites.Cartn_transf_matrix[1][2] 0.00
atom_sites.Cartn_transf_matrix[1] [3] 0.00
_atom_sites.Cartn_transf_matrix[2][1] 0.00
_atom_sites.Cartn_transf_matrix[2] [2] 86.70
atom_sites.Cartn_transf_matrix[2][3] 0.00
_atom_sites.Cartn_transf_matrix[3] [1] 0.00
_atom_sites.Cartn_transf_matrix[3] [2] 0.00
atom_sites.Cartn_transf_matrix[3][3] 46.27
_atom_sites.Cartn_transf_vector[1] 0.00
_atom_sites.Cartn_transf_vector[2] 0.00
atom_sites.Cartn_transf_vector[3] 0.00

```
_atom_sites.Cartn_transf_matrix[1] [1] (float)
_atom_sites_Cartn_tran_matrix_11(cif_core.dic 2.0.1)
The [1][1] element of the \(3 \times 3\) matrix used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in_atom_sites.Cartn_transform_axes. The \(3 \times 1\) translation is defined in _atom_sites.Cartn_transf_vector[].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {fractional }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) .
\]
[atom sites]

\section*{_atom_sites.Cartn_transf_matrix[1] [2]}
(float)
_atom_sites_Cartn_tran_matrix_12 (cif_core.dic 2.0.1)
The [1][2] element of the \(3 \times 3\) matrix used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in _atom_sites.Cartn_transform_axes. The \(3 \times 1\) translation is defined in _atom_sites.Cartn_transf_vector[].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {fractional }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) .
\]
[atom_sites]

\section*{_atom_sites.Cartn_transf_matrix[1] [3] \\ (float)}
_atom_sites_Cartn_tran_matrix_13(cif_core.dic 2.0.1)
The [1][3] element of the \(3 \times 3\) matrix used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in _atom_sites.Cartn_transform_axes. The \(3 \times 1\) translation is defined in _atom_sites.Cartn_transf_vector[].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {fractional }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) .
\]
[atom sites]
_atom_sites.Cartn_transf_matrix[2] [1]
(float)
_atom_sites_Cartn_tran_matrix_21(cif_core.dic 2.0.1)
The [2][1] element of the \(3 \times 3\) matrix used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in _atom_sites.Cartn_transform_axes. The \(3 \times 1\) translation is defined in _atom_sites.Cartn_transf_vector[].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {fractional }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) .
\]
```

_atom_sites.Cartn_transf_matrix[2] [2]
_atom_sites_Cartn_tran_matrix_22(cif_core.dic 2.0.1)

```

The [2][2] element of the \(3 \times 3\) matrix used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in_atom_sites.Cartn_transform_axes. The \(3 \times 1\) translation is defined in _atom_sites.Cartn_transf_vector[].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {fractional }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\]
[atom_sites]

The [2][3] element of the \(3 \times 3\) matrix used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in_atom_sites.Cartn_transform_axes. The \(3 \times 1\) translation is defined in _atom_sites.Cartn_transf_vector[].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {fractional }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\]
[atom_sites]
_atom_sites.Cartn_transf_matrix[3] [1]
(float) _atom_sites_Cartn_tran_matrix_31(cif_core.dic 2.0.1)
The [3][1] element of the \(3 \times 3\) matrix used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in _atom_sites.Cartn_transform_axes. The \(3 \times 1\) translation is defined in _atom_sites.Cartn_transf_vector[].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {fractional }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\]
[atom_sites]
_atom_sites.Cartn_transf_matrix[3][2]
(float)
_atom_sites_Cartn_tran_matrix_32(cif_core.dic 2.0.1)
The [3][2] element of the \(3 \times 3\) matrix used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in_atom_sites.Cartn_transform_axes. The \(3 \times 1\) translation is defined in _atom_sites.Cartn_transf_vector[].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {fractional }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\]
[atom_sites]
-atom_sites.Cartn_transf_matrix[3] [3] (float) _atom_sites_Cartn_tran_matrix_33(cif_core.dic 2.0.1)
The [3][3] element of the \(3 \times 3\) matrix used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in_atom_sites.Cartn_transform_axes. The \(3 \times 1\) translation is defined in _atom_sites.Cartn_transf_vector[].
_atom_sites.Cartn_transf_vector [1]
_atom_sites_Cartn_tran_vector_1(cif_core.dic 2.0.1)
The [1] element of the three-element vector used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in _atom_sites.Cartn_transform_axes. The rotation matrix is defined in _atom_sites.Cartn_transf_matrix[][].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {fractional }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\]

\section*{_atom_sites.Cartn_transf_vector[2] (float) _atom_sites_Cartn_tran_vector_2 (cif_core.dic 2.0.1)}

The [2] element of the three-element vector used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in _atom_sites.Cartn_transform_axes. The rotation matrix is defined in _atom_sites.Cartn_transf_matrix[][].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {fractional }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\]
[atom_sites]

\section*{_atom_sites.Cartn_transf_vector [3] (foat) _atom_sites_Cartn_tran_-vector_3(cif_core.dic 2.0.1)}

The [3] element of the three-element vector used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in _atom_sites.Cartn_transform_axes. The rotation matrix is defined in _atom_sites.Cartn_transf_matrix[][].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {fractional }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\]
[atom_sites]
\[
\begin{aligned}
& \text { _atom_sites.Cartn_transform_axes } \\
& \text { _atom_sites_Cartn_transform_axes(cif_core.dic 2.0.1) }
\end{aligned}
\]

A description of the relative alignment of the crystal cell axes to the Cartesian orthogonal axes as applied in the transformation matrix _atom_sites.Cartn_transf_matrix[][].
Example: 'a parallel to \(x ; b\) in the plane of \(y\) and \(z\) '.
[atom_sites]
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {fractional }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\]
_atom_sites.fract_transf_matrix[1] [1]
(float)
_atom_sites_fract_tran_matrix_11(cif_core.dic 2.0.1)
The [1][1] element of the \(3 \times 3\) matrix used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in_atom_sites.Cartn_transform_axes. The \(3 \times 1\) translation is defined in atom_sites.fract_transf_vector[].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {fractional }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\]
[atom_sites]
\[
\begin{aligned}
& \text { _atom_sites.fract_transf_matrix[1] [2] } \\
& \text { _atom_sites_fract_tran_matrix_12(cif_core.dic 2.0.1) }
\end{aligned}
\]
(float)
The [1][2] element of the \(3 \times 3\) matrix used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in _atom_sites.Cartn_transform_axes. The \(3 \times 1\) translation is defined in _atom_sites.fract_transf_vector[].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {fractional }}=\left(\begin{array}{ccc}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\]
[atom_sites]

\section*{_atom_sites.fract_transf_matrix[1] [3]}
(float) _atom_sites_fract_tran_matrix_13(cif_core.dic 2.0.1)
The [1][3] element of the \(3 \times 3\) matrix used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in _atom_sites.Cartn_transform_axes. The \(3 \times 1\) translation is defined in _atom_sites.fract_transf_vector[].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {fractional }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\]
[atom_sites]
_atom_sites.fract_transf_matrix[2] [1] (float)
_atom_sites_fract_tran_matrix_21(cif_core.dic 2.0.1)
The [2][1] element of the \(3 \times 3\) matrix used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in _atom_sites.Cartn_transform_axes. The \(3 \times 1\) translation is defined in _atom_sites.fract_transf_vector[].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {fractional }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\]
[atom_sites]
\[
\begin{aligned}
& \text { _atom_sites.fract_transf_matrix[2] [2] } \\
& \text { _atom_sites_fract_tran_matrix_22(cif_core.dic 2.0.1) }
\end{aligned}
\]
(float)

The [2][2] element of the \(3 \times 3\) matrix used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in_atom_sites.Cartn_transform_axes. The \(3 \times 1\) translation is defined in _atom_sites.fract_transf_vector[]
_atom_sites.fract_transf_matrix[2][3] (float) _atom_sites_fract_tran_matrix_23(cif_core.dic 2.0.1)
The [2][3] element of the \(3 \times 3\) matrix used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in _atom_sites.Cartn_transform_axes. The \(3 \times 1\) translation is defined in _atom_sites.fract_transf_vector[].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {fractional }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) .
\]
[atom_sites]
atom_sites.fract_transf_matrix[3] [1] (float)
_atom_sites_fract_tran_matrix_31(cif_core.dic 2.0.1)
The [3][1] element of the \(3 \times 3\) matrix used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in _atom_sites. Cartn_transform_axes. The \(3 \times 1\) translation is defined in _atom_sites.fract_transf_vector[].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {fractional }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\]

\section*{_atom_sites.fract_transf_matrix[3][2] (float) _atom_sites_fract_tran_matrix_32(cif_core.dic 2.0.1)}

The [3][2] element of the \(3 \times 3\) matrix used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in _atom_sites.Cartn_transform_axes. The \(3 \times 1\) translation is defined in _atom_sites.fract_transf_vector[].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {fractional }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\]
[atom_sites]

\section*{atom sites.fract transf matrix[3] [3]}
(float
atom_sites_fract_tran_matrix_33(cif_core.dic 2.0.1)
The [3][3] element of the \(3 \times 3\) matrix used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in _atom_sites.Cartn_transform_axes. The \(3 \times 1\) translation is defined in _atom_sites.fract_transf_vector[].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {fractional }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\]
```

_atom_sites.fract_transf_vector[1]
_atom_sites_fract_tran_vector_1(cif_core.dic 2.0.1)

```

The [1] element of the three-element vector used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in _atom_sites.Cartn_transform_axes. The \(3 \times 3\) rotation is defined in _atom_sites.fract_transf_matrix[][].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {fractional }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\]
[atom_sites]

\section*{_atom_sites.fract_transf_vector [2] _atom_sites_fract_tran_Vector_2(cif_core.dic 2.0.1)}
(float)

The [2] element of the three-element vector used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in _atom_sites.Cartn_transform_axes. The \(3 \times 3\) rotation is defined in _atom_sites.fract_transf_matrix[][].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {fractional }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\]
[atom_sites]

\section*{_atom_sites.fract_transf_vector[3] _atom_sites_fract_tran_vector_3(cif_core.dic 2.0.1)}
(float)
The [3] element of the three-element vector used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in _atom_sites.Cartn_transform_axes. The \(3 \times 3\) rotation is defined in _atom_sites.fract_transf_matrix[][].
\[
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {fractional }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\]

\footnotetext{
_atom_sites.solution_hydrogens
_atom_sites_solution_hydrogens(cif_core.dic 2.0.1) molecular data block.
The data value must be one of the following:
difmap difference Fourier map
vecmap real-space vector search
heavy heavy-atom method
direct structure-invariant direct methods
geom inferred from neighbouring sites
disper anomalous-dispersion techniques
isomor isomorphous structure methods
}
(ucode)
This code identifies the method used to locate the hydrogen atoms.
Note: This data item would not in general be used in a macro-
_atom_sites.solution_primary (ucode)
_atom_sites_solution_primary (cif_core.dic 2.0.1)
This code identifies the method used to locate the initial atom sites.
Note: This data item would not in general be used in a macromolecular data block.
The data value must be one of the following:
difmap difference Fourier map
vecmap real-space vector search
heavy heavy-atom method
direct structure-invariant direct methods
geom inferred from neighbouring sites
disper anomalous-dispersion techniques
isomor isomorphous structure methods
[atom_sites]

\section*{_atom_sites.solution_secondary}
(ucode)
_atom_sites_solution_secondary (cif_core.dic 2.0.1)
This code identifies the method used to locate the non-hydrogenatom sites not found by _atom_sites.solution_primary.

Note: This data item would not in general be used in a macromolecular data block.
The data value must be one of the following:
difmap difference Fourier map
vecmap real-space vector search
heavy heavy-atom method
direct structure-invariant direct methods
geom inferred from neighbouring sites
disper anomalous-dispersion techniques
isomor isomorphous structure methods

\section*{[atom_sites]}

\section*{_atom_sites.special_details \\ _atom_sites_special_details(cif_core.dic 2.3)}
(text)
Additional information about the atomic coordinates not coded elsewhere in the CIF.
[atom_sites]

\section*{ATOM_SITES_ALT}

Data items in the ATOM_SITES_ALT category record details about the structural ensembles that should be generated from atom sites or groups of atom sites that are modelled in alternative conformations in this data block.
Category group(s): inclusive_group
Category key(s): atom_sites alt.id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
```

loop_

```
atom_sites_alt.id
_atom_sites_alt.details
; Atom sites with the alternative ID set to null are not modeled in alternative conformations
;
; Atom sites with the alternative ID set to 1 have been modeled in alternative conformations with respect to atom sites marked with alternative ID 2. The conformations of amino-acid side chains and solvent atoms with alternative ID set to 1 correlate with the conformation of the inhibitor marked with alternative ID 1. They have been given an occupancy of 0.58 to match the occupancy assigned to the inhibitor.
```

2
Atom sites with the alternative ID set to 2 have been
modeled in alternative conformations with respect to atom
sites marked with alternative ID 1. The conformations of
amino-acid side chains and solvent atoms with alternative
ID set to 2 correlate with the conformation of the
inhibitor marked with alternative ID 2. They have been
given an occupancy of 0.42 to match the occupancy assigned
to the inhibitor.
;
Atom sites with the alternative ID set to 3 have been
modeled in alternative conformations with respect to
atoms marked with alternative ID 4. The conformations of
amino-acid side chains and solvent atoms with alternative
ID set to 3 do not correlate with the conformation of the
inhibitor. These atom sites have arbitrarily been given
an occupancy of 0.50
;
Atom sites with the alternative ID set to 4 have been
modeled in alternative conformations with respect to
atoms marked with alternative ID 3. The conformations of
amino-acid side chains and solvent atoms with alternative
ID set to 4 do not correlate with the conformation of the
inhibitor. These atom sites have arbitrarily been given
an occupancy of 0.50
;

```

\section*{_atom_sites_alt.details}

A description of special aspects of the modelling of atoms in alternative conformations.
[atom_sites_alt]
```

*_atom_sites_alt.id
(code)

```
\(\bar{T}\) he value of _atom_sites_alt.id must uniquely identify a record in the ATOM_SITES_ALT list. Note that this item need not be a number; it can be any unique identifier.
The following item(s) have an equivalent role in their respective categories:
_atom_site.label_alt_id,
_atom_sites_alt_gen.alt_id,
_geom_angle.atom_site_label_alt_id_1,
_geom_angle.atom_site_label_alt_id_2,
_geom_angle.atom_site_label_alt_id_3,
_geom_bond.atom_site_label_alt_id_1,
_geom_bond.atom_site_label_alt_id_2,
_geom_contact.atom_site_label_alt_id_1,
_geom_contact.atom_site_label_alt_id_2,
_geom_hbond.atom_site_label_alt_id_A,
_geom_hbond.atom_site_label_alt_id_D,
_geom_hbond.atom_site_label_alt_id_H,
_geom_torsion.atom_site_label_alt_id_1,
_geom_torsion.atom_site_label_alt_id_2,
_geom_torsion.atom_site_label_alt_id_3,
_geom_torsion.atom_site_label_alt_id_4,
_struct_conn.ptnrl_label_alt_id,
_struct_conn.ptnr2_label_alt_id,
_struct_mon_nucl.label_alt_id,
_struct_mon_prot.label_alt_id,
_struct_mon_prot_cis.label_alt_id,
_struct_ncs_dom_lim.beg_label_alt_id,
_struct_ncs_dom_lim.end_label_alt_id,
_struct_site_gen.label_alt_id.
Examples: 'orientation 1 ', 'molecule abc'.
[atom_sites_alt]

\section*{ATOM_SITES_ALT_ENS}

Data items in the ATOM_SITES_ALT_ENS category record details about the ensemble structure generated from atoms with various alternative conformation IDs.
Category group(s): inclusive_group
atom_group
Category key(s): _atom_sites_alt_ens.id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
loop_
atom sites alt ens.id
_atom_sites_alt_ens.details
'Ensemble 1-A'
; The inhibitor binds to the enzyme in two, roughly twofold symmetric alternative conformations.

This conformational ensemble includes the more populated conformation of the inhibitor ( \(I D=1\) ) and the amino-acid side chains and solvent structure that correlate with this inhibitor conformation.

Also included are one set (ID=3) of side chains with alternative conformations when the conformations are not correlated with the inhibitor conformation.
;
'Ensemble 1-B'
; The inhibitor binds to the enzyme in two, roughly twofold symmetric alternative conformations.

This conformational ensemble includes the more populated conformation of the inhibitor (ID=1) and the amino-acid side chains and solvent structure that correlate with this inhibitor conformation.

Also included are one set (ID=4) of side chains with alternative conformations when the conformations are not correlated with the inhibitor conformation.
;
'Ensemble 2-A'
; The inhibitor binds to the enzyme in two, roughly twofold symmetric alternative conformations.

This conformational ensemble includes the less populated conformation of the inhibitor (ID=2) and the amino-acid side chains and solvent structure that correlate with this inhibitor conformation.

Also included are one set (ID=3) of side chains with alternative conformations when the conformations are not correlated with the inhibitor conformation.
;
'Ensemble 2-B'
; The inhibitor binds to the enzyme in two, roughly twofold symmetric alternative conformations.

This conformational ensemble includes the less populated conformation of the inhibitor (ID=2) and the amino-acid side chains and solvent structure that correlate with this inhibitor conformation.

Also included are one set (ID=4) of side chains with alternative conformations when the conformations are not correlated with the inhibitor conformation.
atom_sites_alt_ens.details
A description of
(text)
special aspects of the ensemble structure generated from atoms with various alternative IDs.
[atom_sites_alt_ens]
*_atom_sites_alt_ens.id
(code)
The value of _atom_sites_alt_ens.id must uniquely identify a record in the ATOM_-SITES_ALT_ENS list. Note that this item need not be a number; it can be any unique identifier.
The following item(s) have an equivalent role in their respective categories:
_atom_sites_alt_gen.ens_id.
[atom_sites_alt_ens]

\section*{ATOM_SITES_ALT_GEN}

Data items in the ATOM_SITES_ALT_GEN category record details about the interpretation of multiple conformations in the structure.
Category group(s): inclusive_group atom_group
Category key(s): _atom_sites_alt_gen.ens_id atom_sites_alt_gen.alt_id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

\section*{loop_}
atom_sites_alt_gen.ens_id
atom_sites_alt_gen.alt_id
'Ensemble 1-A'.
'Ensemble 1-A' 1
'Ensemble 1-A' 3
'Ensemble 1-B'
'Ensemble 1-B' 1
'Ensemble 1-B' 4
'Ensemble 2-A'
'Ensemble 2-A' 2
'Ensemble 2-A' 3
'Ensemble 2-B'
'Ensemble 2-B' 2
'Ensemble 2-B' 4
*_atom_sites_alt_gen.alt_id
This data item is a pointer to _atom_sites_alt.id in the ATOM_SITES_ALT category.
*_atom_sites_alt_gen.ens_id
This data item is a pointer to _atom_sites_alt_ens.id in the ATOM_SITES_ALT_ENS category.

\section*{ATOM_SITES_FOOTNOTE}

Data items in the ATOM_SITES_FOOTNOTE category record detailed comments about an atom site or a group of atom sites.
Category group(s): inclusive_group
atom_group
Category key(s): _atom_sites_footnote.id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
loop_
atom_sites_footnote.id
-atom_sites_footnote.text
1
; The inhibitor binds to the enzyme in two alternative orientations. The two orientations have been assigned alternative IDs *1* and *2*.
; 2
Side chains of these residues adopt alternative
orientations that correlate with the alternative orientations of the inhibitor.
Side chains with alternative ID *1* and occupancy 0.58 correlate with inhibitor orientation *1*. Side chains with alternative ID *2* and occupancy 0.42 correlate with inhibitor orientation *2*.
; 3
The positions of these water molecules correlate with the alternative orientations of the inhibitor. Water molecules with alternative ID *1* and occupancy 0.58 correlate with inhibitor orientation *1*. Water molecules with alternative ID *2* and occupancy 0.42 correlate with inhibitor orientation *2*.
;

4
Side chains of these residues adopt alternative orientations that do not correlate with the alternative orientation of the inhibitor.
;
The positions of these water molecules correlate with alternative orientations of amino-acid side chains that do not correlate with alternative orientations of the inhibitor.
;
*_atom_sites_footnote.id
(code)
A code that identifies the footnote.
The following item(s) have an equivalent role in their respective categories:
_atom_site.footnote_id
Examples: ‘a', 'b’, ' 1 ', ' 2 '
[atom_sites_footnote]
_atom_sites_footnote.text
(text)
The text of the footnote. Footnotes are used to describe an atom site or a group of atom sites in the ATOM_SITE list. For example, footnotes may be used to indicate atoms for which the electron density is very weak, or atoms for which static disorder has been modelled.
[atom_sites_footnote]

\section*{ATOM_TYPE}

Data items in the ATOM_TYPE category record details about the properties of the atoms that occupy the atom sites, such as the atomic scattering factors.
Category group(s): inclusive_group atom_group
Category key(s): _atom_type.symbol
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to \(P D B\) entry \(5 H V P\).

\section*{loop}
_atom_type.symbol
atom_type.oxidation_number
_atom_type.scat_Cromer_Mann_al
-atom_type.scat_Cromer_Mann_a2
_atom_type.scat_Cromer_Mann_a3
_atom_type.scat_Cromer_Mann_a4
- atom_type.scat_Cromer_Mann_b1
_atom_type.scat_Cromer_Mann_b2
_atom_type.scat_Cromer_Mann_b3
-atom_type.scat_Cromer_Mann_b4
_atom_type.scat_Cromer_Mann_c
\begin{tabular}{lccclcl}
C & 0 & 2.31000 & 20.8439 & 1.02000 & 10.2075 & \\
& & 1.58860 & 0.568700 & 0.865000 & 51.6512 & 0.21560 \\
N & 0 & 12.2126 & 0.005700 & 3.13220 & 9.89330 & \\
& & 2.01250 & 28.9975 & 1.16630 & 0.582600 & -11.529 \\
O & 0 & 3.04850 & 13.2771 & 2.28680 & 5.70110 & \\
& & 1.54630 & 0.323900 & 0.867000 & 32.9089 & 0.250800 \\
S & 0 & 6.90530 & 1.46790 & 5.20340 & 22.2151 & \\
& & 1.43790 & 0.253600 & 1.58630 & 56.1720 & 0.866900 \\
CL & -1 & 18.2915 & 0.006600 & 7.20840 & 1.17170 & \\
& & 6.53370 & 19.5424 & 2.33860 & 60.4486 & -16.378
\end{tabular}

Example 2 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst.
(1991), C47, 2276-2277].

\section*{loop_}
_atom_type.symbol
_atom_type.oxidation_number
atom_type.number_in_cell
_atom_type.scat_dispersion_real
_atom_type.scat_dispersion_imag
_atom_type.scat_source
C \(0 \quad 72\). 017 . 009 International_Tables_Vol_IV_Table_2.2B
H \(0 \quad 1000\) International_Tables_Vol_IV_Table_2.2B
○ 012 . 047 . 032 International_Tables_Vol_IV_Table_2.2B
N 044 . 029 . 018 International Tables Vol IV Table 2.2B

\section*{_atom_type.analytical_mass_percent _atom_type_analytical_mass_\%(cif_core.dic 2.0.1)}
(float)

Mass percentage of this atom type derived from chemical analysis The permitted range is \([0.0, \infty)\).
[atom_type]

\section*{_atom_type.description}
(text)
atom type description(cif_core.dic 2.0.1)
A description of the atom(s) designated by this atom type. In most cases, this is the element name and oxidation state of a single atom species. For disordered or nonstoichiometric structures it will describe a combination of atom species.
Examples: ‘deuterium', ‘0.34Fe+0.66Ni'. [atom_type]
_atom_type.number_in_cell
_atom_type_number_in_cell (cif_core.dic 2.0.1)
Total number of atoms of this atom type in the unit cell.
The permitted range is \([0, \infty)\)
[atom_type]
_atom_type.oxidation_number
(int)
_atom_type_oxidation_number (cif_core.dic 2.0.1)
Formal oxidation state of this atom type in the structure.
The permitted range is \([-8,8]\). Where no value is given, the assumed value is ' 0 '.
[atom_type]
```

_atom_type.radius_bond
(float)
_atom_type_radius_bond (cif_core.dic 2.0.1)

```

The effective intramolecular bonding radius in ångströms of this atom type.
The permitted range is \([0.0,5.0]\). [atom_type]

\section*{_atom_type.radius_contact}
(float)
_atom_type_radius_contact(cif_core.dic 2.0.1)
The effective intermolecular bonding radius in ångströms of this atom type.
The permitted range is \([0.0,5.0]\). [atom_type]
_atom_type.scat_Cromer_Mann_a1
(float)
The Cromer-Mann scattering-factor coefficient \(a_{1}\) used to calculate the scattering factors for this atom type.

References: International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B; International Tables for Crystallography (2004). Vol. C, Tables 6.1.1.4 and 6.1.1.5.
[atom_type]

\section*{_atom_type.scat_Cromer_Mann_a2}
(float)
_atom_type_scat_Cromer_Mann_a2(cif_core.dic 2.0.1)
The Cromer-Mann scattering-factor coefficient \(a_{2}\) used to calculate the scattering factors for this atom type.

References: International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B; International Tables for Crystallography (2004). Vol. C, Tables 6.1.1.4 and 6.1.1.5.
[atom_type]
_atom_type.scat_Cromer_Mann_a3
(float)
_atom_type_scat_Cromer_Mann_a3(cif_core.dic 2.0.1)
The Cromer-Mann scattering-factor coefficient \(a_{3}\) used to calculate the scattering factors for this atom type.
References: International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B; International Tables for Crystallography (2004). Vol. C, Tables 6.1.1.4 and 6.1.1.5.
_atom_type.scat_Cromer_Mann_a4
(float)
atom type scat Cromer Mann a4 (cif_core.dic 2.0.1)
The Cromer-Mann scattering-factor coefficient \(a_{4}\) used to calculate the scattering factors for this atom type.
References: International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B; International Tables for Crystallography (2004). Vol. C, Tables 6.1.1.4 and 6.1.1.5.
[atom_type]
_atom_type.scat_Cromer_Mann_b1
(float)
atom_type_scat_Cromer_Mann_b1 (cif_core.dic 2.0.1)
The Cromer-Mann scattering-factor coefficient \(b_{1}\) used to calculate the scattering factors for this atom type.
References: International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B; International Tables for Crystallography (2004). Vol. C, Tables 6.1.1.4 and 6.1.1.5.
[atom_type]
_atom_type.scat_Cromer_Mann_b2
(float)
_atom_type_scat_Cromer_Mann_b2 (cif_core.dic 2.0.1)
The Cromer-Mann scattering-factor coefficient \(b_{2}\) used to calculate the scattering factors for this atom type.
References: International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B; International Tables for Crystallography (2004). Vol. C, Tables 6.1.1.4 and 6.1.1.5.
[atom_type]
_atom_type.scat_Cromer_Mann_b3
(float)
atom_type_scat_Cromer_Mann_b3 (cif_core.dic 2.0.1)
The Cromer-Mann scattering-factor coefficient \(b_{3}\) used to calculate the scattering factors for this atom type.
References: International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B; International Tables for Crystallography (2004). Vol. C, Tables 6.1.1.4 and 6.1.1.5.
[atom_type]
_atom_type.scat_Cromer_Mann_b4
(float)
_atom_type_scat_Cromer_Mann_b4 (cif_core.dic 2.0.1)
The Cromer-Mann scattering-factor coefficient \(b_{4}\) used to calculate the scattering factors for this atom type.
References: International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B; International Tables for Crystallography (2004). Vol. C, Tables 6.1.1.4 and 6.1.1.5.
[atom_type]
atom_type.scat_Cromer_Mann_c
(float)
atom_type_scat_Cromer_Mann_c (cif_core.dic 2.0.1)
The Cromer-Mann scattering-factor coefficient \(c\) used to calculate the scattering factors for this atom type.
References: International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B; International Tables for Crystallography (2004). Vol. C, Tables 6.1.1.4 and 6.1.1.5.
[atom_type]
_atom_type.scat dispersion imag
(float)
_atom_type_scat_dispersion_imag (cif_core.dic 2.0.1)
The imaginary component of the anomalous-dispersion scattering factor, \(f^{\prime \prime}\), in electrons for this atom type and the radiation identified by _diffrn_radiation_wavelength.id.
_atom_type.scat_dispersion_real
atom type scat dispersion real (cif_core.dic 2.0.1)
[atom_type]
(float)
The real component of the anomalous-dispersion scattering factor, \(f^{\prime}\), in electrons for this atom type and the radiation identified by _diffrn_radiation_wavelength.id.
-atom_type.scat_dispersion_source (text) _atom_type_scat_dispersion_source(cif_core.dic 2.3)
Reference to the source of the real and imaginary dispersion corrections for scattering factors used for this atom type.
Example: ‘International Tables Vol. IV Table 2.3.1’. [atom_type]

\section*{_atom_type.scat_length_neutron}
(text)
_atom_type_scat_length_neutron(cif_core.dic 2.0.1)
The bound coherent scattering length in femtometres for the atom type at the isotopic composition used for the diffraction experiment.
[atom_type]

\section*{_atom_type.scat_source}
(text)
_atom_type_scat_source(cif_core.dic 2.0.1)
Reference to the source of the scattering factors or scattering lengths used for this atom type.
Example: ‘International Tables Vol. IV Table 2.4.6B'. [atom_type]

\section*{_atom_type.scat_versus_stol_list}
_atom_type_scat_versus_stol_list(cif_core.dic 2.0.1)
A table of scattering factors as a function of \((\sin \theta) / \lambda\). This table should be well commented to indicate the items present. Regularly formatted lists are strongly recommended.
```

[atom_type]

```
*_atom_type.symbol
(code)
_atom_type_symbol (cif_core.dic 2.0.1)
The code used to identify the atom species (singular or plural) representing this atom type. Normally this code is the element symbol. The code may be composed of any character except an underscore with the additional proviso that digits designate an oxidation state and must be followed by a + or - character.

The following item(s) have an equivalent role in their respective categories:
_atom_site.type_symbol,
_atom_site_anisotrop.type_symbol,
_chemical_conn_atom.type_symbol,
_chem_comp_atom.type_symbol,
_phasing_MIR_der_site.atom_type_symbol.
Examples: ‘C', 'Cu2+', 'H(SDS) ', 'dummy', 'FeNi'.
[atom_type]

\section*{AUDIT}

Data items in the AUDIT category record details about the creation and subsequent updating of the data block. Note that these items apply only to the creation and updating of the data block, and should not be confused with the data items in the JOURNAL category that record different stages in the publication of the material in the data block.
Category group(s): inclusive_group
audit_group
Category key(s): _audit.revision_id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
audit.revision_id
1
audit.creation_date
'1992-12-08'
audit.creation_method
; Created by hand from PDB entry 5HVP, from the J. Biol.
Chem. paper describing this structure and from
laboratory records
;
audit.update_record
; 1992-12-09 adjusted to reflect comments from B. McKeever 1992-12-10 adjusted to reflect comments from H. Berman 1992-12-12 adjusted to reflect comments from K. Watenpaugh

Example 2 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277]
```

audit.creation_date 1991-03-20
_audit.creation_method from_xtal_archive_file_using_CIFIO
audit.update record
; 1991-04-09 text and data added by Tony Willis
1991-04-15 rec'd by co-editor as manuscript HL0007.
1991-04-17 adjustments based on first referee report.
1991-04-18 adjustments based on second referee report
;

```

\section*{audit.creation date}
(yyyy-mm-dd)
_audit_creation_date(cif_core.dic 2.0.1)
A date that the data block was created. The date format is yyyy\(m m-d d\).
Example: ‘1990-07-12’.

\section*{_audit.creation_method}
_audit_creation_method(cif_core.dic 2.0.1)
A description of how data were entered into the data block.
Example: 'spawned by the program QBEE'
*_audit.revision_id (code)
The value of _audit.revision_id must uniquely identify a record in the AUDIT list.
Example: 'rev1'. [audit]
audit.update record
(text)
_audit_update_record (cif_core.dic 2.0.1)
A record of any changes to the data block. The update format is a date ( yyyy-mm-dd) followed by a description of the changes. The latest update entry is added to the bottom of this record.
Example: '1990-07-15 Updated by the Co-editor'
[audit]

\section*{AUDIT_AUTHOR}

Data items in the AUDIT_AUTHOR category record details about the author(s) of the data block.
Category group(s): inclusive_group
audit_group

Category key(s): _audit_author.name
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry \(5 H V P\).

\section*{loop}
_audit_author.name
_audit_author.address
'Fitzgerald, Paula M.D.
; Department of Biophysical Chemistry
Merck Research Laboratories
P. O. Box 2000, Ry80M203

Rahway, New Jersey 07065
USA
;
'McKeever, Brian M.'
; Department of Biophysical Chemistry
Merck Research Laboratories
P. O. Box 2000, Ry80M203

Rahway, New Jersey 07065
USA
;
'Van Middlesworth, J.F.'
; Department of Biophysical Chemistry Merck Research Laboratories
P. O. Box 2000, Ry80M203

Rahway, New Jersey 07065
USA
;
'Springer, James P.'
; Department of Biophysical Chemistry
Merck Research Laboratories
P. O. Box 2000, Ry80M203

Rahway, New Jersey 07065
USA

\section*{_audit_author.address}
(text)
_audit_author_address(cif_core.dic 2.0.1)
The address of an author of this data block. If there are multiple authors, _audit_author.address is looped with _audit_ author.name.
Example:
; Department
Institute
Street
City and postcode COUNTRY
;
[audit_author]
*_audit_author.name (line)
_audit_author_name (cif_core.dic 2.0.1)
The name of an author of this data block. If there are multiple authors, _audit_author.name is looped with _audit_ author.address. The family name(s), followed by a comma and including any dynastic components, precedes the first name(s) or initial(s).
Examples: ‘Bleary, Percival R.’, ‘O'Neil, F.K.', 'Van den Bossche, G.’,
'Yang, D.-L.','Simonov, Yu.A.'. [audit_author]

\section*{AUDIT_CONFORM}

Data items in the AUDIT_CONFORM category describe the dictionary versions against which the data names appearing in the current data block are conformant.
Category group(s): inclusive_group
audit_group
Category key(s): _audit_conform.dict_name
_audit_conform.dict_version
Example 1 - any file conforming to the current CIF core dictionary.
audit_conform.dict_name cif_core.dic
audit_conform.dict_version 2.3.1
audit_conform.dict_location
ftp://ftp.iucr.org/pub/cif_core.2.3.1.dic
_audit_conform.dict_location
_audit_conform_dict_location(cif_core.dic 2.0.1)
A file name or uniform resource locator (URL) for the dictionary to which the current data block conforms.

> [audit_conform]

\section*{_audit_conform.dict_name}
_audit_conform_dict_name(cif_core.dic 2.0.1)
The string identifying the highest-level dictionary defining data names used in this file.
[audit_conform]

\section*{_audit_conform.dict_version}
_audit_conform_dict_version(cif_core.dic 2.0.1)
The version number of the dictionary to which the current data block conforms.

\section*{[audit_conform]}

\section*{AUDIT_CONTACT_AUTHOR}

Data items in the AUDIT_CONTACT_AUTHOR category record details about the name and address of the author to be contacted concerning the content of this data block.
Category group(s): inclusive_group
audit_group
Category key(s): _audit_contact_author. name
```

Example 1 - based on PDB entry 5HVP and laboratory records for the structure
corresponding to PDB entry 5HVP.
_audit_contact_author.name 'Fitzgerald, Paula M.D.'
_audit_contact_author.address
; Department of Biophysical Chemistry
Merck Research Laboratories
PO Box 2000, Ry80M203
Rahway, New Jersey 07065
USA
;
_audit_contact_author.phone '1(908)5945510'
_audit_contact_author.fax '1(908)5946645'
_audit_contact_author.email 'paula_fitzgerald@merck.com'

```
_audit_contact_author.address
(text)
_audit_contact_author_address(cif_core.dic 2.0.1)
The mailing address of the author of the data block to whom correspondence should be addressed.
Example:
; Department
Institute
Street
City and postcode
COUNTRY
;
[audit_contact_author]
_audit_contact_author.email
(line)
_audit_contact_author_email(cif_core.dic 2.0.1)
The electronic mail address of the author of the data block to whom correspondence should be addressed, in a form recognizable to international networks. The format of e-mail addresses is given in Section 3.4, Address Specification, of Internet Message Format, RFC 2822, P. Resnick (Editor), Network Standards Group, April 2001.

Examples: 'name@host. domain. country', 'bm@iucr. org'.
[audit_contact_author]

\section*{_audit_contact_author.fax \\ _audit_contact_author_fax (cif_core.dic 2.0.1)}
(line)
The facsimile telephone number of the author of the data block to whom correspondence should be addressed. The recommended style starts with the international dialing prefix, followed by the area code in parentheses, followed by the local number with no spaces.
Examples: '12(34)9477334', '12()349477334'. [audit_contact_author]
*_audit_contact_author.name
(line)

The name of the author of the data block to whom correspondence should be addressed. The family name(s), followed by a comma and including any dynastic components, precedes the first name(s) or initial(s).
Examples: ‘Bleary, Percival R.', 'O'Neil, F.K.', 'Van den Bossche, G.', 'Yang, D.-L.','Simonov, Yu.A.'. [audit_contact_author]

\section*{_audit_contact_author.phone}
(line)
_audit_contact_author_phone(cif_core.dic 2.0.1)
The telephone number of the author of the data block to whom correspondence should be addressed. The recommended style starts with the international dialing prefix, followed by the area code in parentheses, followed by the local number and any extension number prefixed by ' \(x\) ', with no spaces.
Examples: '12(34)9477330', '12() 349477330', '12(34)9477330x5543'.
[audit_contact_author]


Example 2 - example file for the one-dimensional incommensurately modulated structure of \(\mathrm{K}_{2} \mathrm{SeO}_{4}\).

\section*{loop}
_audit_link.block_code
_audit_link.block_description
- 'publication details'

KSE_COM 'experimental data common to ref./mod. structures' KSE_REF 'reference structure'
KSE_MOD 'modulated structure'

\section*{*_audit_link.block_code \\ _audit_link_block_code(cif_core.dic 2.3)}
(code)
The value of _audit_block. code associated with a data block in the current file related to the current data block. The special value ' ' may be used to refer to the current data block for completeness.
[audit_link]
*_audit_link.block_description
A textual description of the relationship of the referenced data block to the current one.
[audit_link]

\section*{CELL}

Data items in the cell category record details about the crystallographic cell parameters.

\section*{Category group(s): inclusive_group \\ \section*{cell_group}}

Category key(s): _cell.entry_id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to \(P D B\) entry \(5 H V P\).
\begin{tabular}{lr} 
_cell.entry_id & ' 5 HVP' \\
_cell.length_a & 58.39 \\
_cell.length_a_esd & 0.05 \\
_cell.length_b & 86.70 \\
_cell.length_b_esd & 0.12 \\
_cell.length_c & 46.27 \\
_cell.length_c_esd & 0.06 \\
_cell.angle_alpha & 90.00 \\
_cell.angle_beta & 90.00 \\
-cell.angle_gamma & 90.00 \\
_cell.volume & 234237 \\
-cell.details & \\
; The cell parameters were refined every twenty frames during \\
data integration. The cell lengths given are the mean of \\
55 such refinements; the esds given are the root mean \\
square deviations of these 55 observations from that mean.
\end{tabular}
\begin{tabular}{|lc|}
\hline Example 2 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. \\
(1991), C47, 2276-2277]. \\
& \\
_cell.length_a & 5.959 \\
-cell.length_a_esd & 0.001 \\
_cell.length_b & 14.956 \\
_cell.length_b_esd & 0.001 \\
_cell.length_c & 19.737 \\
_cell.length_c_esd & 0.003 \\
_cell.angle_alpha & 90.0 \\
_cell.angle_beta & 90.0 \\
_cell.angle_gamma & 90.0 \\
_cell.volume & 1759.0 \\
_cell.volume_esd & 0.3
\end{tabular}
_cell.angle_alpha (float, su)
_cell_angle_alpha(cif_core.dic 2.0.1)
Unit-cell angle \(\alpha\) of the reported structure in degrees.
The permitted range is \([0.0,180.0]\).
Related item: _cell.angle_alpha_esd (associated esd). Where no value is given, the assumed value is ' 90.0 '.
[cell]
_cell.angle_alpha_esd (float)
The standard uncertainty (estimated standard deviation) of _cell.angle_alpha.
Related item: _cell.angle_alpha (associated value). [cell]
_cell. angle_beta (float, su) _cell_angle_beta (cif_core.dic 2.0.1)
Unit-cell angle \(\beta\) of the reported structure in degrees.
The permitted range is \([0.0,180.0]\).
Related item: _cell.angle_beta_esd (associated esd). Where no value is given, the assumed value is ' 90.0 '. [cell]
_cell.angle_beta_esd (float)
The standard - uncertainty (estimated standard deviation) of _cell.angle_beta.
Related item: _cell.angle_beta (associated value). [cell]
_cell.angle_gamma (float, su)
_cell_angle_gamma (cif_core.dic 2.0.1)
Unit-cell angle \(\gamma\) of the reported structure in degrees.
The permitted range is [0.0, 180.0].
Related item: _cell.angle_gamma_esd (associated esd). Where no value is given, the assumed value is ' 90.0 '. [cell]
_cell.angle_gamma_esd (float)
The standard uncertainty (estimated standard deviation) of _cell.angle_gamma.
Related item: _cell.angle_gamma (associated value). [cell]

\section*{cell.details}
(text)
_cell_special_details(cif_core.dic 2.0.1)
A description of special aspects of the cell choice, noting possible alternative settings.
Examples: 'pseudo-orthorhombic',
'standard setting from 45 deg rotation around c'. [cell]
*_cell.entry_id
This data item is a pointer to _entry.id in the ENTRY category.
_cell.formula_units_Z
(int)
_cell_formula_units_z (cif_core.dic 2.0.1)
The number of the formula units in the unit cell as specified by _chemical_formula.structural, _chemical_formula.moiety or _chemical_formula.sum.
The permitted range is \([1, \infty)\).
[cell]
_cell.length_a
(float, su)
_cell_length_a (cif_core.dic 2.0.1)
Unit-cell length \(a\) corresponding to the structure reported in ångströms.
The permitted range is \([0.0, \infty)\).
Related item: _cell.length_a_esd (associated esd).
[cell]
_cell.length_a_esd (float)
The standard uncertainty (estimated standard deviation) of _cell.length_a.
Related item: _cell.length_a (associated value). [cell]
_cell.length_b
(float, su)
_cell_length_b(cif_core.dic 2.0.1)
Unit-cell length \(b\) corresponding to the structure reported in ångströms.
The permitted range is \([0.0, \infty)\).
Related item: _cell.length_b_esd (associated esd). [cell]

\section*{_cell.length_b_esd}
(float)
The standard uncertainty (estimated standard deviation) of _cell.length_b.
Related item: _cell.length_b (associated value).
_cell.length_c
(float, su)
cell length c(cif_core.dic 2.0.1)
Unit-cell length \(c\) corresponding to the structure reported in ångströms.
The permitted range is \([0.0, \infty)\).
Related item: _cell.length_c_esd (associated esd). [cell]
_cell.length_c_esd
(float)
The standard uncertainty (estimated standard deviation) of cell.length_c.

Related item:_cell.length_c (associated value). [cell]
_cell.reciprocal_angle_alpha
(float, su)
_cell_reciprocal_angle_alpha(cif_core.dic 2.3)
The angle \(\alpha^{*}\) defining the reciprocal cell in degrees. \(\alpha^{*}, \beta^{*}\) and \(\gamma *\) are related to the angles in the real cell by
\[
\begin{aligned}
& \cos \alpha^{*}=(\cos \beta \cos \gamma-\cos \alpha) /(\sin \beta \sin \gamma) \\
& \cos \beta^{*}=(\cos \gamma \cos \alpha-\cos \beta) /(\sin \gamma \sin \alpha) \\
& \cos \gamma^{*}=(\cos \alpha \cos \beta-\cos \gamma) /(\sin \alpha \sin \beta)
\end{aligned}
\]

Reference: Buerger, M. J. (1942). X-ray Crystallography, p. 360. New York: John Wiley \& Sons Inc.

The permitted range is \([0.0,180.0]\).
Related item: _cell.reciprocal_angle_alpha_esd (associated esd). Where no value is given, the assumed value is ' 90.0 '.
_cell.reciprocal_angle_beta
(float, su)
cell reciprocal angle beta (cif-core.dic 2.3)
The angle \(\beta^{*}\) defining the reciprocal cell in degrees. \(\alpha^{*}, \beta^{*}\) and \(\gamma^{*}\) are related to the angles in the real cell by
\[
\begin{aligned}
& \cos \alpha^{*}=(\cos \beta \cos \gamma-\cos \alpha) /(\sin \beta \sin \gamma) \\
& \cos \beta^{*}=(\cos \gamma \cos \alpha-\cos \beta) /(\sin \gamma \sin \alpha) \\
& \cos \gamma^{*}=(\cos \alpha \cos \beta-\cos \gamma) /(\sin \alpha \sin \beta)
\end{aligned}
\]

Reference: Buerger, M. J. (1942). X-ray Crystallography, p 360. New York: John Wiley \& Sons Inc.

The permitted range is \([0.0,180.0]\).
Related item: _cell.reciprocal_angle_beta_esd (associated esd). Where no value
is given, the assumed value is ' 90.0 '. [cell]
_cell.reciprocal_angle_beta_esd (float)
The estimated standard deviation of _cell.reciprocal_angle_ beta.
Related item: _cell.reciprocal_angle_beta (associated value). [cell]

\section*{cell.reciprocal angle gamma \\ (float, su)}
_cell_reciprocal_angle_gamma (cif_core.dic 2.3)
The angle \(\gamma^{*}\) defining the reciprocal cell in degrees. \(\alpha^{*}, \beta^{*}\) and \(\gamma^{*}\) are related to the angles in the real cell by
\[
\begin{aligned}
& \cos \alpha^{*}=(\cos \beta \cos \gamma-\cos \alpha) /(\sin \beta \sin \gamma) \\
& \cos \beta^{*}=(\cos \gamma \cos \alpha-\cos \beta) /(\sin \gamma \sin \alpha) \\
& \cos \gamma^{*}=(\cos \alpha \cos \beta-\cos \gamma) /(\sin \alpha \sin \beta)
\end{aligned}
\]

Reference: Buerger, M. J. (1942). X-ray Crystallography, p. 360. New York: John Wiley \& Sons Inc.

The permitted range is \([0.0,180.0]\).
Related item: _cell.reciprocal_angle_gamma_esd (associated esd). Where no value is given, the assumed value is ' \(90.0^{\prime}\) '.
[cell]
cell.reciprocal_angle_gamma_esd (float)
The estimated standard deviation of _cell.reciprocal_angle_
gamma.
Related item: _cell.reciprocal_angle_gamma (associated value). [cell]

\section*{cell.reciprocal_length_a}
(float, su)
cell_reciprocal_length_a (cif_core.dic 2.3)
The reciprocal-cell length \(a^{*}\) in inverse ångströms. \(a^{*}, b^{*}\) and \(c^{*}\) are related to the lengths in the real cell by
\[
\begin{aligned}
a^{*} & =b c \sin \alpha / V \\
b^{*} & =c a \sin \beta / V \\
c^{*} & =a b \sin \gamma / V
\end{aligned}
\]
where \(V\) is the cell volume.
Reference: Buerger, M. J. (1942). X-ray Crystallography, p. 360. New York: John Wiley \& Sons Inc.

The permitted range is \([0.0, \infty)\).
Related item: cell.reciprocal length a esd(associated esd). [cell]
cell.reciprocal_angle_alpha_esd (float)
The estimated standard deviation of _cell.reciprocal_angle_
alpha.
Related item: _cell.reciprocal_angle_alpha (associated value).
_cell.reciprocal_length_b
_cell_reciprocal_length_b (cif_core.dic 2.3)
The reciprocal-cell length \(b^{*}\) in inverse ångströms. \(a^{*}, b^{*}\) and \(c^{*}\) are related to the lengths in the real cell by
\[
\begin{aligned}
a^{*} & =b c \sin \alpha / V, \\
b^{*} & =c a \sin \beta / V, \\
c^{*} & =a b \sin \gamma / V,
\end{aligned}
\]
where \(V\) is the cell volume.
Reference: Buerger, M. J. (1942). X-ray Crystallography, p. 360. New York: John Wiley \& Sons Inc.

The permitted range is \([0.0, \infty)\).
Related item: _cell.reciprocal_length_b_esd (associated esd). [cell]
_cell.reciprocal_length_b_esd (float)
The estimated standard deviation of _cell.reciprocal_ length_b.
Related item: _cell.reciprocal_length_b (associated value). [cell]
_cell.reciprocal_length_c
_cell_reciprocal_length_c (cif_core.dic 2.3) (float, su)

The reciprocal-cell length \(c^{*}\) in inverse ångströms. \(a^{*}, b^{*}\) and \(c^{*}\) are related to the lengths in the real cell by
\[
\begin{aligned}
a^{*} & =b c \sin \alpha / V, \\
b^{*} & =c a \sin \beta / V, \\
c^{*} & =a b \sin \gamma / V,
\end{aligned}
\]
where \(V\) is the cell volume.
Reference: Buerger, M. J. (1942). X-ray Crystallography, p. 360. New York: John Wiley \& Sons Inc.

The permitted range is \([0.0, \infty)\).
Related item:_cell.reciprocal_length_c_esd (associated esd). [cell]
_cell.reciprocal_length_c_esd (float)
The estimated standard deviation of _cell.reciprocal_ length_c.
Related item: _cell.reciprocal_length_c (associated value). [cell]

\section*{cell.volume}
(float, su)
_cell_volume (cif_core.dic 2.0.1)
Cell volume \(V\) in ångströms cubed.
\(V=a b c\left(1-\cos ^{2} \alpha-\cos ^{2} \beta-\cos ^{2} \gamma+2 \cos \alpha \cos \beta \cos \gamma\right)^{1 / 2}\),
where \(a=\) cell.length_a, \(b=\) cell.length_b, \(c=\) _cell.length_c, \(\alpha=\) _cell.angle_alpha, \(\beta=\) _cell.angle_ beta and \(\gamma=\) _cell.angle_gamma.
The permitted range is \([0.0, \infty)\).
Related item: _cell.volume_esd (associated esd).
[cell]

\section*{cell.volume_esd}
(float)
The standard uncertainty (estimated standard deviation) of _cell.volume.
Related item: _cell.volume (associated value).
\(\bar{T}\) The number of the polymeric chains in a unit cell. In the case of heteropolymers, \(Z\) is the number of occurrences of the most populous chain. This data item is provided for compatibility with the original Protein Data Bank format, and only for that purpose.
The permitted range is \([1, \infty)\).
[cell]

\section*{CELL_MEASUREMENT}

Data items in the CELL_MEASUREMENT category record details about the measurement of the crystallographic cell parameters.
Category group(s): inclusive_group
cell_group

Category key(s): _cell_measurement.entry_id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
\begin{tabular}{ll} 
_cell_measurement.entry_id & '5 HVP' \\
_cell_measurement.temp & 293 \\
_cell_measurement.temp_esd & 3 \\
-cell_measurement.theta_min & 11 \\
-cell_measurement.theta_max & 31 \\
_cell_measurement.wavelength & 1.54 \\
\hline
\end{tabular}

Example 2 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].
cell measurement.temp 293
_cell_measurement.reflns_used 25
_cell_measurement.theta_min
cell measurement.theta max 31
*_cell_measurement.entry_id
This data item is a pointer to _entry.id in the ENTRY category.

\section*{_cell_measurement.pressure \\ _cell_measurement_pressure(cif_core.dic 2.0.1)}
(float, su)
The pressure in kilopascals at which the unit-cell parameters were measured (not the pressure at which the sample was synthesized). Related item: _cell_measurement.pressure_esd (associated esd).
[cell_measurement]
_cell_measurement.pressure_esd (float)
The standard uncertainty (estimated standard deviation) of _cell_measurement.pressure.
Related item: _cell_measurement.pressure (associated value).
[cell_measurement]
_cell_measurement.radiation
_cell_measurement_radiation(cif_core.dic 2.0.l)
Description of the radiation used to measure the unit-cell data. See
also _cell_measurement.wavelength.
Examples: 'neutron', 'Cu \(\mathrm{K} \backslash \mathrm{a}\) ', 'synchrotron'.
\[
\begin{aligned}
& \text { _cell_measurement.reflns_used } \\
& \text { _cell_measurement_reflns_used (cif_core.dic } 2.0 .1)
\end{aligned}
\]
(int)
The total number of reflections used to determine the unit cell. These reflections may be specified as CELL_MEASUREMENT_REFLN data items.
[cell_measurement]
\[
\begin{aligned}
& \text { _cell_measurement.temp } \\
& \text { _cell_measurement_temperature(cif_core.dic 2.0.1) }
\end{aligned}
\]
(float, su)
The temperature in kelvins at which the unit-cell parameters were measured (not the temperature of synthesis).
The permitted range is \([0.0, \infty\) ).
Related item: _cell_measurement. temp_esd (associated esd).
[cell_measurement]
_cell_measurement.temp_esd (float)
The standard uncertainty (estimated standard deviation) of _cell_measurement.temp.
Related item: _cell_measurement.temp (associated value). [cell_measurement]
_cell_measurement.theta_max (float)
_cell_measurement_theta_max (cif_core.dic 2.0.1)
The maximum \(\theta\) angle of reflections used to measure the unit cell in degrees.
The permitted range is \([0.0,90.0]\).
[cell_measurement]

\section*{_cell_measurement.theta_min}
(float)
_cell_measurement_theta_min(cif_core.dic 2.0.1)
The minimum \(\theta\) angle of reflections used to measure the unit cell in degrees.
The permitted range is \([0.0,90.0]\). [cell_measurement]

\section*{cell measurement.wavelength}
(float)
_cell_measurement_wavelength (cif_core.dic 2.0.1)
The wavelength in ångströms of the radiation used to measure the unit cell. If this is not specified, the wavelength is assumed to be that specified in the category DIFFRN_RADIATION_WAVELENGTH.
The permitted range is \([0.0, \infty)\).
[cell measurement]

\section*{CELL_MEASUREMENT_REFLN}

Data items in the CELL_MEASUREMENT_REFLN category record details about the reflections used to determine the crystallographic cell parameters. The CELL_MEASUREMENT_REFLN data items would in general be used only for diffractometer data.
Category group(s): inclusive_group cell_group
Category key(s): _cell_measurement_refln.index_h
cell_measurement_refln.index_k
_cell_measurement_refln.index_1
Example 1 -extracted from the CAD-4 listing of \(R b_{2} S_{2} O_{6}\) at room temperature (unpublished).

\section*{loop_}
cell_measurement_refln.index_h
_cell_measurement_refln.index_k
cell_measurement_refln.index_1
_cell_measurement_refln.theta
\begin{tabular}{rrrr}
-2 & 4 & 1 & 8.67 \\
0 & 3 & 2 & 9.45 \\
3 & 0 & 2 & 9.46 \\
-3 & 4 & 1 & 8.93 \\
-2 & 1 & -2 & 7.53 \\
10 & 0 & 0 & 23.77 \\
0 & 10 & 0 & 23.78 \\
-5 & 4 & 1 & 11.14
\end{tabular}

\footnotetext{
*_cell_measurement_refln.index_h
_cell_measurement_refln_index_h(cif_core.dic 2.0.1)
Miller index \(h\) of a reflection used for measurement of the unit cell. [cell_measurement_refln]
*_cell_measurement_refln.index_k
Miller index \(k\) of a reflection used for measurement of the unit cell.
[cell_measurement_refln]
*_cell_measurement_refln.index_1
(int)

Miller index \(l\) of a reflection used for measurement of the unit cell.
[cell_measurement_refln]
```

_cell_measurement_refln.theta
(float)
_cell_measurement_refln_theta(cif_core.dic 2.0.1)
0angle for a reflection used for measurement of the unit cell in
degrees.
The permitted range is [0.0,90.0]. [cell_measurement_refln]

```
}

\section*{CHEM_COMP}

Data items in the CHEM_COMP category give details about each of the chemical components from which the relevant chemical structures can be constructed, such as name, mass or charge. The related categories CHEM_COMP_ATOM, CHEM_COMP_BOND, CHEM_COMP_ANGLE etc. describe the detailed geometry of these chemical components.
Category group(s): inclusive_group
chem_comp_group
Category key(s): _chem_comp.id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
loop_
chem_comp.id
_chem_comp.model_source
-chem_comp. name
phe '1987 Protin/Prolsq Ideals file' phenylalanine
val ' 1987 Protin/Prolsq Ideals file' alanine
\# - - - data truncated for brevity - - -

\section*{chem_comp.formula}
(text)
The formula for the chemical component. Formulae are written according to the following rules: (1) Only recognized element symbols may be used. (2) Each element symbol is followed by a 'count' number. A count of ' 1 ' may be omitted. (3) A space or parenthesis must separate each cluster of (element symbol + count), but in general parentheses are not used. (4) The order of elements depends on whether carbon is present or not. If carbon is present, the order should be: C , then H , then the other elements in alphabetical order of their symbol. If carbon is not present, the elements are listed purely in alphabetic order of their symbol. This is the 'Hill' system used by Chemical Abstracts.
Example: ‘C18 H19 N7 O8 S'. [chem_comp]
chem comp.formula weight (float)
\(\overline{\text { Formula mass in daltons of the chemical component. }}\)
The permitted range is \([1.0, \infty)\).
[chem_comp]
*_chem_comp.id
The value of _chem_comp.id must uniquely identify each item in the CHEM_COMP list. For protein polymer entities, this is the threeletter code for the amino acid. For nucleic acid polymer entities, this is the one-letter code for the base.
The following item(s) have an equivalent role in their respective categories:
```

_atom_site.label_comp_id,
_chem_comp.mon_nstd_parent_comp_id,
_chem_comp_atom.comp_id,
chem_comp_chir.comp_id,
_chem_comp_chir_atom.comp_id,
_chem_comp_plane.comp_id,
chem_comp_plane_atom.comp_id,
_entity_poly_seq.mon_id,
_chem_comp_angle.comp_id,
_chem_comp_bond.comp_id,
chem_comp_tor.comp_id,
_chem_comp_tor_value.comp_id,
_geom_angle.atom_site_label_comp_id_1,
_geom_angle.atom_site_label_comp_id_2,
_geom_angle.atom_site_label_comp_id_3,
_geom_bond.atom_site_label_comp_id_1,
_geom_bond.atom_site_label_comp_id_2,
_geom_contact.atom_site_label_comp_id_1,
_geom_contact.atom_site_label_comp_id_2,
geom_hbond.atom_site_label_comp_id_A,
_geom_hbond.atom_site_label_comp_id_D,

```
_geom_hbond.atom_site_label_comp_id_H,
_geom_torsion.atom_site_label_comp_id_1,
_geom_torsion.atom_site_label_comp_id_2
_geom_torsion.atom_site_label_comp_id_3,
_geom_torsion.atom_site_label_comp_id_4,
_struct_conf.beg_label_comp_id,
_struct_conf.end_label_comp_id,
_struct_conn.ptnrl_label_comp_id,
_struct_conn.ptnr2_label_comp_id,
_struct_mon_nucl.label_comp_id,
_struct_mon_prot.label_comp_id,
_struct_mon_prot_cis.label_comp_id,
_struct_ncs_dom_lim.beg_label_comp_id,
_struct_ncs_dom_lim.end_label_comp_id,
_struct_ref_seq_dif.db_mon_id,
_struct_ref_seq_dif.mon_id,
_struct_sheet_range.beg_label_comp_id,
_struct_sheet_range.end_label_comp_id,
_struct_site_gen.label_comp_id.
Examples: 'ala', 'val', 'A', 'C'. [chem_comp]
_chem_comp.mon_nstd_parent
(code)
The name of the parent monomer of the nonstandard monomer, if the nonstandard monomer represents a modification of a standard monomer.
Examples: 'tyrosine', 'cytosine'. [chem_comp]

\section*{chem_comp.mon_nstd_parent_comp_id}

The identifier for the parent component of the nonstandard component. This data item is a pointer to _chem_comp.id in the CHEM_COMP category.

\section*{chem comp.name}

The full name of the component.
Examples: 'alanine', 'valine', 'adenine', 'cytosine'.
[chem_comp]

\section*{chem comp.number atoms all}

The total number of atoms in the component.
The permitted range is \([1, \infty)\).
[chem_comp]

\section*{chem_comp.number_atoms_nh}

The number of non-hydrogen atoms in the component.
The permitted range is \([1, \infty)\).
[chem_comp]
_chem_comp.one_letter_code (ucharl)
\(\overline{\text { For standard polymer components, the one-letter code for the com- }}\) ponent. If there is not a standard one-letter code for this component, or if this is a non-polymer component, the one-letter code should be given as ' X '. This code may be preceded by a ' + ' character to indicate that the component is a modification of a standard component.
Examples: ‘ \(A\) ' (alanine or adenine), ' \(B\) ' (ambiguous asparagine/aspartic acid), ' \(R\) ' (arginine), ' \(N\) ' (asparagine), ' \(D\) ' (aspartic acid), ' \(C\) ' (cysteine or cystine or cytosine), ' \(Q\) ' (glutamine), ' \(E\) ' (glutamic acid), ' \(Z\) ' (ambiguous glutamine/glutamic acid), ' \(G\) ' (glycine or guanine), ' H ' (histidine), ' \(I\) ' (isoleucine), ' \(L\) ' (leucine), ' \(K\) ' (lysine), ' \(M\) ' (methionine), ' \(F\) ' (phenylalanine), ' \(P\) ' (proline), ' \(S\) ' (serine), ' \(T\) ' (threonine or thymine), ' \(W\) ' (tryptophan), ' \(Y\) ' (tyrosine), ' \(V\) ' (valine), 'U' (uracil), 'O' (water), 'X' (other).
[chem_comp]

\section*{_chem_comp.three_letter_code (uchar3)}
\(\bar{F}\) or standard polymer components, the three-letter code for the component. If there is not a standard three-letter code for this component, or if this is a non-polymer component, the three-letter code should be given as 'UNK'. This code may be preceded by a ' + ' character to indicate that the component is a modification of a standard component.
Examples: ‘ALA' (alanine), ‘ARG' (arginine), ‘ASN' (asparagine), ‘ASP' (aspartic acid), ‘ASX' (ambiguous asparagine/aspartic acid), 'CYS’ (cysteine), ‘GLN’ (glutamine), ‘GLU’ (glutamic acid), 'GLY' (glycine), ‘GLX' (ambiguous glutamine/glutamic acid), 'HIS' (histidine), 'ILE' (isoleucine), ‘LEU' (leucine), ‘LYS' (lysine), ‘MET' (methionine), 'PHE' (phenylalanine), 'PRO' (proline), 'SER' (serine), 'THR' (threonine), 'TRP’ (tryptophan), 'TRY' (tyrosine), 'VAL' (valine), '1MA' (1-methyladenosine), '5MC' (5-methylcytosine), 'OMC'
(2'-O-methylcytodine), '1MG' (1-methylguanosine), ' 2 MG ' ( \(\mathrm{N}(2)\)-methylguanosine), ' \({ }^{\prime}\) 2G'
(N(2)-dimethylguanosine), '7MG' (7-methylguanosine), '0MG' ( \(2^{\prime}-O\)-methylguanosine),
‘H2U' (dihydrouridine), ‘5MU' (ribosylthymidine), ‘PSU' (pseudouridine), ‘ACE’ (acetic
acid), 'FOR' (formic acid), 'HOH' (water), ‘UNK’ (other).
[chem_comp]
*_chem_comp.type (uline)
For standard polymer components, the type of the monomer. Note that monomers that will form polymers are of three types: linking monomers, monomers with some type of N-terminal (or 5') cap and monomers with some type of C-terminal (or \(3^{\prime}\) ) cap.
The following item(s) have an equivalent role in their respective categories:
_chem_comp_link.type_comp_1,
_chem_comp_link.type_comp_2.
The data value must be one of the following:
'D-peptide linking'
'L-peptide linking'
'D-peptide NH3 amino terminus'
'L-peptide NH3 amino terminus'
'D-peptide COOH carboxy terminus'
'L-peptide COOH carboxy terminus'
'DNA linking'
'RNA linking'
'DNA OH 5 prime terminus'
'RNA OH 5 prime terminus'
'DNA OH 3 prime terminus'
'RNA OH 3 prime terminus'
'D-saccharide 1,4 and 1,4 linking'
'L-saccharide 1,4 and 1,4 linking'
'D-saccharide 1,4 and 1,6 linking'
'L-saccharide 1,4 and 1,6 linking'
L-saccharide
D-saccharide
saccharide
non-polymer
other
[chem_comp]

\section*{CHEM_COMP_ANGLE}

Data items in the CHEM_COMP_ANGLE category record details about angles in a chemical component. Angles are designated by three atoms, with the second atom forming the vertex of the angle. Target values may be specified as angles in degrees, as a distance between the first and third atoms, or both.
Category group(s): inclusive_group
chem_comp_group
Category key(s): _chem_comp_angle.comp_id
chem_comp_angle.atom_id_1
chem_comp_angle.atom_id_2
chem_comp_angle.atom_id_3
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry \(5 H V P\).

\section*{loop}
_chem_comp_angle.comp_id
_chem_comp_angle.atom_id_1
_chem_comp_angle.atom_id_2
_chem_comp_angle.atom_id_3
_chem_comp_angle.value_angle
_chem_comp_angle.value_dist
\begin{tabular}{|c|c|c|c|c|c|}
\hline phe & N & CA & C & xxx. xx & \(\mathbf{x} . \mathrm{xx}\) \\
\hline phe & CA & C & 0 & xxx. xx & x. xx \\
\hline phe & CB & CA & C & xxx. xx & x. xx \\
\hline phe & CB & CA & N & xxx. xx & x. xx \\
\hline phe & CA & CB & CG & xxx.xx & \(\mathrm{x} . \mathrm{xx}\) \\
\hline phe & CB & CG & CD1 & xxx. xx & x. xx \\
\hline phe & CB & CG & CD2 & xxx. xx & \(\mathrm{x} . \mathrm{xx}\) \\
\hline phe & CD1 & CG & CD2 & xxx.xx & \(\mathrm{x} . \mathrm{xx}\) \\
\hline phe & CG & CD1 & CE1 & xxx. xx & \(\mathrm{x} . \mathrm{xx}\) \\
\hline phe & CD1 & CE1 & CZ & xxx. xx & \(\mathrm{x} . \mathrm{xx}\) \\
\hline phe & CE1 & CZ & CE2 & xxx.xx & \(\mathrm{x} . \mathrm{xx}\) \\
\hline phe & CZ & CE2 & CD2 & xxx. xx & \(\mathrm{x} . \mathrm{xx}\) \\
\hline phe & CG & CD2 & CE2 & xxx.xx & x. xx \\
\hline val & N & CA & C & xxx. xx & \(\mathrm{x} . \mathrm{xx}\) \\
\hline val & CA & C & 0 & xxx. xx & \(\mathrm{x} . \mathrm{xx}\) \\
\hline val & CB & CA & C & xxx.xx & \(\mathrm{x} . \mathrm{xx}\) \\
\hline val & CB & CA & N & xxx. xx & \(\mathrm{x} . \mathrm{xx}\) \\
\hline val & CA & CB & CG1 & xxx.xx & \(\mathrm{x} . \mathrm{xx}\) \\
\hline val & CA & CB & CG2 & xxx.xx & \(\mathrm{x} . \mathrm{xx}\) \\
\hline val & CG1 & CB & CG2 & \(\mathbf{x x x} . \mathrm{xx}\) & \(\mathbf{x} . \mathrm{xx}\) \\
\hline
\end{tabular}
*_chem_comp_angle.atom_id_1
The ID of the first of the three atoms that define the angle. This data item is a pointer to _chem_comp_atom.atom_id in the CHEM_COMP_ATOM category.
```

*_chem_comp_angle.atom_id_2

```
\(\bar{T}\) The ID \({ }^{-}\)of the second of the three atoms that define the angle. The second atom is taken to be the apex of the angle. This data item is a pointer to _chem_comp_atom.atom_id in the CHEM_COMP_ATOM category.
*_chem_comp_angle.atom_id_3
The ID of the third of the three atoms that define the angle. This data item is a pointer to _chem_comp_atom.atom_id in the CHEM_COMP_ATOM category.
*_chem_comp_angle.comp_id
This data item is a pointer to _chem_comp.id in the CHEM_COMP category.
_chem_comp_angle.value_angle
(float, su)
The value that should be taken as the target value for the angle associated with the specified atoms, expressed in degrees.
The permitted range is \([0.0,180.0]\).
Related item: _chem_comp_angle.value_angle_esd (associated esd).
[chem_comp_angle]
_chem_comp_angle.value_angle_esd (float)
The standard uncertainty (estimated standard deviation) of _chem_comp_angle.value_angle.
The permitted range is [0.0, 180.0].
Related item: _chem_comp_angle.value_angle (associated value).
[chem_comp_angle]

\section*{_chem_comp_angle.value_dist}
(float, su)
The value that should be taken as the target value for the angle associated with the specified atoms, expressed as the distance between the atoms specified by _chem_comp_angle.atom_id_1 and _chem_comp_angle.atom_id_3.
The permitted range is \([0.0, \infty)\).
Related item: _chem_comp_angle.value_dist_esd (associated esd).
[chem_comp_angle]
_chem_comp_angle.value_dist_esd (float)
The standard uncertainty (estimated standard deviation) of _chem_comp_angle.value_dist.
The permitted range is \([0.0, \infty)\).
Related item: _chem_comp_angle.value_dist (associated value).
[chem_comp_angle]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{CHEM_COMP_ATOM} \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
Data items in the CHEM_COMP_ATOM category record details about the atoms in a chemical component. Specifying the atomic coordinates for the components in this category is an alternative to specifying the structure of the component via bonds, angles, planes etc. in the appropriate CHEM_COMP subcategories. \\
Category group(s): inclusive_group \\
chem_comp_group \\
Category key(s): _chem_comp_atom. comp_id
chem comp atom.atom id
\end{tabular}} \\
\hline \multicolumn{7}{|l|}{Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{8}{*}{\begin{tabular}{l}
loop_ \\
chem_comp_atom.comp_id chem_comp_atom.atom_id chem_comp_atom.type_symbol chem_comp_atom.substruct_code chem_comp_atom.model_Cartn_x chem_comp_atom.model_Cartn_y chem comp atom.model Cartn \(z\)
\end{tabular}}} \\
\hline & & & & & & \\
\hline phe & N & N & main & 1.20134 & 0.84658 & 0.00000 \\
\hline phe & CA & c & main & 0.00000 & 0.00000 & 0.00000 \\
\hline phe & c & c & main & -1.25029 & 0.88107 & 0.00000 \\
\hline phe & 0 & 0 & main & -2.18525 & 0.66029 & -0.78409 \\
\hline phe & CB & C & side & 0.00662 & -1.03603 & 1.11081 \\
\hline phe & CG & C & side & 0.03254 & -0.49711 & 2.50951 \\
\hline phe & CD1 & C & side & -1.15813 & -0.12084 & 3.13467 \\
\hline phe & CE1 & C & side & -1.15720 & 0.38038 & 4.42732 \\
\hline phe & Cz & c & side & 0.05385 & 0.51332 & 5.11032 \\
\hline phe & CE2 & C & side & 1.26137 & 0.11613 & 4.50975 \\
\hline phe & CD2 & c & side & 1.23668 & -0.38351 & 3.20288 \\
\hline val & N & N & main & 1.20134 & 0.84658 & 0.00000 \\
\hline al & CA & c & main & 0.00000 & 0.00000 & 0.00000 \\
\hline val & C & c & main & -1.25029 & 0.88107 & 0.00000 \\
\hline val & 0 & \(\bigcirc\) & main & -2.18525 & 0.66029 & -0.78409 \\
\hline val & CB & c & side & 0.05260 & -0.99339 & 1.17429 \\
\hline val & CG1 & C & side & -0.13288 & -0.31545 & 2.52668 \\
\hline va & CG2 & c & side & -0.94265 & -2.12930 & 0.99811 \\
\hline
\end{tabular}
_chem_comp_atom.alt_atom_id
(line)
\(\bar{A} \mathrm{n}\) alternative identifier for the atom. This data item would be used in cases where alternative nomenclatures exist for labelling atoms in a group.
[chem_comp_atom]
*_chem_comp_atom.atom_id (atcode)
The value of _chem_comp_atom.atom_id must uniquely identify each atom in each monomer in the CHEM_COMP_ATOM list. The atom identifiers need not be unique over all atoms in the data block; they need only be unique for each atom in a component. Note that this item need not be a number; it can be any unique identifier.
The following item(s) have an equivalent role in their respective categories:
```

_atom_site.label_atom_id,
_chem_comp_angle.atom_id_1,
_chem_comp_angle.atom_id_2,
_chem_comp_angle.atom_id_3,
_chem_comp_bond.atom_id_1,
_chem_comp_bond.atom_id_2,
_chem_comp_chir.atom_id,
_chem_comp_chir_atom.atom_id,
_chem_comp_plane_atom.atom_id,
_chem_comp_tor.atom_id_1,
_chem_comp_tor.atom_id_2,
_chem_comp_tor.atom_id_3,
_chem_comp_tor.atom_id_4,
_geom_angle.atom_site_label_atom_id_1,
_geom_angle.atom_site_label_atom_id_2,
_geom_angle.atom_site_label_atom_id_3,
_geom_bond.atom_site_label_atom_id_1,

```
_geom_bond.atom_site_label_atom_id_2,
_geom_contact.atom_site_label_atom_id_1,
_geom_contact.atom_site_label_atom_id_2,
_geom_hbond.atom_site_label_atom_id_A,
_geom_hbond.atom_site_label_atom_id_D,
_geom_hbond.atom_site_label_atom_id_H,
_geom_torsion.atom_site_label_atom_id_1,
_geom_torsion.atom_site_label_atom_id_2,
_geom_torsion.atom_site_label_atom_id_3,
_geom_torsion.atom_site_label_atom_id_4,
_struct_conn.ptnrl_label_atom_id,
_struct_conn.ptnr2_label_atom_id,
_struct_sheet_hbond.range_1_beg_label_atom_id,
_struct_sheet_hbond.range_1_end_label_atom_id,
_struct_sheet_hbond.range_2_beg_label_atom_id,
_struct_sheet_hbond.range_2_end_label_atom_id,
_struct_site_gen.label_atom_id. [chem_comp_atom]

\section*{chem_comp_atom.charge}

The net integer charge assigned to this atom. This is the formal charge assignment normally found in chemical diagrams.
The permitted range is \([-8,8]\). Where no value is given, the assumed value is ' 0 '.
Examples: ' 1 ' (for an ammonium nitrogen), ' -1 ' (for a chloride ion).
[chem_comp_atom]
*_chem_comp_atom.comp_id
This data item is a pointer to _chem_comp.id in the CHEM_COMP category.
_chem_comp_atom.model_Cartn_x
(float, su)
The \(x\) component of the coordinates for this atom in this component specified as orthogonal ångströms. The choice of reference axis frame for the coordinates is arbitrary. The set of coordinates input for the entity here is intended to correspond to the atomic model used to generate restraints for structure refinement, not to atom sites in the ATOM_SITE list.
Related item: _chem_comp_atom.model_Cartn_x_esd (associated esd).
[chem_comp_atom]
_chem_comp_atom.model_Cartn_x_esd (float) The standard uncertainty (estimated standard deviation) of _chem_comp_atom.model_Cartn_x.
Related item: _chem_comp_atom.model_Cartn_x (associated value).
[chem_comp_atom]
_chem_comp_atom.model_Cartn_y
(float, su)
The \(y\) component of the coordinates for this atom in this component specified as orthogonal ångströms. The choice of reference axis frame for the coordinates is arbitrary. The set of coordinates input for the entity here is intended to correspond to the atomic model used to generate restraints for structure refinement, not to atom sites in the ATOM_SITE list.
Related item: _chem_comp_atom.model_Cartn_y_esd (associated esd).
[chem_comp_atom]
_chem_comp_atom.model_Cartn_y_esd (float)
\(\bar{T}\) The standard uncertainty (estimated \(\overline{\text { standard deviation) of }}\) _chem_comp_atom.model_Cartn_y.
Related item: _chem_comp_atom.model_Cartn_y (associated value).
[chem_comp_atom]
_chem_comp_atom.model_Cartn_z
(float, su)
The \(z\) component of the coordinates for this atom in this component specified as orthogonal ångströms. The choice of reference axis frame for the coordinates is arbitrary. The set of coordinates input for the entity here is intended to correspond to the atomic model used to generate restraints for structure refinement, not to atom sites in the ATOM_SITE list.
Related item: _chem_comp_atom.model_Cartn_z_esd (associated esd).
[chem_comp_atom]
_chem_comp_atom.model_Cartn_z_esd (float)
The standard uncertainty (estimated standard deviation) of _chem_comp_atom.model_Cartn_z.
Related item: _chem_comp_atom.model_Cartn_z (associated value).
[chem_comp_atom]
_chem_comp_atom.partial_charge
(float)
The partial charge assigned to this atom
_chem_comp_atom.substruct_code (ucode)
This data item assigns the atom to a substructure of the component, if appropriate.
The data value must be one of the following:
main main chain of an amino acid
side side chain of an amino acid
base base of a nucleic acid
phos phosphate of a nucleic acid
sugar sugar of a nucleic acid
none not appropriate for this monomer
[chem_comp_atom]
*_chem_comp_atom.type_symbol
This data item is a pointer to _atom_type.symbol in the ATOM_TYPE category.

\section*{CHEM_COMP_BOND}

Data items in the CHEM_COMP_BOND category record details about the bonds between atoms in a chemical component. Target values may be specified as bond orders, as a distance between the two atoms, or both.
Category group(s): inclusive_group
chem_comp_group
Category key(s): _chem_comp_bond.comp_id
chem comp bond.atom id 1
_chem_comp_bond.atom_id_2
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

\section*{loop}
_chem_comp_bond.comp_id
_chem_comp_bond.atom_id_1
_chem_comp_bond.atom_id_2
_chem_comp_bond.value_orerder
phe \(N\) CA sing
phe CA \(C\) sing
phe \(C\) doub
phe CB CA sing
phe \(C B\) CG sing
phe CG CD1 arom
phe CD1 CE1 arom
phe CE1 CZ arom
phe CZ CE2 arom
phe CE2 CD2 arom
phe CD2 CG arom
val \(N \quad C A\) sing
val CA \(C\) sing
val C O doub
val CB CG1 sing
val CB CG2 sing
*_chem_comp_bond.atom_id_1
The ID of the first of the two atoms that define the bond. This data item is a pointer to _chem_comp_atom.atom_id in the CHEM_COMP_ATOM category.
*_chem_comp_bond.atom_id_2
The ID of the second of the two atoms that define the bond. This data item is a pointer to _chem_comp_atom.atom_id in the CHEM_COMP_ATOM category.
*_chem_comp_bond.comp_id
This data item is a pointer to _chem_comp.id in the CHEM_COMP category.
_chem_comp_bond.value_dist
(float, su)
The value that should be taken as the target for the chemical bond associated with the specified atoms, expressed as a distance.
The permitted range is \([0.0, \infty)\).
Related item: _chem_comp_bond.value_dist_esd (associated esd).
[chem_comp_bond]
_chem_comp_bond.value_dist_esd (float)
The standard uncertainty (estimated standard deviation) of _chem_comp_bond.value_dist.
The permitted range is \([0.0, \infty)\).
Related item: _chem_comp_bond.value_dist (associated value).
[chem_comp_bond]
_chem_comp_bond.value_order
(ucode)
The value that should be taken as the target for the chemical bond associated with the specified atoms, expressed as a bond order.
The data value must be one of the following:
\begin{tabular}{ll} 
sing & single bond \\
doub & double bond \\
trip & triple bond \\
quad & quadruple bond \\
arom & aromatic bond \\
poly & polymeric bond \\
delo & delocalized double bond \\
pi & \(\pi\) bond
\end{tabular}

Where no value is given, the assumed value is 'sing'.
[chem_comp_bond]

\section*{CHEM_COMP_CHIR}

Data items in the CHEM_COMP_CHIR category provide details about the chiral centres in \(\bar{a}\) chemical component. The atoms bonded to the chiral atom are specified in the CHEM_COMP_CHIR_ATOM category.
Category group(s): inclusive_group chem_comp_group
Category key(s): _chem_comp_chir.comp_id
chem_comp_chir.id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure
corresponding to PDB entry 5HVP.
loop_
_chem_comp_chir.comp_id
_chem_comp_chir.id
chem_comp_chir.atom_id
phe phel CA
val vall CA
\# - - - - data truncated for brevity - - - -
_chem_comp_chir.atom_config
\(\bar{T}\) The chiral configuration of the atom that is a chiral centre.
The data value must be one of the following:
\(\mathrm{R} \quad\) absolute configuration \(R\)
S absolute configuration \(S\)
[chem_comp_chir]
*_chem_comp_chir.atom_id
The ID of the atom that is a chiral centre. This data item is a pointer to _chem_comp_atom.atom_id in the CHEM_COMP_ATOM category.
*_chem_comp_chir.comp_id
This data item is a pointer to _chem_comp.id in the CHEM_COMP category.
*_chem_comp_chir.id
(code)
The value of _chem_comp_chir.id must uniquely identify a record in the CHEM_COMP_CHIR list.
The following item(s) have an equivalent role in their respective categories:
_chem_comp_chir_atom.chir_id. [chem_comp_chir]

\section*{_chem_comp_chir.number_atoms_all}

The total number of atoms bonded to the atom specified by _chem_comp_chir.atom_id.
[chem_comp_chir]

\section*{_chem_comp_chir.number_atoms_nh}
(int)
The number of non-hydrogen atoms bonded to the atom specified by _chem_comp_chir.atom_id.
[chem_comp_chir]
_chem_comp_chir.volume_flag
(ucode)
\(\overline{\mathrm{A}}\) flag to indicate whether a chiral volume should match the standard value in both magnitude and sign, or in magnitude only.
The data value must be one of the following:
sign match magnitude and sign
nosign match magnitude only
[chem_comp_chir]
chem_comp_chir.volume_three
(float, su)
\(\bar{T}\) The chiral volume, \(V_{c}\), for chiral centres that involve a chiral atom bonded to three non-hydrogen atoms and one hydrogen atom.
\[
V_{c}=\mathbf{V}_{1} \cdot\left(\mathbf{V}_{2} \times \mathbf{V}_{3}\right)
\]
where \(\mathbf{V}_{1}=\) the vector distance from the atom specified by _chem_comp_chir.atom_id to the first atom in the CHEM_COMP_CHIR_ATOM list, \(\mathbf{V}_{2}=\) the vector distance from the atom specified by _chem_comp_chir.atom_id to the second atom in the CHEM_COMP_CHIR_ATOM list, \(\mathbf{V}_{3}=\) the vector distance from the atom specified by _chem_comp_chir.atom_id to the third atom in the CHEM_COMP_CHIR_ATOM list, \(\cdot=\) the vector dot product and \(x=\) the vector cross product.
Related item: _chem_comp_chir.volume_three_esd (associated esd).
[chem_comp_chir]
chem_comp_chir.volume_three_esd (float)
The standard uncertainty (estimated standard deviation) of
-chem_comp_chir.volume_three.
Related item:_chem_comp_chir.volume_three(associated value).
[chem comp chir]
CHEM_COMP_CHIR_ATOM
Data items in the CHEM_COMP_CHIR_ATOM category enumerate
the atoms bonded to a chiral atom within a chemical component.
Category group(s): inclusive_group
chem_comp_group \begin{tabular}{c} 
Category key(s): _chem_comp_chir_atom.chir_id \\
_chem_comp_chir_atom.atom_id \\
_chem_comp_chir_atom.comp_id
\end{tabular}

Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
loop_
_chem_comp_chir_atom.comp_id
_chem_comp_chir_atom.chir_id
_chem_comp_chir_atom.atom_id
phe 1 N
phe 1 C
phe 1 CB
val \(1 \quad \mathrm{~N}\)
val 1 C
val 1 CB
\# - - - - data truncated for brevity - - - -
*_chem_comp_chir_atom.atom_id
The ID of an atom bonded to the chiral atom.
This data item is a pointer to _chem_comp_atom.atom_id in the CHEM_COMP_ATOM category.
*_chem_comp_chir_atom.chir_id
This data item is a pointer to _chem_comp_chir.id in the CHEM_COMP_CHIR category.
*_chem_comp_chir_atom.comp_id
This data item is a pointer to _chem_comp.id in the CHEM_COMP category.
_chem_comp_chir_atom.dev (float)
The standard uncertainty (estimated standard deviation) of the position of this atom from the plane defined by all of the atoms in the plane.
[chem_comp_chir_atom]

\section*{CHEM_COMP_LINK}

Data items in the CHEM_COMP_LINK category give details about the links between chemical components.
Category group(s): inclusive_group
chem_link_group
Category key(s): _chem_comp_link.link_id

\section*{_chem_comp_link.details}
(text)
A description of special aspects of a link between chemical components in the structure.
[chem_comp_link]

\footnotetext{
*_chem_comp_link.link_id
This data item is a pointer to _chem_link.id in the CHEM_LINK category.
*_chem_comp_link.type_comp_1
The type of the first of the two components joined by the link. This data item is a pointer to _chem_comp.type in the CHEM_COMP category.
}
*_chem_comp_link.type_comp_2
The type of the second of the two components joined by the link. This data item is a pointer to _chem_comp. type in the CHEM_COMP category.

\section*{CHEM_COMP_PLANE}

Data items in the CHEM_COMP_PLANE category provide identifiers for the planes in a chemical component. The atoms in the plane are specified in the CHEM_COMP_PLANE_ATOM category.
Category group(s): inclusive_group
chem_comp_group

Category key(s): _chem_comp_plane.comp_id
_chem_comp_plane.id

Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
loop_
_chem_comp_plane.comp_id
_chem_comp_plane.id
phe phel
*_chem_comp_plane.comp_id
This data item is a pointer to _chem_comp.id in the CHEM_COMP category.
*_chem_comp_plane.id (code)
The value of _chem_comp_plane.id must uniquely identify a record in the CHEM_COMP_PLANE list.
The following item(s) have an equivalent role in their respective categories:
_chem_comp_plane_atom.plane_id.
[chem_comp_plane]
_chem_comp_plane.number_atoms_all
(int)
The total number of atoms in the plane.
[chem_comp_plane]
_chem_comp_plane.number_atoms_nh
(int)
The number of non-hydrogen atoms in the plane.
[chem_comp_plane]

\section*{CHEM_COMP_PLANE_ATOM}

Data items in the CHEM_COMP_PLANE_ATOM category enumerate the atoms in a plane within a chemical component.
Category group(s): inclusive_group
chem_comp_group

Category key(s): _chem_comp_plane_atom.plane_id
_chem_comp_plane_atom.atom_id
chem_comp_plane_atom.comp_id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

\section*{loop_}
_chem_comp_plane_atom.plane_id
_chem_comp_plane_atom.comp_id
_chem_comp_plane_atom.atom_id
phel phe CB
phe1 phe CG
phe1 phe CD1
phe1 phe CE1
phe1 phe CZ
phe1 phe CE2
phe1 phe CD2
*_chem_comp_plane_atom.comp_id
This data item is a pointer to _chem_comp.id in the CHEM_COMP category.
_chem_comp_plane_atom.dist_esd (float)
This data item is the standard deviation of the out-of-plane distance for this atom.
*_chem_comp_plane_atom.plane_id
This data item is a pointer to _chem_comp_plane.id in the CHEM_COMP_PLANE category.

\section*{CHEM_COMP_TOR}

Data items in the CHEM_COMP_TOR category record details about the torsion angles in a chemical component. As torsion angles can have more than one target value, the target values are specified in the CHEM_COMP_TOR_VALUE category.
Category group(s): inclusive_group
chem_comp_group

Category key(s): _chem_comp_tor.comp_id
chem_comp_tor.id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

\section*{loop_}
_chem_comp_tor.comp_id
_chem_comp_tor.id
_chem_comp_tor.atom_id_1
_chem_comp_tor.atom_id_2
_chem_comp_tor.atom_id_3
chem_comp tor.atom id 4
phe phe_chil \(\mathrm{N}^{-} \quad \mathrm{CA} \quad \mathrm{CB} \quad \mathrm{CG}\)
phe phe_chi2 CA CB CG CD1
phe phe_ring1 CB CG CD1 CE1
\(\begin{array}{lllll}\text { phe phe_ring2 } & \text { CB } & \text { CG } & \text { CD2 } & \text { CE2 } \\ \text { phe phe_ring3 } & \text { CG } & \text { CD1 } & \text { CE1 } & \text { CZ }\end{array}\)
phe phe_ring4 CD1 CE1 CZ CE2
phe phe_ring5 CE1 CZ CE2 CD2
*_chem_comp_tor.atom_id_1
The ID of the first of the four atoms that define the torsion angle. This data item is a pointer to _chem_comp_atom.atom_id in the CHEM_COMP_ATOM category.
*_chem_comp_tor.atom_id_2
The ID of the second of the four atoms that define the torsion angle. This data item is a pointer to _chem_comp_atom.atom_id in the CHEM_COMP_ATOM category.
*_chem_comp_tor.atom_id_3
\(\bar{T}\) The ID of the third of the four atoms that define the torsion angle. This data item is a pointer to _chem_comp_atom.atom_id in the CHEM_COMP_ATOM category.
*_chem_comp_tor.atom_id_4
The ID of the fourth of the four atoms that define the torsion angle. This data item is a pointer to _chem_comp_atom.atom_id in the CHEM_COMP_ATOM category.

\footnotetext{
*_chem_comp_tor.comp_id
}

This data item is a pointer to _chem_comp.id in the CHEM_COMP category.
*_chem_comp_plane_atom.atom_id
The ID of an atom involved in the plane. This data item is a pointer to _chem_comp_atom.atom_id in the CHEM_COMP_ATOM category.
*_chem_comp_tor.id
(code)
The value of _chem_comp_tor.id must uniquely identify a record in the CHEM_COMP_TOR list.
The following item(s) have an equivalent role in their respective categories:
_chem_comp_tor_value.tor_id.
[chem_comp_tor]

\section*{CHEM_COMP_TOR_VALUE}

Data items in the CHEM_COMP_TOR_VALUE category record details about the target values for the torsion angles enumerated in the CHEM_COMP_TOR list. Target values may be specified as angles in degrees, as a distance between the first and fourth atoms, or both.
Category group(s): inclusive_group

> chem_comp_group

Category key(s): _chem_comp_tor_value.tor_id
_chem_comp_tor_value.comp_id

Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to \(P D B\) entry \(5 H V P\).
loop_
_chem_comp_tor_value.tor_id
_chem_comp_tor_value.comp_id
_chem_comp_tor_value.angle
-chem_comp_tor_value.dist
phe_chil phe -60.02 .88
phe_chil phe \(180.0 \quad 3.72\)
phe_chil phe 60.02 .88
phe_chi2 phe 90.03 .34
phe_chi2 phe -90.0 3.34
phe_ring1 phe \(180.0 \quad 3.75\)
phe_ring2 phe 180.03 .75
phe_ring3 phe \(0.0 \quad 2.80\)
\begin{tabular}{llll} 
phe_ring4 & phe & 0.0 & 2.80 \\
phe_ring5 & phe & 0.0 & 2.80
\end{tabular}
*_chem_comp_tor_value.angle
(float, su)
\(\overline{\mathrm{A}}\) value that should be taken as a potential target value for the torsion angle associated with the specified atoms, expressed in degrees.
The permitted range is \([-180.0,180.0]\).
Related item: _chem_comp_tor_value.angle_esd (associated esd).
[chem_comp_tor_value]
*_chem_comp_tor_value.angle_esd (float)
The standard uncertainty (estimated standard deviation) of _chem_comp_tor_value.angle.
The permitted range is [ \(-180.0,180.0\) ].
Related item: _chem_comp_tor_value.angle (associated value).
[chem_comp_tor_value]
*_chem_comp_tor_value.comp_id
This data item is a pointer to _chem_comp_atom.comp_id in the CHEM_COMP_ATOM category.
_chem_comp_tor_value.dist
(float, su)
\(\overline{\mathrm{A}}\) value that should be taken as a potential target value for the torsion angle associated with the specified atoms, expressed as the distance between the atoms specified by _chem_comp_tor.atom_id_1 and _chem_comp_tor.atom_id_4 in the referenced record in the CHEM_COMP_TOR list. Note that the torsion angle cannot be fully specified by a distance (for instance, a torsion angle of \(-60^{\circ}\) will yield the same distance as a \(60^{\circ}\) angle). However, the distance specification can be useful for refinement in situations in which the angle is already close to the desired value. The permitted range is \([0.0, \infty)\).
Related item: _chem_comp_tor_value.dist_esd (associated esd).
_chem_comp_tor_value.dist_esd
(float)
The standard uncertainty (estimated standard deviation) of _chem_comp_tor_value.dist.
The permitted range is \([0.0, \infty)\).
Related item: _chem_comp_tor_value.dist (associated value).
[chem_comp_tor_value]

\section*{*_chem_comp_tor_value.tor_id}

This data item is a pointer to _chem_comp_tor.id in the CHEM_COMP_TOR category.

\section*{CHEM_LINK}

Data items in the CHEM_LINK category give details about the links between chemical components.
Category group(s): inclusive_group
Category key(s): _chem_link.id

\section*{chem_link.details}
(text)
\(\overline{\mathrm{A}}\) description of special aspects of a link between chemical components in the structure.
[chem link]
*_chem_link.id (code)
The value of _chem_link.id must uniquely identify each item in the CHEM_LINK list.
The following item(s) have an equivalent role in their respective categories:
_chem_link_angle.link_id,
_chem_link_bond.link_id,
_chem_link_chir.link_id,
_chem_link_plane.link_id,
_chem_link_tor.link_id,
_chem_comp_link.link_id,
_entity_link.link_id.
Examples: 'peptide', 'oligosaccharide 1,4', 'DNA'. [chem_link]

\section*{CHEM_LINK_ANGLE}

Data items in the CHEM_LINK_ANGLE category record details about angles in a link between chemical components.
Category group(s): inclusive_group
chem_link_group

Category key(s): _chem_1ink_angle.link_id
_chem_link_angle.atom_id_1
_chem_link_angle.atom_id_2
_chem_link_angle.atom_id_3
Example 1-Engh \& Huber parameters [Acta Cryst. (1991), A47, 392-400] as interpreted by J. P. Priestle (1995). Consistent Stereochemical Dictionaries for Refinement and Model Building. CCP4 Daresbury Study Weekend, DL-CONF -95-001, ISSN 1358-6254. Warrington: Daresbury Laboratory.
loop_
_chem_link_angle.link_id
_chem_link_angle.value_angle
_chem_link_angle.value_angle_esd
_chem_link_angle.atom_id_1
_chem_link_angle.atom_1_comp_id
_chem_link_angle.atom_id_2
_chem_link_angle.atom_2_comp_id
_chem_link_angle.atom_id_3
_chem_link_angle.atom_3_comp_id

\(\begin{array}{lllllllll}\text { PEPTIDE } & 120.8 & 1.7 & C A & 1 & C & 1 & 0 & 1\end{array}\)
PEPTIDE \(116.2 \quad 2.0 \quad\) CA \(1 \quad \mathrm{C} \quad 1 \quad \mathrm{~N} \quad 2\)
PEPTIDE \(123.0 \quad 1.6 \quad 0 \quad 1 \quad \mathrm{C} \quad 1 \quad \mathrm{~N} \quad 2\)

\section*{_chem_link_angle.atom_1_comp_id}
(ucode)
\(\bar{T}\) his data item indicates whether atom \(1 \overline{\text { is }}\) found in the first or the second of the two components connected by the link.
The data value must be one of the following:
the atom is in component 1
the atom is in component 2
[chem_link_angle]

\section*{_chem_link_angle.atom_2_comp_id}
(ucode)
This data item indicates whether atom 2 is found in the first or the second of the two components connected by the link.
The data value must be one of the following:
the atom is in component 1
the atom is in component 2
[chem_link_angle]

\section*{chem link angle.atom 3 comp id}
(ucode)
This data item indicates whether atom 3 is found in the first or the second of the two components connected by the link.
The data value must be one of the following:
the atom is in component 1
the atom is in component 2
[chem_link_angle]

\section*{*_chem_link_angle.atom_id_1}
(code)
\(\bar{T}\) The ID of the first of the three atoms that define the angle. An atom with this ID must exist in the component of the type specified by _chem_comp_link.type_comp_1 (or _chem_comp_link.type_comp_2, where the appropriate data item \(\overline{\mathrm{is}}\) indicated by the value of _chem_comp_angle.atom_1_comp_id).
[chem_link_angle]
*_chem_link_angle.atom_id_2
(code)
The ID of the second of the three atoms that define the angle. The second atom is taken to be the apex of the angle. An atom with this ID must exist in the component of the type specified by _chem_comp_link.type_comp_1 (or _chem_comp_link.type_comp_2, where the appropriate data item is indicated by the value of _chem_comp_angle.atom_2_comp_id).
[chem_link_angle]
*_chem_link_angle.atom_id_3 (code)
The ID of the third of the three atoms that define the angle. An atom with this ID must exist in the component of the type specified by _chem_comp_link.type_comp_1 (or _chem_comp_link.type_comp_2, where the appropriate data item is indicated by the value of _chem_comp_angle.atom_3_comp_id).
[chem_link_angle]
*_chem_link_angle.link_id

This data item is a pointer to _chem_link.id in the CHEM_LINK category.

\section*{_chem_link_angle.value_angle}
(float, su)
The value that should be taken as the target value for the angle associated with the specified atoms, expressed in degrees.
The permitted range is \([0.0,180.0]\).
Related item: _chem_link_angle.value_angle_esd (associated esd).
_chem_link_angle.value_angle_esd (float)
\(\bar{T}\) The standard \({ }^{-}\)uncertainty (estimated \({ }^{-}\)standard deviation) of _chem_link_angle.value_angle.
The permitted range is [0.0, 180.0].
Related item: _chem_link_angle.value_angle (associated value).
[chem_link_angle]

\section*{_chem_link_angle.value_dist}
(float, su)
The value that should be taken as the target value for the angle associated with the specified atoms, expressed as the distance between the atoms specified by _chem_comp_angle.atom_id_1 and _chem_comp_angle.atom_id_3.
The permitted range is \([0.0, \infty)\).
Related item: _chem_link_angle.value_dist_esd (associated esd).
[chem_link_angle]
_chem_link_angle.value_dist_esd (float)
\(\bar{T}\) The standard uncertainty (estimated standard deviation) of _chem_comp_angle.value_dist.
The permitted range is \([0.0, \infty)\).
Related item: _chem_link_angle.value_dist (associated value).
[chem_link_angle]

\section*{CHEM_LINK_BOND}

Data items in the CHEM_LINK_BOND category record details about bonds in a link between components in the chemical structure.
Category group(s): inclusive_group chem_link_group
Category key(s): _chem_link_bond.link_id chem_link_bond.atom_id_1 chem_link_bond.atom_id_2
Example 1 - Engh \& Huber parameters [Acta Cryst. (1991), A47, 392-400] as interpreted by J. P. Priestle (1995). Consistent Stereochemical Dictionaries for Refinement and Model Building. CCP4 Daresbury Study Weekend, DL-CONF-95-001, ISSN 1358-6254. Warrington: Daresbury Laboratory.
loop_
_chem_link_bond.link_id
_chem_link_bond.value_dist
_chem_link_bond.value_dist_esd
_chem_link_bond.atom_id_1
_chem_1ink_bond.atom_1_comp_id
_chem_link_bond.atom_id_2
_chem_link_bond.atom_2_comp_id
PEPTIDE \(\overline{1} .458 \quad 0.0 \overline{19} \quad \mathrm{~N} \quad \overline{1} \quad \mathrm{CA} 1\)
PEPTIDE \(1.525 \quad 0.021 \quad\) CA \(1 \quad \mathrm{C} \quad 1\)
PEPTIDE \(1.329 \quad 0.014 \quad \mathrm{C} \quad 1 \quad \mathrm{~N} \quad 2\)
\(\begin{array}{lllllll}\text { PEPTIDE } & 1.231 & 0.020 & C & 1 & 0 & 1\end{array}\)
_chem_link_bond.atom_1_comp_id
(ucode)
\(\bar{T}\) This data item \(\bar{i}\) indicates whether atom \(\overline{1}\) is found in the first or the second of the two components connected by the link.
The data value must be one of the following:
1 the atom is in component 1
2 the atom is in component 2
[chem_link_bond]

\section*{chem_link_bond.atom_2_comp_id}
\(\bar{T}\) This data item \(\overline{i n d i c a t e s ~ w h e t h e r ~ a t o m ~} \overline{2}\) is found in the first or the second of the two chemical components connected by the link.
The data value must be one of the following:
the atom is in component 1
2 the atom is in component 2
*_chem_link_bond.atom_id_1
(code)
The ID of the first of the two atoms that define the bond. As this data item does not point to a specific atom in a specific chemical component, it is not a child in the linkage sense.
[chem_link_bond]
*_chem_link_bond.atom_id_2 (code)
The ID of the second of the two atoms that define the bond. As this data item does not point to a specific atom in a specific component, it is not a child in the linkage sense.
[chem_link_bond]
```

*_chem_link_bond.link_id
This data item is a pointer to _chem_link.id in the CHEM_LINK category.

```

\section*{chem_link_bond.value_dist}
(float, su)
The value that should be taken as the target for the chemical bond associated with the specified atoms, expressed as a distance.
The permitted range is \([0.0, \infty)\).
Related item: _chem_link_bond.value_dist_esd (associated esd)
[chem_link_bond]

\author{
_chem_link_bond.value_dist_esd \\ (float)
}

The standard uncertainty (estimated standard deviation) of _chem_link_bond.value_dist
The permitted range is \([0.0, \infty)\).
Related item: _chem_link_bond.value_dist (associated value)
[Chem_link_bond]

\section*{chem link bond.value order}
(ucode)
The value that should be taken as the target for the chemical bond associated with the specified atoms, expressed as a bond order. The data value must be one of the following:
sing single bond
doub double bond
trip triple bond
quad quadruple bond
arom aromatic bond
poly polymeric bond
delo delocalized double bond
pi \(\quad \pi\) bond
Where no value is given, the assumed value is 'sing'.
[chem_link_bond]

\section*{CHEM_LINK_CHIR}

Data items in the CHEM_LINK_CHIR category provide details about the chiral centres in a link between two chemical components. The atoms bonded to the chiral atom are specified in the CHEM_LINK_CHIR_ATOM category.
Category group(s): inclusive_group
chem_link_group
Category key(s): _chem_link_chir.link_id
chem link chir.id

\section*{chem_link_chir.atom_comp_id}
(ucode)
This data item indicates whether the chiral atom is found in the first or the second of the two components connected by the link. The data value must be one of the following:

1 the atom is in component 1
2 the atom is in component 2
_chem_link_chir.atom_config
(ucode)
The chiral configuration of the atom that is a chiral centre.
The data value must be one of the following:
\(\mathrm{R} \quad\) absolute configuration \(R\)
S absolute configuration \(S\)
[chem_link_chir]
*_chem_link_chir.atom_id
(code)
The ID of the atom that is a chiral centre. As this data item does not point to a specific atom in a specific chemical component, it is not a child in the linkage sense.
*_chem_link_chir.id (code)
The value of _chem_link_chir.id must uniquely identify a record in the CHEM_LINK_CHIR list.
The following item(s) have an equivalent role in their respective categories:
_chem_link_chir_atom.chir_id
[chem_link_chir
*_chem_link_chir.link_id
This data item is a pointer to _chem_link.id in the CHEM_LINK category.

\section*{chem link chir.number atoms all}

The total number of atoms bonded to the atom specified by _chem_link_chir.atom_id.
[chem_link_chir]

\section*{_chem_link_chir.number_atoms_nh}
(int)
The number of non-hydrogen atoms bonded to the atom specified by _chem_link_chir.atom_id.
[chem_link_chir]
_chem_link_chir.volume_flag
(ucode)
A flag to indicate whether a chiral volume should match the standard value in both magnitude and sign, or in magnitude only.
The data value must be one of the following:
sign match magnitude and sign
nosign match magnitude only
[chem link chir]

\section*{chem_link_chir.volume_three}
(float, su)
The chiral volume, \(V_{c}\), for chiral centres that involve a chiral atom bonded to three non-hydrogen atoms and one hydrogen atom.
\[
V_{c}=\mathbf{V}_{1} \cdot\left(\mathbf{V}_{2} \times \mathbf{V}_{3}\right),
\]
where \(\mathbf{V}_{1}=\) the vector distance from the atom specified by _chem_link_chir.atom_id to the first atom in the CHEM_LINK_CHIR_ATOM list, \(\mathbf{V}_{2}=\) the vector distance from the atom specified by _chem_link_chir.atom_id to the second atom in the CHEM_LINK_CHIR_ATOM list, \(\mathbf{V}_{3}=\) the vector distance from the atom specified by _chem_link_chir.atom_id to the third atom in the CHEM_LINK_CHIR_ATOM list, \(\cdot=\) the vector dot product and \(x=\) the vector cross product.
Related item: _chem_link_chir.volume_three_esd (associated esd).
[chem_link_chir]
_chem_link_chir.volume_three_esd (foat)
The standard \({ }^{-}\)uncertainty (estimated \({ }^{-}\)standard deviation) of _chem_link_chir.volume_three.
Related item: _chem_link_chir.volume_three (associated value).
[chem_link_chir]

\section*{CHEM_LINK_CHIR_ATOM}

Data items in the CHEM_LINK_CHIR_ATOM category enumerate the atoms bonded to a chiral atom in a link between two chemical components.
Category group(s): inclusive_group
chem_link_group
Category key(s): _chem_link_chir_atom.chir_id
_chem_link_chir_atom.atom_id
_chem_link_chir_atom.atom_comp_id
(ucode)
This data item indicates whether the atom bonded to a chiral atom is found in the first or the second of the two components connected by the link.
The data value must be one of the following:
\[
\text { the atom is in component } 1
\]
the atom is in component 2
[chem_link_chir_atom]
*_chem_link_chir_atom.atom_id
(code)
The ID of an atom bonded to the chiral atom. As this data item does not point to a specific atom in a specific chemical component, it is not a child in the linkage sense.
*_chem_link_chir_atom.chir_id
This data item is a pointer to _chem_link_chir.id in the CHEM_LINK_CHIR category.
_chem_link_chir_atom.dev
(float)
The standard uncertainty (estimated standard deviation) of the position of this atom from the plane defined by all of the atoms in the plane.
[chem_link_chir_atom]

\section*{CHEM_LINK_PLANE}

Data items in the CHEM LINK PLANE category provide identifiers for the planes in a link between two chemical components. The atoms in the plane are specified in the CHEM_LINK_PLANE_ATOM category.
Category group(s): inclusive_group
chem_link_group
Category key(s): _chem_link_plane.link_id
_chem_link_plane.id
```

*_chem_link_plane.id
(code)
The value of _chem_link_plane.id must uniquely identify a record in the CHEM_LINK_PLANE list.
The following item(s) have an equivalent role in their respective categories:
_chem_link_plane_atom.plane_id. [chem_link_plane]

```

\section*{*_chem_link_plane.link_id}
```

This data item is a pointer to _chem_link.id in the CHEM_LINK category.

```

\section*{_chem_link_plane.number_atoms_all}
(int)
\(\bar{T}\) The total number of atoms in the plane.
[chem_link_plane]
chem_link_plane.number_atoms_nh
\(\bar{T}\) The number of non-hydrogen atoms in the plane.

\section*{CHEM_LINK_PLANE_ATOM}

Data items in the CHEM_LINK_PLANE_ATOM category enumerate the atoms in a plane in a link between two chemical components. Category group(s): inclusive_group
chem_link_group

Category key(s): _chem_link_plane_atom.plane_id chem_link_plane_atom.atom_id

\section*{_chem_link_plane_atom.atom_comp_id (ucode)}

This data item indicates whether the atom in a plane is found in the first or the second of the two components connected by the link. The data value must be one of the following:

1 the atom is in component 1
2 the atom is in component 2
[chem_link_plane_atom]
*_chem_link_plane_atom.atom_id (code)
The ID of an atom involved in the plane. As this data item does not point to a specific atom in a specific chemical component, it is not a child in the linkage sense.
*_chem_link_plane_atom.plane_id
This data item is a pointer to _chem_link_plane.id in the CHEM_LINK_PLANE category.

\section*{CHEM_LINK_TOR}

Data items in the CHEM_LINK_TOR category record details about the torsion angles in a link between two chemical components. As torsion angles can have more than one target value, the target values are specified in the CHEM_LINK_TOR_VALUE category. Category group(s): inclusive_group
chem_link_group

Category key(s): _chem_link_tor.link_id
chem_link_tor.id
_chem_link_tor.atom_1_comp_id
(ucode)
This data item indicates whether atom 1 is found in the first or the second of the two components connected by the link.
The data value must be one of the following:
1 the atom is in component 1
2 the atom is in component 2
[chem_link_tor]
_chem_link_tor.atom_2_comp_id
(ucode)
This data item indicates whether atom 2 is found in the first or the second of the two components connected by the link.
The data value must be one of the following:
1 the atom is in component 1
2 the atom is in component 2

\section*{[chem_link_tor]}
_chem_link_tor.atom_3_comp_id
(ucode)
This data item indicates whether atom 3 is found in the first or the second of the two components connected by the link.
The data value must be one of the following:
(int) 1 the atom is in component 1
2 the atom is in component 2
_chem_link_tor.atom_4_comp_id
(ucode)
This data item indicates whether atom 4 is found in the first or the second of the two components connected by the link.
The data value must be one of the following:
the atom is in component 1
2 the atom is in component 2
[chem_link_tor]
*_chem_link_tor.atom_id_1
(code)
The ID of the first of the four atoms that define the torsion angle. As this data item does not point to a specific atom in a specific chemical component, it is not a child in the linkage sense.
*_chem_link_tor.atom_id_2 (code)
The ID of the second of the four atoms that define the torsion angle. As this data item does not point to a specific atom in a specific chemical component, it is not a child in the linkage sense.
*_chem_link_tor.atom_id_3
(code)
The ID of the third of the four atoms that define the torsion angle. As this data item does not point to a specific atom in a specific chemical component, it is not a child in the linkage sense.
*_chem_link_tor.atom_id_4 (code) The ID of the fourth of the four atoms that define the torsion angle. As this data item does not point to a specific atom in a specific chemical component, it is not a child in the linkage sense.
*_chem_link_tor.id
(code)
The value of _chem_link_tor.id must uniquely identify a record in the CHEM_LINK_TOR list.
The following item(s) have an equivalent role in their respective categories:
_chem_link_tor_value.tor_id. [chem_link_tor]
*_chem_link_tor.link_id
This data item is a pointer to _chem_link.id in the CHEM_LINK category.

\section*{CHEM_LINK_TOR_VALUE}

Data items in the CHEM_LINK_TOR_VALUE category record details about the target values for the torsion angles enumerated in the CHEM_LINK_TOR list. Target values may be specified as angles in degrees, as a distance between the first and fourth atoms, or both.
Category group(s): inclusive_group
chem_link_group
Category key(s): _chem_1ink_tor_value.tor_id
*_chem_link_tor_value.angle
(float, su)
\(\bar{A}\) value that should be taken as a potential target value for the torsion angle associated with the specified atoms, expressed in degrees.
The permitted range is \([-180.0,180.0]\).
Related item: _chem_link_tor_value.angle_esd (associated esd).
[chem_link_tor_value]
*_chem_link_tor_value.angle_esd (float)
\(\overline{\text { The }}\) standard \({ }^{-}\)uncertainty (estimated standard deviation) of _chem_link_tor_value.angle.
The permitted range is [ \(-180.0,180.0\) ].
Related item: _chem_link_tor_value.angle (associated value).
_chem_link_tor_value.dist
(float, su)
A value that should be taken as a potential target value for the torsion angle associated with the specified atoms, expressed as the distance between the atoms specified by _chem_link_tor.atom_id_1 and _chem_link_tor.atom_id_4 in the referenced record in the CHEM_LINK_TOR list. Note that the torsion angle cannot be fully specified by a distance (for instance, a torsion angle of \(-60^{\circ}\) will yield the same distance as a \(60^{\circ}\) angle). However, the distance specification can be useful for refinement in situations in which the angle is already close to the desired value.
The permitted range is \([0.0, \infty)\).
Related item: _chem_link_tor_value.dist_esd (associated esd).
[chem_link_tor_value]
_chem_link_tor_value.dist_esd (float)
\(\overline{\text { The }}\) - \(\overline{\text { andard }}\) - uncertainty (estimated standard deviation) of _chem_link_tor_value.dist.
The permitted range is \([0.0, \infty)\).
Related item: _chem_link_tor_value.dist (associated value).
[chem_link_tor_value]
*_chem_link_tor_value.tor_id
This data item is a pointer to _chem_link_tor.id in the CHEM_LINK_TOR category.

\section*{CHEMICAL}

Data items in the CHEMICAL category would not in general be used in a macromolecular CIF. See instead the ENTITY data items. Data items in the CHEMICAL category record details about the composition and chemical properties of the compounds. The formula data items must agree with those that specify the density, unit-cell and \(Z\) values.
Category group(s): inclusive_group
chemical_group
Category key(s): _chemical.entry_id
Example 1 - based on data set 9597gaus of Alyea, Ferguson \& Kannan [Acta Cryst. (1996), C52, 765-767].
_chemical.entry_id '9597gaus'
_chemical.name_systematic
trans-bis(tricyclohexylphosphine) tetracarbonylmolybdenum (0)

\section*{_chemical.absolute_configuration}
_chemical_absolute_configuration(cif_core.dic 2.3)
Necessary conditions for the assignment of _chemical. absolute_configuration are given by H. D. Flack and G. Bernardinelli (1999, 2000).

References: Flack, H. D. \& Bernardinelli, G. (1999). Acta Cryst. A55, 908-915. Flack, H. D. \& Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
The data value must be one of the following:
rm Absolute configuration established by the structure determination of a compound containing a chiral reference molecule of known absolute configuration.

Absolute configuration established by the structure determination of a compound containing a chiral reference molecule of known absolute configuration and confirmed by anomalous-dispersion effects in diffraction measurements on the crystal.
syn Absolute configuration has not been established by anomalousdispersion effects in diffraction measurements on the crystal. The enantiomer has been assigned by reference to an unchanging chiral centre in the synthetic procedure.
unk Absolute configuration is unknown, there being no firm chemical evidence for its assignment to hand and it having not been established by anomalous-dispersion effects in diffraction measurements on the crystal. An arbitrary choice of enantiomer has been made. Inapplicable.
[chemical]

\section*{chemical.compound_source \\ _chemical_compound_source(cif_core.dic 2.0.1)}
(text)

Description of the source of the compound under study, or of the parent molecule if a simple derivative is studied. This includes the place of discovery for minerals or the actual source of a natural product.
Examples: 'From Norilsk (USSR)',
'Extracted from the bark of Cinchona Naturalis'. [chemical]
*_chemical.entry_id
This data item is a pointer to _entry.id in the ENTRY category.
_chemical.melting_point
(float)
_chemical_melting_point(cif_core.dic 2.0.1)
The temperature in kelvins at which the crystalline solid changes to a liquid.
The permitted range is \([0.0, \infty)\). [chemical]
_chemical.melting_point_gt
A temperature in kelvins above point (the temperature at which the crystalline solid changes to a liquid) lies. _chemical.melting_point gt and _chemical.melting_point_lt allow a range of temperatures to be given. _chemical.melting_point should always be used in preference to these two items whenever possible.
The permitted range is \([0.0, \infty)\).
Related item: _chemical.melting_point (alternate). [chemical]

\section*{_chemical.melting_point_lt \\ _chemical_melting_point_lt(cif_core.dic 2.3)}
(float)
A temperature in kelvins below which the melting point (the temperature at which the crystalline solid changes to a liquid) lies. _chemical.melting_point_gt and _chemical.melting_point_lt allow a range of temperatures to be given. _chemical.melting_point should always be used in preference to these two items whenever possible.
The permitted range is \([0.0, \infty)\).
Related item:_chemical.melting_point(alternate). [chemical]
```

_chemical.name_common
_chemical_name_common (cif_core.dic 2.0.1)

```
(text)
Trivial name by which the compound is commonly known.
Example: '1-bromoestradiol'.
[chemical]

\section*{_chemical.name_mineral}
_chemical_name_mineral(cif_coredic 2.0.1)
Mineral name accepted by the International Mineralogical Association. Use only for natural minerals. See also chemical.compound_source.
Example: 'chalcopyrite'.
[chemical]
chemical.name_systematic
(text)
_chemical_name_systematic (cif_core.dic 2.0.1)
IUPAC or Chemical Abstracts full name of the compound.
Example: '1-bromoestra-1,3,5(10)-triene-3,17\b-diol'. [chemical]

\section*{chemical.optical_rotation}
(line)
chemical_optical_rotation (cif_core.dic 2.3)
The optical rotation in solution of the compound is specified in the following format:
\[
[\alpha]_{\mathrm{WAVE}}^{\mathrm{TEMP}}=\mathrm{SORT} \quad(c=\mathrm{CONC}, \mathrm{SOLV}),
\]
where TEMP is the temperature of the measurement in degrees Celsius, WAVE is an indication of the wavelength of the light used for the measurement, CONC is the concentration of the solution given as the mass of the substance in g per 100 ml of solution, SORT is the signed value (preceded by a + or a - sign) of \(100 \alpha /(l c)\), where \(\alpha\) is the signed optical rotation in degrees measured in a cell of length \(l\) in dm and \(c\) is the value of CONC as defined above, and SOLV is the chemical formula of the solvent.
Example: ‘[\a] \({ }^{2} 5^{\wedge} \sim D^{\sim}=+108\) ( \(c=3.42\), CHCl~3~)’. [chemical]

\section*{chemical.properties biological}
(text)
chemical_properties_biological (cif_core.dic 2.3)
A free-text description of the biological properties of the material. Examples:
; diverse biological activities including use as a laxative and strong antibacterial activity against S. aureus and weak activity against cyclooxygenase-1 (COX-1)
;
antibiotic activity against Bacillus subtilis (ATCC 6051) but no significant activity against Candida albicans (ATCC 14053), Aspergillus flavus (NRRL 6541) and Fusarium verticillioides (NRRL 25457)
weakly potent lipoxygenase nonredox inhibitor
no influenza A virus sialidase inhibitory and
plaque reduction activities
low toxicity against Drosophila melanogaster
[chemical]

\section*{_chemical.properties_physical}
_chemical_properties_physical(cif_core.dic 2.3)
A free-text description of the physical properties of the material.
Examples: ‘air-sensitive’, 'moisture-sensitive', 'hygroscopic’,
'deliquescent', 'oxygen-sensitive', 'photo-sensitive', 'pyrophoric', 'semiconductor', 'ferromagnetic at low temperature', 'paramagnetic and thermochromic'.
[chemical]
chemical.temperature_decomposition (float, su)
_chemical_temperature_decomposition (cif_core.dic 2.3)
The temperature in kelvins at which the solid decomposes.
The permitted range is \([0.0, \infty)\).
Related item: _chemical.temperature_decomposition_esd (associated esd).
Example: ‘350’.
[chemical]
_chemical.temperature_decomposition_esd (float)
The estimated standard deviation of _chemical.temperature_ decomposition.
Related item: _chemical.temperature_decomposition (associated value).
[chemical]
_chemical.temperature_decomposition_gt
(float) _chemical_temperature_decomposition_gt(cif_core.dic 2.3)
A temperature in kelvins above which the solid is known to decompose. _chemical.temperature_decomposition_gt and chemical.temperature decomposition lt allow a range of temperatures to be given. _chemical.temperature_ decomposition should always be used in preference to these two items whenever possible.
The permitted range is \([0.0, \infty)\).
Related item: _chemical.temperature_decomposition (alternate)
Example: ‘350’.
[chemical]

\section*{_chemical.temperature_decomposition_lt \\ (float) \\ _chemical_temperature_decomposition_lt(cif_core.dic 2.3)}

A temperature in kelvins below which the solid is known to decompose. _chemical.temperature_decomposition_gt and _chemical.temperature_decomposition_lt allow a range of temperatures to be given. chemical.temperature decomposition should always be used in preference to these two items whenever possible.
The permitted range is \([0.0, \infty)\).
Related item: _chemical.temperature_decomposition (alternate)
Example: ‘350'.
[chemical]
_chemical.temperature_sublimation
(float, su)

The temperature in kelvins at which the solid sublimes.
The permitted range is \([0.0, \infty)\).
Related item: _chemical.temperature_sublimation_esd (associated esd)
Example: ‘350'.
[chemical]

\section*{chemical.temperature_sublimation_esd (float)}

The estimated standard deviation of _chemical.temperature_ sublimation.
Related item: _chemical.temperature_sublimation (associated value).
[chemical]
_chemical.temperature_sublimation_gt
(float)
_chemical_temperature_sublimation_gt(cif_core.dic 2.3)
A temperature in kelvins above which the solid is known to sublime. _chemical.temperature_sublimation_gt and _chemical.temperature_sublimation_lt allow a range of temperatures to be given. _chemical.temperature_sublimation should always be used in preference to these two items whenever possible.
The permitted range is \([0.0, \infty)\).
Related item: _chemical.temperature_sublimation (alternate)
Example: '350'
[chemical]

\footnotetext{
_chemical.temperature_sublimation_lt
(float)
_chemical_temperature_sublimation_lt(cif_core.dic 2.3 )
A temperature in kelvins below which the solid is known to sublime. _chemical.temperature_sublimation_gt and _chemical.temperature_sublimation_lt allow a range of temperatures to be given. _chemical.temperature_sublimation should always be used in preference to these two items whenever possible.
The permitted range is \([0.0, \infty)\).
Related item: _chemical.temperature_sublimation (alternate)
Example: '350'.
[chemical]
}

\section*{CHEMICAL_CONN_ATOM}

Data items in the CHEMICAL_CONN_ATOM category would not, in general, be used in a macromolecular CIF. See instead the ENTITY data items. Data items in the CHEMICAL_CONN_ATOM and CHEMICAL_CONN_BOND categories record details about the twodimensional (2D) chemical structure of the molecular species. They allow a 2D chemical diagram to be reconstructed for use in a publication or in a database search for structural and substructural relationships. The CHEMICAL_CONN_ATOM data items provide information about the chemical properties of the atoms in the structure. In cases where crystallographic and molecular symmetry elements coincide, they must also contain symmetrygenerated atoms, so that the CHEMICAL_CONN_ATOM and CHEMICAL_CONN_BOND data items will always describe a complete chemical entity.
Category group(s): inclusive_group
chemical_group
Category key(s): _chemical_conn_atom.number
Example 1 - based on data set DPTD of Yamin, Suwandi, Fun, Sivakumar \& bin Shawkataly [Acta Cryst. (1996), C52, 951-953].

\section*{loop_}
chemical conn atom.number
_chemical_conn_atom.type_symbol
_chemical_conn_atom.display_x
chemical conn atom.display \(y\)
chemical conn atom.NCA
_chemical_conn_atom. NH
\begin{tabular}{llllll}
1 & S & .39 & .81 & 1 & 0 \\
2 & S & .39 & .96 & 2 & 0 \\
3 & N & .14 & .88 & 3 & 0 \\
4 & C & .33 & .88 & 3 & 0 \\
5 & C & .11 & .96 & 2 & 2 \\
6 & C & .03 & .96 & 2 & 2 \\
7 & C & .03 & .80 & 2 & 2 \\
8 & C & .11 & .80 & 2 & 2 \\
9 & S & .54 & .81 & 1 & 0 \\
10 & S & .54 & .96 & 2 & 0 \\
11 & N & .80 & .88 & 3 & 0 \\
12 & C & .60 & .88 & 3 & 0 \\
13 & C & .84 & .96 & 2 & 2 \\
14 & C & .91 & .96 & 2 & 2 \\
15 & C & .91 & .80 & 2 & 2 \\
16 & C & .84 & .80 & 2 & 2
\end{tabular}
_chemical_conn_atom.charge
(int)
_chemical_conn_atom_charge(cif_core.dic 2.0.1)
The net integer charge assigned to this atom. This is the formal charge assignment normally found in chemical diagrams.
The permitted range is \([-8,8]\). Where no value is given, the assumed value is ' 0 '. Examples: ' 1 ' (for an ammonium nitrogen), ' -1 ' (for a chloride ion).
[chemical_conn_atom]
```

_chemical_conn_atom.display_x
(float)
_chemical_conn_atom.display_x
_chemical_conn_atom_display_x(cif_core.dic 2.0.1)

```

The 2D Cartesian \(x\) coordinate of the position of this atom in a recognizable chemical diagram. The coordinate origin is at the lower left corner, the \(x\) axis is horizontal and the \(y\) axis is vertical. The coordinates must lie in the range 0.0 to 1.0 . These coordinates can be obtained from projections of a suitable uncluttered view of the molecular structure.
The permitted range is \([0.0,1.0]\).
[chemical_conn_atom]
_chemical_conn_atom.display_y
(float)
_chemical_conn_atom_display_y (cif_core.dic 2.0.1)
The 2D Cartesian \(y\) coordinate of the position of this atom in a recognizable chemical diagram. The coordinate origin is at the lower left corner, the \(x\) axis is horizontal and the \(y\) axis is vertical. The coordinates must lie in the range 0.0 to 1.0 . These coordinates can be obtained from projections of a suitable uncluttered view of the molecular structure.
The permitted range is \([0.0,1.0]\).
[chemical_conn_atom]
_chemical_conn_atom.NCA
(int) _chemical_conn_atom_NCA (cif_core.dic 2.0.1)
The number of connected atoms excluding terminal hydrogen atoms.
The permitted range is \([0, \infty)\).
[chemical_conn_atom]
_chemical_conn_atom.NH
(int)
_chemical_conn_atom_NH (cif_core.dic 2.0.1)
The total number of hydrogen atoms attached to this atom, regardless of whether they are included in the refinement or the ATOM_SITE list. This number is the same as _atom_site.attached_hydrogens only if none of the hydrogen atoms appear in the ATOM SITE list.
The permitted range is \([0, \infty)\).
[chemical_conn_atom]
*_chemical_conn_atom.number
(int)
_chemical_conn_atom_number (cif_core.dic 2.0.1)
The chemical sequence number to be associated with this atom. Within an ATOM_SITE list, this number must match one of the _atom_site.chemical_conn_number values.
The following item(s) have an equivalent role in their respective categories:
_atom_site.chemical_conn_number,
_chemical_conn_bond.atom_1,
_chemical_conn_bond.atom_2.
The permitted range is \([1, \infty)\).
[chemical_conn_atom]
*_chemical_conn_atom.type_symbol
_chemical_conn_atom_type_symbol (cif_core.dic 2.0.1)
This data item is a pointer to _atom_type.symbol in the ATOM_TYPE category.

\section*{CHEMICAL_CONN_BOND}

Data items in the CHEMICAL_CONN_BOND category would not, in general, be used in a macromolecular CIF. See instead the ENTITY data items. Data items in the CHEMICAL_CONN_ATOM and CHEMICAL_CONN_BOND categories record details about the twodimensional (2D) chemical structure of the molecular species. They allow a 2D chemical diagram to be reconstructed for use in a publication or in a database search for structural and substructural relationships. The CHEMICAL_CONN_BOND data items specify the connections between the atoms in the CHEMICAL_CONN_ATOM list and the nature of the chemical bond between these atoms.
Category group(s): inclusive_group
chemical_group

Category key(s): _chemical_conn_bond.atom_1 chemical_conn_bond.atom_2

Example 1 - based on data set DPTD of Yamin, Suwandi, Fun, Sivakumar \& bin Shawkataly [Acta Cryst. (1996), C52, 951-953].

\section*{loop_}
_chemical_conn_bond.atom_1
chemical_conn_bond.atom_2
_chemical_conn_bond.type
\begin{tabular}{llllll}
4 & 1 & doub & 4 & 3 & sing \\
4 & 2 & sing & 5 & 3 & sing \\
6 & 5 & sing & 7 & 6 & sing \\
8 & 7 & sing & 8 & 3 & sing \\
10 & 2 & sing & 12 & 9 & doub \\
12 & 11 & sing & 12 & 10 & sing \\
13 & 11 & sing & 14 & 13 & sing \\
15 & 14 & sing & 16 & 15 & sing \\
16 & 11 & sing & 17 & 5 & sing \\
18 & 5 & sing & 19 & 6 & sing \\
20 & 6 & sing & 21 & 7 & sing \\
22 & 7 & sing & 23 & 8 & sing \\
24 & 8 & sing & 25 & 13 & sing \\
26 & 13 & sing & 27 & 14 & sing \\
28 & 14 & sing & 29 & 15 & sing \\
30 & 15 & sing & 31 & 16 & sing \\
32 & 16 & sing & & &
\end{tabular}
*_chemical_conn_bond.atom_1
_chemical_conn_bond_atom_1 (cif_core.dic 2.0.1)
This data item is a pointer to _chemical_conn_atom. number in the CHEMICAL_CONN_ATOM category.
*_chemical_conn_bond.atom_2
_chemical_conn_bond_atom_2 (cif_core.dic 2.0.1)
This data item is a pointer to _chemical_conn_atom.number in the CHEMICAL_CONN_ATOM category.
_chemical_conn_bond.type
(ucode)
_chemical_conn_bond_type (cif_core.dic 2.0.1)
The chemical bond type associated with the connection between the two sites _chemical_conn_bond.atom_1 and _chemical_conn_bond.atom_2.
\(\overline{\text { The data value }}\) - must be one of the following:
sing single bond
doub double bond
trip triple bond
quad quadruple bond
arom aromatic bond
poly polymeric bond
delo delocalized double bond
pi \(\quad \pi\) bond
Where no value is given, the assumed value is 'sing'.

\section*{CHEMICAL_FORMULA}

Data items in the CHEMICAL_FORMULA category would not, in general, be used in a macromolecular CIF. See instead the ENTITY data items. Data items in the CHEMICAL_FORMULA category specify the composition and chemical properties of the compound. The formula data items must agree with those that specify the density, unit-cell and \(Z\) values. The following rules apply to the construction of the data items _chemical_formula.analytical, _chemical_formula.structural and _chemical_formula.sum. For the data item _chemical_formula.moiety, the formula construction is broken up into residues or moieties, i.e. groups of atoms that form a molecular unit or molecular ion. The rules given below apply within each moiety but different requirements apply to the way that moieties are connected (see _chemical_formula.moiety). (1) Only recognized element symbols may be used. (2) Each element symbol is followed by a 'count' number. A count of ' 1 ' may be omitted. (3) A space or parenthesis must separate each cluster of (element symbol + count). (4) Where a group of elements is enclosed in parentheses, the multiplier for the group must follow the closing parenthesis. That is, all element and group multipliers are assumed to be printed as subscripted numbers. (An exception to this rule exists for _chemical_formula.moiety formulae where pre- and post-multipliers are permitted for molecular units.) (5) Unless the elements are ordered in a manner that corresponds to their chemical structure, as in _chemical_formula.structural, the order of the elements within any group or moiety should be: C , then H , then the other elements in alphabetical order of their symbol. This is the 'Hill' system used by Chemical Abstracts. This ordering is used in _chemical_formula.moiety and _chemical_formula.sum.
Category group(s): inclusive_group
chemical_group
Category key(s): _chemical_formula.entry_id
Example 2 - based on data set TOZ of Willis, Beckwith \& Tozer [(1991). Acta Cryst. C47, 2276-2277].
```

chemical formula.entry_id 'TOZ
chemical_formula.moiety 'C18 H25 N O3'
_chemical_formula.sum 'C18 H25 N O3'
chemical_formula.weight 303.40

```

Formula determined by standard chemical analysis including trace elements. See the CHEMICAL_FORMULA category description for rules for writing chemical formulae. Parentheses are used only for standard uncertainties (estimated standard deviations).
Example: ‘Fe2.45(2) Ni1.60(3) S4'.
[chemical_formula]
*_chemical_formula.entry_id
\(\bar{T}\) This data item is a pointer to _entry.id in the ENTRY category.

\section*{_chemical_formula.iupac}
(text)
_chemical_formula_iupac (cif_core.dic 2.0.1)
Formula expressed in conformance with IUPAC rules for inorganic and metal-organic compounds where these conflict with the rules for any other CHEMICAL_FORMULA entries. Typically used for formatting a formula in accordance with journal rules. This should appear in the data block in addition to the most appropriate of the other CHEMICAL_FORMULA data names.

Reference: IUPAC (1990). Nomenclature of Inorganic Chemistry. Oxford: Blackwell Scientific Publications.
Example: ‘[CO \(\operatorname{Re}(\mathrm{C} 12 \mathrm{H} 22 \mathrm{P}) 2\) (C O) 6].0.5C H3 О H’.
[chemical_formula]

\section*{_chemical_formula.moiety \\ _chemical_formula_moiety (cif_core.dic 2.0.1)}
(text)
Formula with each discrete bonded residue or ion shown as a separate moiety. See the CHEMICAL_FORMULA category description for rules for writing chemical formulae. In addition to the general formulae requirements, the following rules apply: (1) Moieties are separated by commas ','. (2) The order of elements within a moiety follows general rule (5) in the CHEMICAL_FORMULA category description. (3) Parentheses are not used within moieties but may surround a moiety. Parentheses may not be nested. (4) Charges should be placed at the end of the moiety. The charge ' + ' or '-' may be preceded by a numerical multiplier and should be separated from the last (element symbol + count) by a space. Pre- or post-multipliers may be used for individual moieties.
Examples: ‘C7 H4 Cl Hg N O3 S', ‘C12 H17 N4 O S 1+, C6 H2 N3 O7 1-', 'C12 H16 N2 06, \(5(\mathrm{H} 2 \mathrm{O1})\) ', '( \(\mathrm{Cd} 2+\) ) 3, ( \(\mathrm{C} 6 \mathrm{~N} 6 \mathrm{Cr} 3-) 2,2(\mathrm{H} 2 \mathrm{O})\) '.
[chemical_formula]

\section*{_chemical_formula.structural}
(text)
_chemical_formula_structural (cif_core.dic 2.0.1)
See the CHEMICAL_FORMULA category description for the rules for writing chemical formulae for inorganics, organometallics, metal complexes etc., in which bonded groups are preserved as discrete entities within parentheses, with post-multipliers as required. The order of the elements should give as much information as possible about the chemical structure. Parentheses may be used and nested as required. This formula should correspond to the structure as actually reported, i.e. trace elements not included in atom-type and atom-site data should not be included in this formula (see also _chemical_formula.analytical).
Examples: ‘Ca (( Cl O3) 2 O) 2 (H2 O) 6’,
'(Pt (N H3) 2 (C5 H7 N3 O) 2) (Cl O4) 2'. [chemical_formula]

\section*{_chemical_formula.sum _chemical_formula_sum(cif_core.dic 2.0.1)}
(text)
See the CHEMICAL_FORMULA category description for the rules for writing chemical formulae in which all discrete bonded residues and ions are summed over the constituent elements, following the ordering given in general rule (5) in the CHEMICAL_FORMULA category description. Parentheses are not normally used.
Example: ‘C18 H19 N7 O8 S'.
[chemical_formula]
_chemical_formula.weight
(float)
_chemical_formula_weight (cif_core.dic 2.0.1)
Formula mass in daltons. This mass should correspond to the formulae given under _chemical_formula.structural, _chemical_formula.moiety or _chemical_formula.sum and, together with the \(Z\) value and cell parameters, should yield the density given as _exptl_crystal.density_diffrn.
The permitted range is \([1.0, \infty)\). \(\quad\) [chemical_formula]
_chemical_formula.weight_meas
(float)
_chemical_formula_weight_meas(cif_core.dic 2.0.1)
Formula mass in daltons measured by a non-diffraction experiment.
The permitted range is \([1.0, \infty)\). [chemical_formula]

\section*{CITATION}

Data items in the CITATION category record details about the literature cited as being relevant to the contents of the data block.
Category group(s): inclusive_group citation_group
Category key(s): _citation.id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
loop_
citation.id
_citation.coordinate_linkage
_citation.title
citation.country
_citation.journal_abbrev
_citation.journal_volume
_citation.journal_issue
_citation.page_first
_citation.page_last
_citation.year
_citation.journal_id_ASTM
_citation.journal_id_ISSN
_citation.journal_id_CSD
_citation.book_title
_citation.book_publisher
_citation.book_id_ISBN
-citation.details
primary yes
; Crystallographic analysis of a complex between human immunodeficiency virus type 1 protease and acetyl-pepstatin at 2.0 -Angstroms resolution.
;
US 'J. Biol. Chem.' 265 . 14209142191990
HBCHA3 0021-9258 071 . . .
; The publication that directly relates to this coordinate set.
; 2 no
; Three-dimensional structure of aspartyl-protease from human immunodeficiency virus HIV-1.
;
UK 'Nature' 337 . \(615 \quad 6191989\)
NATUAS 0028-0836 006 . . .
; Determination of the structure of the unliganded enzyme.
; 3 no
; Crystallization of the aspartylprotease from human
immunodeficiency virus, HIV-1.
US 'J. Biol. Chem.' 264 . 191919211989
HBCHA3 0021-9258 071 . . .
Crystallization of the unliganded enzyme.
; 4 no
; Human immunodeficiency virus protease. Bacterial expression and characterization of the purified aspartic protease.
;
US 'J. Biol. Chem.' 264 . 230723121989
HBCHA3 0021-9258 071 . . .
Expression and purification of the enzyme.
_citation.abstract (text) _citation_abstract(cif_core.dic 2.0.1)
Abstract for the citation. This is used most when the citation is extracted from a bibliographic database that contains full text or abstract information.
[citation]

\section*{_citation.abstract_id_CAS \\ _citation_abstract_id_CAS (cif_core.dic 2.0.1)}

The Chemical Abstracts Service (CAS) abstract identifier; relevant for journal articles.

The International Standard Book Number (ISBN) code assigned to the book cited; relevant for books or book chapters.
_citation.book_publisher
_citation_book_publisher(cif_core.dic 2.0.1)
The name of the publisher of the citation; relevant for books or book chapters.
Example: 'John Wiley and Sons'. [citation]

\section*{_citation.database_id_CSD _citation_database_id_CSD (cif_core.dic 2.3)}
(code)
Identifier ('refcode') of the database record in the Cambridge Structural Database that contains details of the cited structure.
Example: ‘LEKKUH’.
[citation]
_citation.database_id_Medline

Accession number used by Medline to categorize a specific bibliographic entry
The permitted range is \([1, \infty)\).
Example: ‘89064067’.
[citation]

\section*{citation.details \\ citation_special_details(cif_core.dic 2.0.1)}
(text)
A description of special aspects of the relationship of the contents of the data block to the literature item cited.
Examples:
; citation relates to this precise
coordinate set
;
citation relates to earlier low-resolution structure
; citation relates to further refinement of structure reported in citation 2
;
[citation]

\section*{_citation.book_publisher_city}
(text)
_citation_book_publisher_city (cif_core.dic 2.0.1)
The location of the publisher of the citation; relevant for books or book chapters.
Example: 'London'.
[citation]

\section*{_citation.book_title \\ _citation_book_title(cif_core.dic 2.0.1)}
(text)
The title of the book in which the citation appeared; relevant for books or book chapters.
[citation]

\section*{_citation.coordinate_linkage}
(ucode)
_citation_coordinate_linkage(cif_core.dic 2.0.1)
_citation.coordinate_linkage states whether this citation is concerned with precisely the set of coordinates given in the data block. If, for instance, the publication described the same structure, but the coordinates had undergone further refinement prior to the creation of the data block, the value of this data item would be 'no'.
The data value must be one of the following:
no citation unrelated to current coordinates
n abbreviation for 'no'
yes citation related to current coordinates
Y abbreviation for 'yes'

\section*{citation.country}
(line)
citation_country (cif_core.dic 2.0.1)
The country of publication; relevant for books and book chapters.
*_citation.id
(code)
_citation_id(cif_core.dic 2.0.1)
The value of _citation.id must uniquely identify a record in the CITATION list. The _citation.id 'primary' should be used to indicate the citation that the author(s) consider to be the most pertinent to the contents of the data block. Note that this item need not be a number; it can be any unique identifier.
The following item(s) have an equivalent role in their respective categories:
_citation_author.citation_id,
_citation_editor.citation_id,
_software.citation_id.
Examples: 'primary', '1', '2'. [citation]

\section*{citation.journal_abbrev}
(line)
_citation_journal_abbrev (cif_core.dic 2.0.1)
Abbreviated name of the cited journal as given in the Chemical Abstracts Service Source Index.
Example: ‘J. Mol. Biol.’.
[citation]

> _citation.journal_full
> _citation_journal_full(cif_core.dic 2.0.1)
(text)
Full name of the cited journal; relevant for journal articles.
Example: 'Journal of Molecular Biology'.

\section*{_citation.journal_id_ASTM}
(line)
citation_journal_id_ASTM (cif_core.dic 2.0.1)
The American Society for Testing and Materials (ASTM) code assigned to the journal cited (also referred to as the CODEN designator of the Chemical Abstracts Service); relevant for journal articles.
```

_citation.journal_id_CSD
(line) _citation_journal_id_CSD(cif_core.dic 2.0.1)

```

The Cambridge Structural Database (CSD) code assigned to the journal cited; relevant for journal articles. This is also the system used at the Protein Data Bank (PDB).
Example: ‘0070’.
[citation]

\section*{_citation.journal_id_ISSN}
(line)
_citation_journal_id_ISSN (cif_core.dic 2.0.1)
The International Standard Serial Number (ISSN) code assigned to the journal cited; relevant for journal articles.
[citation]
_citation.journal_issue
(line)
_citation_journal_issue(cif_core.dic 2.0.1)
Issue number of the journal cited; relevant for journal articles.
Example: '2'
[citation]
_citation.journal_volume
(line)
_citation_journal_volume(cif_core.dic 2.0.1)
Volume number of the journal cited; relevant for journal articles.
Example: '174’.
[citation]

\section*{_citation.language}
(line)
_citation_language (cif_core.dic 2.0.1)
Language in which the cited article is written.
Example: ‘German’.
[citation]

\section*{_citation.page_first}
(line)
_citation_page_first(cif_core.dic 2.0.1)
The first page of the citation; relevant for journal articles, books and book chapters.
[citation]

\section*{_citation.page_last}
_citation_page_last(cif_core.dic 2.0.1)
The last page of the citation; relevant for journal articles, books and book chapters.
[citation]

\section*{CITATION_AUTHOR}

Data items in the CITATION_AUTHOR category record details about the authors associated with the citations in the CITATION list.
Category group(s): inclusive_group citation_group
Category key(s): _citation_author.citation_id _citation_author.name
Example 1-based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
```

loop_

```
citation_author.citation id
_citation_author.ordinal
_citation_author. name
    primary 1 'Fitzgerald, P.M.D.'
    primary 2 'McKeever, B.M.'
    primary 3 'Van Middlesworth, J.F.'
    primary 4 'Springer, J.P.'
    primary 5 'Heimbach, J.C.'
    primary 6 'Leu, С.-т.'
    primary 7 'Herber, w.K.'
    primary 8 'Dixon, R.A.F.'
    primary 9 'Darke, P.L.'
    21 'Navia, M.A.'
        'Fitzgerald, P.M.D.'
        'McKeever, B.M.'
        'Leu, C.-т.'
        'Heimbach, J.C.'
        'Herber, w.K.'
        'Sigal, I.s.'
        'Darke, P.L.'
        'Springer, J.P.'
        'McKeever, B.M.'
        'Navia, M.A.'
        'Fitzgerald, P.M.D.'
        'Springer, J.P.'
        'Leu, С.-T.'
        'Heimbach, J.C.'
        'Herber, W.K.'
        'Sigal, I.s.'
        'Darke, P.L.
        'Darke, P.L.'
        'Leu, C.-T.'
        'Davis, L.J.'
        'Heimbach, J.C.'
        'Diehl, R.E.'
        'Hill, W.S.'
        'Dixon, R.A.f.'
        'sigal, I.s.'
*_citation_author.citation_id
_citation_author_citation_id(cif_core.dic 2.0.1)
This data item is a pointer to _citation.id in the CITATION category.
citation.title
citation title(cif_core.dic 2.0.1) (text)
_citation_title(cif_core.dic 2.0.1)
The title of the citation; relevant for journal articles, books and book chapters.
```

Example:
; Structure of diferric duck ovotransferrin at 2.35\%A
resolution.

```
[citation]

\section*{*_citation_author. name \\ _citation_author_name (cif_core.dic 2.0.1)}

Name of an author of the citation; relevant for journal articles, books and book chapters. The family name(s), followed by a comma and including any dynastic components, precedes the first name(s) or initial(s).
Examples: ‘Bleary, Percival R.', ‘O'Neil, F.K.', 'Van den Bossche, G.', 'Yang, D.-L.','Simonov, Yu.A.'. [citation author]

\section*{_citation.year}
_citation_year (cif_core.dic 2.0.1)
The year of the citation; relevant for journal articles, books and book chapters.
Example: '1984'.

\section*{citation author.ordinal}
(int)
_citation_author_ordinal (cif_core.dic 2.0.1)
This data item defines the order of the author's name in the list of authors of a citation.

\section*{CITATION_EDITOR}

Data items in the CITATION_EDITOR category record details about the editors associated with the books or book chapters cited in the CITATION list.
Category group(s): inclusive_group citation_group
Category key(s): _citation_editor.citation_id citation_editor.name
Example 1 - hypothetical example.
loop_
citation editor.citation id
_citation_editor.name
'McKeever, B.M.'
'Navia, M.A.'
'Fitzgerald, P.M.D.
'Springer, J.P.'
```

*_citation_editor.citation_id
_citation_editor_citation_id(cif_core.dic 2.0.1)

```

This data item is a pointer to _citation.id in the CITATION category.

\section*{_citation_editor.name \\ _citation_editor_name (cif_core.dic 2.0.1)}

Names of an editor of the citation; relevant for books and book chapters. The family name(s), followed by a comma and including any dynastic components, precedes the first name(s) or initial(s).
Examples: ‘Bleary, Percival R.', 'O'Neil, F.K.', 'Van den Bossche, G.', 'Yang, D.-L.','Simonov, Yu.A.'. [citation_editor]

\section*{_citation_editor.ordinal}
(int)
_citation_editor_ordinal (cif_core.dic 2.0.1)
This data item defines the order of the editor's name in the list of editors of a citation.
[citation_editor]

\section*{COMPUTING}

Data items in the COMPUTING category record details about the computer programs used in the crystal structure analysis. Data items in this category would not, in general, be used in a macromolecular CIF. The category SOFTWARE, which allows a more detailed description of computer programs and their attributes to be given, would be used instead.
Category group(s): inclusive_group computing_group
Category key(s): _computing.entry_id
Example 1 - Rodrìguez-Romera, Ruiz-Pérez \& Solans [Acta Cryst. (1996), C52 1415-1417].
_computing.data_collection _computing.cell_refinement
'CAD-4 (Enraf-Nonius, 1989)'
'CAD-4 (Enraf-Nonius, 1989)'
'CFEO (Solans, 1978)' computing.structure solution 'SHELXL93 (Sheldrick, 1993) computing.molecular_graphics 'ORTEPII (Johnson, 1976)' computing.publication_material 'PARST (Nardelli, 1983)'
_computing_cell_refinement(cif_core.dic 2.0.1)
Software used for cell refinement. Give the program or package name and a brief reference.
Example: 'CAD4 (Enraf-Nonius, 1989)’. [computing]
_computing.data_collection
(text)
_computing_data_collection(cif_core.dic 2.0.1)
Software used for data collection. Give the program or package name and a brief reference.

Example: ‘CAD4 (Enraf-Nonius, 1989)’. [computing]
_computing.data_reduction
(text)
_computing_data_reduction(cif_core.dic 2.0.1)
Software used for data reduction. Give the program or package name and a brief reference.
Example: ‘DIFDAT, SORTRF, ADDREF (Hall \& Stewart, 1990)’
[computing]
*_computing.entry_id
This data item is a pointer to _entry.id in the ENTRY category.

\section*{_computing.molecular_graphics}
(text)
_computing_molecular_graphics(cif_core.dic 2.0.1)
Software used for molecular graphics. Give the program or package name and a brief reference.
Example: 'FRODO (Jones, 1986), ORTEP (Johnson, 1965)’. [computing]

\section*{_computing.publication_material}
(text)
_computing_publication_material (cif_core.dic 2.0.1)
Software used for generating material for publication. Give the program or package name and a brief reference.
[computing]
computing.structure_refinement
(text)
_computing_structure_refinement(cif_core.dic 2.0.1)
Software used for refinement of the structure. Give the program or package name and a brief reference.
Examples: ‘SHELX85 (Sheldrick, 1985)’, 'X-PLOR (Brunger, 1992)’.
[computing]

\section*{computing.structure_solution}
(text)
_computing_structure_solution(cif_core.dic 2.0.1)
Software used for solution of the structure. Give the program or package name and a brief reference.
Example: 'SHELX85 (Sheldrick, 1985)'. [computing]

\section*{DATABASE}

Data items in the DATABASE category have been superseded by data items in the DATABASE_2 category. They are included here only for compliance with older CIFs.
Category group(s): inclusive_group
compliance group
Category key(s): _database.entry_id

\section*{database.code_CAS}
(line)
_database_code_CAS (cif_core.dic 2.3)
The code assigned by Chemical Abstracts.
[database]
_database.code_CSD
(line)
_database_code_CSD (cif_core.dic 2.3)
The code assigned by the Cambridge Structural Database.
[database]
_database.code_ICSD
(line)
_database_code_ICSD (cif_core.dic 2.3)
The code assigned by the Inorganic Crystal Structure Database.
```

_database.code_MDF
database_code_MDF(cif_core.dic 2.3)

```

The code assigned by the Metals Data File.
[database]

\section*{database.code_NBS}
(line)
_database_code_NBS (cif_core.dic 2.3)
The code assigned by the NBS (NIST) Crystal Data Database.
[database]
_database.code_PDB
(line)
_database_code_PDB(cif_core.dic 2.3)
The code assigned by the Protein Data Bank.
[database]
_database.code_PDF
(line)
_database_code_PDF (cif_core.dic 2.3)
The code assigned by the Powder Diffraction File (JCPDS/ICDD). [database]

\section*{database.code depnum ccdc archive}
(line)
_database_code_depnum_ccdc_archive(cif_core.dic 2.3)
Deposition numbers assigned by the Cambridge Crystallographic Data Centre (CCDC) to files containing structural information archived by the CCDC.

\section*{_database.code_depnum_ccdc_fiz}
[database]
_database_code_depnum_ccdc_fiz(cif_core.dic 2.3)
Deposition numbers assigned by the Fachinformationszentrum Karlsruhe (FIZ) to files containing structural information archived by the Cambridge Crystallographic Data Centre (CCDC).
[database]
_database.code_depnum_ccdc_journal
(line)

Deposition numbers assigned by various journals to files containing structural information archived by the Cambridge Crystallographic Data Centre (CCDC).
[database]

\section*{database.CSD_history}
(text)
_database_CSD_history (cif_core.dic 2.3)
A history of changes made by the Cambridge Crystallographic Data Centre and incorporated into the Cambridge Structural Database (CSD).
[database]
*_database.entry_id
This data item is a pointer to _entry.id in the ENTRY category.

\section*{_database.journal_ASTM}
(line)
_database_journal_ASTM (cif_core.dic 2.0.1)
The ASTM CODEN designator for a journal as given in the Chemical Source List maintained by the Chemical Abstracts Service.
[database]

\section*{_database.journal_CSD}
(line)
database_journal_CSD (cif_core.dic 2.0.1)
The journal code used in the Cambridge Structural Database.
-

[database 2]
*_database_2.database_id (ucode)
An abbreviation that identifies the database.
Related items: _database.code_CAS (replaces),
atabase.code_CSD (replaces),
databer.cole
database
database.code_PDF (replaces)
The data value must be one of the following:
CAS Chemical Abstracts

ICSD Inorganic Crystal Structure Database
MDF Metals Data File (metal structures)
Nucleic Acid Database

PDB Protein Data Bank

RCSB Research Collaboratory for Structural Bioinformatics European Bioinformatics Institute

Data items in the DATABASE 2 category record details about the database identifiers of the data block. These data items are assigned by database managers and should only appear in a data block if they originate from that source. The name of this category, DATABASE 2, arose because the category name DATABASE was already in use in the core CIF dictionary, but was used differently from the way it needed to be used in the mmCIF dictionary. Since CIF data names cannot be changed once they have been adopted, a new category had to be created.
Category group(s): inclusive_group
database_group
Category key(s): _database_2.database_id
database_2.database_code
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to \(P D B\) entry \(5 H V P\).
_database_2.database_id 'PDB'
database 2.database code '5HVP'

> [database]

\section*{DATABASE_PDB_CAVEAT}

Data items in the DATABASE_PDB_CAVEAT category record details about features of the data block flagged as 'caveats' by the Protein Data Bank (PDB). These data items are included only for consistency with PDB format files. They should appear in a data block only if that data block was created by reformatting a PDB format file.
Category group(s): inclusive_group
database_group
pdb_group
Category key(s): _database_PDB_caveat.id
```

Example 1- hypothetical example.
loop
database_PDB_caveat.id
_database_PDB_caveat.text
1
THE CRYSTAL TRANSFORMATION IS IN ERROR BUT IS
;
UNCORRECTABLE AT THIS TIME

```

*_database_PDB_matrix.entry_id
This data item is a pointer to _entry.id in the ENTRY category.
_database_PDB_matrix.origx[1] [1] (float)
The [1][1] element of the PDB ORIGX matrix.
Where no value is given, the assumed value is ' 1.0 '. [database_PDB_matrix]
_database_PDB_matrix.origx[1] [2]
(float)
The [1][2] element of the PDB ORIGX matrix.
Where no value is given, the assumed value is ' 0.0 '. [database_PDB_matrix]
database_PDB_matrix.origx[1] [3]
_database_PDB_matrix.origx[2] [1] (float)
The [2][1] element of the PDB ORIGX matrix.
Where no value is given, the assumed value is ' 0.0 '. [database_PDB_matrix]
_database_PDB_matrix.origx[2] [2]
database_PDB_matrix.origx[3] [2](float)
The [3][2] element of the PDB ORIGX matrix.
Where no value is given, the assumed value is ' 0.0 '. [database_PDB_matrix]
database PDB matrix.origx[3] [3] ..... (float)
The [3][3] element of the PDB ORIGX matrix
Where no value is given, the assumed value is ' 1.0 '. [database_PDB_matrix]
database_PDB_matrix.origx_vector [1] ..... (float)
The [1] element of the PDB ORIGX vector.
Where no value is given, the assumed value is ' 0.0 ' [database PDB matrix]
_database_PDB_matrix.origx_vector [2] ..... (float)
The [2] element of the PDB ORIGX vector.
Where no value is given, the assumed value is ' 0.0 '. [database_PDB_matrix]
database \(P D B\) matrix.origx vector [3] ..... (float)
The [3] element of the PDB ORIGX vector.
Where no value is given, the assumed value is ' 0.0 '. [database_PDB_matrix]
database_PDB_matrix.scale[1] [1](float)
The [1][1] element of the PDB SCALE matrix
Where no value is given, the assumed value is ' 1.0 ' [database_PDB_matrix]
database_PDB_matrix.scale[1][2] ..... (float)
The [1][2] element of the PDB SCALE matrix.
Where no value is given, the assumed value is ' 0.0 '. [database_PDB_matrix]
database PDB matrix.scale [1] [3] ..... (float)
The [1][3] element of the PDB SCALE matrix.
Where no value is given, the assumed value is ' 0.0 ' [database_PDB_matrix]
database_PDB_matrix.scale[2] [1] ..... (float)
The [2][1] element of the PDB SCALE matrix.
Where no value is given, the assumed value is ' 0.0 '. [database PDB matrix]
database_PDB_matrix.scale[2] [2] ..... (float)
The [2][2] element of the PDB SCALE matrix.
Where no value is given, the assumed value is ' 1.0 '. [database_PDB_matrix]
database_PDB_matrix.scale[2] [3] ..... (float)
The [2][3] element of the PDB SCALE matrix
Where no value is given, the assumed value is ' 0.0 '. [database PDB matrix]
database_PDB_matrix.scale[3] [1] ..... (float)
The [3][1] element of the PDB SCALE matrix.
Where no value is given, the assumed value is ' 0.0 '. [database_PDB_matrix]
_database_PDB_matrix.scale[3] [2] ..... (float)
The [3][2] element of the PDB SCALE matrix.
Where no value is given, the assumed value is ' 0.0 '. [database_PDB_matrix]
database_PDB_matrix.scale[3] [3] ..... (float)
The [3][3] element of the PDB SCALE matrix.
Where no value is given, the assumed value is ' 1.0 ’. [database_PDB_matrix]
database_PDB_matrix.scale_vector[1] ..... (float)
The [1] element of the PDB SCALE vector
database_PDB_matrix.scale_vector [2] (float)
The [2] element of the PDB SCALE vector.
Where no value is given, the assumed value is ' 0.0 '. [database_PDB_matrix]
database_PDB matrix.scale_vector [3]
(float)
The [3] element of the PDB SCALE vector.
Where no value is given, the assumed value is ' 0.0 '. [database_PDB_matrix]

\section*{DATABASE_PDB_REMARK}

Data items in the DATABASE_PDB_REMARK category record details about the data block as archived by the Protein Data Bank (PDB). Some data appearing in PDB REMARK records can be algorithmically extracted into the appropriate data items in the data block. These data items are included only for consistency with older PDB format files. They should appear in a data block only if that data block was created by reformatting a PDB format file.
Category group(s): inclusive_group
database_group
pdb_group
Category key(s): _database_PDB_remark.id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

\section*{loop_}
_database_PDB_remark.id
database_PDB_remark.text
3
REFINEMENT. BY THE RESTRAINED LEAST-SQUARES PROCEDURE OF J. KONNERT AND W. HENDRICKSON (PROGRAM *PROLSQ*). THE R VALUE IS 0.176 FOR 12901 REFLECTIONS IN THE RESOLUTION RANGE 8.0 TO 2.0 ANGSTROMS WITH I .GT. SIGMA(I).
rms deviations from ideal values (the values of SIGMA, IN PARENTHESES, ARE THE INPUT ESTIMATED Standard deviations that determine the relative WEIGHTS OF THE CORRESPONDING RESTRAINTS) DISTANCE RESTRAINTS (ANGSTROMS)
BOND DISTANCE \(0.018(0.020)\)
ANGLE DISTANCE \(0.038(0.030)\)
PLANAR 1-4 DISTANCE
\(0.043(0.040)\)
PLANE RESTRAINT (ANGSTROMS) \(0.015(0.020)\)
CHIRAL-CENTER RESTRAINT (ANGSTROMS**3) 0.177(0.150)
NON-BONDED CONTACT RESTRAINTS (ANGSTROMS)
SINGLE TORSION CONTACT
\(0.216(0.500)\)
MULTIPLE TORSION CONTACT \(0.207(0.500)\)
POSSIBLE HYDROGEN BOND 0.245(0.500)
CONFORMATIONAL TORSION ANGLE RESTRAINT (DEGREES)
PLANAR (OMEGA) 2.6(3.0)
STAGGERED 17.4(15.0)
ORTHONORMAL 18.1 (20.0)
;
the two chains of the dimeric enzyme has been assigned the THE CHAIN INDICATORS *A* AND *B*.
;
\# - - - - data truncated for brevity - - - -

\footnotetext{
*_database_PDB_remark.id
(int)
A unique identifier for the PDB remark record.
[database_PDB_remark]
}

\section*{_database_PDB_remark.text}
(text)
\(\bar{T}\) he full text of the PDB remark record.

\section*{DATABASE_PDB_REV}

Data items in the DATABASE_PDB_REV category record details about the history of the data block as archived by the Protein Data Bank (PDB). These data items are assigned by the PDB database managers and should only appear in a data block if they originate from that source.
Category group(s): inclusive_group
database_group
pdb_group
Category key(s):_database_PDB_rev.num
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
loop_
_database_PDB_rev.num
database_PDB_rev.author_name
_database_PDB_rev.date
_database_PDB_rev.date_original
_database_PDB_rev.status
_database_PDB_rev.mod_type
1 'Fitzgerald, Paula M.D' 1991-10-15 1990-04-30
'full release' 0

\section*{database PDB rev.author name}
(line)
The name of the person responsible for submitting this revision to the PDB. The family name(s) followed by a comma precedes the first name(s) or initial(s).
Examples: ‘Bleary, Percival R.', 'O'Neil, F.K.', 'Van den Bossche, G.', 'Yang, D.-L.',‘Simonov, Yu.A.'. [database_PDB_rev]

\section*{database_PDB_rev.date}
(yyyy-mm-dd)
Date the PDB revision took place. Taken from the REVDAT record.
[database_PDB_rev]
database_PDB_rev.date_original
(yyyy-mm-dd)
Date the entry first entered the PDB database in the form yyyy-mm\(d d\). Taken from the PDB HEADER record.
Example: '1980-08-21'. [database_PDB_rev]
database PDB rev.mod type
(int)
\(\bar{T}\) Taken from the \({ }^{-}\)REVDAT \({ }^{-}\)record. Refer to the Protein Data Bank format description at http://www.rcsb.org/pdb/ docs/format/pdbguide2.2/guide2.2 frame.html for details.
The data value must be one of the following:

> initial entry
all other types of modification
modifications to CONECT records
modifications affecting the coordinates or their transforms (CRYST1, ORIGX, SCALE, MTRIX, TVECT, ATOM, HETATM, SIGATM records)
layer 1 to layer 2 revision which may affect all record types data uniformity processing
[database_PDB_rev]
*_database_PDB_rev.num
(int)
The value of _database_PDB_rev.num must uniquely and sequentially identify a record in the DATABASE_PDB_REV list. Note that this item must be a number and that modification numbers are assigned in increasing numerical order.
The following item(s) have an equivalent role in their respective categories:
_database_PDB_rev_record.rev_num. [database_PDB_rev]
database_PDB_rev.replaced_by
(line)
The PDB code for a subsequent PDB entry that replaced the PDB file corresponding to this data block.

\section*{_database_PDB_rev.replaces}
(line)
The PDB code for a previous PDB entry that was replaced by the PDB file corresponding to this data block.
[database_PDB_rev]

\section*{_database_PDB_rev.status}
(uline)
The status of this revision.
The data value must be one of the following:
'in preparation'
prerelease
'full release'
obsolete
[database_PDB_rev]

\section*{DATABASE_PDB_REV_RECORD}

Data items in the DATABASE_PDB_REV_RECORD category record details about specific record types that were changed in a given revision of a PDB entry. These data items are assigned by the PDB database managers and should only appear in a data block if they originate from that source.
Category group(s): inclusive_group

> database_group
pdb_group
Category key(s): _database_PDB_rev_record.rev_num
database PDB rev record.type
Example 1 - hypothetical example.
loop_
_database_PDB_rev_record.rev_num
_database_PDB_rev_record.type
_database_PDB_rev_record.details 1 CONECT
; Error fix - incorrect connection between
atoms 2312 and 2317
;
MATRIX 'For consistency with 1995-08-04 style-guide' ORIGX 'Based on new data from author'

\section*{_database_PDB_rev_record.details}
(text)
\(\overline{\mathrm{A}}\) description of special aspects of the revision of records in this PDB entry.
Examples: 'Based on new data from author',
'For consistency with 1995-08-04 style-guide',
'For consistency with structural class'.
[database_PDB_rev_record]
*_database_PDB_rev_record.rev_num
This data item is a pointer to _database_PDB_rev.num in the DATABASE_PDB_REV category.
*_database_PDB_rev_record.type (line)
The types of records that were changed in this revision to a PDB entry.
Examples: ‘CRYST1’, ‘SCALE’, ‘MTRIX’, ‘ATOM’, 'HETATM’.
[database_PDB_rev_record]

\section*{DATABASE_PDB_TVECT}

The DATABASE_PDB_TVECT category provides placeholders for the TVECT matrices and vectors used by the Protein Data Bank (PDB). These data items are included only for consistency with older PDB format files. They should appear in a data block only if the data block was created by reformatting a PDB format file. Category group(s): inclusive_group
database_group
pdb_group
Category key(s): _database_PDB_tvect.id
_database_PDB_tvect.details
(text)
\(\overline{\mathrm{A}}\) description of special aspects of this TVECT.
[database_PDB_tvect]
*_database_PDB_tvect.id (code)
The value of _database_PDB_tvect.id must uniquely identify a record in the DATABASE_PDB_TVECT list. Note that this item need not be a number; it can be any unique identifier.
[database_PDB_tvect]
_database_PDB_tvect.vector [1]
(float)
The [1] element of the PDB TVECT vector.
Where no value is given, the assumed value is ' 0.0 '.
[database PDB tvect]

\section*{database_PDB_tvect.vector [2]}
(float)
The [2] element of the PDB TVECT vector.
Where no value is given, the assumed value is ' 0.0 '.
[database_PDB_tvect]
_database_PDB_tvect.vector[3]
(float)
The [3] element of the PDB TVECT vector.
Where no value is given, the assumed value is ' 0.0 '. [database_PDB_tvect]

\section*{DIFFRN}

Data items in the DIFFRN category record details about the diffraction data and their measurement.
Category group(s): inclusive_group
diffrn_group
Category key(s): _diffrn.id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to \(P D B\) entry \(5 H V P\).
\begin{tabular}{lr}
-diffrn.id & 'Set1' \\
_diffrn.ambient_temp & \(293(3)\)
\end{tabular}
_diffrn.ambient_environment
; Mother liquor from the reservoir of the vapor diffusion experiment, mounted in room air
;
_diffrn.crystal_support
; 0.7 mm glass capillary, sealed with dental wax
diffrn.crystal_treatment
; Equilibrated in rotating anode radiation enclosure for
18 hours prior to beginning of data collection

Example 2 - based on data set TOZ of Willis, Beckwith \& Tozer [(1991). Acta Cryst. C47, 2276-2277].
```

_diffrn.id 'd1'

```
_diffrn.details
; \(\backslash q \operatorname{scan}\) width \((1.0+0.14 \tan \backslash q) \backslash \%, \backslash q\) scan rate \(1.2 \backslash \%\) per min. Background counts for 5 sec on each side every scan. ;
_diffrn.ambient_temp 293

\section*{diffrn.ambient environment}
(line)
_diffrn_ambient_environment(cif_core.dic 2.0.1)
The gas or liquid surrounding the sample, if not air.
[diffrn]
_diffrn.ambient_pressure
(float, su)
_diffrn_ambient_pressure(cif_core.dic 2.3)
The mean hydrostatic pressure in kilopascals at which the intensities were measured.
The permitted range is \([0.0, \infty)\).
Related item: _diffrn.ambient_pressure_esd (associated esd).
[diffrn]

\section*{_diffrn.ambient_pressure_esd}

The standard uncertainty (estimated _diffrn. ambient pressure.
Related item: _diffrn.ambient_pressure (associated value).
[diffrn]
```

_diffrn.ambient_pressure_gt _diffrn_ambient_pressure_gt(cif_core.dic 2.3)

```
(float)
The mean hydrostatic pressure in kilopascals above which the intensities were measured. _diffrn.ambient_pressure_gt and _diffrn.ambient_pressure_lt allow a pressure range to be given. _diffrn.ambient_pressure should always be used in preference to these two items whenever possible.
The permitted range is \([0.0, \infty)\).
Related item: _diffrn.ambient_pressure (alternate).
[diffrn]

\section*{_diffrn.ambient_pressure_lt \\ _diffrn_ambient_pressure_lt(cif_core.dic 2.3)}
(float)
The mean hydrostatic pressure in kilopascals below which the intensities were measured. _diffrn.ambient_pressure_gt and _diffrn.ambient_pressure_lt allow a pressure range to be given. _diffrn.ambient_pressure should always be used in preference to these two items whenever possible.
The permitted range is \([0.0, \infty)\).
Related item: _diffrn.ambient_pressure (alternate).
[diffrn]
_diffrn.ambient_temp
_diffrn_ambient_temperature(cif_core.dic 2.0.1) (float, su)

The mean temperature in kelvins at which the intensities were measured.
The permitted range is \([0.0, \infty)\).
Related item: _diffrn. ambient_temp_esd (associated esd).
[diffrn]
_diffrn.ambient_temp_details
(text)
\(\overline{\mathrm{A}}\) description of special aspects of temperature control during data collection.
[diffrn]
(float)
_diffrn.ambient_temp_esd
\(\bar{T}\) The standard uncertainty (estimated standard deviation) of _diffrn.ambient_temp.
Related item: _diffrn.ambient_temp (associated value). [diffrn]
_diffrn.ambient_temp_gt
(float)
_diffrn_ambient_temperature_gt(cif_core.dic 2.3)
The mean temperature in kelvins above which the intensities were measured. _diffrn.ambient_temp_gt and _diffrn.ambient_temp_lt allow a range of temperatures to be given. _diffrn.ambient_temp should always be used in preference to these two items whenever possible.
The permitted range is \([0.0, \infty)\).
Related item: _diffrn.ambient_temp (alternate). [diffrn]

> _diffrn.ambient_temp_lt
> _diffrn_ambient_temperature_lt(cif_core.dic 2.3 )
(float)
The mean temperature in kelvins below which the intensities were measured. _diffrn.ambient_temp_gt and _diffrn.ambient_temp_lt allow a range of temperatures to be given. _diffrn.ambient_temp should always be used in preference to these two items whenever possible.
The permitted range is \([0.0, \infty)\).
Related item: _diffrn.ambient_temp (alternate).
[diffrn]
*_diffrn.crystal_id
_diffrn_refln_crystal_id(cif_core.dic 2.0.1)
This data item is a pointer to _exptl_crystal.id in the EXPTL_CRYSTAL category.
diffrn.crystal_support (text)
\(\overline{\text { The physical device used to support the crystal during data collec- }}\) tion.
Examples: ‘glass capillary’, 'quartz capillary', 'fiber', 'metal loop’.
[diffrn]

\section*{_diffrn.crystal_treatment}
(text)
_diffrn_crystal_treatment(cif_core.dic 2.0.1)
Remarks about how the crystal was treated prior to intensity measurement. Particularly relevant when intensities were measured at low temperature.
Examples: ‘equilibrated in hutch for 24 hours',
'flash frozen in liquid nitrogen',
'slow cooled with direct air stream'. [diffrn]
_diffrn.details
(text)
_diffrn_special_details(cif_core.dic 2.0.1)
Special details of the diffraction measurement process. Should include information about source instability, crystal motion, degradation and so on.

\section*{[diffrn]}
*_diffrn.id (code)
\(\bar{T}\) his data item uniquely identifies a set of diffraction data.
The following item(s) have an equivalent role in their respective categories:
_diffrn_detector.diffrn_id,
_diffrn_measurement.diffrn_id,
_diffrn_orient_matrix.diffrn_id,
_diffrn_orient_refln.diffrn_id,
_diffrn_radiation.diffrn_id,
_diffrn_refln.diffrn_id,
_diffrn_reflns.diffrn_id,
_diffrn_source.diffrn_id,
_diffrn_standard_refln.diffrn_id,
_diffrn_standards.diffrn_id.
[diffrn]

\section*{DIFFRN_ATTENUATOR}

Data items in the DIFFRN_ATTENUATOR category record details about the diffraction attenuator scales employed.
Category group(s): inclusive_group
diffrn_group
Category key(s): _diffrn_attenuator.code
Example 2 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].
_diffrn_attenuator.code 1
_diffrn_attenuator.scale 16.976

> *_diffrn_attenuator.code
> _diffrn_attenuator_code(cif_core.dic 2.0.1)
(code)
A code associated with a particular attenuator setting. This code is referenced by the _diffrn_refln.attenuator_code which is stored with the diffraction data. See _diffrn_attenuator.scale. [diffrn_attenuator]

\section*{_diffrn_attenuator.material \\ __diffrn_attenuator_material (cif_core.dic 2.3)}
(text)
Material from which the attenuator is made.

\section*{_diffrn_attenuator.scale _diffrn_attenuator_scale(cif_core.dic 2.0.1)}
(float)
The scale factor applied when an intensity measurement is reduced by an attenuator identified by _diffrn_attenuator.code. The measured intensity must be multiplied by this scale to convert it to the same scale as unattenuated intensities.
The permitted range is \([1.0, \infty)\).
[diffrn attenuator]

\section*{DIFFRN_DETECTOR}

Data items in the DIFFRN_DETECTOR category describe the detector used to measure the scattered radiation, including any analyser and post-sample collimation.
Category group(s): inclusive_group
diffrn_group
Category key(s): _diffrn_detector.diffrn_id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
\begin{tabular}{ll} 
_diffrn_detector.diffrn_id & 'd1' \\
-diffrn_detector.detector & 'multiwire' \\
_diffrn_detector.type & 'Siemens'
\end{tabular}

\section*{_diffrn_detector.area_resol_mean}
(float)
_diffrn_detector_area_resol_mean(cif_core.dic 2.3)
The resolution of an area detector, in pixels \(\mathrm{mm}^{-1}\).
The permitted range is \([0.0, \infty)\).
[diffrn_detector]

\section*{_diffrn_detector.details}
(text)
_-diffrn_detector_details(cif_core.dic 2.0.1)
A description of special aspects of the radiation detector.
[diffrn_detector]

\section*{_diffrn_detector.detector}
(text)
_diffrn_radiation_detector (cifdic.c91 1.0)
_diffrn_detector (cif_core.dic 2.0)
The general class of the radiation detector.
Examples: 'photographic film', 'scintillation counter', 'CCD plate', ‘BF~3~ counter'.
[diffrn_detector]
```

*_diffrn_detector.diffrn_id
This data item is a pointer to _diffrn.id in the DIFFRN category.

```

The deadtime in microseconds of the detector used to measure the diffraction intensities.
The permitted range is \([0.0, \infty)\).
[diffrn_detector]

\section*{_diffrn_detector.type}
diffrn_detector_type (cif_core.dic 2.0.1)
The make, model or name of the detector device used

\section*{DIFFRN_MEASUREMENT}

Data items in the DIFFRN_MEASUREMENT category record details about the device used to orient and/or position the crystal during data measurement and the manner in which the diffraction data were measured.
Category group(s): inclusive_group
diffrn_group
Category key(s): _diffrn_measurement.diffrn_id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
_diffrn_measurement.diffrn_id 'd1'
_diffrn_measurement.device - 3-circle camera'
_diffrn_measurement.device_type 'Supper model x'
diffrn_measurement.device_details 'none'
diffrn_measurement.method 'omega scan'
_diffrn_measurement.details
; 440 frames, 0.20 degrees, 150 sec, detector distance 12 cm , detector angle 22.5 degrees
;
Example 2 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277]
_diffrn_measurement.diffrn_id 's1'
_diffrn_measurement.device_type
'Philips PW1100/20 diffractometer'
diffrn_measurement.method \(\quad \backslash \mathrm{q} / 2 \backslash \mathrm{q}\)

\section*{diffrn_measurement.details}
_diffrn_measurement_details(cif_core.dic 2.0.1)
A description of special aspects of the intensity measurement.
Example:
; 440 frames, 0.20 degrees, 150 sec detector
distance 12 cm , detector angle 22.5 degrees
[diffrn measurement]

\section*{_diffrn_measurement.device \\ _diffrn_measurement_device(cif_core.dic 2.0.1)}
(text)

The general class of goniometer or device used to support and orient the specimen.
Examples: ‘3-circle camera',‘4-circle camera’,
'kappa-geometry camera', 'oscillation camera', 'precession camera'.
[diffrn_measurement]

\section*{diffrn measurement.device_details}
(text)
_diffrn_measurement_device_details(cif_core.dic 2.0.1)
A description of special aspects of the device used to measure the diffraction intensities.
Example:
; commercial goniometer modified locally to allow for 90\\% \t arc
;
[diffrn_measurement]
diffrn_measurement.device_type
_diffrn_measurement_device_type(cif_core.dic 2.0.1)
The make, model or name of the measurement device (goniometer) used.
Examples: ‘Supper model q', 'Huber model r', 'Enraf-Nonius model s',
'homemade'. [diffrn_measurement]
*_diffrn_measurement.diffrn_id
This data item is a pointer to _diffrn.id in the DIFFRN category.

Method used to measure intensities.
Example: 'profile data from theta/2theta scans'.
[diffrn_measurement
_diffrn_measurement.specimen_support
The physical device used to support the crystal during data collection.
Examples: ‘glass capillary', 'quartz capillary', ‘fiber', 'metal loop’.
[diffrn_measurement]

\section*{DIFFRN_ORIENT_MATRIX}

Data items in the DIFFRN_ORIENT_MATRIX category record details about the orientation matrix used in the measurement of the diffraction data.
Category group(s): inclusive_group
diffrn_group

Category key(s): _diffrn_orient_matrix.diffrn_id
Example 1 - based on CAD-4 diffractometer data obtained for \(\mathrm{Yb}\left(\mathrm{S}_{-} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2^{-}}\) (THF) \({ }_{4}\).
_diffrn_orient_matrix.diffrn_id set1
-diffrn_orient_matrix.type
; reciprocal axis matrix, multiplies hkl vector to generate diffractometer \(x y z\) vector and diffractometer angles
;
_diffrn_orient_matrix.UB[1] [1] -0.071479
-diffrn_orient_matrix. UB[1] [2] 0.020208
_diffrn_orient_matrix.UB[1] [3] 0.039076
_diffrn_orient_matrix.UB[2][1] 0.035372
_diffrn_orient_matrix.UB[2] [2] 0.056209
_diffrn_orient_matrix.UB[2] [3] 0.078324
_diffrn_orient_matrix.UB[3] [1] -0.007470
diffrn_orient_matrix.UB[3][2] 0.067854
\(\begin{array}{lr}\text { _diffrn_orient_matrix. UB[3] [3] } & -0.017832\end{array}\)

\section*{*_diffrn_orient_matrix.diffrn_id}
\(\bar{T}\) This data \(\overline{i t e m}\) is a pointer to _diffrn.id in the DIFFRN category.

\section*{_diffrn_orient_matrix.type}
_diffrn_orient_matrix_type(cif_core.dic 2.0.1)
A description of the orientation matrix type and how it should be applied to define the orientation of the crystal precisely with respect to the diffractometer axes.
[diffrn_orient_matrix]
(float) diffrn orient matrix UB 11 (cif_core.dic 2.0.1)
The [1][1] element of the \(3 \times 3\) matrix that defines the dimensions of the reciprocal cell and its orientation with respect to the local diffractometer axes. See also _diffrn_orient_matrix.type.
[diffrn_orient_matrix]

> diffrn_orient_matrix.UB [1] [2]
> _diffrn_orient_matrix_UB_12(cif_core.dic 2.0.1)
(float)
The [1][2] element of the \(3 \times 3\) matrix that defines the dimensions of the reciprocal cell and its orientation with respect to the local diffractometer axes. See also _diffrn_orient_matrix.type.
[diffrn_orient_matrix]

\section*{_diffrn_orient_matrix. UB [1] [3] _diffrn_orient_matrix_UB_13(cif_core.dic 2.0.1)}
(float)
The [1][3] element of the \(3 \times 3\) matrix that defines the dimensions of the reciprocal cell and its orientation with respect to the local diffractometer axes. See also _diffrn_orient_matrix.type.
_diffrn_orient_matrix.UB[2] [1]
(float)
_diffrn_orient_matrix_UB_21(cif_core.dic 2.0.1)
The [2][1] element of the \(3 \times 3\) matrix that defines the dimensions of the reciprocal cell and its orientation with respect to the local diffractometer axes. See also _diffrn_orient_matrix.type.
[diffrn_orient_matrix]
_diffrn_orient_matrix.UB[2] [2]
(float) _diffrn_orient_matrix_UB_22(cif_core.dic 2.0.1)
The [2][2] element of the \(3 \times 3\) matrix that defines the dimensions of the reciprocal cell and its orientation with respect to the local diffractometer axes. See also _diffrn_orient_matrix.type.
[diffrn_orient_matrix]
_diffrn_orient_matrix.UB[2] [3]
(float)
_diffrn_orient_matrix_UB_23(cif_core.dic 2.0.1)
The [2][3] element of the \(3 \times 3\) matrix that defines the dimensions of the reciprocal cell and its orientation with respect to the local diffractometer axes. See also _diffrn_orient_matrix.type.
[diffrn_orient_matrix]
_diffrn_orient_matrix.UB[3] [1]
(float)
_diffrn_orient_matrix_UB_31(cif_core.dic 2.0.1)
The [3][1] element of the \(3 \times 3\) matrix that defines the dimensions of the reciprocal cell and its orientation with respect to the local diffractometer axes. See also _diffrn_orient_matrix.type.
[diffrn_orient_matrix]

> _diffrn_orient_matrix.UB [3] [2]
> _diffrn_orient_matrix_UB_32(cif_core.dic 2.0.1)
(float)
The [3][2] element of the \(3 \times 3\) matrix that defines the dimensions of the reciprocal cell and its orientation with respect to the local diffractometer axes. See also _diffrn_orient_matrix.type.
[diffrn_orient_matrix]
_diffrn_orient_matrix.UB[3] [3]
(float)
_diffrn_orient_matrix_UB_33(cif_core.dic 2.0.1)
The [3][3] element of the \(3 \times 3\) matrix that defines the dimensions of the reciprocal cell and its orientation with respect to the local diffractometer axes. See also _diffrn_orient_matrix.type.
[diffrn_orient_matrix]

\section*{DIFFRN_ORIENT_REFLN}

Data items in the DIFFRN_ORIENT_REFLN category record details about the reflections that define the orientation matrix used in the measurement of the diffraction intensities.
Category group(s): inclusive_group
Category key(s): _diffrn_orient_refln.diffrn_id
_diffrn_orient_refln.index_h
_diffrn_orient_refln.index_k
_diffrn_orient_refln.index_1
Example 1 - based on CAD-4 diffractometer data obtained for \(\mathrm{Yb}\left(\mathrm{S}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2}-\) (THF) \({ }_{4}\).
\begin{tabular}{lll} 
diffrn_orient_refln.diffrn_id & myset1 \\
-diffrn_orient_refln.index_h & 2 \\
-diffrn_orient_refln.index_k & 0 \\
-diffrn_orient_refln.index_l & 2 \\
-diffrn_orient_refln.angle_chi & -28.45 \\
diffrn_orient_refln.angle_kappa & -11.32 \\
-diffrn_orient_refln.angle_omega & 5.33 \\
-diffrn_orient_refln.angle_phi & 101.78 \\
-diffrn_orient_refln.angle_psi & 0.00 \\
-diffrn_orient_refln.angle_theta & 10.66 \\
\# ... data abbreviated ... &
\end{tabular}
_diffrn_orient_refln.angle_chi (float) _diffrn_orient_refln_angle_chi(cif_core.dic 2.0.1)
Diffractometer angle \(\chi\) of a reflection used to define the orientation matrix in degrees. See _diffrn_orient_matrix. ub[][] and the Miller indices in the DIFFRN_ORIENT_REFLN category
[diffrn_orient_refln]
diffrn_orient_refln.angle_kappa
_diffrn_orient_refln_angle_kappa(cif_core.dic 2.0.1) \(\quad\) (float)

Diffractometer angle \(\kappa\) of a reflection used to define the orientation matrix in degrees. See _diffrn_orient_matrix. UB[][] and the Miller indices in the DIFFRN_ORIENT_REFLN category.
[diffrn_orient_refln]

\section*{_diffrn_orient_refln.angle_omega \\ diffrn orient refln angle omega (cif_core.dic 2.0.1)}
(float)
Diffractometer angle \(\omega\) of a reflection used to define the orientation matrix in degrees. See _diffrn_orient_matrix. UB[][] and the Miller indices in the DIFFRN_ORIENT_REFLN category.
[diffrn_orient_refln]
\[
\begin{aligned}
& \text { _diffrn_orient_refln.angle_phi } \\
& \text { _diffrn_orient_refln_angle_phi(cif_core.dic 2.0.1) }
\end{aligned}
\]
(float)
Diffractometer angle \(\varphi\) of a reflection used to define the orientation matrix in degrees. See _diffrn_orient_matrix. ub[][] and the Miller indices in the DIFFRN_ORIENT_REFLN category.
[diffrn_orient_refln]
\[
\begin{align*}
& \text { _diffrn_orient_refln.angle_psi }  \tag{float}\\
& \text { _diffrn_orient_refln_angle_psi(cif_core.dic 2.0.1) }
\end{align*}
\]

Diffractometer angle \(\psi\) of a reflection used to define the orientation matrix in degrees. See _diffrn_orient_matrix. UB[][] and the Miller indices in the DIFFRN_ORIENT_REFLN category.
[diffrn orient refln]
_diffrn_orient_refln.angle_theta
(float)
_diffrn_orient_refln_angle_theta(cif_core.dic 2.0.1)
Diffractometer angle \(\theta\) of a reflection used to define the orientation matrix in degrees. See diffrn_orient_matrix. UB[][] and the Miller indices in the DIFFRN_ORIENT_REFLN category.
[diffrn_orient_refln]
```

*_diffrn_orient_refln.diffrn_id
This data item is a pointer to _diffrn.id in the DIFFRN category.

```
*_diffrn_orient_refln.index_h
_diffrn_orient_refln_index_h(cif_core.dic 2.0.1)
Miller index \(h\) of a reflection used to define the orientation matrix.
[diffrn_orient_refln]
*_diffrn_orient_refln.index_k
_diffrn_orient_refln_index_k(cif_core.dic 2.0.1)
Miller index \(k\) of a reflection used to define the orientation matrix.
[diffrn_orient_refln]
*_diffrn_orient_refln.index_l
_diffrn_orient_refln_index_1(cif_core.dic 2.0.1)
Miller index \(l\) of a reflection used to define the orientation matrix.
[diffrn_orient_refln]

\section*{DIFFRN_RADIATION}

Data items in the DIFFRN_RADIATION category describe the radiation used in measuring the diffraction intensities, its collimation and monochromatization before the sample. Post-sample treatment of the beam is described by data items in the
DIFFRN_DETECTOR category.
Category group(s): inclusive_group
diffrn_group
Category key(s): _diffrn_radiation.diffrn_id
Example 1-based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
_diffrn_radiation.diffrn_id 'set1'
_diffrn_radiation.collimation \(\quad, 0.3 \mathrm{~mm}\) double pinhole'
_diffrn_radiation.monochromator 'graphite'
diffrn_radiation.type ' \(\mathrm{Cu} \mathrm{K} \backslash \mathrm{a}^{\prime}\)
_diffrn_radiation.wavelength_id 1
Example 2 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277]
diffrn radiation.wavelength id 1
_diffrn_radiation.type - 'Cu K \(\backslash\) '
diffrn_radiation.monochromator 'graphite'
_diffrn_radiation.collimation
_diffrn_radiation_collimation(cif_core.dic 2.0.1)
The collimation or focusing applied to the radiation.
Examples: ' 0.3 mm double-pinhole', ' 0.5 mm , 'focusing mirrors'.
[diffrn_radiation]
*_diffrn_radiation.diffrn_id
This data item is a pointer to _diffrn.id in the DIFFRN category.
_diffrn_radiation.filter_edge
(float)
_diffrn_radiation_filter_edge(cif_core.dic 2.0.1)
Absorption edge in ångströms of the radiation filter used.
The permitted range is \([0.0, \infty)\).
[diffrn_radiation]
diffrn radiation.inhomogeneity
(float)
_diffrn_radiation_inhomogeneity (cif_core.dic 2.0.1)
Half-width in millimetres of the incident beam in the direction perpendicular to the diffraction plane.
The permitted range is \([0.0, \infty)\).
[diffrn_radiation]
diffrn_radiation.monochromator
(text)
_diffrn_radiation_monochromator (cif_core.dic 2.0.1)
The method used to obtain monochromatic radiation. If a monochromator crystal is used, the material and the indices of the Bragg reflection are specified.
Examples: 'Zr filter', 'Ge 220', 'none', 'equatorial mounted graphite'. [diffrn_radiation]
_diffrn_radiation.polarisn_norm (float) _diffrn_radiation_polarisn_norm(cif_core.dic 2.0.1)
The angle in degrees, as viewed from the specimen, between the perpendicular component of the polarization and the diffraction plane. See _diffrn_radiation.polarisn_ratio.
The permitted range is \([0.0, \infty)\).
[diffrn_radiation]

\section*{diffrn radiation.polarisn ratio}
(float)
_diffrn_radiation_polarisn_ratio(cif_core.dic 2.0.1)
Polarization ratio of the diffraction beam incident on the crystal. This is the ratio of the perpendicularly polarized to the parallelpolarized component of the radiation. The perpendicular component forms an angle of _diffrn_radiation.polarisn_norm to the normal to the diffraction plane of the sample (i.e. the plane containing the incident and reflected beams).
The permitted range is \([0.0, \infty)\).
[diffrn_radiation]

\section*{_diffrn_radiation.probe}
(line)
The nature of the radiation used (i.e. the name of the subatomic particle or the region of the electromagnetic spectrum). It is strongly recommended that this information be given, so that the probe radiation can be simply determined.
The data value must be one of the following:
\(x\)-ray
neutron
electron
gamma
[diffrn_radiation]

\section*{_diffrn_radiation.type}
(line)
_diffrn_radiation_type(cif_core.dic 2.0.1)
The nature of the radiation. This is typically a description of the X-ray wavelength in Siegbahn notation.

[diffrn_radiation]
*_diffrn_radiation.wavelength_id
This data item is a pointer to _diffrn_radiation_wavelength.id in the DIFFRN_RADIATION_WAVELENGTH category.

\section*{_diffrn_radiation.xray_symbol}
_diffrn_radiation_xray_symbol(cif_core.dic 2.0.1)
The IUPAC symbol for the X-ray wavelength for the probe radiation.
The data value must be one of the following:
\begin{tabular}{ll}
\(\mathrm{K}-\mathrm{L}^{\sim} 3^{\sim}\) & \(K \alpha_{1}\) in older Siegbahn notation \\
\(\mathrm{K}-\mathrm{L}^{\sim} 2^{\sim}\) & \(K \alpha_{2}\) in older Siegbahn notation \\
\(\mathrm{K}-\mathrm{M}^{\sim} 3^{\sim}\) & \(K \beta\) in older Siegbahn notation \\
\(\mathrm{K}-\mathrm{L}^{\sim} 2,3^{\sim}\) & use where \(K-L_{3}\) and \(K-L_{2}\) are not resolved
\end{tabular}
[diffrn_radiation]

\section*{DIFFRN_RADIATION_WAVELENGTH}

Data items in the DIFFRN_RADIATION_WAVELENGTH category describe the wavelength of the radiation used to measure the diffraction intensities. Items may be looped to identify and assign weights to distinct components of a polychromatic beam.
Category group(s): inclusive_group diffrn_group
Category key(s): _diffrn_radiation_wavelength.id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
\begin{tabular}{ll} 
_diffrn_radiation_wavelength.id & 1 \\
-diffrn_radiation_wavelength.wavelength & 1.54 \\
diffrn_radiation wavelength.wt & 1.0
\end{tabular}
*_diffrn_radiation_wavelength.id
(code)
_diffrn_radiation_wavelēength_id(cif_core.dic 2.0.1)
The code identifying each value of _diffrn_radiation_ wavelength.wavelength. Items in the - DIFFRN_RADIATION_WAVELENGTH category are looped when multiple wavelengths are used. This code is used to link with the DIFFRN_REFLN category. The _diffrn_refln.wavelength_id codes must match one of the codes defined in this category.
The following item(s) have an equivalent role in their respective categories:
_diffrn_radiation.wavelength_id,
_diffrn_refln.wavelength_id,
_refln.wavelength_id.
Examples: ' x 1 ', ' x 2 ', 'neut'.
*_diffrn_radiation_wavelength.wavelength (float)
_diffrn_radiation_wavelength (cif_core.dic 2.0.1)
The radiation wavelength in ångströms.
The permitted range is \([0.0, \infty)\).
[diffrn_radiation_wavelength]
_diffrn_radiation_wavelength.wt
(float)
_diffrn_radiation_wavelength_wt(cif_core.dic 2.0.1)
The relative weight of a wavelength identified by the code _diffrn_radiation_wavelength.id in the list of wavelengths.
The permitted range is \([0.0,1.0]\). Where no value is given, the assumed value is ' 1.0 '.
[diffrn_radiation_wavelength]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{DIFFRN_REFLN} \\
\hline \multicolumn{2}{|l|}{Data items in the DIFFRN_REFLN category record details about the intensities in the diffraction data set identified by _diffrn_refln.diffrn_id. The DIFFRN_REFLN data items refer} \\
\hline \multicolumn{2}{|l|}{to individual intensity measurements and must be included in} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
looped lists. The DIFFRN_REFLNS data items specify the parameters that apply to all intensity measurements in the particular diffraction data set identified by _diffrn_reflns.diffrn_id. \\
Category group(s): inclusive_group \\
diffrn_group \\
Category key(s): _diffrn_refln.diffrn_id \\
_diffrn_refln.id
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Example 1 - based on CAD-4 diffractometer data obtained for \(\mathrm{Yb}\left(\mathrm{S}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2}\) \((\mathrm{THF})_{4}\) for data set 'setl' reflection 1102.} \\
\hline diffrn refln.diffrn id & set1 \\
\hline diffrn_refln.id & 1102 \\
\hline diffrn_refln.wavelength_id & Culfixed \\
\hline diffrn_refln.angle_chi & 32.21 \\
\hline diffrn_refln.angle_kappa & 20.12 \\
\hline diffrn_refln.angle_omega & 11.54 \\
\hline diffrn_refln.angle_phi & 176.02 \\
\hline diffrn_refln.angle_psi & 0.00 \\
\hline diffrn_refln.angle_theta & 23.08 \\
\hline diffrn_refln.attenuator_code & 'Ni.005' \\
\hline diffrn_refln.counts_bg_1 & 22 \\
\hline diffrn_refln.counts_bg_2 & 25 \\
\hline diffrn_refln.counts_net & 3450 \\
\hline diffrn_refln.counts_peak & 321 \\
\hline diffrn_refln.counts_total & 3499 \\
\hline diffrn_refln.detect_slit_horiz & 0.04 \\
\hline diffrn_refln.detect_slit_vert & 0.02 \\
\hline diffrn_refln.elapsed_time & 1.00 \\
\hline diffrn_refln.index_h & 4 \\
\hline diffrn_refln.index_k & 0 \\
\hline diffrn_refln.index_l & 2 \\
\hline diffrn_refln.intensity_net & 202.56 \\
\hline diffrn_refln.intensity_sigma & 2.18 \\
\hline _diffrn_refln.scale_group_code & A24 \\
\hline diffrn_refln.scan_mode & om \\
\hline _diffrn_refln.scan_mode_backgd & mo \\
\hline _diffrn_refln.scan_rate & 1.2 \\
\hline _diffrn_refln.scan_time_backgd & 900.00 \\
\hline diffrn_refln.scan_width & 1.0 \\
\hline _diffrn_refln.sint_over_lambda & 0.25426 \\
\hline _diffrn_refln.standard_code & 1 \\
\hline diffrn_refln.wavelength & 1.54184 \\
\hline
\end{tabular}
_diffrn_refln.angle_chi (float) _diffrn_refln_angle_chi (cif_core.dic 2.0.1)
The diffractometer angle \(\chi\) of a reflection in degrees. This angle corresponds to the specified orientation matrix and the original measured cell before any subsequent cell transformations.
[diffrn_refln]

\section*{_diffrn_refln.angle_kappa \\ _diffrn_refln_angle_kappa(cif_core.dic 2.0.1)}
(float)
The diffractometer angle \(\kappa\) of a reflection in degrees. This angle corresponds to the specified orientation matrix and the original measured cell before any subsequent cell transformations.

\section*{_diffrn_refln.angle_omega}
(float) _diffrn_refln_angle_omega (cif_core.dic 2.0.1)
The diffractometer angle \(\omega\) of a reflection in degrees. This angle corresponds to the specified orientation matrix and the original measured cell before any subsequent cell transformations.
[diffrn_refln]

\section*{_diffrn_refln.angle_phi \\ _diffrn_refln_angle_phi(cif_core.dic 2.0.1)}
(float)
The diffractometer angle \(\varphi\) of a reflection in degrees. This angle corresponds to the specified orientation matrix and the original measured cell before any subsequent cell transformations.
[diffrn_refln]

\section*{_diffrn_refln.angle_psi \\ _diffrn_refln_angle_psi(cif_core.dic 2.0.1)}
(float)
The diffractometer angle \(\psi\) of a reflection in degrees. This angle corresponds to the specified orientation matrix and the original measured cell before any subsequent cell transformations.
[diffrn_refln]
_diffrn_refln.angle_theta
(float)
_diffrn_refln_angle_theta(cif_core.dic 2.0.1)
The diffractometer angle \(\theta\) of a reflection in degrees. This angle corresponds to the specified orientation matrix and the original measured cell before any subsequent cell transformations.
[diffrn_refln]

\section*{_diffrn_refln.attenuator_code}
_diffrn_refln_attenuator_code(cif_core.dic 2.0.1)
The code identifying the attenuator setting for this reflection. This code must match one of the _diffrn_attenuator.code values.
_diffrn_refln.class_code
(code)
_diffrn_refln_class_code(cif_core.dic 2.3)
The code identifying the class to which this reflection has been assigned. This code must match a value of diffrn_reflns.class_code. Reflections may be grouped into classes for a variety of purposes. For example, for modulated structures each reflection class may be defined by the number \(m=\sum\left|m_{i}\right|\), where the \(m_{i}\) are the integer coefficients that, in addition to \(h, k, l\), index the corresponding diffraction vector in the basis defined for the reciprocal lattice.
[diffrn_refln]
_diffrn_refln.counts_bg_1
_diffrn_refln_counts_bg_1 (cif_core.dic 2.0.1)
The diffractometer counts for the measurement of the background before the peak.
The permitted range is \([0, \infty)\).
[diffrn_refln]
_diffrn_refln.counts_bg_2
_diffrn_refln_counts_bg_2(cif_core.dic 2.0.1)
The diffractometer counts for the measurement of the background after the peak.
The permitted range is \([0, \infty)\).
[diffrn_refln]

\section*{diffrn_refln.counts_net \\ _diffrn_refln_counts_net(cif_core.dic 2.0.1)}

The diffractometer counts for the measurement of net counts after background removal.
The permitted range is \([0, \infty)\).
[diffrn_refln]
diffrn_refln.counts_peak
_diffrn_refln_counts_peak(cif_core.dic 2.0 .1 )
(int)

The diffractometer counts for the measurement of counts for the peak scan or position.
The permitted range is \([0, \infty)\). [diffrn_refln]
_diffrn_refln.counts_total
(int)
_diffrn_refln_counts_total (cif_core.dic 2.0.1)
The diffractometer counts for the measurement of total counts (background plus peak).
The permitted range is \([0, \infty)\). [diffrn_refln]
diffrn_refln.detect_slit_horiz
(float)
_diffrn_refln_detect_slit_horiz(cif_core.dic 2.0.1)
Total slit aperture in degrees in the diffraction plane.
The permitted range is \([0.0,90.0]\).
[diffrn_refln]
_diffrn_refln.detect_slit_vert
(float)
_diffrn_refln_detect_slit_vert(cif_core.dic 2.0.1)
Total slit aperture in degrees perpendicular to the diffraction plane.
The permitted range is \([0.0,90.0]\).
[diffrn_refln]
*_diffrn_refln.diffrn_id
This data item is a pointer to _diffrn.id in the DIFFRN category.
diffrn_refln.elapsed_time
(float)
_diffrn_refln_elapsed_time(cif_core.dic 2.0.1)
Elapsed time in minutes from the start of the diffraction experiment to the measurement of this intensity.
The permitted range is \([0.0, \infty)\).
[diffrn_refln]
*_diffrn_refln.id
(code)
The value of diffrn_refln.id must uniquely identify the reflection in the data set identified by the item _diffrn_ refln.diffrn_id. Note that this item need not be a number; it can be any unique identifier.
[diffrn_refln]
*_diffrn_refln.index_h
(int)
_diffrn_refln_index_h(cif_core.dic 2.0.1)

Miller index \(h\) of a reflection. The values of the Miller indices in the DIFFRN_REFLN category need not match the values of the Miller indices in the REFLN category if a transformation of the original measured cell has taken place. Details of the cell transformation are given in _diffrn_reflns.reduction_process. See also _diffrn_reflns.transf_matrix[][].
[diffrn_refln]
*_diffrn_refln.index_k
_diffrn_refln_index_k(cif_core.dic 2.0.1)
Miller index \(k\) of a reflection. The values of the Miller indices in the DIFFRN_REFLN category need not match the values of the Miller indices in the REFLN category if a transformation of the original measured cell has taken place. Details of the cell transformation are given in _diffrn_reflns.reduction_process. See also _diffrn_reflns.transf_matrix[][].
[diffrn refln]
*_diffrn_refln.index_l
(int)
_diffrn_refln_index_I (cif_core.dic 2.0.1)
Miller index \(l\) of a reflection. The values of the Miller indices in the DIFFRN_REFLN category need not match the values of the Miller indices in the REFLN category if a transformation of the original measured cell has taken place. Details of the cell transformation are given in _diffrn_reflns.reduction_process. See also _diffrn_reflns.transf_matrix[][].

\section*{_diffrn_refln.intensity_net}
_diffrn_refln_intensity_net(cif_core.dic 2.0.1)
Net intensity calculated from the diffraction counts after the attenuator and standard scales have been applied.
The permitted range is \([0, \infty)\).

\section*{[diffrn_refln]}
_diffrn_refln.intensity_sigma
Standard uncertainty (estimated standard deviation) of the intensity calculated from the diffraction counts after the attenuator and standard scales have been applied.
The permitted range is \([0, \infty)\).
[diffrn_refln]
_diffrn_refln.intensity_u
(float)
_diffrn_refln_intensity_u(cif_core.dic 2.3)
Standard uncertainty of the net intensity calculated from the diffraction counts after the attenuator and standard scales have been applied.
The permitted range is \([0.0, \infty)\).
Related item: _diffrn_refln.intensity_sigma (alternate). [diffrn_refln]
*_diffrn_refln.scale_group_code
_diffrn_refln_scale_group_code(cif_core.dic 2.0.1)
The code identifying the scale applying to this reflection. This data item is a pointer to _diffrn_scale_group.code in the DIFFRN_SCALE_GROUP category.
```

_diffrn_refln.scan_mode _diffrn_refln_scan_mode(cif_core.dic 2.0.1)
The code identifying the mode of scanning for measurements using a diffractometer. See _diffrn_refln.scan_width and _diffrn_refln.scan_mode_backgd.
The data value must be one of the following:
om $\quad \omega$ scan
ot $\quad \omega / 2 \theta$ scan
q $\quad Q$ scans (arbitrary reciprocal directions)

```
(ucode)
[diffrn_refln]
_diffrn_refln.scan_mode_backgd
(ucode)
_diffrn_refln_scan_mode_backgd (cif_core.dic 2.0.1)
The code identifying the mode of scanning a reflection to measure the background intensity.
\(\begin{array}{cl}\text { The data value must be one of the following: } \\ \text { st } & \text { stationary counter background } \\ \text { mo } & \text { moving counter background }\end{array}\)
_diffrn_refln.scan_rate
[diffrn_refln]
_diffrn_refln_scan_rate(cif_core.dic 2.0.1)
The rate of scanning a reflection in degrees per minute to measure the intensity.
[diffrn_refln]
_diffrn_refln.scan_time_backgd
(float)
_diffrn_refln_scan_time_backgd (cif_core.dic 2.0.1)
The time spent measuring each background in seconds.
[diffrn_refln]
_diffrn_refln.scan_width
diffrn_refln scan width(cif_core.dic 2.0.1) \(\quad\) (float)
_diffrn_refln_scan_width(cif_core.dic 2.0.1)
The scan width in degrees of the scan mode defined by the code _diffrn_refln.scan_mode.
\(\overline{\text { The permitted range is }[0.0,90.0] .}\)
[diffrn_refln]
_diffrn_refln.sint_over_lambda
The \((\sin \theta) / \lambda\) value in reciprocal ångströms for this reflection.
The permitted range is \([0.0, \infty)\).
[diffrn_refln]
*_diffrn_refln.standard_code
The code identifying that this reflection was measured as a standard intensity. This data item is a pointer to _diffrn_standard_refln.code in the DIFFRN_STANDARD_REFLN category.
_diffrn_refln.wavelength
(float)
_diffrn_refln_wavelength(cif_core.dic 2.0.1)
The mean wavelength in ångströms of the radiation used to measure the intensity of this reflection. This is an important parameter for data collected using energy-dispersive detectors or the Laue method.
The permitted range is \([0.0, \infty)\) [diffrn_refln]
*_diffrn_refln.wavelength_id
_diffrn_refln_wavelength_id(cif_core.dic 2.0.1)
This data item is a pointer to _diffrn_radiation.wavelength_id in the DIFFRN_RADIATION category.

\section*{DIFFRN_REFLNS}

Data items in the DIFFRN_REFLNS category record details about the set of intensities measured in the diffraction experiment. The DIFFRN_REFLN data items refer to individual intensity measurements and must be included in looped lists. The DIFFRN_REFLNS data items specify the parameters that apply to all intensity measurements in a diffraction data set.
Category group(s): inclusive_group
diffrn_group

Category key(s): _diffrn_reflns.diffrn_id
_diffrn_reflns.av_R_equivalents
(float)
_diffrn_reflns_av_R_equivalents (cif_coredic 2.0.1)
The residual \(\left[\sum \mathrm{av}|\Delta(I)| / \sum|\mathrm{av}(I)|\right]\) for symmetry-equivalent reflections used to calculate the average intensity \(\operatorname{av}(I)\). The \(\mathrm{av}|\Delta(I)|\) term is the average absolute difference between \(\mathrm{av}(I)\) and the individual symmetry-equivalent intensities.
The permitted range is \([0.0, \infty)\).
[diffrn_reflns]
_diffrn_reflns.av_sigmaI_over_netI
_diffrn_reflns_av_sigmaI/netI (cif_core.dic 2.0.1)
Measure \(\left[\sum \mid \sigma(\right.\) net \(I)\left|/ \sum\right|\) net \(\left.I \mid\right]\) for all measured reflections.
The permitted range is \([0.0, \infty)\).
[diffrn_reflns]
diffrn_reflns.av_unetI/netI
_diffrn_reflns_av_unetI/netI (cif_core.dic 2.3 )
Measure \(\left[\sum \mid u(\right.\) net \(I)\left|/ \sum\right|\) net \(\left.I \mid\right]\) for all measured reflections.
The permitted range is \([0.0, \infty)\).
[diffrn_reflns]
*_diffrn_reflns.diffrn_id
This data item is a pointer to _diffrn.id in the DIFFRN category.
diffrn_reflns.limit_h_max
_diffrn_reflns_limit_h_max(cif_core.dic 2.0 .1\()\)\(\quad\) (int)

The maximum value of the Miller index \(h\) for the reflection data specified by _diffrn_refln.index_h.
[diffrn_reflns]

\section*{_diffrn_reflns.limit_h_min \\ _diffrn_reflns_limit_h_min(cif_coredic 2.0.1)}

The minimum value of the Miller index \(h\) for the reflection data specified by _diffrn_refln.index_h.
[diffrn reflns]
```

diffrn_reflns.limit_k_max
_diffrn_reflns_limit_k_max (cif_core.dic 2.0.1)

```

The maximum value of the Miller index \(k\) for the reflection data specified by _diffrn_refln.index_k.
[diffrn_reflns]
```

diffrn_reflns.limit_k_min
diffrn_reflns_limit_k_min(cif_core.dic 2.0.1)

```
(int)

The minimum value of the Miller index \(k\) for the reflection data specified by _diffrn_refln.index_k.
[diffrn_reflns]

\section*{diffrn reflns.limit 1 max}
_diffrn_reflns_limit_1_max (cif_core.dic 2.0.1)
The maximum value of the Miller index \(l\) for the reflection data specified by _diffrn_refln.index_l.
\[
\begin{aligned}
& \text { _diffrn_reflns.limit_l_min } \\
& \text { _diffrn_reflns_limit_l_min(cif_core.dic } 2.0 .1)
\end{aligned}
\]
(int)

The minimum value of the Miller index \(l\) for the reflection data specified by _diffrn_refln.index_l.
[diffrn_reflns]
_diffrn_reflns.number
(int)
diffrn_reflns_number (cif_core.dic 2.0.1)
The total number of measured intensities, excluding reflections that are classified as systematically absent.
The permitted range is \([0, \infty)\).
[diffrn_reflns]
_diffrn_reflns.reduction_process
(text)
_diffrn_reflns_reduction_process(cif_core.dic 2.0.1)
A description of the process used to reduce the intensity data into structure-factor magnitudes.
Example: 'data averaged using Fisher test'.
[diffrn_reflns]
_diffrn_reflns.theta_max
(float)
_diffrn_reflns_theta_max (cif_-core.dic 2.0.1)
Maximum \(\theta\) angle in degrees for the measured diffraction intensities.
The permitted range is \([0.0,90.0]\).
[diffrn_reflns]
_diffrn_reflns.theta_min
(float)
_diffrn_reflns_theta_min(cif_core.dic 2.0.1)
Minimum \(\theta\) angle in degrees for the measured diffraction intensities.
The permitted range is \([0.0,90.0]\).
[diffrn_reflns]
_diffrn_reflns.transf_matrix[1][2] (foat)
The [1][2] element of the \(3 \times 3\) matrix used to transform Miller indices in the DIFFRN_REFLN category into the Miller indices in the REFLN category.

\section*{[diffrn_reflns]}
_diffrn_reflns.transf_matrix[1] [3] (float)
_diffrn_reflns_transf_matrix_13(cif_core.dic 2.0.1)
The [1][3] element of the \(3 \times 3\) matrix used to transform Miller indices in the DIFFRN_REFLN category into the Miller indices in the REFLN category.
[diffrn_reflns]
_diffrn_reflns.transf_matrix[2][1]
(float)
_diffrn_reflns_transf_matrix_21(cif_core.dic 2.0.1)
The [2][1] element of the \(3 \times 3\) matrix used to transform Miller indices in the DIFFRN_REFLN category into the Miller indices in the REFLN category.
[diffrn_reflns]
_diffrn_reflns.transf_matrix[2][2] (float) _diffrn_reflns_transf_matrix_22(cif_core.dic 2.0.1)
The [2][2] element of the \(3 \times 3\) matrix used to transform Miller indices in the DIFFRN_REFLN category into the Miller indices in the REFLN category.
[diffrn_reflns]
\[
\begin{aligned}
& \text { _diffrn_reflns.transf_matrix[2] [3] } \\
& \text { _diffrn_reflns_transf_matrix_23(cif_core.dic 2.0.1) }
\end{aligned}
\]
(float)
The [2][3] element of the \(3 \times 3\) matrix used to transform Miller indices in the DIFFRN_REFLN category into the Miller indices in the REFLN category.
[diffrn_reflns]
_diffrn_reflns.transf_matrix[3] [1]
(float)

The [3][1] element of the \(3 \times 3\) matrix used to transform Miller indices in the DIFFRN_REFLN category into the Miller indices in the REFLN category.
[diffrn_reflns]
_diffrn_reflns.transf_matrix[3] [2]
(float)
_diffrn_reflns_transf_matrix_32(cif_core.dic 2.0.1)
The [3][2] element of the \(3 \times 3\) matrix used to transform Miller indices in the DIFFRN_REFLN category into the Miller indices in the REFLN category.
[diffrn_reflns]

\section*{_diffrn_reflns.transf_matrix[3][3] \\ (float) _diffrn_reflns_transf_matrix_33(cif_core.dic 2.0.1)}

The [3][3] element of the \(3 \times 3\) matrix used to transform Miller indices in the DIFFRN_REFLN category into the Miller indices in the REFLN category.
```

_diffrn_reflns.transf_matrix[1][1]
(float)

``` _diffrn_reflns_transf_matrix_11(cif_core.dic 2.0.1)
The [1][1] element of the \(3 \times 3\) matrix used to transform Miller indices in the DIFFRN_REFLN category into the Miller indices in the REFLN category.

\section*{DIFFRN_REFLNS_CLASS}

Data items in the DIFFRN_REFLNS_CLASS category record details about the classes of reflections measured in the diffraction experiment.
Category key(s): _diffrn_reflns_class.code
Example 1 -example corresponding to the one-dimensional incommensurately modulated structure of \(\mathrm{K}_{2} \mathrm{SeO}_{4}\). Each reflection class is defined by the number \(m=\sum\left|m_{i}\right|\), where the \(m_{i}\) are the integer coefficients that, in addition to \(h, k, l\), index the corresponding diffraction vector in the basis defined for the reciprocal lattice.
loop
_diffrn_reflns_class.number
_diffrn_reflns_class.d_res_high
diffrn_reflns_class.d_res_low
diffrn_reflns_class.av_R_eq
diffrn_reflns_class.code-
diffrn_reflns_class.description
15800.5516 .1360 .015 'Main' 'm=0; main reflections'
10450.5516 .1360 .010 'Sat1' ' \(\mathrm{m}=1\); first-order satellites'
```

_diffrn_reflns_class.av_R_eq
(float)
diffrn_reflns_class_av_R_eq(cif_core.dic 2.3

```

For each reflection class, the residual \(\left[\sum \mathrm{av}|\Delta(I)| / \sum|\mathrm{av}(I)|\right]\) for symmetry-equivalent reflections used to calculate the average intensity \(\operatorname{av}(I)\). The \(\operatorname{av}|\Delta(I)|\) term is the average absolute difference between \(\operatorname{av}(I)\) and the individual intensities.
The permitted range is \([0.0, \infty)\).
[diffrn_reflns_class]

\section*{_diffrn_reflns_class.av_sgI/I}
(float)
_diffrn_reflns_class_av_sgI/I (cif_core.dic 2.3)
Measure \(\left[\sum \mid \bar{\sigma}(\right.\) net \(I)\left|/ \sum\right|\) net \(\left.I \mid\right]\) for all measured intensities in a reflection class.
The permitted range is \([0.0, \infty)\).
Related item:_diffrn_reflns_class.av_uI/I (replaces).
[diffrn_reflns_class]
```

_diffrn_reflns_class.av_uI/I
_diffrn_reflns_class_av uI/I (cif_core.dic 2.3)

```
(float)
Measure \(\left[\sum \mid u(\right.\) net \(I)\left|/ \sum\right|\) net \(\left.I \mid\right]\) for all measured intensities in a reflection class.
The permitted range is \([0.0, \infty)\).
Related item: _diffrn_reflns_class.av_sgI/I (alternate).
[diffrn_reflns_class]
```

*_diffrn_reflns_class.code (code)
_diffrn_reflns_class_code(cif_core.dic 2.3)
The code identifying a certain reflection class.

```
```

Examples: '1', 'm1', 's2'.

```
Examples: '1', 'm1', 's2'.
[diffrn_reflns_class]
```

[diffrn_reflns_class]

```
```

_diffrn_reflns_class.d_res_high

```

\section*{_diffrn_reflns_class_d_res_high (cif_coredic 2.3)}

The smallest value in ångströms for the interplanar spacings for the reflections in each measured reflection class. This is called the highest resolution for this reflection class.
The permitted range is \([0.0, \infty)\).
[diffrn_reflns_class]

\section*{_diffrn_reflns_class.d_res_low}
(float)

\section*{_diffrn_reflns_class_d_res_low (cif_core.dic 2.3)}

The largest value in ångströms of the interplanar spacings for the reflections for each measured reflection class. This is called the lowest resolution for this reflection class.
The permitted range is \([0.0, \infty)\).
[diffrn_reflns_class]
_diffrn_reflns_class.description
_diffrn_reflns_class_description(cif_core.dic 2.3)
Description of each reflection class.
Examples: ‘m=1 first order satellites',
'HOLO common projection reflections'. [diffrn_reflns_class]
_diffrn_reflns_class.number
(int)
_diffrn_reflns_class_number (cif_core.dic 2.3)
The total number of measured intensities for each reflection class, excluding the systematic absences arising from centring translations.
The permitted range is \([0, \infty)\). [diffrn_reflns_class]

\section*{DIFFRN_SCALE_GROUP}

Data items in the DIFFRN_SCALE_GROUP category record details of the scaling factors applied to place all intensities in the reflection lists on a common scale. Scaling groups might, for example, correspond to each film in a multi-film data set or each crystal in a multi-crystal data set.
Category group(s): inclusive_group

\section*{diffrn_group}

Category key(s): _diffrn_scale_group.code
Example 1 - based on CAD-4 diffractometer data obtained for \(\mathrm{Yb}\left(\mathrm{S}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2}\) \((T H F)_{4}\).
diffrn_scale_group.code A24
_diffrn_scale_group.I_net 1.021
*_diffrn_scale_group.code
The value of diffrn scale group.code must uniquely identify a record in the DIFFRN_SCALE_GROUP list. Note that this item need not be a number; it can be any unique identifier.
The following item(s) have an equivalent role in their respective categories:
_diffrn_refln.scale_group_code.
Examples: '1', '2', 'c1', 'c2'. [diffrn_scale_group]

\section*{_diffrn_scale_group.I_net}
(float)
_diffrn_scale_group_I_net(cif_core.dic 2.0.1)
The scale for a specific measurement group which is to be multiplied with the net intensity to place all intensities in the DIFFRN_REFLN or REFLN list on a common scale.
The permitted range is \([0.0, \infty)\).
[diffrn_scale_group]

\section*{DIFFRN_SOURCE}

Data items in the DIFFRN_SOURCE category record details of the source of radiation used in the diffraction experiment.
Category group(s): inclusive_group
diffrn_group
Category key(s): _diffrn_source.diffrn_id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
_diffrn_source.diffrn_id 's1'
_diffrn_source.source- 'rotating anode'
_diffrn_source.type 'Rigaku RU-200'
-diffrn_source.power 50
_diffrn_source.current 180
_diffrn_source.size ' \(8 \mathrm{~mm} \times 0.4 \mathrm{~mm}\) broad-focus'

\section*{diffrn source.current}
(float)
_diffrn_source_current (cif_core.dic 2.0.1)
The current in milliamperes at which the radiation source was operated.
```

_diffrn_source.details
_diffrn_source_details(cif_core.dic 2.0.1)

```

A description of special aspects of the radiation source used. [diffrn_source]
```

*_diffrn_source.diffrn_id
This data item is a pointer to _diffrn.id in the DIFFRN category.

```
_diffrn_source.power
(float)
_diffrn_source_power (cif_core.dic 2.0.1)
The power in kilowatts at which the radiation source was operated.
[diffrn_source]

\section*{_diffrn_source.size}
_diffrn_source_size(cif_core.dic 2.0.1)
The dimensions of the source as viewed from the sample.
Examples: ‘ \(8 \mathrm{~mm} \times 0.4 \mathrm{~mm}\) fine-focus', ‘broad focus’. [diffrn_source]

\section*{_diffrn_source.source}
_diffrn_radiation_source(cifdic.c91 1.0)
_diffrn_source (cif_core.dic 2.0)
The general class of the radiation source.
Examples: 'sealed \(X\)-ray tube', 'nuclear reactor', 'spallation source', 'electron microscope', 'rotating-anode X-ray tube', 'synchrotron'.
[diffrn_source]
_diffrn_source.take-off_angle
(float)
_diffrn_source_take-off_angle(cif_core.dic 2.3)
The complement of the angle in degrees between the normal to the surface of the X-ray tube target and the primary X-ray beam for beams generated by traditional X-ray tubes.
The permitted range is [0.00, 90.0].
Example: '1.5’.
[diffrn_source]

\section*{*_diffrn_standard_refln.code \\ _diffrn_standard_refln_code(cif_core.dic 2.0.1)}

The code identifying a reflection measured as a standard reflection with the indices _diffrn_standard_refln.index_h, _diffrn_standard_refln.index_k and _diffrn_standard_ refln.index_1. This is the same code as the _diffrn_ refln.standard_code in the DIFFRN_REFLN list.
The following item(s) have an equivalent role in their respective categories:
_diffrn_refln.standard_code.
Examples: '1', '2', 'c1', 'c2'. [diffrn_standard_refln]
```

*_diffrn_standard_refln.diffrn_id
This data item is a pointer to _diffrn.id in the DIFFRN category.

```

\section*{_diffrn_source.target}
(code)
_diffrn_source_target (cif_core.dic 2.0.1)
The chemical element symbol for the X-ray target (usually the anode) used to generate X-rays. This can also be used for spallation sources.
```

The data value must be one of the following:
H He Li Be B C N O F Ne Na Mg Al Si P
S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn
Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh
Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Ce Pr Nd
Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re
Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Th
Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

```
[diffrn_source]

\section*{_diffrn_source.type}
_diffrn_source_type(cif_core.dic 2.0.1)
The make, model or name of the source of radiation.
Examples: ‘NSLS beamline X8C', 'Rigaku RU200'.
[diffrn_source]
\[
\begin{aligned}
& \text { *_diffrn_standard_refln.index_k } \\
& \text { _diffrn_standard_refln_index_k(cif_core.dic } 2.0 .1)
\end{aligned}
\]

Miller index \(k\) of a standard reflection used in the diffraction measurement process.
[diffrn_standard_refln]

\section*{*_diffrn_standard_refln.index_h \\ _diffrn_standard_refln_index_h(cif_core.dic 2.0.1)}

Miller index \(h\) of a standard reflection used in the diffraction measurement process.
[diffrn_standard_refln]
_diffrn_source.voltage
_diffrn_source_voltage(cif_core.dic 2.0.1)
The voltage in kilovolts at which the radiation source was operated.
*_diffrn_standard_refln.index_1
Miller index \(l\) of a standard reflection used in the diffraction measurement process.

\section*{DIFFRN_STANDARDS}

Data items in the DIFFRN_STANDARDS category record details about the set of standard reflections used to monitor intensity stability during the measurement of diffraction intensities. Note that these records describe properties common to the set of standard reflections, not the standard reflections themselves.
Category group(s): inclusive_group
diffrn_group

Category key(s): _diffrn_standards.diffrn_id
Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].
\begin{tabular}{ll} 
_diffrn_standards.diffrn_id & 's1' \\
_diffrn_standards.number & 3 \\
-diffrn_standards.interval_time & 120 \\
diffrn_standards.decay \% & 0
\end{tabular}
```

_diffrn_standards.decay_%
_diffrn_standards_decay_%(cif_core.dic 2.0.1)

```
(float)

The percentage decrease in the mean of the intensities for the set of standard reflections from the start of the measurement process to the end. This value usually affords a measure of the overall decay in crystal quality during the diffraction measurement process. Negative values are used in exceptional instances where the final intensities are greater than the initial ones.
The permitted range is \((-\infty, 100.0]\).
[diffrn_standards]
```

*_diffrn_standards.diffrn_id
This data item is a pointer to _diffrn.id in the DIFFRN category.

```
_diffrn_standards.interval_count
_diffrn_standards_interval_count(cif_core.dic 2.0.1)

The number of reflection intensities between the measurement of standard reflection intensities.
The permitted range is \([0, \infty)\).
[diffrn_standards]

\section*{_diffrn_standards.interval_time}
(float)
_diffrn_standards_interval_time(cif_core.dic 2.0.1)

The time in minutes between the measurement of standard reflection intensities.
The permitted range is \([0, \infty)\). [diffrn_standards]

\section*{_diffrn_standards.number}
_diffrn_standards_number (cif_core.dic 2.0.1)
The number of unique standard reflections used during the measurement of the diffraction intensities.
The permitted range is \([0, \infty)\). [diffrn_standards]
_diffrn_standards.scale_sigma
(float)
_diffrn_standards_scale_sigma(cif_core.dic 2.0.1)
The standard uncertainty (estimated standard deviation) of the individual mean standard scales applied to the intensity data.
The permitted range is \([0.0, \infty)\).
[diffrn_standards]

\section*{_diffrn_standards.scale_u}
(float)
_diffrn_standards_scale_u(cif_core.dic 2.3)
The standard uncertainty of the individual mean standard scales applied to the intensity data.
The permitted range is \([0.0, \infty)\).
Related item: _diffrn_standards.scale_sigma (alternate).
[diffrn_standards]

\section*{ENTITY}

Data items in the ENTITY category record details (such as chemical composition, name and source) about the molecular entities that are present in the crystallographic structure. Items in the various ENTITY subcategories provide a full chemical description of these molecular entities. Entities are of three types: polymer, non-polymer and water. Note that the water category includes only water; ordered solvent such as sulfate ion or acetone would be described as individual non-polymer entities. The ENTITY category is specific to macromolecular CIF applications and replaces the function of the CHEMICAL category in the CIF core. It is important to remember that the ENTITY data are not the result of the crystallographic experiment; those results are represented by the ATOM_SITE data items. ENTITY data items describe the chemistry of the molecules under investigation and can most usefully be thought of as the ideal groups to which the structure is restrained or constrained during refinement. It is also important to remember that entities do not correspond directly to the enumeration of the contents of the asymmetric unit. Entities are described only once, even in those structures that contain multiple observations of an entity. The STRUCT_ASYM data items, which reference the entity list, describe and label the contents of the asymmetric unit.
Category group(s): inclusive_group
entity_group
Category key(s): _entity.id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to \(P D B\) entry \(5 H V P\).
loop_
entity.id
_entity.type
_entity.formula_weight
_entity.details
1 polymer 10916
; The enzymatically competent form of HIV protease is a dimer. This entity corresponds to one monomer of an active dimer.
;
2 non-polymer 647.2.
3 water 18 .
_entity.details
(text)
\(\overline{\mathrm{A}}\) description of special aspects of the entity.
[entity]
_entity.formula_weight
(float)
Formula mass in daltons of the entity.
The permitted range is \([1.0, \infty)\).
[entity]
*_entity.id
(code)
The value of _entity.id must uniquely identify a record in the EnTITY list. Note that this item need not be a number; it can be any unique identifier.
```

The following item(s) have an equivalent role in their respective categories:
_atom_site.label_entity_id,
_entity_keywords.entity_id,
_entity_link.entity_id_1,
_entity_link.entity_id_2,
_entity_name_com.entity_id,
_entity_name_sys.entity_id,
_entity_poly.entity_id,
_entity_poly_seq.entity_id,
_entity_src_gen.entity_id,
_entity_src_nat.entity_id,
_struct_asym.entity_id,
_struct_ref.entity_id.

entity.src_method

(ucode)
The method by which the sample for the entity was produced. Entities isolated directly from natural sources (tissues, soil samples etc.) are expected to have further information in the ENTITY_SRC_NAT category. Entities isolated from genetically manipulated sources are expected to have further information in the ENTITY_SRC_GEN category.
The data value must be one of the following:
nat entity isolated from a natural source
man entity isolated from a genetically manipulated source
syn entity obtained synthetically
_entity.type
(ucode)
Defines the type of the entity. Polymer entities are expected to have corresponding ENTITY_POLY and associated entries. Non-polymer entities are expected to have corresponding CHEM_COMP and associated entries. Water entities are not expected to have corresponding entries in the ENTITY category.
The data value must be one of the following:

polymer	entity is a polymer
non-polymer	entity is not a polymer
water	water in the solvent model

[entity]

ENTITY_KEYWORDS

Data items in the ENTITY_KEYWORDS category specify keywords relevant to the molecular entities. Note that this list of keywords is separate from the list that is used for the STRUCT_BIOL data items and is intended to provide only the information that one would know about the molecular entity if one did not know its structure. Hence polypeptides are simply polypeptides, not cytokines or β - α-barrels, and polyribonucleic acids are simply poly-RNA, not transfer-RNA
Category group(s): inclusive_group entity_group
Category key(s): _entity_keywords.entity_id
entity_keywords.text
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
loop
entity keywords.entity id
entity_keywords.text
'polypeptide'
2 'natural product, inhibitor, reduced peptide'

```
*_entity_keywords.entity_id
This data item is a pointer to _entity.id in the ENTITY category.
```


entity keywords.text

Keywords describing this entity
Examples: 'polypeptide', 'natural product', 'polysaccharide’
[entity_keywords]

ENTITY_LINK

Data items in the ENTITY_LINK category give details about the links between entities.
Category group(s): inclusive_group
chem_link_group
Category key(s): entity link.link id

entity_link.details

(text)
$\overline{\mathrm{A}}$ description of special aspects of a link between chemical components in the structure.
[entity_link]
*_entity_link.entity_id_1
The entity ID of the first of the two entities joined by the link. This data item is a pointer to _entity.id in the ENTITY category.

*_entity_link.entity_id_2

The entity ID of the second of the two entities joined by the link. This data item is a pointer to _entity.id in the ENTITY category.

_entity_link.entity_seq_num_1

For a polymer entity, the sequence number in the first of the two entities containing the link. This data item is a pointer to _entity_poly_seq.num in the ENTITY_POLY_SEQ category
entity_link.entity_seq_num_2
For a polymer entity, the sequence number in the second of the two entities containing the link. This data item is a pointer to entity_poly_seq.num in the ENTITY_POLY_SEQ category.
*_entity_link.link_id
This data item is a pointer to _chem_link.id in the CHEM_LINK category.

ENTITY_NAME_COM

Data items in the ENTITY_NAME_COM category record the common name or names associated with the entity. In some cases, the entity name may not be the same as the name of the biological structure. For example, haemoglobin α chain would be the entity common name, not haemoglobin.
Category group(s): inclusive_group
entity_group

Category key(s): _entity_name_com.entity_id entity_name_com.name

Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

loop

_entity_name_com.entity_id
entity_name_com.name
'HIV-1 protease monomer
'HIV-1 PR monomer'
'acetyl-pepstatin
'acetyl-Ile-Val-Asp-Statine-Ala-Ile-Statine'
'water'
*_entity_name_com.entity_id
This data item is a pointer to _entity.id in the ENTITY category.
*_entity_name_com.name
A common name for the entity.
Examples: 'HIV protease monomer', 'hemoglobin alpha chain',
2-fluoro-1,4-dichloro benzene’, ‘arbutin'. [entity_name_com]

ENTITY_NAME_SYS

Data items in the ENTITY_NAME_SYS category record the systematic name or names associated with the entity and the system that was used to construct the systematic name. In some cases, the entity name may not be the same as the name of the biological structure.

```
Category group(s): inclusive_group
                entity_group
Category key(s): _entity_name_sys.entity_id
    entity_name_sys.name
```

Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to $P D B$ entry $5 H V P$.
loop_
_entity_name_sys.entity_id
_entity_name_sys.name
'EC 3.4.23.16'
'acetyl-Ile-Val-Asp-Sta-Ala-Ile-Sta' water
*_entity_name_sys.entity_id
This data item is a pointer to _entity.id in the ENTITY category.
*_entity_name_sys.name
(text)
The systematic name for the entity.
Examples: 'hydroquinone-beta-D-pyranoside', 'EC 2.1.1.1',
'2-fluoro-1,4-dichlorobenzene'. [entity_name_sys]
_entity_name_sys.system
The system used to generate the systematic name of the entity.
Examples: ‘Chemical Abstracts conventions', ‘enzyme convention',
‘Sigma catalog’.
[entity_name_sys]

ENTITY_POLY

Data items in the ENTITY_POLY category record details about the polymer, such as the type of the polymer, the number of monomers and whether it has nonstandard features.
Category group(s): inclusive_group
entity_group

Category key(s): _entity_poly.entity_id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to $P D B$ entry $5 H V P$.
loop_
_entity_poly.entity_id
_entity_poly.type
_entity_poly.nstd_chirality
_entity_poly.nstd_linkage
_entity_poly.nstd_monomer
_entity_poly.type_details
1 polypeptide(L) no no no .

*_entity_poly.entity_id

This data item is a pointer to _entity.id in the ENTITY category.

entity_poly.nstd_chirality

A flag to indicate whether the polymer contains at least one monomer unit with chirality different from that specified in
_entity_poly.type.
The data value must be one of the following:
no polymer contains no monomers with different chirality
n abbreviation for 'no'
yes
polymer contains at least one monomer with different chirality
Y abbreviation for 'yes'
_entity_poly.nstd_linkage
(ucode)
A flag to indicate whether the polymer contains at least one monomer-to-monomer link different from that implied by _entity_poly.type.
The data value must be one of the following:
no polymer contains no different links
n abbreviation for 'no'
yes polymer contains at least one different link
y abbreviation for 'yes'
[entity_poly]
entity_poly.nstd_monomer (ucode)
$\overline{\mathrm{A}}$ flag to indicate whether the polymer contains at least one monomer that is not considered standard.
The data value must be one of the following:

no	polymer contains no nonstandard monomers
n	abbreviation for 'no'
yes	polymer contains at least one nonstandard monomer
y	abbreviation for 'yes'

[entity_poly]
entity_poly.number_of_monomers
(int)
\bar{T} The number of monomers in the polymer.
The permitted range is $[1, \infty)$.
[entity_poly]

entity_poly.type

(ucode)
The type of the polymer.
The data value must be one of the following:
polypeptide(D)
polypeptide(L)
polydeoxyribonucleotide
polyribonucleotide
polysaccharide(D)
polysaccharide(L)
other
[entity_poly]
_entity_poly.type_details
$\overline{\mathrm{A}}$ description of special $\overline{\text { aspects of the pelymer type. }}$
Examples: 'monomer Ala 16 is a D-amino acid',
'the oligomer contains alternating RNA and DNA units'
[entity_poly]

ENTITY_POLY_SEQ

Data items in the ENTITY_POLY_SEQ category specify the sequence of monomers in a polymer. Allowance is made for the possibility of microheterogeneity in a sample by allowing a given sequence number to be correlated with more than one monomer ID. The corresponding ATOM_SITE entries should reflect this heterogeneity.
Category group(s): inclusive_group entity_group
Category key(s): _entity_poly_seq.entity_id
entity_poly_seq.num
_entity_poly_seq.mon_id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to $P D B$ entry $5 H V P$.
loop_
_entity_poly_seq.entity_id
_entity_poly_seq.num
_entity_poly_seq.mon_id

1	1	PRO	1	2	GLN	1	3	ILE	1	4	THR	1	5	LEU
1	6	TRP	1	7	GLN	1	8	ARG	1	9	PRO	1	10	LEU
1	11	VAL	1	12	THR	1	13	ILE	1	14	LYS	1	15	ILE
1	16	GLY	1	17	GLY	1	18	GLN	1	19	LEU	1	20	LYS
1	21	GLU	1	22	ALA	1	23	LEU	1	24	LEU	1	25	ASP
$\#$	-	-	data	truncated	for brevity	-	-	-						

*_entity_poly_seq.entity_id
This data item is a pointer to _entity.id in the ENTITY category.

entity_poly_seq.hetero

(ucode)
A flag to indicate whether this monomer in the polymer is heterogeneous in sequence. This would be rare.
The data value must be one of the following:
no sequence is not heterogeneous at this monomer
$\mathrm{n} \quad$ abbreviation for 'no'
yes sequence is heterogeneous at this monomer
Y abbreviation for 'yes'
Where no value is given, the assumed value is 'no'.
[entity poly seq]

* entity poly seq.mon id

This data item is a pointer to _chem_comp.id in the CHEM_COMP category.

*_entity_poly_seq.num

The value of _entity_poly_seq.num must uniquely and sequentially identify a record in the ENTITY_POLY_SEQ list. Note that this item must be a number and that the sequence numbers must progress in increasing numerical order
The following item(s) have an equivalent role in their respective categories:
_atom_site.label_seq_id,
_entity_link.entity_seq_num_1,
_entity_link.entity_seq_num_2,
_geom_angle.atom_site_label_seq_id_1,
_geom_angle.atom_site_label_seq_id_2,
_geom_angle.atom_site_label_seq_id_3,
_geom_bond.atom_site_label_seq_id_1,
_geom_bond.atom_site_label_seq_id_2,
_geom_contact.atom_site_label_seq_id_1,
_geom_contact.atom_site_label_seq_id_2,
_geom_hbond.atom_site_label_seq_id_A,
_geom_hbond.atom_site_label_seq_id_D,
_geom_hbond.atom_site_label_seq_id_H,
_geom_torsion.atom_site_label_seq_id_1,
_geom_torsion.atom_site_label_seq_id_2,
_geom_torsion.atom_site_label_seq_id_3,
_geom_torsion.atom_site_label_seq_id_4,
_struct_conf.beg_label_seq_id,
_struct_conf.end_label_seq_id,
_struct_conn.ptnrl_label_seq_id,
_struct_conn.ptnr2_label_seq_id,
_struct_mon_nucl.label_seq_id,
_struct_mon_prot.label_seq_id,
_struct_mon_prot_cis.label_seq_id,
_struct_ncs_dom_lim.beg_label_seq_id
_struct_ncs_dom_lim.end_label_seq_id,
_struct_ref_seq.seq_align_beg,
_struct_ref_seq.seq_align_end,
_struct_ref_seq_dif.seq_num,
_struct_sheet_hbond.range_1_beg_label_seq_id,
_struct_sheet_hbond.range_1_end_label_seq_id,
_struct_sheet_hbond.range_2_beg_label_seq_id,
_struct_sheet_hbond.range_2_end_label_seq_id,
_struct_sheet_range.beg_label_seq_id,
_struct_sheet_range.end_label_seq_id,
_struct_site_gen.label_seq_id.
The permitted range is $[1, \infty)$.

ENTITY_SRC_GEN

Data items in the ENTITY_SRC_GEN category record details of the source from which the entity was obtained in cases where the source was genetically manipulated. The following are treated separately: items pertaining to the tissue from which the gene was obtained, items pertaining to the host organism for gene expression and items pertaining to the actual producing organism (plasmid).
Category group(s): inclusive_group
entity_group
Category key(s): _entity_src_gen.entity_id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to $P D B$ entry $5 H V P$.
loop_
_entity_src_gen.entity_id
entity_src_gen.gene_src_common_name
_entity_src_gen.gene_src_genus
_entity_src_gen.gene_src_species
_entity_src_gen.gene_src_strain
_entity_src_gen.host_org_common_name
_entity_src_gen.host_org_genus
_entity_src_gen.host_org_species
entity src gen.plasmid name
1 'HIV-1' ? ? 'NY-5'
'bacteria' 'Escherichia' 'coli' 'pB322'
*_entity_src_gen.entity_id
This data item is a pointer to _entity.id in the ENTITY category.
entity_src_gen.gene_src_common_name (text)
The common name of the natural organism from which the gene was obtained.

Examples: 'man', 'yeast', ‘bacteria’. [entity_src_gen]
_entity_src_gen.gene_src_details (text)
A description of special aspects of the natural organism from which the gene was obtained.
[entity_src_gen]
entity_src_gen.gene_src_genus
(text)
The genus of the natural organism from which the gene was obtained.
Examples: ‘Homo’, ‘Saccharomyces’, 'Escherichia’. [entity_src_gen]
entity_src_gen.gene_src_species
(text)
The species of the natural organism from which the gene was obtained.
Examples: 'sapiens', 'cerevisiae', 'coli’. [entity_src_gen]
entity_src_gen.gene_src_strain
(text)
The strain of the natural organism from which the gene was obtained, if relevant.
Examples: ‘DH5a', 'BMH 71-18'
[entity_src_gen]
entity_src_gen.gene_src_tissue
(text)
The tissue of the natural organism from which the gene was obtained.
Examples: 'heart','liver', 'eye lens'. [entity_src_gen]
entity_src_gen.gene_src_tissue_fraction (text)
The subcellular fraction of the tissue of the natural organism from which the gene was obtained.
Examples: 'mitochondria', 'nucleus', 'membrane'. [entity_src_gen]
_entity_src_gen.host_org_common_name
The common name of the organism that served as host for the production of the entity.
Examples: 'yeast’, 'bacteria’.
[entity_src_gen]
_entity_src_gen.host_org_details (text)
\bar{A} description of special aspects of the organism that served as host for the production of the entity.
[entity_src_gen]
entity src gen.host org genus
(text)
The genus of the organism that served as host for the production of the entity.
Examples: 'Saccharomyces', 'Escherichia’. [entity_src_gen]
_entity_src_gen.host_org_species
(text)
The species of the organism that served as host for the production of the entity.
Examples: ‘cerevisiae', ‘coli’. [entity_src_gen]

entity_src_gen.host_org_strain

The strain of the organism that served as host for the production of the entity.
Examples: 'DH5a', 'BMH 71-18'. [entity_src_gen]
_entity_src_gen.plasmid_details
(text)
A description of special aspects of the plasmid that produced the entity in the host organism.
[entity_src_gen]

entity_src_gen.plasmid_name

(text)
The name of the plasmid that produced the entity in the host organism.
Examples: 'pET3C', 'pT123sab'
[entity_src_gen]

ENTITY_SRC_NAT

Data items in the ENTITY_SRC_NAT category record details of the source from which the entity was obtained in cases where the entity was isolated directly from a natural tissue.
Category group(s): inclusive_group
entity_group

Category key(s): _entity_src_nat.entity_id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to $P D B$ entry $5 H V P$.
loop_
_entity_src_nat.entity_id
entity src nat. common name
entity_src_nat.genus
entity_src_nat.species
entity_src_nat.details
2 'bacteria' 'Actinomycetes' ?
; Acetyl-pepstatin was isolated by Dr. K. Oda, Osaka
Prefecture University, and provided to us by Dr. Ben
Dunn, University of Florida, and Dr. J. Kay, University of Wales.
;
*_entity_src_nat.common_name (text)
The common name of the organism from which the entity was isolated.
Examples: 'man', 'yeast', 'bacteria'. [entity_src_nat]
_entity_src_nat.details
(text)
$\overline{\mathrm{A}}$ description of special aspects of the organism from which the entity was isolated.
*_entity_src_nat.entity_id
This data item is a pointer to _entity.id in the ENTITY category.
*_entity_src_nat.genus
(text)
The genus of the organism from which the entity was isolated.
Examples: ‘Homo', 'Saccharomyces', 'Escherichia'. [entity_src_nat]
*_entity_src_nat.species
(text)
The species of the organism from which the entity was isolated.
Examples: ‘sapiens’, ‘cerevisiae’, ‘coli’'
[entity_src_nat]
*_entity_src_nat.strain
(text)
The strain of the organism from which the entity was isolated.
Examples: ‘DH5a', ‘BMH 71-18'.
[entity_src_nat]
*_entity_src_nat.tissue
(text)
The tissue of the organism from which the entity was isolated.
Examples: 'heart', 'liver', 'eye lens'. [entity_src_nat
*_entity_src_nat.tissue_fraction
The subcellular fraction of the tissue of the organism from which the entity was isolated.
Examples: 'mitochondria', 'nucleus', 'membrane'. [entity_src_nat]

ENTRY

There is only one item in the ENTRY category, _entry.id. This data item gives a name to this entry and is indirectly a key to the categories (such as CELL, GEOM, EXPTL) that describe information pertinent to the entire data block.
Category group(s): inclusive_group
entry_group
Category key(s): _entry.id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to $P D B$ entry $5 H V P$.
_entry.id '5HVP'

Example 2 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].
_entry.id ' TOZ^{\prime}
*_entry.id
(code)
_audit_block_code(cif_core.dic 2.0.1)
The value of _entry.id identifies the data block. Note that this item need not be a number; it can be any unique identifier.
The following item(s) have an equivalent role in their respective categories:
_atom_sites.entry_id,
_cell.entry_id,
_cell_measurement.entry_id,
_chemical.entry_id,
_chemical_formula.entry_id,
_computing.entry_id,
_database.entry_id,
_database_PDB_matrix.entry_id,
_entry_link.entry_id,
_exptl.entry_id,
_geom.entry_id,
_journal.entry_id,
phasing_averaging.entry_id,
_phasing_isomorphous.entry_id,
_phasing_MAD.entry_id,
_phasing_MIR.entry_id,
_publ.entry_id,
_publ_manuscript_incl.entry_id,

```
_refine.entry_id,
_refine_analyze.entry_id,
_reflns.entry_id,
_struct.entry_id,
_struct_keywords.entry_id
_struct_mon_details.entry_id,
_symmetry.entry_id.
```


ENTRY_LINK

Data items in the ENTRY LINK category record the relationships between the current data block identified by _entry.id and other data blocks within the current file which may be referenced in the current data block.
Category group(s): inclusive_group
entry_group

Category key(s): _entry_link.id
entry_link.entry_id
Example 1 - example file for the one-dimensional incommensurately modulated structure of $\mathrm{K}_{2} \mathrm{SeO}_{4}$.
loop_
entry link.id
entry_link.entry_id
_entry_link.details
KSE COM KSE TEXT
'experimental data common to ref./mod. structures'
KSE_REF KSE_TEXT 'reference structure
KSE MOD KSE TEXT 'modulated structure
_entry_link.details
(text)
audit link block description(cif_core.dic 2.0.1)
A description of the relationship between the data blocks identified by _entry_link.id and _entry_link.entry_id.
[entry_link

```
*_entry_link.entry_id
This data item is a pointer to _entry.id in the ENTRY category.
```

*_entry_link.id
(code)
_audit_link_block_code(cif_core.dic 2.0.1
The value of _entry_link.id identifies a data block related to the current data block
[entry_link]

EXPTL

Data items in the EXPTL category record details about the experimental work prior to the intensity measurements and details about the absorption-correction technique employed
Category group(s): inclusive_group
exptl_group
Category key(s): exptl.entry id
Example 1 - based on laboratory records for $\mathrm{Yb}\left(\mathrm{S}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2}(\mathrm{THF})_{4}$

```
exptl.entry_id datablockl
    exptl.absorpt coefficient mu 1.22
    exptl.absorpt correction T max 0.896
    exptl.absorpt_correction_T_min 0.802
    exptl.absorpt correction type integration
    exptl.absorpt_process_details
    ; Gaussian grid method from SHELX76
    Sheldrick, G. M., "SHELX-76: structure determination and
    refinement program", Cambridge University, UK, }197
;
    exptl.crystals number 1
    exptl.details
    Enraf-Nonius LT2 liquid nitrogen variable-temperature
    device used
;
    exptl.method 'single-crystal x-ray diffraction
    exptl.method_details
; graphite monochromatized Cu K(alpha) fixed tube and
    Enraf-Nonius CAD4 diffractometer used
```


_exptl.absorpt_coefficient_mu
 _exptl_absorpt_coefficient_mu(cif_core.dic 2.0.1)

(float)
The absorption coefficient μ in reciprocal millimetres calculated from the atomic content of the cell, the density and the radiation wavelength.
The permitted range is $[0.0, \infty)$.
[exptl]

exptl.absorpt correction T max

(float)
_exptl_absorpt_correction_T_max (cif_core.dic 2.0.1)
The maximum transmission factor for the crystal and radiation. The maximum and minimum transmission factors are also referred to as the absorption correction A or $1 / A^{*}$.
The permitted range is $[0.0,1.0]$ [exptl]
_exptl.absorpt_correction_T_min
(float) _exptl_absorpt_correction_T_min(cif_core.dic 2.0.1)
The minimum transmission factor for the crystal and radiation. The maximum and minimum transmission factors are also referred to as the absorption correction A or $1 / A^{*}$
The permitted range is $[0.0,1.0]$. [exptl]
exptl.absorpt_correction_type
(ucode)
_exptl_absorpt_correction_type(cif_core.dic 2.0.1)
The absorption correction type and method. The value 'empirical' should not be used unless more detailed information is not available.

The data value must be one of the following:

analytical	analytical from crystal shape
cylinder	cylindrical
empirical	empirical from intensities
gaussian	Gaussian from crystal shape
integration	integration from crystal shape
multi-scan	symmetry-related measurements
none	no correction applied
numerical	numerical from crystal shape
psi-scan	ψ-scan corrections
refdelf	refined from ΔF
sphere	spherical

exptl.absorpt_process_details
exptl_absorpt_process_details(cif_core.dic 2.0.1)
Description of the absorption process applied to the intensities. A literature reference should be supplied for ψ-scan techniques.
Example: 'Tompa analytical'.
exptl.crystals_number
(int)
_exptl_crystals_number (cif_core.dic 2.0.1)
The total number of crystals used in the measurement of intensities.
The permitted range is $[1, \infty)$.
[exptl]
_exptl.details
(text)
exptl_special_details(cif_core.dic 2.0.1)
Any special information about the experimental work prior to the intensity measurement. See also _exptl_crystal.preparation.
[exptl]
*_exptl.entry_id
This data item is a pointer to entry.id in the ENTRY category.

The method used in the experiment.
Examples: ‘single-crystal x-ray diffraction',
'single-crystal neutron diffraction',
'single-crystal electron diffraction', 'fiber x-ray diffraction',
'fiber neutron diffraction', ‘fiber electron diffraction',
'single-crystal joint x-ray and neutron diffraction',
single-crystal joint x-ray and electron diffraction',
'solution nmr', 'solid-state nmr', 'theoretical model', 'other'
_exptl.method_details
$\overline{\mathrm{A}}$ description of special aspects of the experimental method.
Examples: '29 structures', 'minimized average structure'. [exptl]

EXPTL_CRYSTAL

Data items in the EXPTL_CRYSTAL category record the results of experimental measurements on the crystal or crystals used, such as shape, size or density.
Category group(s): inclusive_group
Category key(s): _exptl_crystal.id
Example 1 - based on laboratory records for $\mathrm{Yb}\left(\mathrm{S}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2}(\mathrm{THF})_{4}$.

```
_exptl_crystal.id }\quad\mathrm{ xst2l 
```

_exptl_crystal.density_diffrn 1.113
-exptl_crystal.density_Matthews 1.01
_exptl_crystal.density_meas 1.11
_exptl_crystal.density_meas_temp 294.5
-exptl_crystal.density_method 'neutral buoyancy'
_exptl_crystal.density_percent_sol 0.15
\# $\mathrm{P}=1$ - (1.23*N*MMass) / V
exptl_crystal.description 'hexagonal rod, uncut'
exptl_crystal.F_000
202
exptl_crystal.preparation
; hanging drop, crystal soaked in 10% ethylene glycol for 10 h , then placed in nylon loop at data collection time
;
_exptl_crystal.size_max $\quad 0.30$
_exptl_crystal.size_mid 0.20
_exptl_crystal.size_min 0.05
_exptl_crystal.size_rad 0.025

Example 2 - using separate items to define upper and lower limits for a value.
_exptl_crystal.density_meas_gt 2.5
_exptl_crystal.density_meas_1t 5.0

Example 3-here the density was measured at some unspecified temperature below room temperature.
exptl_crystal.density_meas_temp_lt 300
_exptl_crystal.colour
(line)
_exptl_crystal_colour (cif_core.dic 2.0.1)
The colour of the crystal.
Example: ‘dark green'.
[exptl_crystal]

```
exptl_crystal.colour_lustre

The enumeration list of standardized names developed for the International Centre for Diffraction Data. The colour of a crystal is given by the combination of _exptl_crystal.colour_ modifier with _exptl_crystal.colour_primary, as in 'dark-green' or 'bluish-violet', if necessary combined with _exptl_crystal.colour_lustre, as in 'metallic-green'.
Related item: _exptl_crystal.colour (alternate).
The data value must be one of the following:
metallic
dull
clear
[exptl_crystal]

\section*{_exptl_crystal.colour_modifier}
(line)
_exptl_crystal_colour_modifier (cif_core.dic 2.3)
The enumeration list of standardized names developed for the International Centre for Diffraction Data. The colour of a crystal is given by the combination of _exptl_crystal.colour_ modifier with _exptl_crystal.colour_primary, as in 'dark-green' or 'bluish-violet', if necessary combined with _exptl_crystal.colour_lustre, as in 'metallic-green'.
Related item: _exptl_crystal.colour (alternate).

The data value must be one of the following:
light
dark
whitish
blackish
grayish
brownish
reddish
pinkish
orangish
yellowish
greenish
bluish
[exptl_crystal]
_exptl_crystal.colour_primary (line)
_exptl_crystal_colour_primary (cif_core.dic 2.3)
The enumeration list of standardized names developed for the International Centre for Diffraction Data. The colour of a crystal is given by the combination of _exptl_crystal.colour_ modifier with _exptl_crystal.colour_primary, as in 'dark-green' or 'bluish-violet', if necessary combined with _exptl_crystal.colour_lustre, as in 'metallic-green'.
Related item: _exptl_crystal.colour (alternate).
The data value must be one of the following:
colourless
white
black
gray
brown
red
pink
orange
yellow
green
blue
violet
[exptl_crystal]

\section*{_exptl_crystal.density_diffrn \\ _exptl_crystal_density_diffrn(cif_core.dic 2.0.1)}
(float)
Density values calculated from the crystal cell and contents. The units are megagrams per cubic metre (grams per cubic centimetre). The permitted range is \([0.0, \infty)\).
[exptl_crystal]
- exptl_crystal.density_Matthews (float)

The density of the crystal, expressed as the ratio of the volume of the asymmetric unit to the molecular mass of a monomer of the structure, in units of ångströms \({ }^{3}\) per dalton.

Reference: Matthews, B. W. (1968). J. Mol. Biol. 33, 491-497.
[exptl_crystal]
exptl_crystal.density_meas \(\quad\) (float, su) \()\) exptl crystal density meas(cif_core.dic 2.3)
_exptl_crystal_density_meas(cif_core.dic 2.3)
Density values measured using standard chemical and physical methods. The units are megagrams per cubic metre (grams per cubic centimetre).
The permitted range is \([0.0, \infty)\).
Related item: _exptl_crystal.density_meas_esd (associated esd).
[exptl_crystal]

\footnotetext{
_exptl_crystal.density_meas_esd (float)
\(\bar{T}\) The standard uncertainty (estimated standard deviation) of _exptl_crystal.density_meas.
Related item: _exptl_crystal.density_meas (associated value).
}
[exptl_crystal]
```

_exptl_crystal.density_meas_gt _exptl_crystal_density_meas_gt(cif_core.dic 2.3)

```
(float)
The value above which the density measured using standard chemical and physical methods lies. The units are megagrams per cubic metre (grams per cubic centimetre). _expt1_ crystal.density_meas_gt and _exptl_crystal.density_ meas_lt should not be used to report new experimental work, for which exptl_crystal.density_meas should be used. These items are intended for use in reporting information in existing databases and archives which would be misleading if reported under _exptl_crystal.density_meas.
The permitted range is \([0.0, \infty)\).
Related item: _exptl_crystal.density_meas (alternate)
Example: ' 2.5 ' (lower limit for the density (only the range within which the density lies was given in the original paper)).
[exptl crystal]

\section*{_exptl_crystal.density_meas_lt \\ _exptl_crystal_density_meas_lt(cif_core.dic 2.3)}
(float)
The value below which the density measured using standard chemical and physical methods lies. The units are megagrams per cubic metre (grams per cubic centimetre). _exptl_ crystal.density_meas_gt and exptl_crystal.density_ meas_lt should not be used to report new experimental work, for which exptl crystal.density meas should be used. These items are intended for use in reporting information in existing databases and archives which would be misleading if reported under exptl_crystal.density_meas.
The permitted range is \([0.0, \infty)\).
Related item: _exptl_crystal.density_meas (alternate)
Examples: ‘ 1.0 ’ (specimen floats in water), ‘ 5.0 ’ (upper limit for the density (only the range within which the density lies was given in the original paper)). [exptl_crystal]

\section*{_exptl_crystal.density_meas_temp}
(float, su)
_exptl_crystal_density_meas_temp(cif_core.dic 2.3)
Temperature in kelvins at which _exptl_crystal.density_meas was determined.
The permitted range is \([0.0, \infty)\). [exptl_crystal]

\section*{_exptl_crystal.density_meas_temp_esd (float)}

The standard uncertainty (estimated standard deviation) of _exptl_crystal.density_meas_temp.
[exptl_crystal]
_exptl_crystal.density_meas_temp_gt (foat)
_exptl_crystal_density_meas_temp_gt(cif_core.dic 2.3)
Temperature in kelvins above which _exptl_crystal. density_meas was determined. _exptl_crystal.density_meas _temp_gt and _exptl_crystal.density_meas_temp_lt should not be used for reporting new work, for which the correct temperature of measurement should be given. These items are intended for use in reporting information stored in databases or archives which would be misleading if reported under
_exptl_crystal.density_meas_temp.
The permitted range is \([0.0, \infty)\).
Related item: _exptl_crystal.density_meas_temp (alternate).
[exptl_crystal]

\footnotetext{
_exptl_crystal.density_meas_temp_lt
(float) _exptl_crystal_density_meas_temp_lt(cif_core.dic 2.3)
Temperature in kelvins below which exptl_crystal. density_meas was determined. _exptl_crystal.density_meas temp_gt and _exptl_crystal.density_meas_temp_lt should not be used for reporting new work, for which the correct temperature of measurement should be given. These items are intended for use in reporting information stored in databases
}
or archives which would be misleading if reported under _exptl_crystal.density_meas_temp.
The permitted range is \([0.0, \infty)\).
Related item: exptl crystal.density meas temp (alternate)
Example: ' 300 ’ (The density was measured at some unspecified temperature below room temperature.). [exptl_crystal]
_exptl_crystal.density_method
exptl_crystal_density_method(cif_core.dic 2.0.1)
The method used to measure _exptl_crystal.density_meas.
[exptl_crystal]
exptl_crystal.density_percent_sol (float)
Density value \(P\) calculated from the crystal cell and contents, expressed as per cent solvent.
\[
P=1-\left(1.23 N M_{\text {Mass }}\right) / V,
\]
where \(N=\) the number of molecules in the unit cell, \(M_{\text {Mass }}=\) the molecular mass of each molecule ( \(\mathrm{g} \mathrm{mol}^{-1}\) ), \(V=\) the volume of the unit cell \(\left(\AA^{3}\right)\) and \(1.23=\) a conversion factor evaluated as
\[
\frac{\left(0.74 \mathrm{~cm}^{3} / \mathrm{g}\right)\left(10^{24} \AA^{3} / \mathrm{cm}^{3}\right)}{\left(6.02 \times 10^{23} \text { molecules } / \mathrm{mole}\right)},
\]
where 0.74 is an assumed value for the partial specific volume of the molecule.
The permitted range is \([0.0, \infty)\).
[exptl_crystal]

\section*{_exptl_crystal.description}
(text)
_exptl_crystal_description (cif_core.dic 2.0.1)
A description of the quality and habit of the crystal. The crystal dimensions should not normally be reported here; use instead the specific items in the EXPTL_CRYSTAL category relating to size for the gross dimensions of the crystal and data items in the EXPTL_CRYSTAL_FACE category to describe the relationship between individual faces.

\section*{[exptl_crystal]}
_exptl_crystal.F_000
_exptl_crystal_F_000 (cif_core.dic 2.0.1)
The effective number of electrons in the crystal unit cell contributing to \(F(000)\). This may contain dispersion contributions and is calculated as
\[
F(000)=\left[\left(\sum f_{r}\right)^{2}+\left(\sum f_{i}\right)^{2}\right]^{1 / 2}
\]
where \(f_{r}=\) real part of the scattering factors at \(\theta=0^{\circ}, f_{i}=\) imaginary part of the scattering factors at \(\theta=0^{\circ}\) and the sum is taken over each atom in the unit cell.
The permitted range is \([1, \infty)\).
[exptl_crystal]

\footnotetext{
*_exptl_crystal.id
(code)
_exptl_crystal_id(cif_core.dic 2.0.1)
The value of _exptl_crystal.id must uniquely identify a record in the EXPTL_CRYSTAL list. Note that this item need not be a number; it can be any unique identifier.
The following item(s) have an equivalent role in their respective categories:
_diffrn.crystal_id,
_exptl_crystal_grow.crystal_id,
_exptl_crystal_face.crystal_id
_exptl_crystal_grow_comp.crystal_id,
_refln.crystal_id.
[exptl_crystal]
}

\section*{_exptl_crystal.preparation \\ exptl crystal preparation(cif_core.dic 2.0.1)}

Details of crystal growth and preparation of the crystal (e.g. mounting) prior to the intensity measurements.
Example: 'mounted in an argon-filled quartz capillary'
[exptl_crystal]
_exptl_crystal.size_max
(float)
exptl_crystal_size_max (cif_core.dic 2.0.1)
The maximum dimension of the crystal. This item may appear in a list with _exptl_crystal.id if multiple crystals are used in the experiment.
The permitted range is \([0.0, \infty)\).
[exptl_crystal]

\section*{_exptl_crystal.size_mid}
(float)
_exptl_crystal_size_mid(cif_core.dic 2.0.1)
The medial dimension of the crystal. This item may appear in a list with _exptl_crystal.id if multiple crystals are used in the experiment.
The permitted range is \([0.0, \infty)\).
[exptl_crystal]

\section*{_exptl_crystal.size_min}
(float)
exptl crystal_size_min(cif_core.dic 2.0.1)
The minimum dimension of the crystal. This item may appear in a list with _exptı_crystal.id if multiple crystals are used in the experiment.
The permitted range is \([0.0, \infty)\).
[exptl_crystal]

\section*{_exptl_crystal.size_rad}
(float)
exptl_crystal_size_rad(cif_core.dic 2.0.1)
The radius of the crystal, if the crystal is a sphere or a cylinder
This item may appear in a list with _exptl_crystal.id if multiple crystals are used in the experiment.
The permitted range is \([0.0, \infty)\).
[exptl_crystal]

\section*{EXPTL_CRYSTAL_FACE}

Data items in the EXPTL_CRYSTAL_FACE category record details of the crystal faces.
Category group(s): inclusive_group
exptl_group

Category key(s): _exptl_crystal_face.crystal_id
exptl_crystal_face.index_h
exptl_crystal_face.index_k exptl crystal face.index 1

Example 1 - based on laboratory records for \(\mathrm{Yb}\left(\mathrm{S}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2}(\mathrm{THF})_{4}\) for the 100 face of crystal xstll.
```

exptl_crystal_face.crystal_id xstll
_exptl_crystal_face.index_h
exptl crystal face.index k
exptl_crystal_face.index_l
exptl crystal face.diffr chi 42.56
exptl_crystal_face.diffr_kappa 30.23
exptl_crystal_face.diffr_phi -125.56
_exptl_crystal_face.diffr_psi -0.34
exptl crystal face.perp dist 0.025

```
*_exptl_crystal_face.crystal_id

This data item is a pointer to _exptl_crystal.id in the EXPTL_CRYSTAL category.
```

_exptl_crystal_face.diffr_chi
_exptl_crystal_face_diffr_chi(cif_core.dic 2.0.1)

```

The \(\chi\) diffractometer setting angle in degrees for a specific crystal face associated with _exptl_crystal_face.perp_dist.

\section*{_exptl_crystal_face.diffr_kappa}
(float)
exptl_crystal_face_diffr_kappa(cif_core.dic 2.0.1)
The \(\kappa\) diffractometer setting angle in degrees for a specific crystal face associated with _exptl_crystal_face.perp_dist.
[exptl_crystal_face]

> _exptl_crystal_face.diffr_phi
> _exptl_crystal_face_diffr_phi(cif_core.dic 2.0.1)
(float)
The \(\varphi\) diffractometer setting angle in degrees for a specific crystal face associated with _exptl_crystal_face.perp_dist.
[exptl_crystal_face]
_exptl_crystal_face.diffr_psi
(float)
_exptl_crystal_face_diffr_psi(cif_core.dic 2.0.1)
The \(\psi\) diffractometer setting angle in degrees for a specific crystal face associated with _exptl_crystal_face.perp_dist.
[exptl crystal face]
```

*_exptl_crystal_face.index_h
_exptl_crystal_face_index_h(cif_core.dic 2.0.1)
Miller index h of the crystal face associated with the value _exptl_crystal_face.perp_dist.

```
[exptl_crystal_face]
```

*_exptl_crystal_face.index_k
exptl_crystal_face_index_k(cif_core.dic 2.0.1)
Miller index k of the crystal face associated with the value _exptl_crystal_face.perp_dist.

```
[exptl_crystal_face]

\footnotetext{
*_exptl_crystal_face.index_l
_exptl_crystal_face_index_1(cif_core.dic 2.0.1)
Miller index \(l\) of the crystal face associated with the value _exptl_crystal_face.perp_dist.
}
[exptl_crystal_face]

\section*{_exptl_crystal_face.perp_dist}
(float)
_exptl_crystal_face_perp_dist(cif_core.dic 2.0.1)
The perpendicular distance in millimetres from the face to the centre of rotation of the crystal.
The permitted range is \([0.0, \infty)\).
[exptl_crystal_face]

\section*{EXPTL_CRYSTAL_GROW}

Data items in the EXPTL_CRYSTAL_GROW category record details about the conditions and methods used to grow the crystal.
Category group(s): inclusive_group
exptl_group
Category key(s): _exptl_crystal_grow.crystal_id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
_exptl_crystal_grow.crystal_id
exptl_crystal_grow.method
exptl crystal grow.apparatus
_exptl_crystal_grow.atmosphere
_exptl_crystal_grow.pH
exptl_crystal_grow.temp
exptl_crystal_grow.time 'approximately 2 days'

\section*{exptl_crystal_grow.apparatus}

The physical apparatus in which the crystal was grown.
Examples: ‘Linbro plate', 'sandwich box', 'ACA plates’
_exptl_crystal_grow.atmosphere
(text)
The nature of the gas or gas mixture in which the crystal was grown.
Examples: 'room air', 'nitrogen', 'argon'. [exptl_crystal_grow]
```

*_exptl_crystal_grow.crystal_id

```

This data item is a pointer to _exptl_crystal.id in the EXPTL_CRYSTAL category.
_exptl_crystal_grow.details
\(\overline{\text { A description of special aspects of the crystal growth. }}\)
Examples:
; Solution 2 was prepared as a well solution and mixed. A droplet containing \(2 \backslash \mathrm{ml}\) of solution 1 was delivered onto a cover slip; \(2 \backslash \mathrm{ml}\) of solution 2 was added to the droplet without mixing.
; Crystal plates were originally stored at room temperature for 1 week but no nucleation occurred. They were then transferred to 4 degrees C, at which temperature well formed single crystals grew in 2 days.

The dependence on pH for successful crystal growth is very sharp. At pH 7.4 only showers of tiny crystals grew, at pH 7.5 well formed single crystals grew, at pH 7.6 no crystallization occurred at all.
[exptl_crystal_grow]

\section*{exptl_crystal_grow.method}
(text)
The method used to grow the crystals.
Examples: ‘batch precipitation', 'batch dialysis',
'hanging drop vapor diffusion', 'sitting drop vapor diffusion' [exptl_crystal_grow]
_exptl_crystal_grow.method_ref
(text)
A literature reference that describes the method used to grow the crystals.
Example: 'McPherson et al., 1988'. [exptl_crystal_grow]

\section*{_exptl_crystal_grow.pH}
(float)
\(\bar{T}\) The pH at which the crystal was grown. If more than one pH was employed during the crystallization process, the final pH should be noted here and the protocol involving multiple pH values should be described in _exptl_crystal_grow.details.
The permitted range is \([0.0, \infty)\).
Examples: ‘7.4', '7.6', '4.3'. [exptl_crystal_grow]
_exptl_crystal_grow.pressure
(float, su)
The ambient pressure in kilopascals at which the crystal was grown.
The permitted range is \([0.0, \infty)\).
Related item: _exptl_crystal_grow.pressure_esd (associated esd).
[exptl_crystal_grow]
_exptl_crystal_grow.pressure_esd
(float)
The standard uncertainty (estimated standard deviation) of _exptl_crystal_grow.pressure.
Related item: _exptl_crystal_grow.pressure (associated value).
[exptl_crystal_grow]

\section*{_exptl_crystal_grow.seeding}

A description of the protocol used for seeding the crystal growth.
Examples: ‘macroseeding’,
; Microcrystals were introduced from a previous
crystal growth experiment by transfer with a
human hair.
_exptl_crystal_grow.seeding_ref
(text)
\(\overline{\mathrm{A}}\) literature reference that describes the protocol used to seed the crystal.
Example: ‘Stura et al., 1989’.
[exptl_crystal_grow]

\section*{exptl_crystal_grow.temp}
(float, su)
The temperature in kelvins at which the crystal was grown. If more than one temperature was employed during the crystallization process, the final temperature should be noted here and the protocol involving multiple temperatures should be described in _exptl_crystal_grow.details.
The permitted range is \([0.0, \infty)\).
Related item: _exptl_crystal_grow.temp_esd (associated esd).
[exptl_crystal_grow]
_exptl_crystal_grow.temp_details
(text)
A description of special aspects of temperature control during crystal growth.
[exptl_crystal_grow]
exptl_crystal_grow.temp_esd (float)
The standard uncertainty (estimated standard deviation) of _exptl_crystal_grow.temp.
Related item: _exptl_crystal_grow.temp (associated value).
[exptl_crystal_grow]

\section*{_exptl_crystal_grow.time}

\section*{(text)}

The approximate time that the crystal took to grow to the size used for data collection.
Examples: 'overnight', '2-4 days', '6 months'. [exptl_crystal_grow]

\section*{EXPTL_CRYSTAL_GROW_COMP}

Data items in the EXPTL_CRYSTAL_GROW_COMP category record details about the components of the solutions that were 'mixed' (by whatever means) to produce the crystal. In general, solution 1 is the solution that contains the molecule to be crystallized and solution 2 is the solution that contains the precipitant. However, the number of solutions required to describe the crystallization protocol is not limited to 2 . Details of the crystallization protocol should be given in _exptl_crystal_grow_comp.details using the solutions described in EXPTL_CRYSTAL_GROW_COMP.
Category group(s): inclusive_group
exptl_group
Category key(s): _exptl_crystal_grow_comp.id
_exptl_crystal_grow_comp.crystal_id
Example 1-based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

\section*{loop_}
exptl crystal grow comp.crystal id
_exptl_crystal_grow_comp.id
-exptl_crystal_grow_comp.sol_id
_exptl_crystal_grow_comp.name
_exptl_crystal_grow_comp.volume
_exptl_crystal_grow_comp.conc
_exptl_crystal_grow_comp.details
\(\begin{array}{llll}1 & 1 & 1 & \text { HIV-1 protease' }, 0.002 \mathrm{ml} \\ \prime & 6 \mathrm{mg} / \mathrm{ml} \text { ' }\end{array}\)
; The protein solution was in a buffer containing 25 mM NaCl , 100 mM NaMES/ MES buffer, pH 7.5, 3 mM NaAzide
;
122 'NaCl' \(\quad 0.200 \mathrm{ml}^{\prime} \quad \mathrm{A}^{\prime} 4 \quad \mathrm{M} \mathrm{M}^{\prime}\) in 3 mM NaAzide'
132 'Acetic Acid' \(\quad 0.047 \mathrm{ml} \mathrm{m}^{\prime} \quad 100 \mathrm{mM} \mathrm{m}^{\prime}\) in 3 mM NaAzide'
142 'Na Acetate' ' 0.053 ml ' ' 100 mM '
; in 3 mM NaAzide. Buffer components were mixed to produce a pH of 4.7 according to a ratio calculated from the pKa. The actual pH of solution 2 was not measured.
;
152 'water' \(\quad 0.700 \mathrm{ml}\) ' 'neat' 'in 3 mM NaAzide'
exptl crystal grow comp.conc \(\bar{T}\) The concentration of the solution component.
Examples: '200 \ml', '0.1 ml'
[exptl_crystal_grow_comp]
*_exptl_crystal_grow_comp.crystal_id
This data item is a pointer to _exptl_crystal.id in the EXPTL_CRYSTAL category.
_exptl_crystal_grow_comp.details
(text)
\(\overline{\mathrm{A}}\) description of any special aspects of the solution component. When the solution component is the one that contains the macromolecule, this could be the specification of the buffer in which the macromolecule was stored. When the solution component is a buffer component, this could be the methods (or formula) used to achieve a desired pH .
Examples: ‘in 3 mM NaAzide',
; The protein solution was in a buffer
containing 25 mM NaCl, 100 mM NaMES/MES
buffer, pH 7.5, 3 mM NaAzide
; in 3 mM NaAzide. Buffer components were mixed
to produce a pH of 4.7 according to a ratio
calculated from the pKa. The actual pH of solution 2 was not measured.
[exptl_crystal_grow_comp]
*_exptl_crystal_grow_comp.id
(line)
The value of exptl crystal grow comp.id must uniquely identify each item in the EXPTL_CRYSTAL_GROW_COMP list. Note that this item need not be a number; it can be any unique identifier.
Examples: ' 1 ', ' \(A\) ', 'protein in buffer'.
[exptl_crystal_grow_comp]
_exptl_crystal_grow_comp.name
(line)
A common name for the component of the solution.
Examples: 'protein in buffer', ‘acetic acid'.
[exptl_crystal_grow_comp]
_exptl_crystal_grow_comp.sol_id (line)
An identifier for the solution to which the given solution component belongs.
Examples: '1', 'well solution', 'solution A'. [exptl_crystal_grow_comp]
_exptl_crystal_grow_comp.volume (line)

The volume of the solution component.
Examples: '200 \ml', ‘0.1 ml'
[exptl_crystal_grow_comp]

\section*{GEOM}

Data items in the GEOM and related (GEOM_ANGLE, GEOM_BOND, GEOM_CONTACT, GEOM_HBOND and GEOM_TORSION) categories record details about the molecular geometry as calculated from the contents of the ATOM, CELL and SYMMETRY data. Geometry data are therefore redundant, in that they can be calculated from other more fundamental quantities in the data block. However, they provide a check on the correctness of both sets of data and enable the most important geometric data to be identified for publication by setting the appropriate publication flag.
Category group(s): inclusive_group
geom_group

Category key(s): _geom.entry_id

\section*{geom.details}
_geom_special_details(cif_core.dic 2.0.1)
A description of geometry not covered by the existing data names in the GEOM categories, such as least-squares planes.
*_geom.entry_id
This data item is a pointer to _entry.id in the ENTRY category.

\section*{GEOM_ANGLE}

Data items in the GEOM_ANGLE category record details about the bond angles as calculated from the contents of the ATOM, CELL and SYMMETRY data.
Category group(s): inclusive_group geom_group
Category key(s): _geom_angle.atom_site_id_1
geom angle.atom site id 2
_geom_angle.atom_site_id_3
_geom_angle.site_symmetry_1
geom_angle.site_symmetry_2
_geom_angle.site_symmetry_3
Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst (1991), C47, 2276-2277]
loop_
_geom_angle.atom_site_id_1
_geom_angle.atom_site_id_2
geom angle.atom site id 3
_geom_angle.value
_geom_angle.value_esd
_geom_angle.site_symmetry_1
_geom_angle.site_symmetry_2
_geom_angle.site_symmetry_3
_geom_angle.publ_flag
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline C2 & -1 & C5 & 111.6 & 0.2 & 1_555 & 1_555 & 1_555 & s \\
\hline 01 & C2 & C3 & 110.9 & 0.2 & 1_555 & 1_555 & 1_555 & s \\
\hline 01 & C2 & 021 & 122.2 & 0.3 & 1_555 & 1_555 & 1_555 & s \\
\hline C3 & C2 & 021 & 127.0 & 0.3 & 1_555 & 1_555 & 1_555 & s \\
\hline C2 & C3 & N4 & 101.3 & 0.2 & 1_555 & 1_555 & 1_555 & yes \\
\hline C2 & C3 & C31 & 111.3 & 0.2 & 1_555 & 1_555 & 1_555 & s \\
\hline C2 & C3 & H3 & 107 & 1 & 1_555 & 1_555 & 1_555 & \\
\hline N4 & C3 & C31 & 116.7 & 0.2 & 1_555 & 1_555 & 1_555 & yes \\
\hline
\end{tabular}
\# - - - - data truncated for brevity - - -
_geom_angle.atom_site_auth_asym_id_1
\(\overline{\text { An optional identifier of }} \overline{\text { of }}\) the first of the three atom sites that define the angle. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.

\section*{geom angle.atom site auth asym id 2}

An optional identifier of the second of the three atom sites that define the angle. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.

\section*{_geom_angle.atom_site_auth_asym_id_3}

An optional identifier of the third of the three atom sites that define the angle. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.
_geom_angle.atom_site_auth_atom_id_1
An optional identifier of the first of the three atom sites that define the angle. This data item is a pointer to _atom_site.auth_atom_id in the ATOM SITE category.

\section*{_geom_angle.atom_site_auth_atom_id_2}

An optional identifier of the second of the three atom sites that define the angle. This data item is a pointer to _atom_site.auth_atom_id in the ATOM_SITE category.
_geom_angle.atom_site_auth_atom_id_3
An optional identifier of the third of the three atom sites that define the angle. This data item is a pointer to _atom_site.auth_atom_id in the ATOM_SITE category.
_geom_angle.atom_site_auth_comp_id_1
An optional identifier of the first of the three atom sites that define the angle. This data item is a pointer to _atom_site. auth_comp_id in the ATOM_SITE category.
_geom_angle.atom_site_auth_comp_id_2
An optional identifier of the second of the three atom sites that define the angle. This data item is a pointer to _atom_site.auth_comp_id in the ATOM_SITE category.
_geom_angle.atom_site_auth_comp_id_3
An optional identifier of the third of the three atom sites that define the angle. This data item is a pointer to _atom_site.auth_comp_id in the ATOM_SITE category.

\section*{_geom_angle.atom_site_auth_seq_id_1}

An optional identifier of the first of the three atom sites that define the angle. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.

\section*{_geom_angle.atom_site_auth_seq_id_2}

An optional identifier of the second of the three atom sites that define the angle. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.

\section*{_geom_angle.atom_site_auth_seq_id_3}

An optional identifier of the third of the three atom sites that define the angle. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.
*_geom_angle.atom_site_id_1
_geom_angle_atom_site_label_1 (cif_core.dic 2.0.1)
The identifier of the first of the three atom sites that define the angle. This data item is a pointer to _atom_site.id in the ATOM_SITE category.
*_geom_angle.atom_site_id_2
_-geom_angle_atom_site_1abel_-_ (cif_core.dic 2.0.1)
The identifier of the second of the three atom sites that define the angle. The second atom is taken to be the apex of the angle. This data item is a pointer to _atom_site.id in the ATOM_SITE category.
*_geom_angle.atom_site_id_3
_geom_angle_atom_site_1abel_3(cif_core.dic 2.0.1)
The identifier of the third of the three atom sites that define the angle. This data item is a pointer to _atom_site.id in the ATOM_SITE category.
_geom_angle.atom_site_label_alt_id_1
An optional identifier of the first of the three atom sites that define the angle. This data item is a pointer to _atom_site.label_alt_id in the ATOM_SITE category.

\footnotetext{
_geom_angle.atom_site_label_alt_id_2

An optional identifier of the second of the three atom sites that define the angle. This data item is a pointer to _atom_site.label_alt_id in the ATOM_SITE category.
}
_geom_angle.atom_site_label_alt_id_3
An optional identifier of the third of the three atom sites that define the angle. This data item is a pointer to _atom_site.label_alt_id in the ATOM_SITE category.

\section*{geom angle.atom site label asym id 1}

An optional identifier of the first of the three atom sites that define the angle. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.
_geom_angle.atom_site_label_asym_id_2
An optional identifier of the second of the three atom sites that define the angle. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.
geom_angle.atom_site_label_asym_id_3
An optional identifier of the third of the three atom sites that define the angle. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.
_geom_angle.atom_site_label_atom_id_1
An optional identifier of the first of the three atom sites that define the angle. This data item is a pointer to _atom_site.label_atom_id in the ATOM_SITE category.
_geom_angle.atom_site_label_atom_id_2
\(\overline{\text { An optional identifier of }} \overline{\text { the }}\) the second of the three atom sites that define the angle. This data item is a pointer to _atom_site.label_atom_id in the ATOM_SITE category.
_geom_angle.atom_site_label_atom_id_3
An optional identifier of the third of the three atom sites that define the angle. This data item is a pointer to _atom_site.label_atom_id in the ATOM_SITE category.
_geom_angle.atom_site_label_comp_id_1
An optional identifier of the first of the three atom sites that define the angle. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.
_geom_angle.atom_site_label_comp_id_2
An optional identifier of the second of the three atom sites that define the angle. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.

\section*{geom_angle.atom_site_label_comp_id_3}

An optional identifier of the third of the three atom sites that define the angle. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.
_geom_angle.atom_site_label_seq_id_1
\(\overline{\text { An optional identifier of the first of the three atom sites that define }}\) the angle. This data item is a pointer to _atom_site. label_seq_id in the ATOM_SITE category.

\footnotetext{
geom_angle.atom_site_label_seq_id_2
An optional identifier of the second of the three atom sites that define the angle. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.
}
_geom_angle.atom_site_label_seq_id_3
An optional identifier of the third of the three atom sites that define the angle. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.

\section*{_geom_angle.publ_flag \\ _geom_angle_publ_flag (cif_core.dic 2.0.1)}
(ucode)
This code signals whether the angle is referred to in a publication or should be placed in a table of significant angles.
\begin{tabular}{ll} 
The data value must be one of the following: \\
no & do not include angle in special list \\
n & abbreviation for 'no' \\
yes & do include angle in special list \\
y & abbreviation for 'yes'
\end{tabular}
[geom angle]

\section*{*_geom_angle.site_symmetry_1 \\ _geom_angle_site_symmetry_1(cif_core.dic 2.0.1)}
(symop)
The symmetry code of the first of the three atom sites that define the angle.
Where no value is given, the assumed value is ' \(1 \_555\) '.
Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied), '7_645’ (7th symmetry position: \(+a\) on \(x,-b\) on \(y\) ).
[geom_angle]

\section*{* geom angle.site symmetry 2 \\ _geom_angle_site_symmetry_2(cif_core.dic 2.0.1)}
(symop)

The symmetry code of the second of the three atom sites that define the angle.
Where no value is given, the assumed value is ' 1.555 '.
Examples: '.' (no symmetry or translation to site), '4’ (4th symmetry operation applied),
'7_645' (7th symmetry position: \(+a\) on \(x,-b\) on \(y\) ).
[geom_angle]

\section*{*_geom_angle.site_symmetry_3}
(symop)
_geom_angle_site_symmetry_3(cif_core.dic 2.0.1)
The symmetry code of the third of the three atom sites that define the angle.
Where no value is given, the assumed value is ' 1.555 '.
Examples: ' .' (no symmetry or translation to site), '4’ (4th symmetry operation applied),
'7_645' (7th symmetry position: \(+a\) on \(x,-b\) on \(y\) ).
[geom_angle]
_geom_angle.value
(float, su)
_geom_angle (cif_core.dic 2.0.1)
Angle in degrees defined by the three sites _geom_angle. atom_site_id_1, _geom_angle.atom_site_id_2 and _geom_ angle.atom_site_id_3.
Related item: _geom_angle.value_esd (associated esd). [geom_angle]

\section*{GEOM_BOND}

Data items in the GEOM_BOND category record details about the bond lengths as calculated from the contents of the ATOM, CELL and SYMMETRY data.
Category group(s): inclusive_group
geom_group
Category key(s):_geom_bond.atom_site_id_1 _geom_bond.atom_site_id_2
_geom_bond.site_symmetry_1 geom_bond.site_symmetry_2

Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].

\section*{loop_}
_geom_bond.atom_site_id_1
_geom_bond.atom_site_id_2
_geom_bond.dist
geom_bond.dist_esd
_geom_bond.site_symmetry_1
_geom_bond.site_symmetry_2
_geom_bond.publ_flag
01 C2 1.342 0.004 1_555 1_555 yes
01 C5 \(1.4390 .003 \quad 1 \_555 \quad 1 \_555\) yes
C2 C3 1.5120 .004 1_555 1_555 yes
C2 \(021 \quad 1.1990 .004 \quad 1 \_555 \quad 1 \_555\) yes
C3 N4 1.4650 .003 1_555 \(\quad 1 \_555\) yes
C3 C31 \(1.5370 .004 \quad 1 \_555 \quad 1 \_555\) yes
C3 н3 \(1.00 \quad 0.03 \quad 1 \_555 \quad 1 \_555\) no
N4 C5 \(1.4720 .003 \quad 1 \_555 \quad 1 \_555\) yes
\# - - - - data truncated for brevity - - - -
_geom_bond.atom_site_auth_asym_id_1
An optional identifier of the first of the two atom sites that define the bond. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.

\section*{_geom_bond.atom_site_auth_asym_id_2}
\(\overline{\text { An }}\) optional identifier of the second of the two atom sites that define the bond. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.

\section*{geom bond.atom site auth atom id 1}

An optional identifier of the first of the two atom sites that define the bond. This data item is a pointer to _atom_site.auth_atom_id in the ATOM_SITE category.
_geom_bond.atom_site_auth_atom_id_2
An optional identifier of the second of the two atom sites that define the bond. This data item is a pointer to _atom_site.auth_atom_id in the ATOM_SITE category.
_geom_bond.atom_site_auth_comp_id_1
An optional identifier of the first of the two atom sites that define the bond. This data item is a pointer to _atom_site.auth_comp_id in the ATOM_SITE category.

\section*{geom bond.atom site auth comp id 2}

An optional identifier of the second of the two atom sites that define the bond. This data item is a pointer to _atom_site.auth_comp_id in the ATOM_SITE category.
_geom_bond.atom_site_auth_seq_id_1
An optional identifier of the first of the two atom sites that define the bond. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.

\section*{_geom_bond.atom_site_auth_seq_id_2}

An optional identifier of the second of the two atom sites that define the bond. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.
*_geom_bond.atom_site_id_1
_geom_bond_atom_site_label_1 (cif_core.dic 2.0.1)
The identifier of the first of the two atom sites that define the bond. This data item is a pointer to _atom_site.id in the ATOM_SITE category.
*_geom_bond.atom_site_id_2
_geom_bond_atom_site_label_2 (cif_core.dic 2.0.1)
The identifier of the second of the two atom sites that define the bond. This data item is a pointer to _atom_site.id in the ATOM_SITE category.
_geom_bond.atom_site_label_alt_id_1
An optional identifier of the first of the two atom sites that define the bond. This data item is a pointer to _atom_site.label_alt_id in the ATOM_SITE category.

\section*{_geom_bond.atom_site_label_alt_id_2}
\(\overline{\text { An }}\) optional identifier of the second of the two atom sites that define the bond. This data item is a pointer to _atom_site.label_alt_id in the ATOM_SITE category.
_geom_bond.atom_site_label_asym_id_1
An optional identifier of the first of the two atom sites that define the bond. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.
_geom_bond.atom_site_label_asym_id_2
An optional identifier of the second of the two atom sites that define the bond. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.
_geom_bond.atom_site_label_atom_id_1
An optional identifier of the first of the two atom sites that define the bond. This data item is a pointer to _atom_site.label_atom_id in the ATOM_SITE category.
_geom_bond.atom_site_label_atom_id_2
\(\overline{\text { An }}\) optional identifier of the second of \({ }^{-}\)the two atom sites that define the bond. This data item is a pointer to _atom_site.label_atom_id in the ATOM_SITE category.

\section*{_geom_bond.atom_site_label_comp_id_1}

An optional identifier of the first of the two atom sites that define the bond. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.

\section*{_geom_bond.atom_site_label_seq_id_1}

An optional identifier of the first of the two atom sites that define the bond. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.
_geom_bond.atom_site_label_seq_id_2
An optional identifier of the second of the two atom sites that define the bond. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.
_geom_bond.dist
(float, su)
_geom_bond_distance (cif_core.dic 2.0.1)
The intramolecular bond distance in ångströms.
The permitted range is \([0.0, \infty)\).
Related item: _geom_bond.dist_esd (associated esd). [geom_bond]
_geom_bond.dist_esd
The standard uncertainty (estimated \begin{tabular}{l} 
(float) \\
_geom_bond.dist. \\
Related item: _geom_bond.dist (associated value).
\end{tabular} deviation) of
[geom_bond]
_geom_bond.publ_flag (ucode)
_geom_bond_publ_flag(cif_core.dic 2.0.1)
This code signals whether the bond distance is referred to in a publication or should be placed in a list of significant bond distances.
The data value must be one of the following:
\begin{tabular}{ll} 
no & do not include bond in special list \\
n & abbreviation for 'no' \\
yes & do include bond in special list \\
Y & abbreviation for 'yes'
\end{tabular}
[geom_bond]
*_geom_bond.site_symmetry_1 (symop)
geom bond site symmetry 1 (cif_core.dic 2.0.1)
_geom_bond_site_symmetry_1 (cif_core.dic 2.0.1)
The symmetry code of the first of the two atom sites that define the bond.

Where no value is given, the assumed value is ' 1.555 ',
Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied),
'7_645' (7th symmetry position: \(+a\) on \(x,-b\) on \(y\) ). [geom_bond]

\footnotetext{
*_geom_bond.site_symmetry_2
(symop)
_geom_bond_site_symmetry_2 (cif_core.dic 2.0.1)
The symmetry code of the second of the two atom sites that define the bond.
Where no value is given, the assumed value is ' 1.555 '
Examples: ' \(\quad\) ' (no symmetry or translation to site), '4’ (4th symmetry operation applied),
'7_645' (7th symmetry position: \(+a\) on \(x,-b\) on \(y\) ). [geom_bond]
}

\section*{_geom_bond.valence}
(int)
geom bond valence (cif_core.dic 2.3)
The bond valence calculated from _geom_bond.dist.
[geom_bond]

\section*{GEOM_CONTACT}

Data items in the GEOM_CONTACT category record details about interatomic contacts as calculated from the contents of the ATOM, CELL and SYMMETRY data.
Category group(s): inclusive_group

\section*{geom_group}

Category key(s): _geom_contact.atom_site_id_1
_geom_contact.atom_site_id_2
_geom_contact.site_symmetry_1
_geom_contact.site_symmetry_2
Example 1 - based on data set CLPHO6 of Ferguson, Ruhl, McKervey \& Browne [Acta Cryst. (1992), C48, 2262-2264].
loop_
geom_contact.atom_site_id_1
_geom_contact.atom_site_id_2
_geom_contact.dist
_geom_contact.dist_esd
_geom_contact.site_symmetry_1
_geom_contact.site_symmetry_2
_geom_contact.publ_flag
O(1) \(O(2) \quad 2.7350 .003\). . yes
\(\mathrm{H}(01) \mathrm{O}(2) 1.82\). . . no

\section*{geom_contact.atom_site_auth_asym_id_1}

An optional identifier of the first of the two atom sites that define the contact. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.

\section*{geom contact.atom site auth asym id 2}
\(\overline{\text { An }}\) optional identifier of the second of the two atom sites that define the contact. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.
_geom_contact.atom_site_auth_atom_id_1
\(\overline{\text { An optional identifier }} \overline{\text { of }}\) the \({ }^{-}\)first of the two atom sites that define the contact. This data item is a pointer to _atom_site.auth_atom_id in the ATOM_SITE category.
_geom_contact.atom_site_auth_atom_id_2
An optional identifier of the second of the two atom sites that define the contact. This data item is a pointer to _atom_site.auth_atom_id in the ATOM_SITE category.
_geom_contact.atom_site_auth_comp_id_1
An optional identifier of the first of the two atom sites that define the contact. This data item is a pointer to _atom_site.auth_comp_id in the ATOM_SITE category.
_geom_contact.atom_site_auth_comp_id_2
An optional identifier of the second of the two atom sites that define the contact. This data item is a pointer to _atom_site. auth_comp_id in the ATOM_SITE category.

\footnotetext{
_geom_contact.atom_site_auth_seq_id_1
An optional identifier of the first of the two atom sites that define the contact. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.
}
_geom_contact.atom_site_auth_seq_id_2
An optional identifier of the second of the two atom sites that define the contact. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.
*_geom_contact.atom_site_id_1
_geom_contact_atom_site_1abel_1(cif_core.dic 2.0.1)
The identifier of the first of the two atom sites that define the contact. This data item is a pointer to _atom_site.id in the ATOM_SITE category.
*_geom_contact.atom_site_id_2
_geom_contact_atom_site_1abel_2(cif_core.dic 2.0.1)
The identifier of the second of the two atom sites that define the contact. This data item is a pointer to _atom_site.id in the ATOM_SITE category.
_geom_contact.atom_site_label_alt_id_1
An optional identifier of the first of the two atom sites that define the contact. This data item is a pointer to _atom_site.label_alt_id in the ATOM_SITE category.
_geom_contact.atom_site_label_alt_id_2
\(\overline{\text { An optional identifier of }} \overline{\text { of }}\) the second \(\overline{\text { of }}\) the two atom sites that define the contact. This data item is a pointer to _atom_site.label_alt_id in the ATOM_SITE category.
_geom_contact.atom_site_label_asym_id_1
An optional identifier of the first of the two atom sites that define the contact. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.
_geom_contact.atom_site_label_asym_id_2
An optional identifier of the second of the two atom sites that define the contact. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.

\section*{geom contact.atom site label atom id 1}
\(\bar{A}\) n optional identifier of the first of the two atom sites that define the contact. This data item is a pointer to _atom_site.label_atom_id in the ATOM_SITE category.
_geom_contact.atom_site_label_atom_id_2
\(\bar{A}\) n optional identifier of the second \(\overline{\text { of }}\) the two \(\overline{-}\) atom sites that define the contact. This data item is a pointer to _atom_site.label_atom_id in the ATOM_SITE category.
_geom_contact.atom_site_label_comp_id_1
An optional identifier of the first of the two atom sites that define the contact. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.

\footnotetext{
_geom_contact.atom_site_label_comp_id_2
An optional identifier of the second of the two atom sites that define the contact. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.
}
```

_geom_contact.atom_site_label_seq_id_1

```
\(\overline{\text { An }}\) optional identifier \(\overline{\text { of }}\) the \({ }^{-}\)first of the two atom sites
that define the contact. This data item is a pointer to
_atom_site.label_seq_id in the ATOM_SITE category.
_geom_contact.atom_site_label_seq_id_2
An optional identifier of the second of the two atom sites
that define the contact. This data item is a pointer to
_atom_site.label_seq_id in the ATOM_SITE category.
_geom_contact.dist
(float, su)
_geom_contact_distance(cif_core.dic 2.0.1)
The interatomic contact distance in ångströms.
The permitted range is \([0.0, \infty)\).
Related item: _geom_contact.dist_esd (associated esd). [geom_contact]

\author{
_geom_contact.dist_esd \\ (float)
}

The standard uncertainty (estimated standard deviation) of _geom_contact.dist.
Related item: _geom_contact.dist (associated value). [geom_contact]

\section*{_geom_contact.publ_flag}
(ucode)
_geom_contact_publ_flag (cif_core.dic 2.0.1)
This code signals whether the contact distance is referred to in a publication or should be placed in a list of significant contact distances.
```

The data value must be one of the following:
no do not include distance in special list
n abbreviation for 'no'
yes do include distance in special list
Y abbreviation for 'yes'

```
[geom_contact]
```

*_geom_contact.site_symmetry_1 _geom_contact_site_symmetry_1 (cif_core.dic 2.0.1)

```
(symop)
The symmetry code of the first of the two atom sites that define the contact.
Where no value is given, the assumed value is ' 1.555 '.
Examples: '.' (no symmetry or translation to site), ' 4 ' (4th symmetry operation applied), '7_645' (7th symmetry position: \(+a\) on \(x,-b\) on \(y\) ). [geom_contact]
```

*_geom_contact.site_symmetry_2

```
_geom_contact_site_symmetry_2 (cif_core.dic 2.0 .1 )
The symmetry code of the second of the two atom sites that define the contact.
Where no value is given, the assumed value is ' 1.555 '.
Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied),
'7_645' (7th symmetry position: \(+a\) on \(x,-b\) on \(y\) ). [geom_contact]

\section*{GEOM_HBOND}

Data items in the GEOM_HBOND category record details about hydrogen bonds as calculated from the contents of the АТом, CELL and SYMMETRY data.
Category group(s): inclusive_group

> geom_group

Category key(s): _geom_hbond.atom_site_id_A
_geom_hbond.atom_site_id_D
_geom_hbond.atom_site_id_H _geom_hbond.site_symmetry_A _geom_hbond.site_symmetry_D _geom_hbond.site_symmetry_H

Example 1 - based on \(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{H}_{2} \mathrm{O}\), reported by Palmer, Puddle \& Lisgarten [Acta Cryst. (1993), C49, 1777-1779].
```

loop_

```
_geom_hbond.atom_site_id_D
_geom_hbond.atom_site_id_H
_geom_hbond.atom_site_id_A
_geom_hbond.dist_DH
geom_hbond.dist_HA
_-geom_hbond.dist_DA
_geom_hbond.angle_DHA
_geom_hbond.publ_flag
\(\begin{array}{llllllll}\bar{N} 6 & \text { HN6 } & \text { OW } & 0.888 & 1.921 & 2.801 & 169.6 & \text { yes }\end{array}\)
OW HO2 O7 \(0.917 \quad 1.923 \quad 2.793 \quad 153.5\) yes
OW HO1 N10 \(0.894 \quad 1.886 \quad 2.842 \quad 179.7\) yes
_geom_hbond.angle_DHA
(float, su)
_geom_hbond_angle_DHA (cif_core.dic 2.0.1)
The angle in degrees defined by the donor-, hydrogen- and acceptor-atom sites in a hydrogen bond.
The permitted range is \([0.0, \infty)\).
Related item: _geom_hbond.angle_DHA_esd (associated esd). [geom_hbond]
_geom_hbond.angle_DHA_esd (float)
The standard uncertainty (estimated standard deviation) of _geom_hbond.angle_DHA.
Related item: _geom_hbond. angle_DHA (associated value). [geom_hbond]
_geom_hbond.atom_site_auth_asym_id_A
An optional identifier of the acceptor-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.
_geom_hbond.atom_site_auth_asym_id_D
An optional identifier of the donor-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.

\section*{geom hbond.atom site auth asym id \(H\)}

An optional identifier of the hydrogen-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.

\section*{_geom_hbond.atom_site_auth_atom_id_A}

An optional identifier of the acceptor-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.auth_atom_id in the ATOM_SITE category.

\section*{geom_hbond.atom_site_auth_atom_id_D}

An optional identifier of the donor-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.auth_atom_id in the ATOM_SITE category.

\footnotetext{
_geom_hbond.atom_site_auth_atom_id_H
An optional identifier of the hydrogen-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.auth_atom_id in the ATOM_SITE category.
}

\begin{abstract}
_geom_hbond.atom_site_auth_comp_id_A
An optional identifier of the acceptor-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.auth_comp_id in the ATOM_SITE category.
\end{abstract}
_geom_hbond.atom_site_auth_comp_id_D
An optional identifier of the donor-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site. auth_comp_id in the ATOM_SITE category.
_geom_hbond.atom_site_auth_comp_id_H
An optional identifier of the hydrogen-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.auth_comp_id in the ATOM_SITE category.
_geom_hbond.atom_site_auth_seq_id_A
An optional identifier of the acceptor-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.
_geom_hbond.atom_site_auth_seq_id_D
An optional identifier of the donor-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.

\section*{_geom_hbond.atom_site_auth_seq_id_H}

An optional identifier of the hydrogen-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.
*_geom_hbond.atom_site_id_A
_geom_hbond_atom_site_label_A(cif_core.dic 2.0.1)
The identifier of the acceptor-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.id in the ATOM_SITE category.
*_geom_hbond.atom_site_id_D
_geom_hbond_atom_site_label_D(cif_core.dic 2.0.1)
The identifier of the donor-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.id in the ATOM_SITE category.

\section*{* geom hbond.atom site id H}
_geom_hbond_atom_site_label_H(cif_core.dic 2.0.1)
The identifier of the hydrogen-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.id in the ATOM_SITE category.
```

_geom_hbond.atom_site_label_alt_id_A
An optional identifier of the acceptor-atom site that defines the hydrogen bond. This data item is a pointer to

``` _atom_site.label_alt_id in the ATOM_SITE category.

\section*{_geom_hbond.atom_site_label_alt_id_D}

An optional identifier of the donor-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.label_alt_id in the ATOM_SITE category.
_geom_hbond.atom_site_label_alt_id_H
An optional identifier of the hydrogen-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.label_alt_id in the ATOM_SITE category.
```

geom_hbond.atom_site_label_asym_id_A

```

An optional identifier of the acceptor-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.

\section*{_geom_hbond.atom_site_label_asym_id_D}
\(\overline{\text { An }}\) optional identifier of the donor-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.

\section*{geom hbond.atom site label asym id H}

An optional identifier of the hydrogen-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.
_geom_hbond.atom_site_label_atom_id_A
An optional identifier of the acceptor-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.label_atom_id in the ATOM_SITE category.

\section*{_geom_hbond.atom_site_label_atom_id D}

An optional identifier of the donor-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.label_atom_id in the ATOM_SITE category.

\section*{_geom_hbond.atom_site_label_atom_id_H}

An optional identifier of the hydrogen-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.label_atom_id in the ATOM_SITE category.
```

geom_hbond.atom_site_label_comp_id_A

```

An optional identifier of the acceptor-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.

\section*{_geom_hbond.atom_site_label_comp_id_D}
\(\overline{\text { An }}\) optional identifier \(\bar{r}\) of the donor-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.
_geom_hbond.atom_site_label_comp_id_H
An optional identifier of the hydrogen-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.

\footnotetext{
_geom_hbond.atom_site_label_seq_id_A
An optional identifier of the acceptor-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.
}

\section*{_geom_hbond.atom_site_label_seq_id_D}

An optional identifier of the donor-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.

\section*{geom hbond.atom site label seq id \(H\)}

An optional identifier of the hydrogen-atom site that defines the hydrogen bond. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.
_geom_hbond.dist_DA
(float, su)
_geom_hbond_distance_DA(cif_core.dic 2.0.1)
The distance in ångströms between the donor- and acceptor-atom sites in a hydrogen bond.
The permitted range is \([0.0, \infty)\).
Related item: _geom_hbond.dist_DA_esd (associated esd).
[geom_hbond]

\section*{_geom_hbond.dist_DA_esd}
(float)
The standard uncertainty (estimated standard deviation) in ångströms of _geom_hbond.dist_DA.
Related item: _geom_hbond.dist_DH (associated value). [geom_hbond]

\section*{_geom_hbond.dist_DH}
(float, su)
_geom_hbond_distance_DH (cif_core.dic 2.0.1)
The distance in ångströms between the donor- and hydrogen-atom sites in a hydrogen bond.
The permitted range is \([0.0, \infty)\).
Related item: _geom_hbond.dist_DH_esd (associated esd).
[geom_hbond]

\author{
_geom_hbond.dist_DH_esd \\ (float)
}

The standard uncertainty (estimated standard deviation) in ångströms of _geom_hbond.dist_DH.
Related item: _geom_hbond.dist_DH (associated value). [geom_hbond]

\section*{geom hbond. dist HA}
(float, su)
_geom_hbond_distance_HA (cif_core.dic 2.0.1)
The distance in ångströms between the hydrogen- and acceptoratom sites in a hydrogen bond.
The permitted range is \([0.0, \infty)\).
Related item: _geom_hbond.dist_HA_esd (associated esd). [geom_hbond]
_geom_hbond.dist_HA_esd (float)

The standard uncertainty (estimated standard deviation) in ångströms of _geom_hbond.dist_HA.
Related item: _geom_hbond.dist_HA (associated value). [geom_hbond]

\section*{_geom_hbond.publ_flag}
(ucode)
_geom_hbond_publ_flag (cif_core.dic 2.0.1)
This code signals whether the hydrogen-bond information is referred to in a publication or should be placed in a table of significant hydrogen-bond geometry.
The data value must be one of the following:
\begin{tabular}{ll} 
no & do not include bond in special list \\
n & abbreviation for 'no' \\
yes & do include bond in special list \\
y & abbreviation for 'yes'
\end{tabular}
*_geom_hbond.site_symmetry_A
(symop)
_geom_hbond_site_symmetry_A (cif_core.dic 2.0.1)
The symmetry code of the acceptor-atom site that defines the hydrogen bond.
Where no value is given, the assumed value is ' 1.555 '.
Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied),
'7_645' (7th symmetry position: \(+a\) on \(x,-b\) on \(y\) ). [geom_hbond]
*_geom_hbond.site_symmetry_D
_geom_hbond_site_symmetry_D(cif_core.dic 2.0.1)

The symmetry code of the donor-atom site that defines the hydrogen bond.
Where no value is given, the assumed value is ' \(1 \_555\) '.
Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied), '7_645' (7th symmetry position: \(+a\) on \(x,-b\) on \(y\) ). [geom_hbond]
*_geom_hbond.site_symmetry_H
_geom_hbond_site_symmetry_H (cif_core.dic 2.0 .1 )
The symmetry code of the hydrogen-atom site that defines the
hydrogen bond.
Where no value is given, the assumed value is '1_555'.
Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied),
'7_645' (7th symmetry position: \(+a\) on \(x,-b\) on \(y\) ).
[geom_hbond]
*_geom_hbond.site_symmetry_H
The symmetry code of the hydrogen-atom site that defines the hydrogen bond.
Where no value is given, the assumed value is ' \(1 \_555\) '.
'7_645' (7th symmetry position: \(+a\) on \(x,-b\) on \(y\) ). [geom_hbond]

\section*{GEOM TORSION}

Data items in the GEOM_TORSION category record details about torsion angles as calculated from the contents of the ATOM, CELL and SYMMETRY data. The vector direction _geom_torsion.atom_site_id_2 to _geom_torsion.atom_ site_id_3 is the viewing direction, and the torsion angle is the angle of twist required to superimpose the projection of the vector between site 2 and site 1 onto the projection of the vector between site 3 and site 4 . Clockwise torsions are positive, anticlockwise torsions are negative.

Reference: Klyne, W. \& Prelog, V. (1960). Experientia, 16, 521523.

Category group(s): inclusive_group geom_group
Category key(s): _geom_torsion.atom_site_id_1
_geom_torsion.atom_site_id_2
_geom_torsion.atom_site_id_3
_geom_torsion.atom_site_id_4
_geom_torsion.site_symmetry_1
_geom_torsion.site_symmetry_2
_geom_torsion.site_symmetry_3 _geom_torsion.site_symmetry_4

Example 1 - based on data set CLPHO6 of Ferguson, Ruhl, McKervey \& Browne [Acta Cryst. (1992), C48, 2262-2264].

\section*{loop_}
_geom_torsion.atom_site_id_1
_geom_torsion.atom_site_id_2
_geom_torsion.atom_site_id_3
_geom_torsion.atom_site_id_4
geom_torsion.value
_geom_torsion.site_symmetry_1
_geom_torsion.site_symmetry_2
_geom_torsion.site_symmetry_3
_geom_torsion.site_symmetry_4
geom_torsion.publ_flag
\begin{tabular}{llllrlllll}
\(C(9)\) & \(O(2)\) & \(C(7)\) & \(C(2)\) & 71.8 &. &. &. &. & yes \\
\(C(7)\) & \(O(2)\) & \(C(9)\) & \(C(10)\) & -168.0 & \(\cdot\) & \(\cdot\) &. & \(2 \_666\) & yes \\
\(C(10)\) & \(O(3)\) & \(C(8)\) & \(C(6)\) & -167.7 & \(\cdot\) &. &. &. & yes \\
\(C(8)\) & \(O(3)\) & \(C(10)\) & \(C(9)\) & -69.7 & \(\cdot\) &. &. & \(2 \_666\) & yes \\
\(O(1)\) & \(C(1)\) & \(C(2)\) & \(C(3)\) & -179.5 & \(\cdot\) &. &. &. & no \\
\(O(1)\) & \(C(1)\) & \(C(2)\) & \(C(7)\) & -0.6 &. &. &. &. & no
\end{tabular}
_geom_torsion.atom_site_auth_asym_id_1
\(\overline{\text { An optional identifier of the first of the four atom sites }}\) that define the torsion angle. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.

\section*{_geom_torsion.atom_site_auth_asym_id_2}

An optional identifier of the second of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.
_geom_torsion.atom_site_auth_asym_id_3
An optional identifier of the third of the four atom sites
that define the torsion angle. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.

\section*{geom torsion.atom site auth asym id 4}

An optional identifier of the fourth of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.
_geom_torsion.atom_site_auth_atom_id_1
An optional identifier of the first of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.auth_atom_id in the ATOM_SITE category.

\section*{_geom_torsion.atom_site_auth_atom_id_2}

An optional identifier of the second of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.auth_atom_id in the ATOM_SITE category.

\section*{_geom_torsion.atom_site_auth_atom_id_3}

An optional identifier of the third of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.auth_atom_id in the ATOM_SITE category.

\section*{_geom_torsion.atom_site_auth_atom_id_4}

An optional identifier of the fourth of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site. auth_atom_id in the ATOM_SITE category.
_geom_torsion.atom_site_auth_comp_id_1
\(\overline{\text { An optional identifier }} \overline{\text { of }}\) the first of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.auth_comp_id in the ATOM_SITE category.
_geom_torsion.atom_site_auth_comp_id_2
\(\overline{\text { An optional identifier of the second of the four atom sites }}\) that define the torsion angle. This data item is a pointer to _atom_site. auth_comp_id in the ATOM_SITE category.

\footnotetext{
_geom_torsion.atom_site_auth_comp_id_3
An optional identifier of the third of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site. auth_comp_id in the ATOM_SITE category.
}
_geom_torsion.atom_site_auth_comp_id_4
\(\overline{\text { An optional identifier of the }} \overline{\text { fourth }}\) of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site. auth_comp_id in the ATOM_SITE category.
_geom_torsion.atom_site_auth_seq_id_1
An optional identifier of the first of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.
_geom_torsion.atom_site_auth_seq_id_2
An optional identifier of the second of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.
_geom_torsion.atom_site_auth_seq_id_3
An optional identifier of the third of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.

\section*{_geom_torsion.atom_site_auth_seq_id_4}

An optional identifier of the fourth of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.
*_geom_torsion.atom_site_id_1
_geom_torsion_atom_site__्_abel_1(cif_core.dic 2.0.1)
The identifier of the first of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.id in the ATOM_SITE category.
*_geom_torsion.atom_site_id_2
_geom_torsion_atom_site_label_2(cif_core.dic 2.0.1)
The identifier of the second of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.id in the ATOM_SITE category.
*_geom_torsion.atom_site_id_3
_geom_torsion_atom_site_1abel_3(cif_core.dic 2.0.1)
The identifier of the third of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.id in the ATOM_SITE category.
*_geom_torsion.atom_site_id_4
_geom_torsion_atom_site_Iabel_4(cif_core.dic 2.0.1)
The identifier of the fourth of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.id in the ATOM_SITE category.
```

_geom_torsion.atom_site_label_alt_id_1

```

An optional identifier of the first of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.label_alt_id in the ATOM_SITE category.
```

_geom_torsion.atom_site_label_alt_id_2

```

An optional identifier of the second of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.label_alt_id in the ATOM_SITE category.

\section*{_geom_torsion.atom_site_label_alt_id_3}

An optional identifier of the third of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.label_alt_id in the ATOM_SITE category.

\section*{_geom_torsion.atom_site_label_alt_id_4}

An optional identifier of the fourth of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.label_alt_id in the ATOM_SITE category.
_geom_torsion.atom_site_label_asym_id_1
An optional identifier of the first of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.

\section*{_geom_torsion.atom_site_label_asym_id_2}
\(\overline{\text { An optional identifier of the second of the four atom sites }}\) that define the torsion angle. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.
_geom_torsion.atom_site_label_asym_id_3
An optional identifier of the third of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.
_geom_torsion.atom_site_label_asym_id_4
An optional identifier of the fourth of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.
_geom_torsion.atom_site_label_atom_id_1
\(\overline{\text { An optional identifier } \overline{\text { of }} \text { the }}{ }^{-}\)first of the \(\overline{\text { four }}{ }^{-}\)atom sites that define the torsion angle. This data item is a pointer to _atom_site.label_atom_id in the ATOM_SITE category.
_geom_torsion.atom_site_label_atom_id_2
An optional identifier of the second of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.label_atom_id in the ATOM_SITE category.
_geom_torsion.atom_site_label_atom_id_3
\(\overline{\text { An optional identifier }} \overline{\text { of }}\) the third of the \(\overline{\text { four }}\) atom sites that define the torsion angle. This data item is a pointer to _atom_site.label_atom_id in the ATOM_SITE category.
_geom_torsion.atom_site_label_atom_id_4
\(\overline{\text { An optional identifier of }} \overline{\text { of }}\) the fourth of the \(\overline{\text { four }}\) atom sites that define the torsion angle. This data item is a pointer to _atom_site.label_atom_id in the ATOM_SITE category.

\section*{_geom_torsion.atom_site_label_comp_id_1}

An optional identifier of the first of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.
_geom_torsion.atom_site_label_comp_id_2
\(\overline{\text { An }}\) optional identifier of the second of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.
```

geom torsion.atom site label comp id 3

```

An optional identifier of the third of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.

\section*{_geom_torsion.atom_site_label_comp_id_4}

An optional identifier of the fourth of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.
_geom_torsion.atom_site_label_seq_id_1
\(\overline{\text { An optional identifier } \overline{\text { of }} \text { the }}{ }^{-}\)first of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.

\section*{_geom_torsion.atom_site_label_seq_id_2}

An optional identifier of the second of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.
_geom_torsion.atom_site_label_seq_id_3
An optional identifier of the third of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.
```

geom torsion.atom site label seq id 4

```

An optional identifier of the fourth of the four atom sites that define the torsion angle. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.
_geom_torsion.publ_flag
_geom_torsion_publ_flag(cif_core.dic 2.0.1)
This code signals whether the torsion an
lication or should be placed in a table of
The data value must be one of the following:
no
\begin{tabular}{ll} 
n & do not include angle in special list \\
yes & abbreviation for 'no' \\
y & abbreviation for 'yes'
\end{tabular}
[geom_torsion]
*_geom_torsion.site_symmetry_1
_geom_torsion_site_symmetry_1(cif_core.dic 2.0.1)
The symmetry code of the first of the four atom sites that define the torsion angle.
Where no value is given, the assumed value is ' 1.555 '.
Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied), '7_645' (7th symmetry position: \(+a\) on \(x,-b\) on \(y\) ). [geom_torsion]

\footnotetext{
*_geom_torsion.site_symmetry_2 (symop) _geom_torsion_site_symmetry_2 (cif_core.dic 2.0.1)
The symmetry code of the second of the four atom sites that define the torsion angle.
Where no value is given, the assumed value is ' 1.555 '.
Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied),
'7_645' (7th symmetry position: \(+a\) on \(x,-b\) on \(y\) ). [geom_torsion]
}
*_geom_torsion.site_symmetry_3
(symop) _geom_torsion_site_symmetry_3(cif_core.dic 2.0.1)
The symmetry code of the third of the four atom sites that define the torsion angle.
Where no value is given, the assumed value is ' 1.555 '.
Examples: ' .' (no symmetry or translation to site), '4' (4th symmetry operation applied),
'7_645' (7th symmetry position: \(+a\) on \(x,-b\) on \(y\) ).
[geom_torsion]
*_geom_torsion.site_symmetry_4
(symop)
_geom_torsion_site_symmetry_4 (cif_core.dic 2.0.1)
The symmetry code of the fourth of the four atom sites that define the torsion angle.
Where no value is given, the assumed value is ' 1.555 '.
Examples: ' .' (no symmetry or translation to site), '4' (4th symmetry operation applied),
'7_645’ (7th symmetry position: \(+a\) on \(x,-b\) on \(y\) ).
[geom_torsion]
_geom_torsion.value
(float, su)
_geom_torsion(cif_core.dic 2.0.1)
The value of the torsion angle in degrees.
Related item: _geom_torsion.value_esd (associated esd).
[geom_torsion]
_geom_torsion.value_esd (float)
The standard uncertainty (estimated standard deviation) of _geom_torsion.value.
Related item: _geom_torsion.value (associated value). [geom_torsion]

\section*{JOURNAL}

Data items in the JOURNAL category record details about the book-keeping by the journal staff when processing a data block submitted for publication. The creator of a data block will not normally specify these data. The data names are not defined in the dictionary because they are for journal use only.
Category group(s): inclusive_group
iucr_group

Category key(s): _journal.entry_id
Example 1 - based on Acta Cryst. file for entry HL0007 [Willis, Beckwith \& Tozer (1991). Acta Cryst. C47, 2276-2277J.
\begin{tabular}{|ll} 
_journal.entry_id & 'TOZ' \\
_journal.date_recd_electronic & \(1991-04-15\) \\
_journal.date_from_coeditor & \(1991-04-18\) \\
_journal.date_accepted & \(1991-04-18\) \\
_journal.date_printers_first & \(1991-08-07\) \\
_journal.date_proofs_out & \(1991-08-07\) \\
_journal.coeditor_code & HL0007 \\
_journal.techeditor_code & C910963 \\
_journal.coden_ASTM & ACSCEE \\
_journal.name_full & 'Acta Crystallographica section C' \\
_journal.year & 1991 \\
_journal.volume & 47 \\
_journal.issue & NOV91 \\
_journal.page_first & 2276 \\
_journal.page_last & 2277 \\
\hline
\end{tabular}

\section*{_journal.coden_ASTM}
(line)
_journal_coden_ASTM (cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
_journal.coeditor_code
journal coeditor code (cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
[journal]
_journal.coeditor_email
(line)
journal_coeditor_email(cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
journal.coeditor fax
(line)
_journal_coeditor_fax (cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
[journal]
journal.coeditor_name
_journal_coeditor_name (cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
_journal.coeditor_notes
_journal_coeditor_notes(cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
_journal.coeditor_phone
(line)
_journal_coeditor_phone(cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
[journal]
(code)
_journal_data_valīdation_number (cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
[journal]

\section*{journal.date accepted}
(yyyy-mm-dd)
_journal_date_accepted (cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
[journal]
_journal.date_from_coeditor
(yyyy-mm-dd)
journal_date_from_coeditor (cif_core.dic 2.0.1) Journal data items are defined by the journal staff.
[journal]
_journal.date_printers_final
(yyyy-mm-dd)
journal_date_printers_final(cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
[journal]
_journal.date_printers_first
(yyyy-mm-dd)

Journal data items are defined by the journal staff.

\section*{[journal]}
_journal.date_proofs_in
(yyyy-mm-dd)
_journal_date_proofs_in(cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.

\section*{[journal]}

\section*{_journal.coeditor_address}
_journal_coeditor_address(cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
_journal.date_proofs_out
_journal_date_proofs_out(cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
_journal.date_recd_copyright
_journal_date_recd_copyright (cif_core.dic 2.0 .1 )
Journal data items are defined by the journal staff.

\section*{_journal.date_recd_electronic}
_journal_date_recd_electronic (cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
\begin{tabular}{|c|c|}
\hline & [journ \\
\hline \begin{tabular}{l}
_journal.date_recd_hard_copy \\
_journal_date_recd_hard_copy (cif_core.dic 2.0.1)
\end{tabular} & (yyyy-mm- \\
\hline \multicolumn{2}{|l|}{Journal data items are defined by the journal staff.} \\
\hline & [journ \\
\hline \begin{tabular}{l}
_journal.date_to_coeditor \\
journal_date_to_coeditor (cif_core.dic 2.0.1)
\end{tabular} & (yyyy-mm- \\
\hline \multirow[t]{2}{*}{Journal data items are defined by the journal staff.} & \\
\hline & [journ \\
\hline *_journal.entry_id & \\
\hline This data item is a pointer to _entry.id in the ENTR & category. \\
\hline
\end{tabular}

\section*{journal.issue}
_journal_issue(cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.

\section*{_journal.language}
_journal_language (cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.

\section*{_journal.name_full \\ _journal_name_full (cif_core.dic 2.0.1)}

Journal data items are defined by the journal staff.

\section*{_journal.page_first \\ _journal_page_first(cif_core.dic 2.0.1)}

Journal data items are defined by the journal staff.
_journal.page_last
_journal_page_last(cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
_journal.paper_category
_journal_paper_category (cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.

\section*{journal.suppl publ number}
_journal_suppl_publ_number (cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
```

_journal.suppl_publ_pages
_journal_suppl_publ_pages(cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.

```

\section*{_journal.techeditor_address \\ _journal_techeditor_address(cif_core.dic 2.0.1)}

Journal data items are defined by the journal staff.
(line)
(yyyy-mm-dd)
journal]
(yyyy-mm-dd)
[journal]
yyyy-mm-dd)
journal]
yyyy-mm-dd)
[journal]
[journal]
(line)
[journal]
(line)
[journal]
[journal]
(line)
[journal]
(line)
[journal]
```

(line)
(line)

```
[journal]
_journal.techeditor_code
Journal data items are defined by the journal staff.
[journal]
journal.techeditor email
_journal_techeditor_email (cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
_journal.techeditor_fax
[journal]
_journal_techeditor_fax (cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
[journal]
journal.techeditor name
(line)
_journal_techeditor_name (cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
[journal]
_journal.techeditor_notes
(text)
_journal_techeditor_notes (cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
[journal]
_journal.techeditor_phone
_journal_techeditor_phone(cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
journal.volume
_journal_volume(cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
[journal]
_journal.year
(line)
journal_year (cif_core.dic 2.0.1)
Journal data items are defined by the journal staff.
[journal]
journal index.subterm
_journal_index_subterm(cif_core.dic 2.0.1)
Journal index data items are defined by the journal staff.
[journal index]
_journal_index.term
(line)
_journal_index_term(cif_core.dic 2.0.1)
Journal index data items are defined by the journal staff.
_journal_index.type (line)
_journal_index_type(cif_core.dic 2.0.1)
Journal index data items are defined by the journal staff.
[journal_index]

\section*{PHASING}

Data items in the PHASING category record details about the phasing of the structure, listing the various methods used in the phasing process. Details about the application of each method are listed in the appropriate subcategories.
Category group(s): inclusive_group
phasing_group
Category key(s): _phasing.method
Example 1-hypothetical example.
loop_
_phasing.method
'mir'
'averaging'

\section*{* phasing.method}
(ucode)
A listing of the method or methods used to phase this structure.
Examples: ‘abinitio' (phasing by ab initio methods), 'averaging' (phase improvement by averaging over multiple images of the structure), 'dm' (phasing by direct methods), 'isas' (phasing by iterative single-wavelength anomalous scattering), 'isir' (phasing by iterative single-wavelength isomorphous replacement), 'isomorphous’ (phasing beginning with phases calculated from an isomorphous structure), 'mad' (phasing by multiple-wavelength anomalous dispersion), 'mir' (phasing by multiple isomorphous replacement), 'miras' (phasing by multiple isomorphous replacement with anomalous scattering), 'mr' (phasing by molecular replacement), 'sir' (phasing by single isomorphous replacement), 'siras' (phasing by single isomorphous replacement with anomalous scattering). [phasing]

\section*{PHASING_AVERAGING}

Data items in the PHASING_AVERAGING category record details about the phasing of the structure where methods involving averaging of multiple observations of the molecule in the asymmetric unit are involved.
Category group(s): inclusive_group
phasing_group

Category key(s): _phasing_averaging.entry_id
Example 1 - hypothetical example.
_phasing_averaging.entry_id 'EXAMHYPO'
_phasing_averaging.method
; Iterative threefold averaging alternating with phase
extensions by 0.5 reciprocal lattice units per cycle.
;
_phasing_averaging.details
; The position of the threefold axis was redetermined every five cycles.
;

\section*{_phasing_averaging.details}
(text)
\(\overline{\mathrm{A}}\) description of special aspects of the averaging process.
[phasing_averaging]
*_phasing_averaging.entry_id
This data item is a pointer to _entry.id in the ENTRY category.

\section*{_phasing_averaging.method}
(text)
A description of the phase-averaging phasing method used to phase this structure. Note that this is not the computer program used, which is described in the SOFTWARE category, but rather the method itself. This data item should be used to describe significant methodological options used within the phase-averaging program.

\section*{PHASING_ISOMORPHOUS}

Data items in the PHASING_ISOMORPHOUS category record details about the phasing of the structure where a model isomorphous to the structure being phased was used to generate the initial phases.
Category group(s): inclusive_group

\section*{phasing_group}

Category key(s): _phasing_isomorphous.entry_id
Example 1 - based on PDB entry 4PHV and laboratory records for the structure corresponding to PDB entry 4 PHV .
_phasing_isomorphous.parent 'PDB entry 5HVP'
_phasing_isomorphous.details
; The inhibitor and all solvent atoms were removed from the parent structure before beginning refinement. All static disorder present in the parent structure was also removed. ;
_phasing_isomorphous.details
(text)
A description of special aspects of the isomorphous phasing.
Example:
; Residues 13-18 were eliminated from the starting model as it was anticipated that binding of the inhibitor would cause a structural rearrangement in this part of the structure. [phasing_isomorphous]
* phasing_isomorphous.entry_id

This data item is a pointer to _entry.id in the ENTRY category.

\section*{phasing isomorphous.method}
(text)
A description of the isomorphous-phasing method used to phase this structure. Note that this is not the computer program used, which is described in the SOFTWARE category, but rather the method itself. This data item should be used to describe significant methodological options used within the isomorphous phasing program.
Example:
; Iterative threefold averaging alternating with phase
extension by 0.5 reciprocal lattice units per cycle.
[phasing_isomorphous]

\section*{_phasing_isomorphous.parent}
(text)
Reference to the structure used to generate starting phases if the structure referenced in this data block was phased by virtue of being isomorphous to a known structure (e.g. a mutant that crystallizes in the same space group as the wild-type protein.)
[phasing_isomorphous]

\section*{PHASING MAD}

Data items in the PHASING_MAD category record details about the phasing of the structure where methods involving multiplewavelength anomalous-dispersion techniques are involved.
Category group(s): inclusive_group
phasing_group
Category key(s): _phasing_MAD.entry_id
Example 1 - based on a paper by Shapiro et al. [Nature (London) (1995), 374, 327-337].
phasing_MAD.entry_id 'NCAD'

\section*{_phasing_MAD.details}
(text)
A description of special aspects of the MAD phasing.
[phasing_MAD]

\section*{*_phasing_MAD.entry_id}

This data item is a pointer to _entry.id in the ENTRY category.

\section*{_phasing_MAD.method}
(text)
A description of the MAD phasing method used to phase this structure. Note that this is not the computer program used, which is described in the SOFTWARE category, but rather the method itself. This data item should be used to describe significant methodological options used within the MAD phasing program.
[phasing_MAD]

\section*{PHASING_MAD_CLUST}

Data items in the PHASING_MAD_CLUST category record details about a cluster of experiments that contributed to the generation of a set of phases.
Category group(s): inclusive_group phasing_group
Category key(s): _phasing_MAD_clust.expt_id phasing MAD clust.id

Example 1 - based on a paper by Shapiro et al. [Nature (London) (1995), 374, 327-337].
loop_
_phasing_MAD_clust.id
_phasing_MAD_clust.expt_id
_phasing_MAD_clust.number_set
'4 wavelength' 14
'5 wavelength' 15
' 5 wavelength' 25

\section*{*_phasing_MAD_clust.expt_id}

This data item is a pointer to phasing MAD expt.id in the PHASING_MAD_EXPT category.
*_phasing_MAD_clust.id (code) The value of _-phasing_MAD_clust.id must, together with _phasing_MAD_clust.expt_id, uniquely identify a record in the PHASING_MAD_CLUST list. Note that this item need not be a number; it can be any unique identifier.
The following item(s) have an equivalent role in their respective categories:
_phasing_MAD_set.clust_id,
_phasing_MAD_ratio.clust_id.
[phasing_MAD_clust]

\section*{phasing_MAD_clust.number_set}

The number of data sets in this cluster of data sets.
[phasing_MAD_clust]

\section*{PHASING_MAD_EXPT}

Data items in the PHASING_MAD_EXPT category record details about a MAD phasing experiment, such as the number of experiments that were clustered together to produce a set of phases or the statistics for those phases.
Category group(s): inclusive_group
phasing_group

Category key(s): _phasing_MAD_expt.id
Example 1 - based on a paper by Shapiro et al. [Nature (London) (1995), 374, 327-337].
loop_
_phasing_MAD_expt.id
_phasing_MAD_expt.number_clust
_phasing_MAD_expt.R_normal_all
_phasing_MAD_expt.R_normal_anom_scat
_phasing_MAD_expt.delta_delta_phi
_phasing_MAD_expt.delta_phi_sigma
_phasing_MAD_expt.mean_fom
\(\begin{array}{lllllll}1 & 2 & 0.063 & 0.451 & 58.5 & 20.3 & 0.88\end{array}\)
\(\begin{array}{lllllll}2 & 1 & 0.051 & 0.419 & 36.8 & 18.2 & 0.93\end{array}\)

_phasing_MAD_expt.delta_delta_phi (float)
The difference between two independent determinations of _phasing_MAD_expt.delta_phi.
[phasing_MAD_expt]
_phasing_MAD_expt.delta_phi (float)
The phase difference between \(F_{t}(h)\), the structure factor due to normal scattering from all atoms, and \(F_{a}(h)\), the structure factor due to normal scattering from only the anomalous scatterers.
Related item: _phasing_MAD_expt.delta_phi_sigma (associated esd).
[phasing_MAD_expt]
_phasing_MAD_expt.delta_phi_sigma (float)
The standard uncertainty (estimated standard deviation) of _phasing_MAD_expt.delta_phi.
Related item: _phasing_MAD_expt.delta_phi (associated value).
[phasing_MAD_expt]
*_phasing_MAD_expt.id
(code)
The value of _phasing_MAD_expt.id must uniquely identify each record in the PHASING_MAD_EXPT list.
The following item(s) have an equivalent role in their respective categories:
_phasing_MAD_clust.expt_id,
_phasing_MAD_set.expt_id,
_phasing MAD ratio.expt id.
[phasing_MAD_expt]
_phasing_MAD_expt.mean_fom
(float)
The mean figure of merit.
[phasing_MAD_expt]

\section*{_phasing_MAD_expt.number_clust}

The number of clusters of data sets in this phasing experiment.

_phasing_MAD_expt.R_normal_all
(float)
[phasing_MAD_expt]
```

phasing MAD expt.R normal anom scat (float)

```
[phasing MAD expt]

\section*{PHASING_MAD_RATIO}

Data items in the PHASING_MAD_RATIO category record the ratios of phasing statistics between pairs of data sets in a MAD phasing experiment, in given shells of resolution.
Category group(s): inclusive_group
phasing_group
Category key(s): _phasing_MAD_ratio.clust_id _phasing_MAD_ratio.expt_id _phasing_MAD_ratio.wavelength_1 _phasing_MAD_ratio.wavelength_2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Example 1 - based on a paper by Shapiro et al. [Nature (London) (1995), 374, 327-337].} \\
\hline \multicolumn{8}{|l|}{loop} \\
\hline \multicolumn{8}{|l|}{_phasing_MAD_ratio.expt_id} \\
\hline \multicolumn{8}{|l|}{-phasing_MAD_ratio.clust_id} \\
\hline \multicolumn{8}{|l|}{_phasing_MAD_ratio.wavelength_1} \\
\hline \multicolumn{8}{|l|}{_phasing_MAD_ratio.wavelength_2} \\
\hline \multicolumn{8}{|l|}{_phasing_MAD_ratio.d_res_low} \\
\hline \multicolumn{8}{|l|}{_phasing_MAD_ratio.d_res_high} \\
\hline \multicolumn{8}{|l|}{_phasing_MAD_ratio.ratio_two_wl} \\
\hline \multicolumn{8}{|l|}{_phasing_MAD_ratio.ratio_one_wl} \\
\hline _phasing_MAD_ratio & .ratio & one_wl & ce & & & & \\
\hline 1 '4 wavelength' & 1.4013 & 1.4013 & 20.0 & . 00 & & 0.084 & 0.076 \\
\hline '4 wavelength' & 1.4013 & 1.3857 & 20.00 & 4.00 & 0.067 & & \\
\hline '4 wavelength' & 1.4013 & 1.3852 & 20.00 & 4.00 & 0.051 & & \\
\hline '4 wavelength' & 1.4013 & 1.3847 & 20.00 & 4.00 & 0.044 & & \\
\hline '4 wavelength' & 1.3857 & 1.3857 & 20.00 & 4.00 & & 0.110 & 0.049 \\
\hline '4 wavelength' & 1.3857 & 1.3852 & 20.00 & 4.00 & 0.049 & & \\
\hline ' 4 wavelength' & 1.3857 & 1.3847 & 20.00 & 4.00 & 0.067 & & \\
\hline '4 wavelength' & 1.3852 & 1.3852 & 20.00 & 4.00 & & 0.149 & 0.072 \\
\hline '4 wavelength' & 1.3852 & 1.3847 & 20.00 & 4.00 & 0.039 & & \\
\hline 1 '4 wavelength' & 1.3847 & 1.3847 & 20.00 & 4.00 & & 0.102 & 0.071 \\
\hline '4 wavelength' & 1.4013 & 1.4013 & 4.00 & 3.0 & & 0.114 & 0.111 \\
\hline '4 wavelength' & 1.4013 & 1.3857 & 4.00 & 3.00 & 0.089 & & \\
\hline '4 wavelength' & 1.4013 & 1.3852 & 4.00 & 3.00 & 0.086 & & \\
\hline '4 wavelength' & 1.4013 & 1.3847 & 4.00 & 3.00 & 0.077 & & \\
\hline '4 wavelength' & 1.3857 & 1.3857 & 4.00 & 3.00 & & 0.140 & 0.127 \\
\hline '4 wavelength' & 1.3857 & 1.3852 & 4.00 & 3.00 & 0.085 & & \\
\hline '4 wavelength' & 1.3857 & 1.3847 & 4.00 & 3.00 & 0.089 & & \\
\hline ' 4 wavelength' & 1.3852 & 1.3852 & 4.00 & 3.00 & & 0.155 & 0.119 \\
\hline '4 wavelength' & 1.3852 & 1.3847 & 4.00 & 3.00 & 0.082 & & \\
\hline 1 '4 wavelength' & 1.3847 & 1.3847 & 4.00 & 3.00 & & 0.124 & 0.120 \\
\hline '5 wavelength' & 1.3857 & 1.3857 & 20.00 & 4.00 & & 0.075 & 02 \\
\hline '5 wavelength' & 1.3857 & 1.3852 & 20.00 & 4.00 & 0.041 & & \\
\hline ' 5 wavelength' & 1.3857 & 1.3847 & 20.00 & 4.00 & 0.060 & & \\
\hline '5 wavelength' & 1.3857 & 1.3784 & 20.00 & 4.00 & 0.057 & & \\
\hline '5 wavelength' & 1.3857 & 1.2862 & 20.00 & 4.00 & 0.072 & & \\
\hline ' 5 wavelength' & 1.3852 & 1.3852 & 20.00 & 4.00 & & 0.105 & 0.032 \\
\hline '5 wavelength' & 1.3852 & 1.3847 & 20.00 & 4.00 & 0.036 & & \\
\hline ' 5 wavelength' & 1.3852 & 1.3784 & 20.00 & 4.00 & 0.044 & & \\
\hline '5 wavelength' & 1.3852 & 1.2862 & 20.00 & 4.00 & 0.065 & & \\
\hline ' 5 wavelength' & 1.3847 & 1.3847 & 20.00 & 4.00 & & 0.072 & 03 \\
\hline '5 wavelength' & 1.3847 & 1.3784 & 20.00 & 4.00 & 0.040 & & \\
\hline '5 wavelength' & 1.3847 & 1.2862 & 20.00 & 4.00 & 0.059 & & \\
\hline ' 5 wavelength' & 1.3784 & 1.3784 & 20.00 & 4.00 & & 0.059 & 0.032 \\
\hline '5 wavelength' & 1.3784 & 1.2862 & 20.00 & 4.00 & 0.059 & & \\
\hline '5 wavelength' & 1.2862 & 1.3847 & 20.00 & 4.00 & & 0.058 & . 028 \\
\hline '5 wavelength' & 1.3857 & 1.3857 & . 00 & 3.00 & & 0.078 & . 075 \\
\hline '5 wavelength' & 1.3857 & 1.3852 & 4.00 & 3.00 & 0.059 & & \\
\hline '5 wavelength' & 1.3857 & 1.3847 & 4.00 & 3.00 & 0.067 & & \\
\hline '5 wavelength' & 1.3857 & 1.3784 & 4.00 & 3.00 & 0.084 & & \\
\hline '5 wavelength' & 1.3857 & 1.2862 & 4.00 & 3.00 & 0.073 & & \\
\hline '5 wavelength' & 1.3852 & 1.3852 & 4.00 & 3.00 & & 0.101 & 0.088 \\
\hline '5 wavelength' & 1.3852 & 1.3847 & 4.00 & 3.00 & 0.066 & & \\
\hline '5 wavelength' & 1.3852 & 1.3784 & 4.00 & 3.00 & 0.082 & & \\
\hline '5 wavelength' & 1.3852 & 1.2862 & 4.00 & 3.00 & 0.085 & & \\
\hline '5 wavelength' & 1.3847 & 1.3847 & 4.00 & 3.00 & & 0.097 & 0.074 \\
\hline ' 5 wavelength' & 1.3847 & 1.3784 & 4.00 & 3.00 & 0.081 & & \\
\hline '5 wavelength' & 1.3847 & 1.2862 & 4.00 & 3.00 & 0.085 & & \\
\hline ' 5 wavelength' & 1.3784 & 1.3784 & 4.00 & 3.00 & & 0.114 & 0.089 \\
\hline '5 wavelength' & 1.3784 & 1.2862 & 4.00 & 3.00 & 0.103 & & \\
\hline 1 '5 wavelength' & 1.2862 & 1.2862 & 4.00 & 3.00 & & 0.062 & 0.060 \\
\hline 2 '5 wavelength' & 0.7263 & 0.7263 & 15.00 & 3.00 & & 0.035 & 0.026 \\
\hline 2 '5 wavelength' & 0.7263 & 0.7251 & 15.00 & 3.00 & 0.028 & & \\
\hline 2 '5 wavelength' & 0.7263 & 0.7284 & 15.00 & 3.00 & 0.023 & & \\
\hline ' 5 wavelength' & 0.7263 & 0.7246 & 15.00 & 3.00 & 0.025 & & \\
\hline 2 '5 wavelength' & 0.7263 & 0.7217 & 15.00 & 3.00 & 0.026 & & \\
\hline 2 '5 wavelength' & 0.7251 & 0.7251 & 15.00 & 3.00 & & 0.060 & 0.026 \\
\hline 2 '5 wavelength' & 0.7251 & 0.7284 & 15.00 & 3.00 & 0.029 & & \\
\hline 2 '5 wavelength' & 0.7251 & 0.7246 & 15.00 & 3.00 & 0.031 & & \\
\hline 2 '5 wavelength' & 0.7251 & 0.7217 & 15.00 & 3.00 & 0.035 & & \\
\hline 2 '5 wavelength' & 0.7284 & 0.7284 & 15.00 & 3.00 & & 0.075 & 0.030 \\
\hline '5 wavelength' & 0.7284 & 0.7246 & 15.00 & 3.00 & 0.023 & & \\
\hline 2 '5 wavelength' & 0.7284 & 0.7217 & 15.00 & 3.00 & 0.027 & & \\
\hline 2 '5 wavelength' & 0.7246 & 0.7246 & 15.00 & 3.00 & & 0.069 & 0.026 \\
\hline 2 '5 wavelength' & 0.7246 & 0.7217 & 15.00 & 3.00 & 0.024 & & \\
\hline 2 '5 wavelength' & 0.7217 & 0.7284 & 15.00 & 3.00 & & 0.060 & 0.028 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 2 & & wavelength' & 0.7263 & 0.7263 & 3.00 & 1.90 & & 0.060 & 0.050 \\
\hline 2 & '5 & wavelength' & 0.7263 & 0.7251 & 3.00 & 1.90 & 0.056 & & \\
\hline 2 & 5 & wavelength' & 0.7263 & 0.7284 & 3.00 & 1.90 & 0.055 & & \\
\hline 2 & '5 & wavelength' & 0.7263 & 0.7246 & 3.00 & 1.90 & 0.053 & & \\
\hline 2 & '5 & wavelength' & 0.7263 & 0.7217 & 3.00 & 1.90 & 0.056 & & \\
\hline 2 & '5 & wavelength' & 0.7251 & 0.7251 & 3.00 & 1.90 & & 0.089 & 0.050 \\
\hline 2 & '5 & wavelength' & 0.7251 & 0.7284 & 3.00 & 1.90 & 0.054 & & \\
\hline 2 & '5 & wavelength' & 0.7251 & 0.7246 & 3.00 & 1.90 & 0.058 & & \\
\hline 2 & '5 & wavelength' & 0.7251 & 0.7217 & 3.00 & 1.90 & 0.063 & & - \\
\hline 2 & '5 & wavelength' & 0.7284 & 0.7284 & 3.00 & 1.90 & & 0.104 & 0.057 \\
\hline 2 & '5 & wavelength' & 0.7284 & 0.7246 & 3.00 & 1.90 & 0.052 & & \\
\hline 2 & '5 & wavelength' & 0.7284 & 0.7217 & 3.00 & 1.90 & 0.057 & & \\
\hline 2 & '5 & wavelength' & 0.7246 & 0.7246 & 3.00 & 1.90 & & 0.098 & 0.052 \\
\hline 2 & '5 & wavelength' & 0.7246 & 0.7217 & 3.00 & 1.90 & 0.054 & & - \\
\hline 2 & '5 & wavelength' & 0.7217 & 0.7284 & 3.00 & 1.90 & & 0.089 & 0.060 \\
\hline
\end{tabular}
*_phasing_MAD_ratio.clust_id
This data item is a pointer to _phasing_MAD_clust.id in the PHASING_MAD_CLUST category.
_phasing_MAD_ratio.d_res_high
(float)
The lowest value for the interplanar spacings for the reflection data used for the comparison of Bijvoet differences. This is called the highest resolution.
[phasing_MAD_ratio]
phasing_MAD_ratio.d_res_low (float) The highest value for the interplanar spacings for the reflection data used for the comparison of Bijvoet differences. This is called the lowest resolution.
[phasing_MAD_ratio]

\section*{*_phasing_MAD_ratio.expt_id}

This data item is a pointer to phasing MAD expt.id in the PHASING_MAD_EXPT category.
_phasing_MAD_ratio.ratio_one_wl
(float)
The root-mean-square Bijvoet difference at one wavelength for all reflections.
[phasing_MAD_ratio]
_phasing_MAD_ratio.ratio_one_wl_centric (float)
The root-mean-square Bijvoet difference at one wavelength for centric reflections. This would be equal to zero for perfect data and thus serves as an estimate of the noise in the anomalous signals.
[phasing_MAD_ratio]
_phasing_MAD_ratio.ratio_two_wl
(float)
The root-mean-square dispersive Bijvoet difference between two wavelengths for all reflections.
[phasing_MAD_ratio]
*_phasing_MAD_ratio.wavelength_1
This data item is a pointer to _phasing_MAD_set.wavelength in the PHASING_MAD_SET category.

\section*{*_phasing_MAD_ratio.wavelength_2}

This data item is a pointer to _phasing_MAD_set.wavelength in the PHASING_MAD_SET category.

\section*{PHASING_MAD_SET}

Data items in the PHASING_MAD_SET category record details about the individual data sets used in a MAD phasing experiment.
Category group(s): inclusive_group phasing_group
Category key(s): _phasing_MAD_set.expt_id _phasing_MAD_set.clust_id phasing_MAD_set.set_id _phasing_MAD_set.wavelength
Example 1 - based on a paper by Shapiro et al. [Nature (London) (1995), 374, 327-337].
loop_
_phasing_MAD_set.expt_id
phasing MAD set.clust id
_phasing_MAD_set.set_id
_phasing_MAD_set.wavelength
_phasing_MAD_set.wavelength_details
_phasing_MAD_set.d_res_low
_phasing_MAD_set.d_res_high
_phasing_MAD_set.f_prime
_phasing_MAD_set.f_double_prime
1 '4 wavelength' aa 1.4013 'pre-edge' \(20.00 \quad 3.00\) -12.48 3.80
1 '4 wavelength' bb 1.3857 'peak' \(20.00 \quad 3.00\) -31.22 17.20
1 '4 wavelength' cc 1.3852 'edge' \(20.00 \quad 3.00\) -13.97 29.17
1 '4 wavelength' dd 1.3847 'remote' \(20.00 \quad 3.00\) \(\begin{array}{ll}-6.67 & 17.34\end{array}\)
1 '5 wavelength' ee 1.3857 'ascending edge' \(20.00 \quad 3.00\) -28.33 14.84
1 '5 wavelength' ff 1.3852 'peak' \(20.00 \quad 3.00\) \(-21.50 \quad 30.23\)
1 ' 5 wavelength' gg 1.3847 'descending edge' \(20.00 \quad 3.00\) \(-10.71 \quad 20.35\)
1 '5 wavelength' hh 1.3784 'remote 1' \(20.00 \quad 3.00\) \(-14.45 \quad 11.84\)
1 '5 wavelength' ii 1.2862 'remote 2' \(20.00 \quad 3.00\) \(-9.03 \quad 9.01\)
2 '5 wavelength' jj 0.7263 'pre-edge' \(15.00 \quad 1.90\)
\[
-21.10 \quad 4.08
\]
\[
2 \text { '5 wavelength' kk } 0.7251 \text { 'edge' } \quad 15.00 \quad 1.90
\]
\[
-34.72 \quad 7.92
\]
\[
\begin{aligned}
& \text { wavelength' } 11 \\
& -24.87 \quad 10.30
\end{aligned}
\]
\[
15.00 \quad 1.90
\]
\[
2 \text { ' } 5 \text { wavelength' mm } 0.7246 \text { 'descending edge' } 15.00 \quad 1.90
\]
\[
-17.43 \quad 9.62
\]
\[
2 \text { '5 wavelength' nn } 0.7217 \text { 'remote' } \quad 15.00 \quad 1.90
\]
\[
-13.26 \quad 8.40
\]
*_phasing_MAD_set.clust_id
This data item is a pointer to _phasing_MAD_clust.id in the PHASING_MAD_CLUST category.
_phasing_MAD_set.d_res_high
(float)
The lowest value for the interplanar spacings for the reflection data used for this set of data. This is called the highest resolution.
[phasing_MAD_set]

\section*{phasing_MAD_set.d_res_low}
(float)
The highest value for the interplanar spacings for the reflection data used for this set of data. This is called the lowest resolution.
[phasing_MAD_set]
*_phasing_MAD_set.expt_id
This data item is a pointer to _phasing_MAD_expt.id in the PHASING_MAD_EXPT category.
_phasing_MAD_set.f_double_prime
(float)
The \(f^{\prime \prime}\) component of the anomalous scattering factor for this wavelength.
_phasing_MAD_set.f_prime
(float)
The \(f^{\prime}\) component of the anomalous scattering factor for this wavelength.
[phasing_MAD_set]
*_phasing_MAD_set.set_id
This data item is a pointer to _phasing_set.id in the PHASING_SET category.
*_phasing_MAD_set.wavelength
(float)
The wavelength at which this data set was measured.
The following item(s) have an equivalent role in their respective categories:
_phasing_MAD_ratio.wavelength_1,
_phasing_MAD_ratio.wavelength_2. [phasing_MAD_set]
_phasing_MAD_set.wavelength_details
A descriptor for this wavelength in this cluster of data sets.
Examples: 'peak', 'remote', 'ascending edge'.
[phasing_MAD_set]

\section*{PHASING_MIR}

Data items in the PHASING_MIR category record details about the phasing of the structure where methods involving isomorphous replacement are involved. All isomorphous-replacementbased techniques are covered by this category, including single isomorphous replacement (SIR), multiple isomorphous replacement (MIR) and single or multiple isomorphous replacement plus anomalous scattering (SIRAS, MIRAS).
Category group(s): inclusive_group
phasing_group
Category key(s): _phasing_MIR.entry_id
Example 1 - based on a paper by Zanotti et al. [J. Biol. Chem. (1993), 268, 10728-10738].
_phasing_MIR.method
; Standard phase refinement (Blow \& Crick, 1959)
;

\section*{*_phasing_MIR.d_res_high \\ _phasing_MIR.ebi_d_res_high (ebi_extensions 1.0)}
(float)
The lowest value in ångströms for the interplanar spacings for the reflection data used for the native data set. This is called the highest resolution.
The permitted range is \([0.0, \infty)\).
[phasing_MIR]

\section*{*_phasing_MIR.d_res_low \\ _phasing_MIR.ebi_d_res_low (ebi_extensions 1.0)}
(float)
The highest value in ångströms for the interplanar spacings for the reflection data used for the native data set. This is called the lowest resolution.
The permitted range is \([0.0, \infty)\).
[phasing_MIR]

\section*{_phasing_MIR.details}
(text)
A description of special aspects of the isomorphous-replacement phasing.
[phasing_MIR]

\footnotetext{
* phasing_MIR.entry_id
}
[phasing_MAD_set] This data item is a pointer to _entry.id in the ENTRY category.
_phasing_MIR.FOM (float)
_phasing_MIR.ebi_fom(ebi_extensions 1.0)
The mean value of the figure of merit \(m\) for all reflections phased in the native data set.
\[
m=\frac{\int P_{\alpha} \exp (i \alpha) \mathrm{d} \alpha}{\int P_{\alpha} \mathrm{d} \alpha}
\]
where \(P_{\alpha}=\) the probability that the phase angle \(\alpha\) is correct and the integral is taken over the range \(\alpha=0\) to \(2 \pi\).
The permitted range is \([0.0, \infty)\).
[phasing_MIR]

\section*{phasing_MIR.FOM_acentric}
(float)
_phasing_MIR.ebi_fom_acentric(ebi_extensions 1.0)
The mean value of the figure of merit \(m\) for the acentric reflections phased in the native data set.
\[
m=\frac{\int P_{\alpha} \exp (i \alpha) \mathrm{d} \alpha}{\int P_{\alpha} \mathrm{d} \alpha}
\]
where \(P_{\alpha}=\) the probability that the phase angle \(\alpha\) is correct and the integral is taken over the range \(\alpha=0\) to \(2 \pi\).
The permitted range is \([0.0, \infty)\).
[phasing_MIR]

\section*{_phasing_MIR.FOM_centric}
(float)
_phasing_MIR.ebi_fom_centric(ebi_extensions 1.0)
The mean value of the figure of merit \(m\) for the centric reflections phased in the native data set.
\[
m=\frac{\int P_{\alpha} \exp (i \alpha) \mathrm{d} \alpha}{\int P_{\alpha} \mathrm{d} \alpha}
\]
where \(P_{\alpha}=\) the probability that the phase angle \(\alpha\) is correct and the integral is taken over the range \(\alpha=0\) to \(2 \pi\).
The permitted range is \([0.0, \infty)\).
[phasing_MIR]

\section*{phasing_MIR.method}
(text)
A description of the MIR phasing method applied to phase this structure. Note that this is not the computer program used, which is described in the SOFTWARE category, but rather the method itself. This data item should be used to describe significant methodological options used within the MIR phasing program.
[phasing_MIR]

\section*{_phasing_MIR.reflns}
(int)
_phasing_MIR.ebi_reflns(ebi_extensions 1.0)
The total number of reflections phased in the native data set.
The permitted range is \([0, \infty)\).
[phasing_MIR]

\section*{_phasing_MIR.reflns_acentric}
(int)
_phasing_MIR.ebi_reflns_acentric (ebi_extensions 1.0)
The number of acentric reflections phased in the native data set.
The permitted range is \([0, \infty)\).
[phasing_MIR]

\section*{_phasing_MIR.reflns_centric}
_phasing_MIR.ebi_reflns_centric (ebi_extensions 1.0)
The number of centric reflections phased in the native data set.
The permitted range is \([0, \infty)\).
[phasing_MIR]

\section*{_phasing_MIR.reflns_criterion}

Criterion used to limit the reflections used in the phasing calculations.

\section*{PHASING_MIR_DER}

Data items in the PHASING_MIR_DER category record details about individual derivatives used in the phasing of the structure when methods involving isomorphous replacement are involved. A derivative in this context does not necessarily equate with a data set; for instance, the same data set could be used to one resolution limit as an isomorphous scatterer and to a different resolution (and with a different \(\sigma\) cutoff) as an anomalous scatterer. These would be treated as two distinct derivatives, although both derivatives would point to the same data sets via _phasing_MIR_der.der_set_id and
```

phasing MIR der.native set id.

```

Category group(s): inclusive_group
phasing_group
Category key(s): _phasing_MIR_der.id
Example 1 - based on a paper by Zanotti et al. [J. Biol. Chem. (1993), 268 , 10728-10738].
loop_
phasing MIR der.id
phasing_MIR_der.number_of_sites
_phasing_MIR_der.details
KAu(CN)2 3 'major site interpreted in difference Patterson'
K2HgI4 6 'sites found in cross-difference Fourier'
K3IrCl6 2 'sites found in cross-difference Fourier'
All 11 'data for all three derivatives combined'
*_phasing_MIR_der.d_res_high (float)
The lowest value for the interplanar spacings for the reflection data used for this derivative. This is called the highest resolution.
The permitted range is \([0.0, \infty)\). [phasing_MIR_der]
*_phasing_MIR_der.d_res_low (float)
The highest value for the interplanar spacings for the reflection data used for this derivative. This is called the lowest resolution.
The permitted range is \([0.0, \infty)\). [phasing_MIR_der
*_phasing_MIR_der.der_set_id
The data set that was treated as the derivative in this experiment. This data item is a pointer to _phasing_set.id in the PHASING_SET category.
_phasing_MIR_der.details
(text)
A description of special aspects of this derivative, its data, its solution or its use in phasing
*_phasing_MIR_der.id (line)
The value of _phasing_MIR_der.id must uniquely identify a record in the PHASING_MIR_DER list. Note that this item need not be a number; it can be any unique identifier.
The following item(s) have an equivalent role in their respective categories:
_phasing_MIR_der_refln.der_id,
_phasing_MIR_der_shell.der_id,
_phasing_MIR_der_site.der_id.
Examples: ‘KAu (CN) 2', 'K2HgI4_anom’, ‘K2HgI4_iso’. [phasing_MIR_der]
*_phasing_MIR_der.native_set_id
The data set that was treated as the native in this experiment. This data item is a pointer to _phasing_set.id in the PHASING_SET category.
_phasing_MIR_der.number_of_sites
(int)
The number of heavy-atom sites in this derivative.
_phasing_MIR_der.power_acentric
(float)
_phasing_MIR_der.ebi_power_acentric (ebi_extensions 1.0)
The mean phasing power \(P\) for acentric reflections for this derivative.
\[
P=\left(\frac{\sum\left|F(h)_{\mathrm{calc}}^{2}\right|}{\sum\left|F(p h)_{\mathrm{obs}}-F(p h)_{\mathrm{calc}}\right|^{2}}\right)^{1 / 2}
\]
where \(F(p h)_{\text {obs }}=\) the observed structure-factor amplitude of this derivative, \(F(p h)_{\text {calc }}=\) the calculated structure-factor amplitude of this derivative and \(F(h)_{\text {calc }}=\) the calculated structure-factor amplitude from the heavy-atom model; the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\). [phasing_MIR_der]

\section*{phasing_MIR_der.power_centric}
(float)
_phasing_MIR_der.ebi_power_centric (ebi_extensions 1.0)
The mean phasing power \(P\) for centric reflections for this derivative.
\[
P=\left(\frac{\sum\left|F(h)_{\mathrm{calc}}^{2}\right|}{\sum\left|F(p h)_{\mathrm{obs}}-F(p h)_{\mathrm{calc}}\right|^{2}}\right)^{1 / 2}
\]
where \(F(p h)_{\text {obs }}=\) the observed structure-factor amplitude of this derivative, \(F(p h)_{\text {calc }}=\) the calculated structure-factor amplitude of this derivative and \(F(h)_{\text {calc }}=\) the calculated structure-factor amplitude from the heavy-atom model; the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\). [phasing_MIR_der]
_phasing_MIR_der.R_cullis_acentric
(float)

Residual factor \(R_{\text {cullis,acen }}\) for acentric reflections for this derivative. The Cullis \(R\) factor was originally defined only for centric reflections. It is, however, also a useful statistical measure for acentric reflections, which is how it is used in this data item.
\[
R_{\text {cullis }, \text { acen }}=\frac{\sum| | F(p h)_{\mathrm{obs}} \pm F(p)_{\mathrm{obs}}\left|-F(h)_{\mathrm{calc}}\right|}{\sum\left|F(p h)_{\mathrm{obs}}-F(p)_{\mathrm{obs}}\right|}
\]
where \(F(p)_{\text {obs }}=\) the observed structure-factor amplitude of the native, \(F(p h)_{\text {obs }}=\) the observed structure-factor amplitude of the derivative and \(F(h)_{\text {calc }}=\) the calculated structure-factor amplitude from the heavy-atom model; the sum is taken over the specified reflections.

Reference: Cullis, A. F., Muirhead, H., Perutz, M. F., Rossmann, M. G. \& North, A. C. T. (1961). Proc. R. Soc. London Ser. A, 265, 15-38.
The permitted range is \([0.0, \infty)\).
[phasing_MIR_der]

\section*{_phasing_MIR_der.R_cullis_anomalous}
_phasing_MIR_der.ebi_Rcullis_anomalous(ebi_extensions 1.0)
Residual factor \(R_{\text {cullis,ano }}\) for anomalous reflections for this derivative. The Cullis \(R\) factor was originally defined only for centric reflections. It is, however, also a useful statistical measure for anomalous reflections, which is how it is used in this data item. This is tabulated for acentric terms. A value less than 1.0 means there is some contribution to the phasing from the anomalous data.
\[
R_{\mathrm{cullis}, \mathrm{ano}}=\frac{\sum\left|F(p h+)_{\mathrm{obs}} F(p h-)_{\mathrm{obs}}-F(h+)_{\mathrm{calc}}-F(h-)_{\mathrm{calc}}\right|}{\sum\left|F(p h+)_{\mathrm{obs}}-F(p h-)_{\mathrm{obs}}\right|}
\]
where \(F(p h+)_{\text {obs }}=\) the observed positive Friedel structure-factor amplitude for the derivative, \(F(p h-)_{\text {obs }}=\) the observed negative Friedel structure-factor amplitude for the derivative, \(F(h+)_{\text {calc }}=\) the calculated positive Friedel structure-factor amplitude from the heavy-atom model and \(F(h-)_{\text {calc }}=\) the calculated negative Friedel structure-factor amplitude from the heavy-atom model; the sum is taken over the specified reflections.

Reference: Cullis, A. F., Muirhead, H., Perutz, M. F., Rossmann, M. G. \& North, A. C. T. (1961). Proc. R. Soc. London Ser. A, 265, 15-38.
The permitted range is \([0.0, \infty)\).
[phasing_MIR_der]
phasing_MIR_der.R_cullis_centric
_phasing_MIR_der.ebi_Rcullis_centric(ebi_extensions 1.0) \(\quad\) (float)

Residual factor \(R_{\text {cullis }}\) for centric reflections for this derivative.
\[
R_{\mathrm{cullis}}=\frac{\sum| | F(p h)_{\mathrm{obs}} \pm F(p)_{\mathrm{obs}}\left|-F(h)_{\mathrm{calc}}\right|}{\sum\left|F(p h)_{\mathrm{obs}}-F(p)_{\mathrm{obs}}\right|}
\]
where \(F(p)_{\text {obs }}=\) the observed structure-factor amplitude of the native, \(F(p h)_{\text {obs }}=\) the observed structure-factor amplitude of the derivative and \(F(h)_{\text {calc }}=\) the calculated structure-factor amplitude from the heavy-atom model; the sum is taken over the specified reflections.

Reference: Cullis, A. F., Muirhead, H., Perutz, M. F., Rossmann, M. G. \& North, A. C. T. (1961). Proc. R. Soc. London Ser. A, 265, 15-38.
The permitted range is \([0.0, \infty)\).
[phasing_MIR_der]
_phasing_MIR_der.reflns_acentric
(int)
_phasing_MIR_der.ebi_reflns_acentric (ebi_extensions 1.0)
The number of acentric reflections used in phasing for this derivative.
The permitted range is \([0, \infty)\).
[phasing_MIR_der]
_phasing_MIR_der.reflns_anomalous
_phasing_MIR_der.ebi_reflns_anomalous(ebi_extensions 1.0)
The number of anomalous reflections used in phasing for this derivative.
The permitted range is \([0, \infty)\).
[phasing_MIR_der]
phasing MIR der.reflns centric
(int)
_phasing_MIR_der.ebi_reflns_centric(ebi_extensions 1.0)
The number of centric reflections used in phasing for this derivative.
The permitted range is \([0, \infty)\).
[phasing_MIR_der]
_phasing_MIR_der.reflns_criteria
(text)
Criteria used to limit the reflections used in the phasing calculations.
Example: ‘> 4 \s(I)’. [phasing_MIR_der]

\section*{PHASING_MIR_DER_REFLN}

Data items in the PHASING_MIR_DER_REFLN category record details about the calculated structure factors obtained in an MIR phasing experiment. This list may contain information from a number of different derivatives; _phasing_MIR_der_ refln.der_id indicates to which derivative a given record corresponds. (A derivative in this context does not necessarily equate with a data set; see the definition of the PHASING_MIR_DER category for a discussion of the meaning of 'derivative'.) It is not necessary for the data items describing the measured value of \(F\) to appear in this list, as they will be given in the PHASING_SET_REFLN category. However, these items can also be listed here for completeness.
Category group(s): inclusive_group
phasing_group
Category key(s): _phasing_MIR_der_refln.index_h
_phasing_MIR_der_refln.index_k
_phasing_MIR_der_refln.index_1
_phasing_MIR_der_refln.der_id
_phasing_MIR_der_refln.set_id
Example 1 - based on laboratory records for the \(6,1,25\) reflection of an \(\mathrm{Hg} / \mathrm{Pt}\) derivative of protein NS1.
\begin{tabular}{lr} 
_phasing_MIR_der_refln.index_h & 6 \\
_phasing_MIR_der_refln.index_k & 1 \\
_phasing_MIR_der_refln.index_1 & 25 \\
_phasing_MIR_der_refln.der_id & HGPT1 \\
_phasing_MIR_der_refln.set_id & NS1-96' \\
_phasing_MIR_der_refln.F_calc_au & 106.66 \\
_phasing_MIR_der_refln.F_meas_au & 204.67 \\
_phasing_MIR_der_refln.F_meas_sigma & 6.21 \\
_phasing_MIR_der_refln.HL_A_iso & -3.15 \\
_phasing_MIR_der_refln.HL_B_iso & -0.76 \\
_phasing_MIR_der_refln.HL_C_iso & 0.65 \\
_phasing_MIR_der_refln.HL_D_iso & 0.23 \\
_phasing_MIR_der_refln.phase_calc & 194.48
\end{tabular}
*_phasing_MIR_der_refln.der_id
This data item is a pointer to _phasing_MIR_der.id in the PHASING_MIR_DER category.

\section*{_phasing_MIR_der_refln.F_calc}
(float)
The calculated value of the structure factor for this derivative, in electrons.
Related item: _phasing_MIR_der_refln.F_calc_au (conversion arbitrary).
[phasing_MIR_der_refln]

\section*{_phasing_MIR_der_refln.F_calc_au}
(float)
The calculated value of the structure factor for this derivative, in arbitrary units.
Related item: _phasing_MIR_der_refln.F_calc (conversion arbitrary).
[phasing_MIR_der_refln]

\section*{_phasing_MIR_der_refln.F_meas}
(float, su)
The measured value of the structure factor for this derivative, in electrons.
Related items: _phasing_MIR_der_refln.F_meas_sigma (associated esd),
_phasing_MIR_der_refln.F_meas_au (conversion arbitrary).
[phasing_MIR_der_refln]

\section*{_phasing_MIR_der_refln.F_meas_au}

The measured value of the structure factor for this derivative, in arbitrary units.
Related items: _phasing_MIR_der_refln.F_meas_sigma_au (associated esd), _phasing_MIR_der_refln.F_meas (conversion arbitrary).
[phasing_MIR_der_refln]
_phasing_MIR_der_refln.F_meas_sigma (float)
The standard uncertainty (estimated standard deviation) of _phasing_MIR_der_refln.F_meas, in electrons.
Related items: _phasing_MIR_der_refln.F_meas (associated value),
_phasing_MIR_der_refln.F_meas_sigma_au (conversion arbitrary).
[phasing_MIR_der_refln]
_phasing_MIR_der_refln.F_meas_sigma_au (float) The standard uncertainty (estimated standard deviation) of _phasing_MIR_der_refln.F_meas_au, in arbitrary units.
Related items: _phasing_MIR_der_refln.F_meas_au (associated value),
_phasing_MIR_der_refln.F_meas_sigma (conversion arbitrary).
[phasing_MIR_der_refln]
_phasing_MIR_der_refln.HL_A_iso
(float)
The isomorphous \(\overline{-}\) Hendrickson-Lattman coefficient \(A_{\text {iso }}\) for this reflection for this derivative.
\(A_{\mathrm{iso}}=-\frac{2.0\left[F(p)_{\mathrm{obs}}^{2}+F(h)_{\mathrm{calc}}^{2}-F(p h)_{\mathrm{obs}}^{2}\right] F(p)_{\mathrm{obs}} \cos \left(\alpha_{h \mathrm{calc}}\right)}{E^{2}}\),
where \(E=\left[F(p h)_{\text {obs }}-F(p)_{\text {obs }}-F(h)_{\text {calc }}\right]^{2}\) for centric reflections, \(E=\left\{2^{1 / 2}\left[F(p h)_{\text {obs }}-F(p)_{\text {obs }}\right]-F(h)_{\text {calc }}\right\}^{2}\) for acentric reflections, \(F(p)_{\text {obs }}=\) the observed structure-factor amplitude of the native, \(F(p h)_{\text {obs }}=\) the observed structure-factor amplitude of the derivative, \(F(h)_{\text {calc }}=\) the calculated structure-factor amplitude from the heavy-atom model and \(\alpha_{\text {hcalc }}=\) the calculated phase from the heavy-atom model.

This coefficient appears in the expression for the phase probability of each isomorphous derivative:
\[
P_{i}(\alpha)=\exp (k+A \cos \alpha+B \sin \alpha+C \cos 2 \alpha+D \sin 2 \alpha)
\]

Reference: Hendrickson, W. A. \& Lattman, E. E. (1970). Acta Cryst. B26, 136-143.
_phasing_MIR_der_refln.HL_B_iso
(float)
The isomorphous Hendrickson-Lattman coefficient \(B_{\text {iso }}\) for this reflection for this derivative.
\[
B_{\mathrm{iso}}=-\frac{2.0\left[F(p)_{\mathrm{obs}}^{2}+F(h)_{\mathrm{calc}}^{2}-F(p h)_{\mathrm{obs}}^{2}\right] F(p)_{\mathrm{obs}} \sin \left(\alpha_{h \mathrm{calc}}\right)}{E^{2}}
\]
where \(E=\left[F(p h)_{\text {obs }}-F(p)_{\text {obs }}-F(h)_{\text {calc }}\right]^{2}\) for centric reflections, \(E=\left\{2^{1 / 2}\left[F(p h)_{\text {obs }}-F(p)_{\text {obs }}\right]-F(h)_{\text {calc }}\right\}^{2}\) for acentric reflections, \(F(p)_{\text {obs }}=\) the observed structure-factor amplitude of the native, \(F(p h)_{\text {obs }}=\) the observed structure-factor amplitude of the derivative, \(F(h)_{\text {calc }}=\) the calculated structure-factor amplitude from the heavy-atom model and \(\alpha_{\text {hcalc }}=\) the calculated phase from the heavy-atom model.

This coefficient appears in the expression for the phase probability of each isomorphous derivative:
\[
P_{i}(\alpha)=\exp (k+A \cos \alpha+B \sin \alpha+C \cos 2 \alpha+D \sin 2 \alpha)
\]

Reference: Hendrickson, W. A. \& Lattman, E. E. (1970). Acta Cryst. B26, 136-143.
_phasing_MIR_der_refln.HL_C_iso
(float)
The isomorphous Hendrickson-Lattman coefficient \(C_{\text {iso }}\) for this reflection for this derivative.
\[
C_{\mathrm{iso}}=-\frac{F(p)_{\mathrm{obs}}^{2}\left[\sin \left(\alpha_{h \mathrm{calc}}\right)^{2}-\cos \left(\alpha_{h \mathrm{calc}}\right)^{2}\right]}{E^{2}}
\]
where \(E=\left[F(p h)_{\text {obs }}-F(p)_{\text {obs }}-F(h)_{\text {calc }}\right]^{2}\) for centric reflections, \(E=\left\{2^{1 / 2}\left[F(p h)_{\text {obs }}-F(p)_{\text {obs }}\right]-F(h)_{\text {calc }}\right\}^{2}\) for acentric reflections, \(F(p)_{\text {obs }}=\) the observed structure-factor amplitude of the native, \(F(p h)_{\text {obs }}=\) the observed structure-factor amplitude of the derivative, \(F(h)_{\text {calc }}=\) the calculated structure-factor amplitude from the heavy-atom model and \(\alpha_{\text {hcalc }}=\) the calculated phase from the heavy-atom model.
This coefficient appears in the expression for the phase probability of each isomorphous derivative:
\[
P_{i}(\alpha)=\exp (k+A \cos \alpha+B \sin \alpha+C \cos 2 \alpha+D \sin 2 \alpha) .
\]

Reference: Hendrickson, W. A. \& Lattman, E. E. (1970). Acta Cryst. B26, 136-143.
[phasing_MIR_der_refln]

\section*{_phasing_MIR_der_refln.HL_D_iso \\ (float)}

The isomorphous Hendrickson-Lattman coefficient \(D_{\text {iso }}\) for this reflection for this derivative.
\[
D_{\mathrm{iso}}=-\frac{2.0 F(p)_{\mathrm{obs}}^{2} \sin \left(\alpha_{h \mathrm{calc}}\right)^{2}+\cos \left(\alpha_{h \mathrm{calc}}\right)^{2}}{E^{2}}
\]
where \(E=\left[F(p h)_{\text {obs }}-F(p)_{\text {obs }}-F(h)_{\text {calc }}\right]^{2}\) for centric reflections, \(E=\left\{2^{1 / 2}\left[F(p h)_{\text {obs }}-F(p)_{\text {obs }}\right]-F(h)_{\text {calc }}\right\}^{2}\) for acentric reflections, \(F(p)_{\text {obs }}=\) the observed structure-factor amplitude of the native, \(F(p h)_{\text {obs }}=\) the observed structure-factor amplitude of the derivative, \(F(h)_{\text {calc }}=\) the calculated structure-factor amplitude from the heavy-atom model and \(\alpha_{\text {hcalc }}=\) the calculated phase from the heavy-atom model.

This coefficient appears in the expression for the phase probability of each isomorphous derivative:
\[
P_{i}(\alpha)=\exp (k+A \cos \alpha+B \sin \alpha+C \cos 2 \alpha+D \sin 2 \alpha)
\]

Reference: Hendrickson, W. A. \& Lattman, E. E. (1970). Acta Cryst. B26, 136-143.
[phasing_MIR_der_refln]
*_phasing_MIR_der_refln.index_h
Miller index \(h\) for this reflection for this derivative.
[phasing_MIR_der_refln]

\footnotetext{
*_phasing_MIR_der_refln.index_k
(int)
\(\overline{\text { Miller index }} k\) for \(\overline{\text { this }} \overline{\text { reflection for this }} \overline{\text { derivative. }}\)
}
[phasing_MIR_der_refln]
*_phasing_MIR_der_refln.index_1 (int)
Miller index \(l\) for this reflection for this derivative.
[phasing_MIR_der_refln]

\section*{_phasing_MIR_der_refln.phase_calc}
(float)
\(\bar{T}\) The calculated value \(\overline{\text { of }}\) the structure-factor phase based on the heavy-atom model for this derivative in degrees.

> [phasing_MIR_der_refln]

\section*{*_phasing_MIR_der_refln.set_id}

This data item is a pointer to _phasing_set.id in the PHASING_SET category.

\section*{PHASING_MIR_DER_SHELL}

Data items in the PHASING_MIR_DER_SHELL category record statistics, broken down into shells of resolution, for an MIR phasing experiment. This list may contain information from a number of different derivatives; _phasing_MIR_der_shell.der_id indicates to which derivative a given record corresponds. (A derivative in this context does not necessarily equate with a data set; see the definition of the PHASING_MIR_DER category for a discussion of the meaning of 'derivative'. \({ }^{-}\))
Category group(s): inclusive_group

> phasing_group

Category key(s): _phasing_MIR_der_shell.der_id
phasing_MIR_der_shell.d_res_low
phasing_MIR_der_shell.d_res_high
Example 1 - based on a paper by Zanotti et al. [J. Biol. Chem. (1993), 268, 10728-10738] with addition of an arbitrary low-resolution limit.
loop_
_phasing_MIR_der_shell.der_id
_phasing_MIR_der_shell.d_res_low
_phasing_MIR_der_shell.d_res_high
_phasing_MIR_der_shell.ha_ampl
_phasing_MIR_der_shell.loc
\(\begin{array}{lrrrr}\text { KAu (CN) } 2 & 15.0 & 8.3 & 54 & 26 \\ \mathrm{KAu}(\mathrm{CN}) 2 & 8.3 & 6.4 & 54 & 20\end{array}\)
\(\begin{array}{lllll}\mathrm{KAu}(\mathrm{CN}) 2 & 6.4 & 5.2 & 50 & 20\end{array}\)
\(\begin{array}{lllll}\text { KAu (CN) } 2 & 5.2 & 4.4 & 44 & 23\end{array}\)
\(\begin{array}{lllll}\text { KAu (CN) } 2 & 4.4 & 3.8 & 39 & 23 \\ \text { KAu (CN) } 2 & 3.8 & 3.4 & 33 & 21\end{array}\)
\(\begin{array}{lllll}\mathrm{KAu}(\mathrm{CN}) 2 & 3.4 & 3.0 & 28 & 17\end{array}\)
\(\begin{array}{lrrrr}\mathrm{KAu}(\mathrm{CN}) 2 & 15.0 & 3.0 & 38 & 21 \\ \mathrm{~K} 2 \mathrm{HgI} 4 & 15.0 & 8.3 & 149 & 87\end{array}\)
\(\begin{array}{lllll}\mathrm{K} 2 \mathrm{HgI} 4 & 8.3 & 6.4 & 121 & 73\end{array}\)
\(\begin{array}{lllll}\text { K2HgI4 } & 6.4 & 5.2 & 95 & 61 \\ \text { K2HgI4 } & 5.2 & 4.4 & 80 & 60\end{array}\)
\(\begin{array}{lllll}\mathrm{K} 2 \mathrm{HgI4} & 4.4 & 3.8 & 73 & 63\end{array}\)
\(\begin{array}{lllll}\mathrm{K} 2 \mathrm{HgI} 4 & 3.8 & 3.4 & 68 & 57 \\ \mathrm{~K} 2 \mathrm{HgI} 4 & 3.4 & 3.0 & 63 & 46\end{array}\)
\(\begin{array}{lllll}\text { K2HgI4 } & 15.0 & 3.0 & 79 & 58\end{array}\)
\(\begin{array}{rrrrr}\text { K3IrCl6 } & 15.0 & 8.3 & 33 & 27 \\ \text { K3IrCl6 } & 8.3 & 6.4 & 40 & 23\end{array}\)
\(\begin{array}{lllll}\mathrm{K} 3 \mathrm{IrCl} 6 & 6.4 & 5.2 & 31 & 22\end{array}\)
\(\begin{array}{lllll}\mathrm{K} 3 \mathrm{IrCl} 6 & 5.2 & 4.4 & 27 & 23 \\ \mathrm{~K} 3 \mathrm{IrCl} 6 & 4.4 & 3.8 & 22 & 23\end{array}\)
\(\begin{array}{lllll}\mathrm{K} 3 \mathrm{IrCl} 6 & 3.8 & 3.4 & 19 & 20\end{array}\)
\(\begin{array}{lrrrr}\mathrm{K} 3 \mathrm{IrCl} 6 & 3.4 & 3.0 & 16 & 20 \\ \mathrm{~K} 3 \mathrm{IrCl} 6 & 15.0 & 3.0 & 23 & 21\end{array}\)
*_phasing_MIR_der_shell.d_res_high (float) The lowest value for the interplanar spacings for the reflection data for this derivative in this shell. This is called the highest resolution. The permitted range is \([0.0, \infty)\).
[phasing_MIR_der_shell]
*_phasing_MIR_der_shell.d_res_low (float)
The highest value for the interplanar spacings for the reflection data for this derivative in this shell. This is called the lowest resolution.
The permitted range is \([0.0, \infty)\).
[phasing_MIR_der_shell]
*_phasing_MIR_der_shell.der_id
This data item is a pointer to phasing_MIR_der.id in the PHASING_MIR_DER category.
_phasing_MIR_der_shell.fom
(float)
The mean value of the figure of merit \(m\) for reflections in this shell.
\[
m=\frac{\int P_{\alpha} \exp (i \alpha) \mathrm{d} \alpha}{\int P_{\alpha} \mathrm{d} \alpha}
\]
where \(P_{\alpha}=\) the probability that the phase angle \(\alpha\) is correct; the integral is taken over the range \(\alpha=0\) to \(2 \pi\).
The permitted range is \([0.0, \infty)\).
[phasing_MIR_der_shell]
_phasing_MIR_der_shell.ha_ampl
(float)
The mean heavy-atom amplitude for reflections for this derivative in this shell.
The permitted range is \([0.0, \infty)\).
[phasing MIR der shell]
_phasing_MIR_der_shell.loc (float)
The mean lack-of-closure error loc for reflections for this derivative in this shell.
\[
\mathrm{loc}=\sum\left|F(p h)_{\mathrm{obs}}-F(p h)_{\mathrm{calc}}\right|,
\]
where \(F(p h)_{\text {obs }}=\) the observed structure-factor amplitude of the derivative and \(F(p h)_{\text {calc }}=\) the calculated structure-factor amplitude of the derivative; the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
[phasing_MIR_der_shell]

\section*{phasing_MIR_der_shell.phase}
(float)
The mean of the phase values for reflections for this derivative in this shell.
[phasing MIR der shell]

\section*{_phasing_MIR_der_shell.power}
(float)
The mean phasing power \(P\) for reflections for this derivative in this shell.
\[
P=\left(\frac{\sum\left|F(h)_{\mathrm{calc}}^{2}\right|}{\sum\left|F(p h)_{\mathrm{obs}}-F(p h)_{\mathrm{calc}}\right|^{2}}\right)^{1 / 2}
\]
where \(F(p h)_{\text {obs }}=\) the observed structure-factor amplitude of this derivative, \(F(p h)_{\text {calc }}=\) the calculated structure-factor amplitude of this derivative and \(F(h)_{\text {calc }}=\) the calculated structure-factor amplitude from the heavy-atom model; the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
[phasing_MIR_der_shell]

\section*{phasing MIR der shell.R cullis}

Residual factor \(R_{\text {cullis }}\) for centric reflections for this derivative in this shell.
\[
R_{\mathrm{cullis}}=\frac{\sum| | F(p h)_{\mathrm{obs}} \pm F(p)_{\mathrm{obs}}\left|-F(h)_{\mathrm{calc}}\right|}{\sum\left|F(p h)_{\mathrm{obs}}-F(p)_{\mathrm{obs}}\right|}
\]
where \(F(p)_{\text {obs }}=\) the observed structure-factor amplitude of the native, \(F(p h)_{\text {obs }}=\) the observed structure-factor amplitude of the derivative and \(F(h)_{\text {calc }}=\) the calculated structure-factor amplitude from the heavy-atom model; the sum is taken over the specified reflections.

Reference: Cullis, A. F., Muirhead, H., Perutz, M. F., Rossmann, M. G. \& North, A. C. T. (1961). Proc. R. Soc. London Ser. A, 265, 15-38.
The permitted range is \([0.0, \infty)\).
[phasing MIR der shell]
_phasing_MIR_der_shell.R_kraut
(float)
Residual factor \(R_{\text {kraut }}\) for general reflections for this derivative in this shell.
\[
R_{\mathrm{kraut}}=\frac{\sum\left|F(p h)_{\mathrm{obs}}-F(p h)_{\mathrm{calc}}\right|}{\sum\left|F(p h)_{\mathrm{obs}}\right|}
\]
where \(F(p h)_{\text {obs }}=\) the observed structure-factor amplitude of the derivative, \(F(p h)_{\text {calc }}=\) the calculated structure-factor amplitude of the derivative and the sum is taken over the specified reflections

Reference: Kraut, J., Sieker, L. C., High, D. F. \& Freer, S. T. (1962). Proc. Natl Acad. Sci. USA, 48, 1417-1424.

The permitted range is \([0.0, \infty)\).
[phasing_MIR_der_shell]
_phasing_MIR_der_shell.reflns
(int)
The number of reflections in this shell
The permitted range is \([0, \infty)\).
[phasing_MIR_der_shell]

\section*{PHASING_MIR_DER_SITE}

Data items in the PHASING_MIR_DER_SITE category record details about the heavy-atom sites in an MIR phasing experiment. This list may contain information from a number of different derivatives; _phasing_MIR_der_site.der_id indicates to which derivative a given record corresponds. (A derivative in this context does not necessarily equate with a data set; see the definition of the PHASING_MIR_DER category for a discussion of the meaning of 'derivative'.)
Category group(s): inclusive_group
phasing_group

Category key(s): _phasing_MIR_der_site.der_id
phasing MIR der site.id
Example 1 - based on a paper by Zanotti et al. [J. Biol. Chem. (1993), 268, 10728-10738] with occupancies converted from electrons to fractional.
loop_
phasing MIR der site.der id
phasing_MIR_der_site.id
phasing_MIR_der_site.atom_type_symbol
phasing MIR der site.occupancy
_phasing_MIR_der_site.fract_x
_phasing_MIR_der_site.fract_Y
phasing_MIR_der_site.fract_z
phasing_MIR_der_site.B_iso
\(\begin{array}{llllllll}\mathrm{KAu}(\mathrm{CN}) 2 & 1 & \mathrm{Au} & 0.40 & 0.082 & 0.266 & 0.615 & 33.0\end{array}\)
\(\begin{array}{llllllll}\mathrm{KAu}(\mathrm{CN}) 2 & 2 & \mathrm{Au} & 0.03 & 0.607 & 0.217 & 0.816 & 25\end{array}\)
\(\begin{array}{lllllllll}\mathrm{KAu}(\mathrm{CN}) 2 & 3 & \mathrm{Au} & 0.02 & 0.263 & 0.782 & 0.906 & 15.7\end{array}\)
\begin{tabular}{lllllllll} 
K2HgI4 & 1 & Hg & 0.63 & 0.048 & 0.286 & 0.636 & 33.7
\end{tabular}
\begin{tabular}{llllllll} 
K2HgI4 \(\quad 2\) & Hg & 0.34 & 0.913 & 0.768 & 0.889 & 36.7
\end{tabular}
\(\begin{array}{lllllllll}\text { K2HgI4 } & 3 & \mathrm{Hg} & 0.23 & 0.974 & 0.455 & 0.974 & 24.2\end{array}\)
\(\begin{array}{llllllll}\text { K2HgI4 } & 5 & \mathrm{Hg} & 0.07 & 0.489 & 0.200 & 0.885 & 6.4\end{array}\)
\(\begin{array}{llllllll}\mathrm{K} 2 \mathrm{HgI4} & 6 & \mathrm{Hg} & 0.07 & 0.162 & 0.799 & 0.889 & 32.9\end{array}\)
\begin{tabular}{llllllll} 
K3IrCl6 & 1 & \(\operatorname{Ir}\) & 0.26 & 0.209 & 0.739 & 0.758 & 40.8
\end{tabular}
*_phasing_MIR_der_site.atom_type_symbol
This data item is a pointer to _atom_type.symbol in the ATOM_TYPE category. The scattering factors referenced via this data item should be those used in the refinement of the heavy-atom data; in some cases this is the scattering factor for the single heavy atom, in other cases these are the scattering factors for an atomic cluster.
_phasing_MIR_der_site.B_iso
(float, su)
Isotropic displacement parameter for this heavy-atom site in this derivative.
Related item: _phasing_MIR_der_site.B_iso_esd (associated esd)
[phasing MIR der site]
_phasing_MIR_der_site.B_iso_esd (float)
The standard uncertainty (estimated standard deviation) of phasing_MIR_der_site.B_iso.
Related item: _phasing_MIR_der_site.B_iso (associated value).
[phasing_MIR_der_site]

The \(x\) coordinate of this heavy-atom position in this derivative specified as orthogonal ångströms. The orthogonal Cartesian axes are related to the cell axes as specified by the description given in _atom_sites.Cartn_transform_axes.
Related item: _phasing_MIR_der_site.Cartn_x_esd (associated esd).

\author{
phasing_MIR_der_site.Cartn_x_esd (float) \\ The standard uncertainty (estimated standard deviation) of _phasing_MIR_der_site.Cartn_x. \\ Related item: _phasing_MIR_der_site.Cartn_x (associated value). \\ [phasing MIR der site]
}
_phasing_MIR_der_site.fract_y_esd (float)
The standard uncertainty (estimated standard deviation) of _phasing_MIR_der_site.fract_y.
Related item: _phasing_MIR_der_site.fract_y (associated value).
[phasing MIR der site]

\author{
_phasing_MIR_der_site.fract_z \\ (float, su)
}

The \(z\) coordinate of this heavy-atom position in this derivative specified as a fraction of _cell. length_c.
Related item: _phasing_MIR_der_site.fract_z_esd(associated esd).
[phasing_MIR_der_site]
_phasing_MIR_der_site.fract_z_esd (float)
The standard uncertainty (estimated standard deviation) of _phasing_MIR_der_site.fract_z.
Related item: _phasing_MIR_der_site.fract_z (associated value).
[phasing_MIR_der_site]
*_phasing_MIR_der_site.id (code)
The value of _phasing_MIR_der_site.id must uniquely identify each site in each derivative in the \(\overline{\text { P }}\) HASING_MIR_DER_SITE list. The atom identifiers need not be unique over all sites in all derivatives; they need only be unique for each site in each derivative. Note that this item need not be a number; it can be any unique identifier.
[phasing_MIR_der_site]
phasing MIR der site.occupancy
The fraction of the atom type present at this heavy-atom site in a given derivative. The sum of the occupancies of all the atom types at this site may not significantly exceed 1.0 unless it is a dummy site.
The permitted range is \([0.0, \infty)\). Where no value is given, the assumed value is ' 1.0 '.
[phasing_MIR_der_site]
_phasing_MIR_der_site.occupancy_anom (float, su) _phasing_MIR_der_site.ebi_occupancy_anom(ebi_extensions 1.0)
The relative anomalous occupancy of the atom type present at this heavy-atom site in a given derivative. This atom occupancy will probably be on an arbitrary scale.
Related item: _phasing_MIR_der_site.occupancy_anom_su (associated esd). [phasing_MIR_der_site]
_phasing_MIR_der_site.occupancy_anom_su (float) phasing_MIR_der_site.ebi_occupancy_anom_esd(ebi_extensions 1.0)
The standard uncertainty (estimated standard deviation) of _phasing_MIR_der_site.occupancy_anom.
Related item: _phasing_MIR_der_site.occupancy_anom(associated value).
[phasing_MIR_der_site]
_phasing_MIR_der_site.occupancy_iso (float, su) _phasing_MIR_der_site.ebi_occupancy_iso(ebi_extensions 1.0)
The relative real isotropic occupancy of the atom type present at this heavy-atom site in a given derivative. This atom occupancy will probably be on an arbitrary scale.
Related item: _phasing_MIR_der_site.occupancy_iso_su (associated esd).
[phasing_MIR_der_site]

\section*{_phasing_MIR_der_site.occupancy_iso_su \\ (float)}
_phasing_MIR_der_site.ebi_occupancy_iso_esd(ebi_extensions 1.0)
The standard uncertainty (estimated standard deviation) of _phasing_MIR_der_site.occupancy_iso.
Related item: _phasing_MIR_der_site.occupancy_iso(associated value).
[phasing_MIR_der_site]

\section*{PHASING_MIR_SHELL}

Data items in the PHASING_MIR_SHELL category record statistics for an isomorphous replacement phasing experiment broken down into shells of resolution.
Category group(s): inclusive_group
phasing_group

Category key(s): _phasing_MIR_shell.d_res_low phasing_MIR_shell.d_res_high

Example 1 - based on a paper by Zanotti et al. [J. Biol. Chem. (1993), 268, 10728-10738] with addition of an arbitrary low-resolution limit.
```

100p_
_phasing_MIR_shell.d_res_low
_phasing_MIR_shell.d_res_high
phasing MIR shell.reflns
_phasing_MIR_shell.FOM
15.0 8.3 80 0.69
8.3 6.4 184 0.73
6.4 5.2 288 0.72
5.2 4.4 406 0.65
4.4}30.8\quad554 0.5
3.8
3.4

```
*_phasing_MIR_shell.d_res_high
The lowest value for the interplanar spacings for the reflec-
tion data in this shell. This is called the highest resolution.
Note that the resolution limits of shells in the items phasing_
mIR_shell.d_res_high and_phasing_mIR_shell.d_res_loware
independent of the resolution limits of shells in the items
reflns_shell.d_res_high and _reflns_shell.d_res_low.
The permitted range is [0.0, \(\infty\) ).
[phasing_MIR_shell]
*_phasing_MIR_shell.d_res_low
(float)
The highest value for the interplanar spacings for the reflection data in this shell. This is called the lowest resolution. Note that the resolution limits of shells in the items _phasing_ MIR_shell.d_res_high and _phasing_MIR_shell.d_res_low are independent of the resolution limits of shells in the items _reflns_shell.d_res_high and _reflns_shell.d_res_low. The permitted range is \([0.0, \infty)\). \(\quad\) [phasing_MIR_shell]
_phasing_MIR_shell.FOM
(float)
The mean value of the figure of merit \(m\) for reflections in this shell.
\[
m=\frac{\int P_{\alpha} \exp (i \alpha) \mathrm{d} \alpha}{\int P_{\alpha} \mathrm{d} \alpha}
\]
where \(P_{\alpha}=\) the probability that the phase angle \(\alpha\) is correct and the integral is taken over the range \(\alpha=0\) to \(2 \pi\).
The permitted range is \([0.0, \infty)\).
[phasing_MIR_shell]

\section*{_phasing_MIR_shell.FOM_acentric}
(float)
_phasing_MIR_shē11.ebi_fom_acentric (ebi_extensions 1.0)
The mean value of the figure of merit \(m\) for acentric reflections in this shell.
\[
m=\frac{\int P_{\alpha} \exp (i \alpha) \mathrm{d} \alpha}{\int P_{\alpha} \mathrm{d} \alpha}
\]
where \(P_{\alpha}=\) the probability that the phase angle \(\alpha\) is correct and the integral is taken over the range \(\alpha=0\) to \(2 \pi\).
The permitted range is \([0.0, \infty)\).
[phasing_MIR_shell]
_phasing_MIR_shell.FOM_centric
(float)
_phasing_MIR_shell.ebi_fom_centric(ebi_extensions 1.0)
The mean value of the figure of merit \(m\) for centric reflections in this shell.
\[
m=\frac{\int P_{\alpha} \exp (i \alpha) \mathrm{d} \alpha}{\int P_{\alpha} \mathrm{d} \alpha}
\]
where \(P_{\alpha}=\) the probability that the phase angle \(\alpha\) is correct and the integral is taken over the range \(\alpha=0\) to \(2 \pi\).
The permitted range is \([0.0, \infty)\).
[phasing_MIR_shell]

\section*{phasing MIR shell.loc}
(float)
The mean lack-of-closure error loc for reflections in this shell.
\[
\mathrm{loc}=\sum\left|F(p h)_{\mathrm{obs}}-F(p h)_{\mathrm{calc}}\right|
\]
where \(F(p h)_{\text {obs }}=\) the observed structure-factor amplitude of the derivative and \(F(p h)_{\text {calc }}=\) the calculated structure-factor amplitude of the derivative; the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
[phasing_MIR_shell]
_phasing_MIR_shell.mean_phase
(float)
\(\bar{T}\) The mean of the \(\bar{p}\) hase values for all reflections in this shell.
[phasing_MIR_shell]
_phasing_MIR_shell.power
(float)

\[
P=\left(\frac{\sum\left|F(h)_{\mathrm{calc}}^{2}\right|}{\sum\left|F(p h)_{\mathrm{obs}}-F(p h)_{\mathrm{calc}}\right|^{2}}\right)^{1 / 2}
\]
where \(F(p h)_{\text {obs }}=\) the observed structure-factor amplitude of this derivative, \(F(p h)_{\text {calc }}=\) the calculated structure-factor amplitude of this derivative and \(F(h)_{\text {calc }}=\) the calculated structure-factor amplitude from the heavy-atom model; the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\). [phasing_MIR_shell]
_phasing_MIR_shell.R_cullis
(float)
Residual factor \(R_{\text {cullis }}\) for centric reflections in this shell.
\[
R_{\mathrm{cullis}}=\frac{\sum| | F(p h)_{\mathrm{obs}} \pm F(p)_{\mathrm{obs}}\left|-F(h)_{\mathrm{calc}}\right|}{\sum\left|F(p h)_{\mathrm{obs}}-F(p)_{\mathrm{obs}}\right|}
\]
where \(F(p)_{\text {obs }}=\) the observed structure-factor amplitude of the native, \(F(p h)_{\text {obs }}=\) the observed structure-factor amplitude of the derivative and \(F(h)_{\text {calc }}=\) the calculated structure-factor amplitude from the heavy-atom model; the sum is taken over the specified reflections.

Reference: Cullis, A. F., Muirhead, H., Perutz, M. F., Rossmann, M. G. \& North, A. C. T. (1961). Proc. R. Soc. London Ser. A, 265, 15-38.
The permitted range is \([0.0, \infty)\).
[phasing_MIR_shell]
phasing MIR shell.R kraut
(float)
\(\overline{\text { Residual factor }} \overline{R_{\text {kraut }}}\) for general reflections in this shell.
\[
R_{\mathrm{kraut}}=\frac{\sum\left|F(p h)_{\mathrm{obs}}-F(p h)_{\mathrm{calc}}\right|}{\sum\left|F(p h)_{\mathrm{obs}}\right|}
\]
where \(F(p h)_{\text {obs }}=\) the observed structure-factor amplitude of the derivative and \(F(p h)_{\text {calc }}=\) the calculated structure-factor amplitude of the derivative; the sum is taken over the specified reflections.

Reference: Kraut, J., Sieker, L. C., High, D. F. \& Freer, S. T. (1962). Proc. Natl Acad. Sci. USA, 48, 1417-1424.

The permitted range is \([0.0, \infty)\). [phasing_MIR_shell]

\section*{_phasing_MIR_shell.reflns}
(int)
The number of reflections in this shell
The permitted range is \([0, \infty)\)
phasing MIR shell.reflns acentric (int)
_phasing_MIR_shell.ebi_reflns_acentric(ebi_extensions 1.0)
The number of acentric reflections in this shell.
The permitted range is \([0, \infty)\),
[phasing_MIR_shell
(int)
The number of anomalous reflections in this shell.
_phasing_MIR_shell.reflns_centric
phasing_MIR_shell.ebi_reflns_centric(ebi_extensions 1.0)
The number of centric reflections in this shell.
The permitted range is \([0, \infty)\).
phasing MIR shell

\section*{PHASING SET}

Data items in the PHASING_SET category record details about the data sets used in a phasing experiment. A given data set may be used in a number of different ways; for instance, a single data set could be used both as an isomorphous derivative and as a component of a multiple-wavelength calculation. This category establishes identifiers for each data set and permits the archiving of a subset of experimental information for each data set (cell constants, wavelength, temperature etc.). This and related categories of data items are provided so that derivative intensity and phase information can be stored in the same data block as the information for the refined structure. If all the possible experimental information for each data set (raw data sets, crystal growth conditions etc.) is to be archived, these data items should be recorded in a separate data block.
Category group(s): inclusive_group
phasing_group
Category key(s): _phasing_set.id
Example 1 - based on laboratory records for an Hg/Pt derivative of protein NS1.
\begin{tabular}{ll} 
_phasing_set.id & 'NS1-96' \\
_phasing_set.cell_angle_alpha & 90.0 \\
_phasing_set.cell_angle_beta & 90.0 \\
_phasing_set.cell_angle_gamma & 90.0 \\
_phasing_set.cell_length_a & 38.63 \\
_phasing_set.cell_length_b & 38.63 \\
_phasing_set.cell_length_c & 82.88 \\
_phasing_set.radiation_wavelength & 1.5145 \\
_phasing_set.detector_type & 'image plate' \\
_phasing_set.detector_specific & 'RXII'
\end{tabular}
phasing_set.cell_angle_alpha (float)

Unit-cell angle \(\alpha\) for this data set in degrees.
The permitted range is [ \(0.0,180.0\) ]. Where no value is given, the assumed value is ' 90.0 '
[phasing_set]
```

_phasing_set.cell_angle_beta

Unit-cell angle β for this data set in degrees.
The permitted range is $[0.0,180.0]$. Where no value is given, the assumed value is ' 90.0 '. [phasing set]
phasing_set.cell_length_a
(float
Unit-cell length a for this data set in ångströms
The permitted range is $[0.0, \infty)$.
[phasing_set]
(float)
Unit-cell length b for this data set in ångströms. The permitted range is $[0.0, \infty)$.
[phasing set
phasing set.cell length c
(float)
Unit-cell length c for this data set in ångströms
The permitted range is $[0.0, \infty)$.
[phasing_set
_phasing_set.detector_specific
(text)
The particular radiation detector. In general, this will be a manufacturer, description, model number or some combination of these.
Examples: ‘Siemens model x', 'Kodak XG', 'MAR Research model y'
[phasing_set]

phasing_set.detector type

(text)
The general class of the radiation detector.
Examples: ‘multiwire', ‘imaging plate’, ‘CCD', ‘film’.
[phasing set]
*_phasing_set.id
(line)
The value of _phasing_set.id must uniquely identify a record in the PHASING_SET list. Note that this item need not be a number; it can be any unique identifier.
The following item(s) have an equivalent role in their respective categories:
_phasing_set_refln.set_id,
phasing MAD set.set id,
_phasing_MIR_der.der_set_id,
_phasing_MIR_der.native_set_id
phasing MIR der refln.set id
Examples: ‘KAu (CN) 2', 'K2HgI4'.
[phasing_set]

phasing_set.radiation_source_specific (text)

The particular source of radiation. In general, this will be a manufacturer, description, or model number (or some combination of these) for laboratory sources and an institution name and beamline name for synchrotron sources.
Examples: ‘Rigaku RU200', 'Philips fine focus Mo', 'NSLS beamline X8C' [phasing_set]

phasing_set.radiation_wavelength

(float) The mean wavelength of the radiation used to measure this data set.
The permitted range is $[0.0, \infty)$.
[phasing_set]
_phasing_set.temp
(float)
The temperature in kelvins at which the data set was measured.
The permitted range is $[0.0, \infty)$.
[phasing_set]

PHASING_SET_REFLN

Data items in the PHASING_SET_REFLN category record the values of the measured structure factors used in a phasing experiment. This list may contain information from a number of different data sets; _phasing_set_refln.set_id indicates the data set to which a given record corresponds.
Category group(s): inclusive_group
phasing_group

Category key(s): _phasing_set_refln.index_h _phasing_set_refln.index_k _phasing_set_refln.index_l phasing_set_refln.set_id
Example 1 - based on laboratory records for the 15,15,32 reflection of an $\mathrm{Hg} / \mathrm{Pt}$ derivative of protein NS1.

_phasing_set_refln.set_id	'NS1-96'
_phasing_set_refln.index_h	15
_phasing_set_refln.index_k	15
_phasing_set_refln.index_1	32
_phasing_set_refln.F_meas_au	181.79
_phasing_set_refln.F_meas_sigma_au	3.72

_phasing_set_refln.F_meas

(float, su)
$\overline{\text { The measured value of the structure factor for this reflection in this }}$ data set in electrons.
Related items: _phasing_set_refln.F_meas_sigma (associated esd),
_phasing_set_refln.F_meas_au (conversion arbitrary).
[phasing_set_refln]
_phasing_set_refln.F_meas_au
(float, su)
The measured value of the structure factor for this reflection in this data set in arbitrary units.
Related items: _phasing_set_refln.F_meas_sigma_au (associated esd),
_phasing_set_refln.F_meas (conversion arbitrary). [phasing_set_refln]
_phasing_set_refln.F_meas_sigma
(float)
The standard uncertainty (estimated standard deviation) of _phasing_set_refln.F_meas in electrons.
Related items: _phasing_set_refln.F_meas (associated value),
_phasing_set_refln.F_meas_sigma_au (conversion arbitrary).
[phasing_set_refln]
phasing_set_refln.F_meas_sigma_au (float)
The standard uncertainty (estimated standard deviation) of _phasing_set_refln.F_meas_au in arbitrary units.
Related items: _phasing_set_refln.F_meas_au (associated value),
_phasing_set_refln.F_meas_sigma (conversion arbitrary).
[phasing_set_refln]
*_phasing_set_refln.index_h
Miller index h of this reflection in this data set.
[phasing_set_refln]
*_phasing_set_refln.index_k
Miller index k of this reflection in this data set.
[phasing_set_refln]
*_phasing_set_refln.index_l
(int)
Miller index l of this reflection in this data set.
[phasing_set_refln]
*_phasing_set_refln.set_id
This data item is a pointer to _phasing_set.id in the PHASING_SET category.

PUBL

Data items in the PUBL category are used when submitting a manuscript for publication.
Category group(s): inclusive_group
iucr_group

Category key(s): _publ.entry_id
Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].
_publ.section_title
; trans-3-Benzoyl-2-(tert-butyl)-4-(iso-butyl) -
1,3-oxazolidin-5-one
;
_publ.section_abstract
; The oxazolidinone ring is a shallow envelope conformation with the tert-butyl and iso-butyl groups occupying trans-positions with respect to the ring. The angles at the N atom sum to $356.2 \backslash \%$, indicating a very small degree of pyramidalization at this atom. This is consistent with electron delocalization between the N atom and the carbonyl centre $[\mathrm{N}-\mathrm{C}=\mathrm{O}=1.374(3) \backslash \% \mathrm{~A}]$.

Example 2 - based on $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{4}$, reported by Coleman, Patrick, Andersen \& Rettig [Acta Cryst. (1996), C52, 1525-1527].
_publ.section_title
; Hemiasterlin methyl ester
;
_publ.section_title_footnote
; IUPAC name: methȳ1 2,5-dimethyl-4-2-[3-methyl2 -methylamino-3-(N-methylbenzo [b] pyrrol-3-yl)butanamido]-3,3-dimethyl-N-methyl-butanamido-2-hexenoate.
;

_publ.contact_author

(text)
_publ_contact_author (cif_core.dic 2.0.1)
The name and address of the author submitting the manuscript and data block. This is the person contacted by the journal editorial staff. It is preferable to use the separate data items _publ.contact_author_name and _publ.contact_author_ address.
Example:
; Professor George Ferguson
Department of Chemistry and Biochemistry University of Guelph
Ontario
Canada
N1G 2W1
; [publ]

_publ.contact_author_address

(text)
_publ_contact_author_address (cif_core.dic 2.0.1)
The address of the author submitting the manuscript and data block. This is the person contacted by the journal editorial staff.
Example:
; Department of Chemistry and Biochemistry University of Guelph
Ontario
Canada
N1G 2W1
[publ]
_publ.contact_author_email
(line)
_publ_contact_author_email (cif_core.dic 2.0.1)
E-mail address in a form recognizable to international networks. The format of e-mail addresses is given in Section 3.4, Address Specification, of Internet Message Format, RFC 2822, P. Resnick (Editor), Network Standards Group, April 2001.
Examples: ‘name@host. domain. country', 'uur5@banjo.bitnet'.
[publ]

```
publ.contact_author_fax

Facsimile telephone number of the author submitting the manuscript and data block. The recommended style starts with the international dialing prefix, followed by the area code in parentheses, followed by the local number with no spaces. The earlier convention of including the international dialing prefix in parentheses is no longer recommended.
Examples: '12 (34) 9477330 , '12() 349477330 '
[publ]
_publ.contact_author_name
(text)
_publ_contact_author_name(cif_core.dic 2.0.1)
The name of the author submitting the manuscript and data block. This is the person contacted by the journal editorial staff.
```

Example
; Professor George Ferguson

```
[publ]

\section*{publ.contact_author_phone}
(line)
_publ_contact_author_phone(cif_core.dic 2.0.1)
Telephone number of the author submitting the manuscript and data block. The recommended style starts with the international dialing prefix, followed by the area code in parentheses, followed by the local number and any extension number prefixed by ' \(x\) ', with no spaces. The earlier convention of including the international dialing prefix in parentheses is no longer recommended
Examples: ‘12 (34) 9477330 ’, ‘12 () 349477330 ’, '12 (34) 9477330x5543'.
[publ]
```

_publ.contact_letter
(text)
_publ_contact_letter (cif_core.dic 2.0.1)

```

A letter submitted to the journal editor by the contact author.
[publ]
*_publ.entry_id
This data item is a pointer to _entry.id in the ENTRY category.
publ.manuscript creation
_publ_manuscript_creation(cif_core.dic 2.0.1)
A description of the word-processor package and computer used to create the word-processed manuscript stored as _publ.manuscript_processed.
Example: ‘Tex file created by FrameMaker on a Sun 3/280'. [publ]

\section*{publ.manuscript_processed}
(text)
_publ_manuscript_processed (cif_core.dic 2.0.1)
The full manuscript of a paper (excluding possibly the figures and the tables) output in ASCII characters from a word processor. Information about the generation of this data item must be specified in the data item _publ.manuscript_creation.
[publ]

\section*{publ.manuscript_text}
_publ_manuscript_text(cif_core.dic 2.0.1)
The full manuscript of a paper (excluding figures and possibly the tables) output as standard ASCII text.
_publ.requested_category
(line)
publ requested category (cif_core.dic 2.0.1)
The category of paper submitted. For submission to Acta Crystallographica Section \(C\) or Acta Crystallographica Section E, only the codes indicated for use with these journals should be used.
The data value must be one of the following:
FA Full article

FI Full submission - inorganic (Acta C)
FO Full submission - organic (Acta C)
FM Full submission - metal-organic (Acta C)
CI CIF-access paper - inorganic (Acta C) (no longer in use)
CO CIF-access paper - organic (Acta C) (no longer in use)
CIF-access paper - metal-organic (Acta C) (no longer in use)
Electronic submission - inorganic (Acta E)
Electronic submission - organic (Acta E)
Electronic submission - metal-organic (Acta E)
Addenda and Errata (Acta C, Acta E)
Short communication
Where no value is given, the assumed value is 'FA'. [publ]
_publ.requested_coeditor_name
(line)
_publ_requested_coeditor_name(cif_core.dic 2.0.1)
The name of the co-editor whom the authors would like to handle the submitted manuscript.

> [publ]
_publ.requested_journal
(line)
_publ_requested_journal (cif_core.dic 2.0.1)
The name of the journal to which the manuscript is being submitted.
[publ]
_publ.section_abstract
(text)
_publ_section_abstract(cif_core.dic 2.0.1)
The abstract section of a manuscript if the manuscript is submitted in parts. As an alternative see _publ.manuscript_text and _publ.manuscript_processed.
[publ]

\section*{_publ.section_acknowledgements \\ _publ_section_acknowledgements(cif_core.dic 2.0.1)}
(text)

The acknowledgements section of a manuscript if the manuscript is submitted in parts. As an alternative see _publ.manuscript_text and _publ.manuscript_processed.
[publ]
_publ.section_comment
(text)
_publ_section_comment (cif_core.dic 2.0.1)
The comment section of a manuscript if the manuscript is submitted in parts. As an alternative see _publ.manuscript_text and _publ.manuscript_processed.
[publ]

\section*{_publ.section_discussion}
(text)
_publ_section_discussion(cif_core.dic 2.0.1)
The discussion section of a manuscript if the manuscript is submitted in parts. As an alternative see _publ.manuscript_text and publ.manuscript processed.
_publ.section_experimental
(text) _publ_section_experimental(cif_core.dic 2.0.1)
The experimental section of a manuscript if the manuscript is submitted in parts. As an alternative see _publ.manuscript_text and_publ.manuscript_processed. The _publ.section_exptl_prep, _publ.section_exptl_solution and _publ.section_exptl_refinement items are preferred for separating the chemical preparation, structure solution and refinement aspects of the description of the experiment.

\section*{_publ.section_exptl_prep \\ _publ_section_expt1_prep (cif_core.dic 2.0.1)}

The experimental preparation section of a manuscript if the manuscript is submitted in parts. As an alternative see _publ.manuscript_text and _publ.manuscript_processed.
[publ]

\section*{publ.section exptl refinement}
(text)
_publ_section_exptl_refinement(cif_core.dic 2.0.1)
The experimental refinement section of a manuscript if the manuscript is submitted in parts. As an alternative see _publ.manuscript_text and _publ.manuscript_processed

\section*{_publ.section_exptl_solution}
_publ_section_expt1_solution(cif_core.dic 2.0.1)
The experimental solution section of a manuscript if the manuscript is submitted in parts. As an alternative see _publ.manuscript_text and _publ.manuscript_processed.
[publ]
_publ.section_figure_captions
(text)
publ section figure captions(cif_core.dic 2.0.1)
The figure captions section of a manuscript if the manuscript is submitted in parts. As an alternative see _publ.manuscript_text and _publ.manuscript_processed.
_publ.section_introduction
[publ]
_publ_section_introduction(cif_core.dic 2.0.1)
The introduction section of a manuscript if the manuscript is submitted in parts. As an alternative see _publ.manuscript_text and _publ.manuscript_processed
_publ.section_references
(text)
_publ_section_references (cif_core.dic 2.0.1)
The references section of a manuscript if the manuscript is submitted in parts. As an alternative see _publ.manuscript_text and _publ.manuscript_processed
[publ]
_publ.section_synopsis
(text)
_publ_section_synopsis(cif_core.dic 2.0.1)
The synopsis section of a manuscript if the manuscript is submitted in parts. As an alternative see _publ.manuscript_text and _publ.manuscript_processed
[publ]
_publ.section_table_legends
(text)
publ section table legends(cif_core.dic 2.0.1)
The table legends section of a manuscript if the manuscript is submitted in parts. As an alternative see _publ.manuscript_text and publ.manuscript_processed.
_publ.section_title
(text)
publ_section_title(cif_core.dic 2.0.1)
The title of a manuscript if the manuscript is submitted in parts. As an alternative see _publ.manuscript_text and _publ.manuscript_processed.
[publ]

\section*{_publ.section_title_footnote \\ publ section title footnote(cif_core.dic 2.0.1)}
(text)

The footnote to the title of a manuscript if the manuscript is submitted in parts. As an alternative see _publ.manuscript_text and _publ.manuscript_processed
[publ]
```

Data items in the PUBL AUTHOR category record details of the
authors of a manuscript submitted for publication
Category group(s): inclusive group
iucr_group
Category key(s): _publ_author.name
Example 1 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst
(1991), C47, 2276-2277].
loop
_publ_author.name
publ author.address
'Willis, Anthony C.'
; Research School of Chemistry
Australian National University
GPO Box 4
Canberra, A.C.T
Australia 2601
;

```
_publ_author.address
(text)
_publ_author_address (cif_core.dic 2.0.1)
The address of a publication author. If there is more than one author this is looped with _publ_author.name.
Example:
; Department
Institute
Street
City and postcode
COUNTRY
;
_publ_author_email (cif_core.dic 2.3.1)
The e-mail address of a publication author. If there is more than one author, this will be looped with _publ_author.name. The format of e-mail addresses is given in Section 3.4, Address Specification, of Internet Message Format, RFC 2822, P. Resnick (Editor), Network Standards Group, April 2001.
Examples: 'name@host.domain.country', 'bm@iucr.org'. [publ_author]

\section*{publ author.footnote}
(line)
_publ_author_footnote(cif_core.dic 2.0.1)
A footnote accompanying an author's name in the list of authors of a paper. Typically indicates sabbatical address, additional affiliations or date of decease.
Examples: 'on leave from U. Western Australia',
'Also at Department of Biophysics'
_publ_author.id_iucr
(code)
publ author id iucr (cif_core.dic 2.3)
Identifier in the IUCr contact database of a publication author. This identifier may be available from the World Directory of Crystallographers (http://wdc.iucr.org)
Example: '2985’.
[publ_author]
*_publ_author.name
_publ_author_name (cif_core.dic 2.0.1)
(line)

The name of a publication author. If there are multiple authors this will be looped with _publ_author.address. The family name(s), followed by a comma and including any dynastic components, precedes the first names or initials.
Examples: 'Bleary, Percival R.', 'O'Neil, F.K.', 'Van den Bossche, G.', 'Yang, D.-L.','Simonov, Yu.A.'.
[publ author]

\section*{PUBL BODY}

Data items in the PUBL_BODY category permit the labelling of different text sections within the body of a paper. Note that these should not be used in a paper which has a standard format with sections tagged by specific data names (such as in Acta Crystallographica Section C). Typically, each journal will supply a list of the specific items it requires in its Notes for Authors.
Category group(s): inclusive_group
iucr_group

Category key(s): _publ_body.element _publ_body.label

Example 1 - based on a paper by R. Restori \& D. Schwarzenbach [Acta Cryst (1996), A52, 369-378].

\section*{100p}
publ_body.element
_publ_body.label
_publ_body.title
_publ_body.format
publ_body.contents
section 1 Introduction
cif
; X-ray diffraction from a crystalline material provides information on the thermally and spatially averaged electron density in the crystal...
;
\[
\text { section } 2 \quad \text { Theory }
\]
- In the rigid-atom approximation, the dynamic electron density of an atom is described by the convolution product of the static atomic density and a probability density function, \(\$ \backslash\) rho_dyn \((\backslash \mathrm{bf} r)=\backslash\) rho_stat \((\backslash \mathrm{bf} r)\) * \(\mathrm{P}(\backslash \mathrm{bf} \mathrm{r}) . \backslash \mathrm{eqno}(1) \$\)
;

Example 2 - based on a paper by R. J. Papoular, Y. Vekhter \& P. Coppens [Acta Cryst. (1996), A52, 397-407].
loop
_publ_body.element
publ body.label
_publ_body.title
_publ_body.contents
section 3
The two-channel method for retrieval of the deformation electron density
;
subsection 3.1 'The two-channel entropy \(S[\backslash D \backslash r(r)]\) ' As the wide dynamic range involved in the total electron density...
;
subsection 3.2
'Uniform vs informative prior model densities subsubsection 3.2.1 'Use of uniform models' Straightforward algebra leads to expressions analogous to...
publ body.contents
_publ_body_contents (cif_core.dic 2.0.1)
A text section of a paper.
[publ_body]
publ_body.element
(code)
publ_body_element (cif_core.dic 2.0.1)
The functional role of the associated text section.
The data value must be one of the following:
section
subsection
subsubsection
appendix
footnote
[publ_body]

\section*{_publ_body.format}
(code)
publ_body_format(cif_core.dic 2.0.1)
Code indicating the appropriate typesetting conventions for accented characters and special symbols in the text section.
The data value must be one of the following:
\begin{tabular}{ll} 
ascii & no coding for special symbols \\
cif & CIF convention \\
latex & LaTE \(_{\mathrm{E}} \mathrm{X}\) \\
sgml & SGML (ISO 8879) \\
tex & \(\mathrm{T}_{\mathrm{E} X}\) \\
troff & troff or nroff
\end{tabular}
_publ_body.label
(code)
_publ_body_label (cif_core.dic 2.0.1)
Code identifying the section of text
Examples: ‘1’, ‘1.1’, ‘2.1.3’.
[publ_body]
_publ_body.title
(text)
_publ_body_title(cif_core.dic 2.0.1)
Title of the associated section of text.

\section*{PUBL MANUSCRIPT INCL}

Data items in the PUBL_MANUSCRIPT_INCL category allow the authors of a manuscript submitted for publication to list data names that should be added to the standard request list used by the journal printing software.
Category group(s): inclusive_group
iucr_group
Category key(s): _publ_manuscript_incl.entry_id
Example 1 - hypothetical example.
_publ_manuscript_incl.entry_id 'EXAMHYPO'

\section*{loop}
_publ_manuscript_incl.extra_item
_publ_manuscript_incl.extra_info
_publ_manuscript_incl.extra_defn
'_atom_site.symmetry_multiplicity'
'to emphasise special sites' yes
'_chemical.compound_source'
'rare material, unusual source' yes
'_reflns.d_resolution_high'
'limited data are a problem here' yes
,_crystal.magnetic_permeability'
'unusual value for this material' no

\footnotetext{
*_publ_manuscript_incl.entry_id
This data item is a pointer to _entry.id in the ENTRY category.
}
_publ_manuscript_incl.extra_defn
(line)
_publ_manuscript_incl_extra_defn(cif_core.dic 2.0.1)
Flags whether the corresponding data item marked for inclusion in a journal request list is a standard CIF definition or not.
\begin{tabular}{ll} 
The data value must be one of the following: \\
no & not a standard CIF data name \\
n & abbreviation for 'no' \\
yes & a standard CIF data name \\
y & abbreviation for 'yes'
\end{tabular}
[publ_manuscript_incl]

\section*{_publ_manuscript_incl.extra_info}
_publ_manuscript_incl_extra_info(cif_core.dic 2.0.1)
A short note indicating the reason why the author wishes the corresponding data item marked for inclusion in the journal request list to be published.
Examples: 'to emphasise very special sites',
'rare material from unusual source',
'the limited data is a problem here',
'a new data quantity needed here'.
[publ_manuscript_incl]

\section*{_publ_manuscript_incl.extra_item}
(line)
_publ_manuscript_incl_extra_item(cif_core.dic 2.0.1)
Specifies the inclusion of specific data into a manuscript which are not normally requested by the journal. The values of this item are the extra data names (which must be enclosed in single quotes) that will be added to the journal request list.
Examples: ‘_atom_site.symmetry_multiplicity',
‘_chemical. compound_source’, ‘_reflns.d_resolution_high',
'_crystal.magnetic_permeability'. [publ_manuscript_incl]


Example 2 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst (1991), C47, 2276-2277].
```

_refine.details sfls:_F_calc_weight_full_matrix
refine.ls structure factor coef F
_refine.ls_matrix_type
full
refine.ls_weighting_details
'W=1/(\s^2^(F)+0.0004F^2^)
_refine.ls_hydrogen_treatment 'refxyz except H332B noref'
_refine.ls_extinction_method Zachariasen
refine.ls_extinction_coef 3514
-refine.ls_extinction_expression
; Larson, A. C. (1970). "Crystallographic Computing", edited

```
    by F. R. Ahmed. Eq. (22) p. 292. Copenhagen: Munksgaard.
_refine.ls_abs_structure_details
; The absolute configuration was assigned to agree with the
    known chirality at C3 arising from its precursor l-leucine.
;
_refine.ls_abs_structure_Flack 0
_refine.ls_number_reflns_obs 1408
refine.ls_number_parameters 272
refine.ls_number_restraints 0
-refine.ls_number_constraints 0
_refine.ls_R_factor_all . 038
refine.ls_R_factor_obs . 034
_refine.ls_wR_factor_all . . 044
refine.ls wR factor obs . 042
_refine.ls_goodness_of fit all 1.462
_refine.ls_goodness_of_fit_obs 1.515
_refine.ls_shift_over_esd_max . 535
_refine.ls_shift_over_esd_mean . 044
_refine.diff_density_min - -. 108
refine.diff density max . 131

\section*{refine.aniso B[1] [1]}
(float)
The [1][1] element of the matrix that defines the overall anisotropic displacement model if one was refined for this structure.
refine.aniso B[1] [2]
(float)
The [1][2] element of the matrix that defines the overall anisotropic displacement model if one was refined for this structure.
[refine]
_refine.aniso_B[1][3]
(float)
The [1][3] element of the matrix that defines the overall anisotropic displacement model if one was refined for this structure.
[refine]
refine.aniso_B[2][2]
(float)
The [2][2] element of the matrix that defines the overall anisotropic displacement model if one was refined for this structure.
[refine]
refine.aniso_B[2] [3]
(foat)
The [2][3] element of the matrix that defines the overall anisotropic displacement model if one was refined for this structure.
[refine]
refine.aniso_B[3] [3]
(float)
The [3][3] element of the matrix that defines the overall anisotropic displacement model if one was refined for this structure.
[refine]
refine.B_iso_max
(float)
The maximum isotropic displacement parameter ( \(B\) value) found in the coordinate set.
_refine.B_iso_mean
(float)
The mean isotropic displacement parameter ( \(B\) value) for the coordinate set
[refine]

\section*{refine.B_iso_min}
(float)
\(\bar{T}\) The minimum isotropic displacement parameter ( \(B\) value) found in the coordinate set.

> [refine]
_refine.correlation_coeff_Fo_to_Fc
(float)
_refine.ebi_Correlation_cōeff_Fo_to_Fc(ebi_extensions 1.0)
The correlation coefficient between the observed and calculated structure factors for reflections included in the refinement. The correlation coefficient is scale-independent and gives an idea of the quality of the refined model.
\[
R_{\mathrm{corr}}=\frac{\sum_{i}\left(F_{o i} F_{c i}-\left\langle F_{o}\right\rangle\left\langle F_{c}\right\rangle\right)}{\sqrt{\sum_{i}\left(F_{o i}\right)^{2}-\left\langle F_{o}\right\rangle^{2}} \sqrt{\sum_{i}\left(F_{c i}\right)^{2}-\left\langle F_{c}\right\rangle^{2}}}
\]
where \(F_{o}=\) observed structure factors, \(F_{c}=\) calculated structure factors, \(\rangle\) denotes average value and the summation is over reflections included in the refinement.
[refine]
_refine.correlation_coeff_Fo_to_Fc_free (float)
_refine.ebi_Correlation_coeff_Fo_to_Fc_free(ebi_extensions 1.0)

The correlation coefficient between the observed and calculated structure factors for reflections not included in the refinement (free reflections). The correlation coefficient is scale-independent and gives an idea of the quality of the refined model.
\[
R_{\mathrm{corr}}=\frac{\sum_{i}\left(F_{o i} F_{c i}-\left\langle F_{o}\right\rangle\left\langle F_{c}\right\rangle\right)}{\sqrt{\sum_{i}\left(F_{o i}\right)^{2}-\left\langle F_{o}\right\rangle^{2}} \sqrt{\sum_{i}\left(F_{c i}\right)^{2}-\left\langle F_{c}\right\rangle^{2}}}
\]
where \(F_{o}=\) observed structure factors, \(F_{c}=\) calculated structure factors, \(\rangle\) denotes average value and the summation is over reflections not included in the refinement (free reflections).

\section*{_refine.details}
(text)
_refine_special_details(cif_core.dic 2.0.1)
Description of special aspects of the refinement process.
[refine]

\section*{_refine.diff_density_max \\ _refine_diff_density_max (cif_core.dic 2.0.1)}
(float, su)
The maximum value of the electron density in the final difference Fourier map.
Related item: _refine.diff_density_max_esd(associated esd). [refine]
_refine.diff_density_max_esd
(float)
\(\overline{\text { The }}\) standard uncertainty (estimated standard deviation) of _refine.diff_density_max.
Related item: _refine.diff_density_max (associated value). [refine]

\section*{_refine.diff_density_min \\ _refine_diff_density_min(cif_core.dic 2.0.1)}
(float, su)
The minimum value of the electron density in the final difference Fourier map.
Related item: _refine.diff_density_min_esd (associated esd).
[refine]
_refine.diff_density_min_esd (float)
The standard uncertainty (estimated standard deviation) of _refine.diff_density_min.
Related item: _refine.diff_density_min(associated value).
[refine]

\section*{_refine.diff_density_rms}
(float, su)
_refine_diff_density_rms(cif_core.dic 2.0.1)
The root-mean-square-deviation of the electron density in the final difference Fourier map. This value is measured with respect to the arithmetic mean density and is derived from summations over each grid point in the asymmetric unit of the cell. This quantity is useful for assessing the significance of the values of _refine.diff_density_min and _refine.diff_density_max, and also for defining suitable contour levels.
Related item: _refine.diff_density_rms_esd (associated esd). [refine]
_refine.diff_density_rms_esd (float)
The standard uncertainty (estimated standard deviation) of _refine.diff_density_rms.
Related item: _refine.diff_density_rms (associated value). [refine]
*_refine.entry_id
This data item is a pointer to _entry.id in the ENTRY category.

\section*{_refine.ls_abs_structure_details}
(text)
_refine_ls_abs_structure_details(cif_core.dic 2.0.1)
The nature of the absolute structure and how it was determined. For example, this may describe the Friedel pairs used.

> [refine]

\section*{_refine.ls_abs_structure_Flack \\ (float, su) _refine_1s_abs_structure_Flack(cif_core.dic 2.0.1)}

The measure of absolute structure (enantiomorph or polarity) as defined by Flack (1983). For centrosymmetric structures the only permitted value, if the data name is present, is 'inapplicable', represented by ' \(\because\). For noncentrosymmetric structures the value must lie in the \(99.97 \%\) Gaussian confidence interval \(-3 u \leq x \leq 1+3 u\) and a standard uncertainty (estimated standard deviation) \(u\) must be supplied. The item range of \([0.0,1.0]\) is correctly interpreted as meaning \((0.0-3 u) \leq x \leq(1.0+3 u)\).

Reference: Flack, H. D. (1983). Acta Cryst. A39, 876-881.
The permitted range is \([0.0,1.0]\).
Related item: _refine.1s_abs_structure_Flack_esd (associated esd).
[refine]
_refine.ls_abs_structure_Flack_esd (float)
The standard uncertainty (estimated standard deviation) of _refine.ls_abs_structure_Flack.
Related item: _refine.ls_abs_structure_Flack (associated value). [refine]

\section*{refine.ls_abs_structure_Rogers}
(float, su) _refine_ls_abs_structure_Rogers(cī_core.dic 2.0.1)
The measure of absolute structure (enantiomorph or polarity) as defined by Rogers. The value must lie in the \(99.97 \%\) Gaussian confidence interval \(-1-3 u \leq \eta \leq 1+3 u\) and a standard uncertainty (estimated standard deviation) \(u\) must be supplied. The item range of \([-1.0,1.0]\) is correctly interpreted as meaning \((-1.0-3 u) \leq \eta \leq(1.0+3 u)\).

Reference: Rogers, D. (1981). Acta Cryst. A37, 734-741.
The permitted range is \([-1.0,1.0]\).
Related item: _refine.ls_abs_structure_Rogers_esd (associated esd).
[refine]
_refine.ls_abs_structure_Rogers_esd (float)
\(\bar{T}\) The standard uncertainty (estimated standard deviation) of _refine.ls_abs_structure_Rogers.
Related item:_refine.ls_abs_structure_Rogers (associated value). [refine]

\section*{*_refine.ls_d_res_high \\ _refine_ls_d_res_high(cif_core.dic 2.0.1)}
(float)
The smallest value for the interplanar spacings for the reflection data used in the refinement in ångströms. This is called the highest resolution.
The permitted range is \([0.0, \infty)\). [refine]
*_refine.ls_d_res_low
(float)
_refine_ls_d_res_low (cif_core.dic 2.0.1)
The largest value for the interplanar spacings for the reflection data used in the refinement in ångströms. This is called the lowest resolution.
The permitted range is \([0.0, \infty)\).
[refine]
_refine.ls_extinction_coef
(float, su)
_refine_1s_extinction_coef (cif_core.dic 2.0.1)
The extinction coefficient used to calculate the correction factor applied to the structure-factor data. The nature of the extinction coefficient is given in the definitions of _refine.ls_extinction_expression and _refine.ls_extinction_method. For the 'Zachariasen' method it is the \(r^{*}\) value; for the 'Becker-Coppens type 1 isotropic' method it is the ' \(g\) ' value, and for 'Becker-Coppens type 2 isotropic' corrections it is the ' \(\rho\) ' value. Note that the magnitude of these values is usually of the order of 10000 .

References: Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-147, 148-153. Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564. Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Related item: _refine.ls_extinction_coef_esd (associated esd).
Example: '3472' (Zachariasen coefficient \(\mathrm{r}^{*}=0.347 \mathrm{E} 04\) ). [refine]
refine.ls_extinction_coef_esd (float)
\(\bar{T}\) The standard uncertainty (estimated standard deviation) of _refine.ls_extinction_coef.
Related item: _refine.ls_extinction_coef (associated value). [refine]

\section*{_refine.ls_extinction_expression}
(text)
_refine_1s_extinction_expression(cif_core.dic 2.0.1)
A description of or reference to the extinction-correction equation used to apply the data item _refine.ls_extinction_coef. This information must be sufficient to reproduce the extinctioncorrection factors applied to the structure factors.
Example:
; Larson, A. C. (1970). "Crystallographic Computing", edited by F. R. Ahmed. Eq. (22), p.292. Copenhagen: Munksgaard.
[refine]

\section*{_refine.ls_extinction_method \\ _refine_1s_extinction_method(cif_core.dic 2.0.1)}
(text)
A description of the extinction-correction method applied. This description should include information about the correction method, either 'Becker-Coppens' or 'Zachariasen'. The latter is sometimes referred to as the 'Larson' method even though it employs Zachariasen's formula. The Becker-Coppens procedure is referred to as 'type 1 ' when correcting secondary extinction dominated by the mosaic spread; as 'type 2' when secondary extinction is dominated by particle size and includes a primary extinction component; and as 'mixed' when there is a mixture of types 1 and 2. For the Becker-Coppens method, it is also necessary to set the mosaic distribution as either 'Gaussian' or 'Lorentzian' and the nature of the extinction as 'isotropic' or
'anisotropic'. Note that if either the 'mixed' or 'anisotropic' corrections are applied the multiple coefficients cannot be contained in *_extinction_coef and must be listed in _refine.details.

References: Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-147, 148-153. Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564. Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Example: ‘B-C type 2 Gaussian isotropic'.
[refine]

\section*{_refine.ls_goodness_of_fit_all _refine_ls_goodness_of_fit_all(cif_core.dic 2.0.1)}
(float, su)
The least-squares goodness-of-fit parameter \(S\) for all data after the final cycle of refinement. Ideally, account should be taken of parameters restrained in the least-squares refinement. See also the definition of _refine.ls_restrained_s_all.
\[
S=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{N_{\mathrm{ref}}-N_{\mathrm{param}}}\right)^{1 / 2}
\]
where \(Y_{\text {obs }}=\) the observed coefficients (see refine.ls_ structure_factor_coef), \(Y_{\text {calc }}=\) the calculated coefficients (see _refine.ls_structure_factor_coef), \(w=\) the least-squares reflection weight [1/(e.s.d. squared) \(], N_{\text {ref }}=\) the number of reflections used in the refinement and \(N_{\text {param }}=\) the number of refined parameters; the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
Related item: _refine.ls_goodness_of_fit_all_esd (associated esd).

\section*{[refine]}
_refine.ls_goodness_of_fit_all_esd (float)
The standard uncertainty (estimated standard deviation) of _refine.ls_goodness_of_fit_all.
Related item:_refine.ls_goodness_of_fit_all (associated value). [refine]
```

_refine.ls_goodness_of_fit_gt (float)
_refine_1s_goodness_of_fit_gt(cif_core.dic 2.3)

```

The least-squares goodness-of-fit parameter \(S\) for significantly intense reflections (see _reflns.threshold_expression) after the final cycle of refinement. Ideally, account should be taken of parameters restrained in the least-squares refinement. See also _refine.ls_restrained_s_definitions.
\[
S=\left(\frac{\sum|w| Y_{\text {obs }}-\left.Y_{\text {calc }}\right|^{2} \mid}{N_{\text {ref }}-N_{\text {param }}}\right)^{1 / 2}
\]
where \(Y_{\text {obs }}=\) the observed coefficients (see _refine.ls_ structure_factor_coef), \(Y_{\text {calc }}=\) the calculated coefficients (see _refine.ls_structure_factor_coef), \(w=\) the least-squares \(\overline{\text { reflection weight }}\left[1 /\left(u^{\overline{2}}\right)\right], u=\overline{\text { the }}\) standard uncertainty, \(N_{\text {ref }}=\) the number of reflections used in the refinement and \(N_{\text {param }}=\) the number of refined parameters; the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
Related item: _refine.ls_goodness_of_fit_obs (alternate).
[refine]
_refine.ls_goodness_of_fit_obs (float, su) _refine_1s_goodness_of_fit_obs(cif_core.dic 2.0.1)
The least-squares goodness-of-fit parameter \(S\) for reflection data classified as 'observed' (see _reflns.observed_criterion) after the final cycle of refinement. Ideally, account should be taken of parameters restrained in the least-squares refinement. See also the definition of _refine.ls_restrained_s_obs.
\[
S=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{N_{\mathrm{ref}}-N_{\text {param }}}\right)^{1 / 2}
\]
where \(Y_{\text {obs }}=\) the observed coefficients (see refine.ls_ structure_factor_coef), \(Y_{\text {calc }}=\) the calculated coefficients (see _refine.ls_structure_factor_coef), \(w=\) the least-squares reflection weight [1/(e.s.d. squared) \(], N_{\text {ref }}=\) the number of reflections used in the refinement and \(N_{\text {param }}=\) the number of refined parameters; the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
Related item: _refine.1s_goodness_of_fit_obs_esd (associated esd).
[refine]
_refine.ls_goodness_of_fit_obs_esd (float) \(\overline{\text { The }}\) standard uncertainty (estimated standard deviation) of _refine.ls_goodness_of_fit_obs.
Related item: _refine.ls_goodness_of_fit_obs(associated value). [refine]

\section*{_refine.ls_goodness_of_fit_ref \\ _refine_ls_goodness_of_fit_ref(cif_core.dic 2.3)}
(float)
The least-squares goodness-of-fit parameter \(S\) for all reflections included in the refinement after the final cycle of refinement. Ideally, account should be taken of parameters restrained in the least-squares refinement. See also _refine.ls_restrained_s_ definitions.
\[
S=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{N_{\mathrm{ref}}-N_{\mathrm{param}}}\right)^{1 / 2}
\]
where \(Y_{o b s}=\) the observed coefficients (see refine.ls_ structure_factor_coef), \(Y_{\text {calc }}=\) the calculated coefficients (see _refine.ls_structure_factor_coef), \(w=\) the least-squares \(\overline{\text { reflection weight }}\left[1 /\left(u^{2}\right)\right], u=\overline{\text { the }}\) standard uncertainty, \(N_{\text {ref }}=\) the number of reflections used in the refinement and \(N_{\text {param }}=\) the number of refined parameters; the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\). [refine]

\section*{_refine.ls_hydrogen_treatment \\ _refine_ls_hydrogen_treatment(cif_core.dic 2.0.1)}
(ucode)
Treatment of hydrogen atoms in the least-squares refinement.
The data value must be one of the following:
refall refined all H -atom parameters
refxyz refined H -atom coordinates only
refu refined H -atom \(U\) 's only
noref no refinement of H -atom parameters
constr H -atom parameters constrained
mixed some constrained, some independent
undef H -atom parameters not defined

\section*{_refine.ls_matrix_type}
(ucode)

\section*{_refine_1s_matrix_type(cif_core.dic 2.0.1)}

Type of matrix used to accumulate the least-squares derivatives.
The data value must be one of the following:
\begin{tabular}{ll} 
full & full \\
fullcycle & full with fixed elements per cycle
\end{tabular}
atomblock userblock diagonal sparse
block diagonal per atom user-defined blocks diagonal elements only selected elements only

\author{
[refine]
}
_refine.ls_number_constraints
_refine_1s_number_constraints(cif_core.dic 2.0.1)
The number of constrained (non-refined or dependent) parameters in the least-squares process. These may be due to symmetry or any other constraint process (e.g. rigidbody refinement). See also _atom_site.constraints and _atom_site.refinement_flags. A general description of constraints may appear in _refine.details.
The permitted range is \([0, \infty)\).
[refine]
refine.ls_number_parameters
_refine_ls_number_parameters(cif_core.dic 2.0 .1 )
(int)

The number of parameters refined in the least-squares process. If possible, this number should include some contribution from the restrained parameters. The restrained parameters are distinct from the constrained parameters (where one or more parameters are linearly dependent on the refined value of another). Leastsquares restraints often depend on geometry or energy considerations and this makes their direct contribution to this number, and to the goodness-of-fit calculation, difficult to assess.
The permitted range is \([0, \infty)\).
[refine]
refine.ls_number_reflns_all
(int)
\(\bar{T}\) The number of reflections that satisfy the resolution limits established by _refine.ls_d_res_high and _refine.ls_d_res_low.
The permitted range is \([0, \infty)\). [refine]

> _refine.ls_number_reflns_obs
> _refine_1s_number_reflns_(cif_core.dic 2.0 .1\()\)
(int)
The number of reflections that satisfy the resolution limits established by _refine.ls_d_res_high and _refine.ls_d_res_low and the ob\(s e r v a t i o n ~ \overline{l i m i t}\) established by _reflns.observed_ criterion.
The permitted range is \([0, \infty)\). [refine]
_refine.ls_number_reflns_R_free (int)
\(\bar{T}\) The number of reflections that satisfy \(\overline{\bar{y}}\) the resolution limits established by _refine.ls_d_res_high and _refine.ls_d_res_low and the observation limit established by _reflns.observed_ criterion, and that were used as the test reflections (i.e. were excluded from the refinement) when the refinement included the calculation of a 'free' \(R\) factor. Details of how reflections were assigned to the working and test sets are given in _reflns. R_free_ details.
The permitted range is \([0, \infty)\). [refine]

> _refine.ls_number_reflns_R_work
\(\bar{T}\) The number of reflections that satisfy \(\overline{-}\) the resolution limits established by _refine.ls_d_res_high and _refine.ls_d_res_low and the obbservation \(\overline{\text { limit }}\) established by _reflns.observed_ criterion, and that were used as the working reflections (i.e. were included in the refinement) when the refinement included the calculation of a 'free' \(R\) factor. Details of how reflections were assigned to the working and test sets are given in _reflns. R_free_ details.
The permitted range is \([0, \infty)\).
[refine]

\section*{_refine.ls_number_restraints}
(int)
refine_1s_number_restraints(cif_core.dic 2.0.1)
The number of restrained parameters. These are parameters which are not directly dependent on another refined parameter. Restrained parameters often involve geometry or energy dependencies. See also _atom_site.constraints and _atom_site.refinement_flags. A general description of refinement constraints may appear in _refine.details.
The permitted range is \([0, \infty)\).
[refine]

\section*{_refine.ls_percent_reflns_obs}
(float)
The number of reflections that satisfy the resolution limits established by _refine.ls_d_res_high and _refine.ls_d_res_low and the observation limit established by _reflns.observed_ criterion, expressed as a percentage of the number of geometrically observable reflections that satisfy the resolution limits.
[refine]

\section*{refine.ls_percent_reflns_R_free}
(float)
\(\bar{T}\) The number of reflections that satisfy the resolution limits established by _refine.ls_d_res_high and _refine.ls_d_res_low and the ob\(s\) ervation \(\overline{\text { limit }}\) established by _reflns.observed_ criterion, and that were used as the test reflections (i.e. were excluded from the refinement) when the refinement included the calculation of a 'free' \(R\) factor, expressed as a percentage of the number of geometrically observable reflections that satisfy the resolution limits.
[refine]

\section*{_refine.ls_R_factor_all \\ _refine_ls_R_factor_all(cif_core.dic 2.0.1)}
(float)
Residual factor \(R\) for all reflections that satisfy the resolution limits established by _refine.1s_d_res_high and _refine.ls_d_res_low.
\[
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|}
\]
where \(F_{\text {obs }}=\) the observed structure-factor amplitudes, \(F_{\text {calc }}=\) the calculated structure-factor amplitudes and the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
Related item: _refine.ls_wR_factor_all (alternate). [refine]

\section*{_refine.ls_R_factor_gt}
(float)
_refine_1s_R_factor_gt(cif_core.dic 2.3)
Residual factor for the reflections (with number given by _reflns.number_gt) judged significantly intense (i.e. satisfying the threshold specified by _reflns.threshold_expression) and included in the refinement. The reflections also satisfy the resolution limits established by _refine.ls_d_res_high and _refine.ls_d_res_low. This is the conventional \(R\) factor. See also _refine.ls_wR_factor_definitions.
\[
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|}
\]
where \(F_{\text {obs }}=\) the observed structure-factor amplitudes, \(F_{\text {calc }}=\) the calculated structure-factor amplitudes and the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
Related item: refine.1s_R_factor_obs (alternate).
[refine]
_refine.ls_R_factor_obs
_refine_1s_R_factor_obs(cif_core.dic 2.0.1)
Residual factor \(R\) for reflections that satisfy the resolution limits established by _refine.ls_d_res_high and _refine.ls_d_res_low and the observation limit established by _reflns.observed_criterion. _refine.ls_R_factor_obs should not be confused with _refine.ls_R_factor_R_work; the former reports the results of \(\overline{\mathrm{a}}\) refinement in which \(\overline{-} \overline{-} \overline{-}\) observed reflections were used, the latter a refinement in which a subset of the observed reflections were excluded from refinement for the calculation of a 'free' \(R\) factor. However, it would be meaningful to quote both values if a 'free' \(R\) factor were calculated for most of the refinement, but all of the observed reflections were used in the final rounds of refinement; such a protocol should be explained in _refine.details.
\[
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|}
\]
where \(F_{\text {obs }}=\) the observed structure-factor amplitudes, \(F_{\text {calc }}=\) the calculated structure-factor amplitudes and the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
Related item: _refine.ls_wR_factor_obs (alternate). [refine]
_refine.ls_R_factor_R_free (float) Residual factor \(R\) for reflections that satisfy the resolution limits established by _refine.ls_d_res_high and _refine.ls_d_res_low and the observation limit established by _reflns.observed_criterion, and that were used as the test reflections (i.e. were excluded from the refinement) when the refinement included the calculation of a 'free' \(R\) factor. Details of how reflections were assigned to the working and test sets are given in _reflns.R_free_details.
\[
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|}
\]
where \(F_{\text {obs }}=\) the observed structure-factor amplitudes, \(F_{\text {calc }}=\) the calculated structure-factor amplitudes and the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
Related items: _refine.ls_wR_factor_R_free (alternate),
_refine.1s_R_factor_R_free_error (associated error).
[refine]
_refine.ls_R_factor_R_free_error (float) The estimated èrror in _refine.ls_R_factor_R_free. The method used to estimate \(\overline{\text { the }}\) error is \(\overline{\text { described }} \overline{\text { in }}\) the item _refine.ls_R_factor_R_free_error_details. Related item: _refine.1s_R_factor_R_free (associated value). [refine]
_refine.ls_R_factor_R_free_error_details (text) \(\overline{\text { Special }}\) aspects \(\overline{\text { of }}\) the method used to estimate the error in _refine.ls_R_factor_R_free.

\section*{_refine.ls_R_factor_R_work}
(float)
Residual factor \(R\) for reflections that satisfy the resolution limits established by _refine.1s_d_res_high and _refine.ls_d_res_low and the observation limit established by _reflns.observed_criterion, and that were used as the working reflections (i.e. were included in the refinement) when the refinement included the calculation of a 'free' \(R\) factor. Details of how reflections were assigned to the working and test sets are given in _reflns.R_free_details._refine.ls_R_factor_obs should not be confused with _refine.ls_R_factor_R_work; the former reports the results of \(\bar{a}\) refinement \(\overline{\operatorname{in}}\) which all observed reflections were used, the latter a refinement in which a subset of the observed reflections were excluded from refinement for the calculation of a 'free' \(R\) factor. However, it would be meaningful to quote both values if a 'free' \(R\) factor were calculated for most of the refinement, but all of the observed reflections were used in the final rounds of refinement; such a protocol should be explained in _refine.details.
\[
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|}
\]
where \(F_{\text {obs }}=\) the observed structure-factor amplitudes, \(F_{\text {calc }}=\) the calculated structure-factor amplitudes and the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
Related item: _refine.ls_wR_factor_R_work (alternate).
[refine]

\section*{_refine.ls_R_Fsqd_factor_obs \\ _refine_1s_R_Fsqd_factor (cif_core.dic 2.0.1)}
(float)
Residual factor \(R\left(F^{2}\right)\) for reflections that satisfy the resolution limits established by _refine.1s_d_res_high and _refine.ls_d_res_low and the observation limit established by _reflns.observed_criterion, calculated on the squares of the observed and calculated structure-factor amplitudes.
\[
R\left(F^{2}\right)=\frac{\sum\left|F_{\mathrm{obs}}^{2}-F_{\mathrm{calc}}^{2}\right|}{\sum\left|F_{\mathrm{obs}}^{2}\right|}
\]
where \(F_{\text {obs }}^{2}=\) squares of the observed structure-factor amplitudes, \(F_{\text {calc }}^{2}=\) squares of the calculated structure-factor amplitudes and the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\). [refine]

\section*{_refine.ls_R_I_factor_obs \\ _refine_1s_R_I_factor (cif_core.dic 2.0.1)}
(float)
Residual factor \(R(I)\) for reflections that satisfy the resolution limits established by _refine.ls_d_res_high and _refine.ls_d_res_low and the observation limit established by _reflns.observed_criterion, calculated on the estimated reflection intensities. This is most often calculated in Rietveld refinements against powder data, where it is referred to as \(R_{B}\) or \(R_{\text {Bragg }}\).
\[
R(I)=\frac{\sum\left|I_{\mathrm{obs}}-I_{\mathrm{calc}}\right|}{\sum\left|I_{\mathrm{obs}}\right|}
\]
where \(I_{\text {obs }}=\) the net observed intensities, \(I_{\text {calc }}=\) the net calculated intensities and the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
[refine]

\section*{_refine.ls_redundancy_reflns_all}
(float)
\(\bar{T}\) he ratio of the total number of observations of the reflections that satisfy the resolution limits established by _refine.ls_d_ res_high and _refine.1s_d_res_low to the number of crystallographically unique reflections that satisfy the same limits.
refine.ls_redundancy_reflns_obs
(float)
\(\bar{T}\) The ratio of the total number of observations of the reflections that satisfy the resolution limits established by _refine.ls_d_ res_high and _refine.ls_d_res_low and the observation limit established by _reflns.observed_criterion to the number of crystallographically unique reflections that satisfy the same limits.
[refine]
_refine.ls_restrained_S_all
_refine_1s_restrained_s_all(cif_core.dic 2.0.1)
The least-squares goodness-of-fit parameter \(S^{\prime}\) for all reflections after the final cycle of least-squares refinement. This parameter explicitly includes the restraints applied in the least-squares process. See also the definition of _refine.ls_goodness_of_fit_all.
\[
S^{\prime}=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\text {calc }}\right|^{2}\left|+\sum_{r}\right| w_{r}\left|P_{\text {calc }}-P_{\text {targ }}\right|^{2} \mid}{N_{\text {ref }}+N_{\text {restr }}-N_{\text {param }}}\right)^{1 / 2}
\]
where \(Y_{o b s}=\) the observed coefficients (see _refine.ls_ structure_factor_coef), \(Y_{\text {calc }}=\) the calculated coefficients (see _refine.ls_structure_factor_coef), \(w=\) the least-squares \(\overline{\text { reflection weight }}[1 /(\) e.s. \(\overline{\mathrm{d}}\). squared \()], P_{\text {calc }}=\) the calculated restraint values, \(P_{\operatorname{targ}}=\) the target restraint values, \(w_{r}=\) the restraint weight, \(N_{\text {ref }}=\) the number of reflections used in the refinement (see _refine.ls_number_reflns_obs), \(N_{\text {restr }}=\) the number of restraints (see_refine.1s_number_restraints) and \(N_{\text {param }}\) \(=\) the number of refined parameters (see _refine.ls_number_ parameters); the sum \(\sum\) is taken over the specified reflections and the sum \(\sum_{r}\) is taken over the restraints.
The permitted range is \([0.0, \infty)\). [refine]
\[
\begin{aligned}
& \text { _refine.ls_restrained_S_obs } \\
& \text { _refine_1s_restrained_s_obs(cif_core.dic 2.0.1) }
\end{aligned}
\]
(float)

The least-squares goodness-of-fit parameter \(S^{\prime}\) for reflection data classified as observed (see _reflns.observed_criterion) after the final cycle of least-squares refinement. This parameter explicitly includes the restraints applied in the least-squares process. See also the definition of _refine.1s_goodness_of_fit_obs.
\[
S^{\prime}=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2}\left|+\sum_{r}\right| w_{r}\left|P_{\mathrm{calc}}-P_{\mathrm{targ}}\right|^{2} \mid}{N_{\mathrm{ref}}+N_{\mathrm{restr}}-N_{\mathrm{param}}}\right)^{1 / 2}
\]
where \(Y_{\text {obs }}=\) the observed coefficients (see _refine.1s_ structure_factor_coef), \(Y_{\text {calc }}=\) the calculated coefficients (see _refine.ls_structure_factor_coef), \(w=\) the least-squares \(\overline{\text { reflection weight }[1 /(\text { e.s. } \overline{\mathrm{d}} . ~ s q u a r e d)})], P_{\text {calc }}=\) the calculated restraint values, \(P_{\operatorname{targ}}=\) the target restraint values, \(w_{r}=\) the restraint weight, \(N_{\text {ref }}=\) the number of reflections used in the refinement (see _refine.ls_number_reflns_obs), \(N_{\text {restr }}=\) the number of restraints (see_refine.1s_number_restraints) and \(N_{\text {param }}\) \(=\) the number of refined parameters (see _refine.ls_number_ parameters); the sum \(\sum\) is taken over the specified reflections and the sum \(\sum_{r}\) is taken over the restraints.
The permitted range is \([0.0, \infty)\).
[refine]
_refine.ls_shift_over_esd_max
_refine_ls_shift/esd_max (cif_core.dic 2.0.1)
(float)
The largest ratio of the final least-squares parameter shift to the final standard uncertainty (estimated standard deviation).
The permitted range is \([0.0, \infty)\).
[refine]
```

_refine.ls_shift_over_esd_mean
_refine_ls_shift/esd_mean(cif_core.dic 2.0.1)

```

The average ratio of the final least-squares parameter shift to the final standard uncertainty (estimated standard deviation).
The permitted range is \([0.0, \infty)\).
[refine]
_refine.ls_shift_over_su_max
(float) _refine_1s_shift/su_max (cif_core.dic 2.3)
The largest ratio of the final least-squares parameter shift to the final standard uncertainty.
The permitted range is \([0.0, \infty)\).
Related item: refine.ls shift over esd max (alternate). [refine]

\section*{_refine.ls_shift_over_su_max_lt \\ _refine_ls_shift/su_max_lt(cif_core.dic 2.3)}
(float)

An upper limit for the largest ratio of the final least-squares parameter shift to the final standard uncertainty. This item is used when the largest value of the shift divided by the final standard uncertainty is too small to measure.
The permitted range is \([0.0, \infty)\).
Related item: refine.ls_shift_over_su_max (alternate). [refine]

\section*{_refine.ls_shift_over_su_mean \\ refine ls shift/su mean(cif_core.dic 2.3)}
(float)
The average ratio of the final least-squares parameter shift to the final standard uncertainty.
The permitted range is \([0.0, \infty)\).
Related item: _refine.ls_shift_over_esd_mean (alternate).
[refine]

\section*{refine.ls shift over su mean lt \\ _refine_ls_shift/su_mean_It(cif_core.dic 2.3)}
(float)
An upper limit for the average ratio of the final least-squares parameter shift to the final standard uncertainty. This item is used when the average value of the shift divided by the final standard uncertainty is too small to measure.
The permitted range is \([0.0, \infty)\).
Related item: _refine.ls_shift_over_su_mean (alternate).
[refine]

\section*{refine.ls structure factor coef}
(ucode)
_refine_ls_structure_factor_coef(cif_core.dic 2.0.1)
Structure-factor coefficient \(|F|, F^{2}\) or \(I\) used in the least-squares refinement process.
```

The data value must be one of the following:
F structure-factor magnitude
Fsqd structure factor squared
Inet net intensity

```

\section*{_refine.ls_weighting_details}
_refine_1s_weighting_details(cif_core.dic 2.0.1)
A description of special aspects of the weighting scheme used in least-squares refinement. Used to describe the weighting when the value of _refine.ls_weighting_scheme is specified as 'calc'.
Example:
; Sigdel model of Konnert-Hendrickson:
Sigdel =
Afsig + Bfsig*(sin(theta)/lambda-1/6)
Afsig \(=22.0\), Bfsig \(=150.0\)
at the beginning of refinement.
Afsig = 16.0, Bfsig = 60.0
at the end of refinement.
_refine.ls_weighting_scheme
(ucode)
refine ls weighting scheme (cif_core.dic 2.0.1)
The weighting scheme applied in the least-squares process. The standard code may be followed by a description of the weight (but see_refine.ls_weighting_details for a preferred approach). The data value must be one of the following:
sigma based on measured e.s.d.'s
unit unit or no weights applied
calc calculated weights applied
[refine]
_refine.ls_wR_factor_all
(float

Weighted residual factor \(w R\) for all reflections that satisfy the resolution limits established by _refine.ls_d_res_high and refine.ls_d_res_low.
\[
w R=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{\sum\left|w Y_{\mathrm{obs}}^{2}\right|}\right)^{1 / 2}
\]
where \(Y_{\text {obs }}=\) the observed amplitude specified by _refine.ls_ structure_factor_coef, \(Y_{\text {calc }}=\) the calculated amplitude specified by _refine.ls_structure_factor_coef and \(w=\) the leastsquares weight; the sum is taken over the specified reflections. The permitted range is \([0.0, \infty)\).
Related item: _refine.1s_R_factor_all (alternate). [refine]

\section*{_refine.ls_wR_factor_obs \\ _refine_1s_wR_factor_obs(cif_core.dic 2.0.1)}

Weighted residual factor \(w R\) for reflections that satisfy the resolution limits established by _refine.ls_d_res_high and _refine.ls_d_res_low and the observation limit established by _reflns.observed_criterion.
\[
w R=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{\sum\left|w Y_{\mathrm{obs}}^{2}\right|}\right)^{1 / 2}
\]
where \(Y_{\text {obs }}=\) the observed amplitude specified by _refine.1s_ structure_factor_coef, \(Y_{\text {calc }}=\) the calculated amplitude specified by _refine.ls_structure_factor_coef and \(w=\) the leastsquares weight; the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
Related item: _refine.ls_R_factor_obs (alternate). [refine]

\section*{refine.ls_wR_factor_R_free}
(float)
\(\bar{W}\) eighted residual factor \(\bar{w} R\) for reflections that satisfy the resolution limits established by _refine.ls_d_res_high and _refine.ls_d_res_low and the observation limit established by _reflns.observed_criterion, and that were used as the test reflections (i.e. were excluded from the refinement) when the refinement included the calculation of a 'free' \(R\) factor. Details of how reflections were assigned to the working and test sets are given in _reflns.R_free_details.
\[
w R=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{\sum\left|w Y_{\mathrm{obs}}^{2}\right|}\right)^{1 / 2}
\]
where \(Y_{\mathrm{obs}}=\) the observed amplitude specified by _refine.ls_ structure_factor_coef, \(Y_{\text {calc }}=\) the calculated amplitude specified by _refine.ls_structure_factor_coef and \(w=\) the leastsquares weight; the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
Related item:_refine.ls_R_factor_R_free (alternate).
[refine]

\section*{refine.ls_wR_factor_R_work}
(float)
Weighted residual factor \(w R\) for reflections that satisfy the resolution limits established by _refine.ls_d_res_high and _refine.ls_d_res_low and the observation limit established by _reflns.observed_criterion, and that were used as the working reflections (i.e. were included in the refinement) when the refinement included the calculation of a 'free' \(R\) factor. Details of how reflections were assigned to the working and test sets are given in _reflns.R_free_details.
\[
w R=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{\sum\left|w Y_{\mathrm{obs}}^{2}\right|}\right)^{1 / 2}
\]
where \(Y_{\text {obs }}=\) the observed amplitude specified by _refine.ls_ structure_factor_coef, \(Y_{\text {calc }}=\) the calculated amplitude specified by _refine.ls_structure_factor_coef and \(w=\) the leastsquares weight; the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
Related item: _refine.1s_R_factor_R_work (alternate). [refine]

\section*{refine.occupancy max}
(float)
The maximum value for occupancy found in the coordinate set. The permitted range is \([0.0, \infty)\).
[refine]

\section*{refine.occupancy min}
(float)
The minimum value for occupancy found in the coordinate set.
The permitted range is \([0.0, \infty)\).
[refine]

\section*{_refine.overall_FOM_free_R_set \\ _refine.ebi_overall_FOM_free_Rset(ebi_extensions 1.0)}
(float)
Average figure of merit of phases of reflections not included in the refinement. This value is derived from the likelihood function
\[
\mathrm{FOM}=I_{1}(X) / I_{0}(X)
\]
where \(I_{0}, I_{1}=\) zero- and first-order modified Bessel functions of the first kind, \(X=\sigma_{A}\left|E_{o}\right|\left|E_{c}\right| /\) SIGMA, \(E_{o}, E_{c}=\) normalized observed and calculated structure factors, \(\sigma_{A}=\left\langle\cos 2 \pi s \delta_{x}\right\rangle \sqrt{\left(\Sigma_{P} / \Sigma_{N}\right)}\) estimated using maximum likelihood, \(\Sigma_{P}=\sum_{\text {atoms in model }} f^{2}, \Sigma_{N}=\) \(\sum_{\text {atoms in crystal }} f^{2}, f=\) form factor of atoms, \(\delta_{x}=\) expected error, SIGMA \(=\left(\sigma_{\{\mathrm{E} ; \exp \}}\right)^{2}+\varepsilon\left[1-\left(\sigma_{A}\right)^{2}\right], \sigma_{\{\mathrm{E} ; \exp \}}=\) uncertainties of normalized observed structure factors and \(\varepsilon=\) multiplicity of the diffracting plane.

Reference: Murshudov, G. N., Vagin, A. A. \& Dodson, E. J. (1997). Acta Cryst. D53, 240-255.
[refine]
refine.overall FOM work \(R\) set
(float)
_refine.ebi_overall_FOM_work_Rset (ebi_extensions 1.0)
Average figure of merit of phases of reflections included in the refinement. This value is derived from the likelihood function
\[
\mathrm{FOM}=I_{1}(X) / I_{0}(X)
\]
where \(I_{0}, I_{1}=\) zero- and first-order modified Bessel functions of the first kind, \(X=\sigma_{A}\left|E_{o}\right|\left|E_{c}\right| /\) SIGMA, \(E_{o}, E_{c}=\) normalized observed and calculated structure factors, \(\sigma_{A}=\left\langle\cos 2 \pi s \delta_{x}\right\rangle \sqrt{\left(\Sigma_{P} / \Sigma_{N}\right)}\) estimated using maximum likelihood, \(\Sigma_{P}=\sum_{\text {atoms in model }} f^{2}, \Sigma_{N}=\) \(\sum_{\text {atoms in crystal }} f^{2}, f=\) form factor of atoms, \(\delta_{x}=\) expected error, SIGMA \(=\left(\sigma_{\{\mathrm{E} ; \exp \}}\right)^{2}+\varepsilon\left[1-\left(\sigma_{A}\right)^{2}\right], \sigma_{\{\mathrm{E} ; \exp \}}=\) uncertainties of normalized observed structure factors and \(\varepsilon=\) multiplicity of the diffracting plane.

Reference: Murshudov, G. N., Vagin, A. A. \& Dodson, E. J. (1997). Acta Cryst. D53, 240-255.
_refine.overall_SU_B
(float) _refine.ebi_Overall_ESU_B(ebi_extensions 1.0)
The overall standard uncertainty (estimated standard deviation) of the displacement parameters based on a maximum-likelihood residual. The overall standard uncertainty \(\left(\sigma_{B}\right)^{2}\) gives an idea of the uncertainty in the \(B\) values of averagely defined atoms (atoms with \(B\) values equal to the average \(B\) value).
\[
\left(\sigma_{B}\right)^{2}=\frac{8 N_{a}}{\sum_{i}\left[1 / \Sigma-\left(E_{o}\right)^{2}\left(1-m^{2}\right)\right](\mathrm{SUM} A S) s^{4}}
\]
where SUM_AS \(=\left(\sigma_{A}\right)^{2} / \Sigma^{2}, N_{a}=\) number of atoms, \(\Sigma=\) \(\left(\sigma_{\{E ; \exp \}}\right)^{2}+\varepsilon\left[1-\left(\sigma_{A}\right)^{2}\right], E_{o}=\) normalized structure factors, \(\sigma_{\{E ; \exp \}}=\) experimental uncertainties of normalized structure factors, \(\sigma_{A}=\left\langle\cos 2 \pi s \delta_{x}\right\rangle \sqrt{\left(\Sigma_{P} / \Sigma_{N}\right)}\) estimated using maximum likelihood, \(\Sigma_{P}=\sum_{\text {atoms in model }} f^{2}, \Sigma_{N}=\sum_{\text {atoms in crystal }} f^{2}, f=\) form factor of atoms, \(\delta_{x}=\) expected error, \(m=\) figure of merit of phases of reflections included in the summation, \(s=\) reciprocal-space vector and \(\varepsilon=\) multiplicity of the diffracting plane; the summation is over all reflections included in refinement

References: \(\sigma_{A}\) estimation: Murshudov, G. N., Vagin, A. A. \& Dodson, E. J. (1997). Acta Cryst. D53, 240-255. SU ML estimation: Murshudov, G. N. \& Dodson, E. J. (1997). CCP4 Newsletter on Protein Crystallography, No. 33, January 1997, pp. 31-39. (http://www.ccp4.ac.uk/newsletters/newsletter33/murshudov.html)
[refine]
_refine.overall_SU_ML
_refine.ebi_Overall_ESU_ML (ebi_extensions 1.0)
The overall standard uncertainty (estimated standard deviation) of the positional parameters based on a maximum-likelihood residual. The overall standard uncertainty \(\left(\sigma_{X}\right)^{2}\) gives an idea of the uncertainty in the position of averagely defined atoms (atoms with \(B\) values equal to the average \(B\) value).
\[
\left(\sigma_{X}\right)^{2}=\frac{3 N_{a}}{8 \pi^{2} \sum_{i}\left[1 / \Sigma-\left(E_{o}\right)^{2}\left(1-m^{2}\right)\right](\text { SUM AS }) s^{2}},
\]
where SUM_AS \(=\left(\sigma_{A}\right)^{2} / \Sigma^{2}, N_{a}=\) number of atoms, \(\Sigma=\) \(\left(\sigma_{\{E ; \exp \}}\right)^{2}+\varepsilon\left[1-\left(\sigma_{A}\right)^{2}\right], E_{o}=\) normalized structure factors, \(\sigma_{\{E ; \exp \}}=\) experimental uncertainties of normalized structure factors, \(\sigma_{A}=\left\langle\cos 2 \pi s \delta_{x}\right\rangle \sqrt{\left(\Sigma_{P} / \Sigma_{N}\right)}\) estimated using maximum likelihood, \(\Sigma_{P}=\sum_{\text {atoms in model }} f^{2}, \Sigma_{N}=\sum_{\text {atoms in crystal }} f^{2}, f=\) form factor of atoms, \(\delta_{x}=\) expected error, \(m=\) figure of merit of phases of reflections included in the summation, \(s=\) reciprocal-space vector and \(\varepsilon=\) multiplicity of the diffracting plane; the summation is over all reflections included in refinement.
References: \(\sigma_{A}\) estimation: Murshudov, G. N., Vagin, A. A. \& Dodson, E. J. (1997). Acta Cryst. D53, 240-255. SU ML estimation: Murshudov, G. N. \& Dodson, E. J. (1997). CCP4 Newsletter on Protein Crystallography, No. 33, January 1997, pp. 31-39. (http://www.ccp4.ac.uk/newsletters/newsletter33/murshudov.html)
_refine.overall_SU_R_Cruickshank_DPI (float) _refine.ebi_Overall_ESU_R_Cruickshanks_DPI (ebi_extensions 1.0)
The overall standard uncertainty (estimated standard deviation) of the displacement parameters based on the crystallographic \(R\) value, expressed in a formalism known as the dispersion precision indicator (DPI). The overall standard uncertainty ( \(\sigma_{B}\) ) gives an idea of the uncertainty in the \(B\) values of averagely defined atoms (atoms with \(B\) values equal to the average \(B\) value).
\[
\left(\sigma_{B}\right)^{2}=0.65 \frac{N_{a}}{\left(N_{o}-N_{p}\right)}\left(R_{\text {value }}\right)^{2}\left(D_{\min }\right)^{2} C^{(-2 / 3)},
\]
where \(N_{a}=\) number of atoms, \(N_{o}=\) number of reflections included in refinement, \(N_{p}=\) number of refined parameters, \(R_{\text {value }}=\) conventional crystallographic \(R\) value, \(D_{\min }=\) maximum resolution and \(C\) = completeness of data.
References: Cruickshank, D. W. J. (1999). Acta Cryst. D55, 583-601; Murshudov, G. N. \& Dodson, E. J. (1997). CCP4 Newsletter on Protein Crystallography, No. 33, January 1997, pp. 31-39. (http://www.ccp4.ac.uk/newsletters/newsletter33/ murshudov.html)
[refine]

\section*{_refine.overall_SU_R_free}
_refine.ebi_Overall_ESU_Rfreee(ebi_extensions 1.0)
The overall standard uncertainty (estimated standard deviation) of the displacement parameters based on the free \(R\) value. The overall standard uncertainty gives an idea of the uncertainty in the \(B\) values of averagely defined atoms (atoms with \(B\) values equal to the average \(B\) value).
\[
\left(\sigma_{B}\right)^{2}=0.65 \frac{N_{a}}{N_{o}}\left(R_{\text {free }}\right)^{2}\left(D_{\min }\right)^{2} C^{(-2 / 3)},
\]
where \(N_{a}=\) number of atoms, \(N_{o}=\) number of reflections included in the refinement, \(R_{\text {free }}=\) conventional free crystallographic \(R\) value calculated using the reflections not included in the refinement, \(D_{\min }=\) maximum resolution and \(C=\) completeness of data.
References: Cruickshank, D. W. J. (1999). Acta Cryst. D55, 583-601; Murshudov, G. N. \& Dodson, E. J. (1997). CCP4 Newsletter on Protein Crystallography, No. 33, January 1997, pp. 31-39. (http://www.ccp4.ac.uk/newsletters/newsletter33/ murshudov.html)
[refine]
[refine]

\section*{_refine.solvent_model_details}
(text)
Special aspects of the solvent model used during refinement.
[refine]

\section*{_refine.solvent_model_param_bsol}
(float)
The value of the \(B_{\text {SOL }}\) solvent-model parameter describing the average isotropic displacement parameter of disordered solvent atoms. This is one of the two parameters (the other is _refine.solvent_model_param_ksol) in Tronrud's method of modelling the contribution of bulk solvent to the scattering. The standard scale factor is modified according to the expression
\[
k_{0} \exp \left(-B_{0} s^{2}\right)\left[1-K_{\mathrm{SOL}} \exp \left(-B_{\mathrm{SOL}} s^{2}\right)\right]
\]
where \(k_{0}\) and \(B_{0}\) are the scale factors for the protein.
Reference: Tronrud, D. E. (1997). Methods Enzymol. 277, 243268.
refine.solvent_model_param_ksol
(float)
\(\bar{T}\) The value of the \(K_{\text {SOL }}^{-}\)solvent-model parameter describing the ratio of the electron density in the bulk solvent to the electron density in the molecular solute. This is one of the two parameters (the other is _refine.solvent_model_param_bsol) in Tronrud's method of modelling the contribution of bulk solvent to the scattering. The standard scale factor is modified according to the expression
\[
k_{0} \exp \left(-B_{0} s^{2}\right)\left[1-K_{\mathrm{SOL}} \exp \left(-B_{\mathrm{SOL}} s^{2}\right)\right]
\]
where \(k_{0}\) and \(B_{0}\) are the scale factors for the protein.
Reference: Tronrud, D. E. (1997). Methods Enzymol. 277, 243268.
[refine]

\section*{REFINE_ANALYZE}

Data items in the REFINE_ANALYZE category record details about the refined structure that are often used to analyze the refinement and assess its quality. A given computer program may or may not produce values corresponding to these data names.
Category group(s): inclusive_group
```

 refine_group
    ```

Category key(s): _refine_analyze.entry_id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to \(P D B\) entry \(5 H V P\).

\section*{loop_}
_refine_analyze.entry_id
_refine_analyze.Luzzati_coordinate_error_obs
_refine_analyze.Luzzati_d_res_low_obs
5HVP 0.0562 .51
*_refine_analyze.entry_id
This data item is a pointer to _entry.id in the ENTRY category.
[refine_analyze]
_refine_analyze.Luzzati_coordinate_error_free
(float)
The estimated coordinate error obtained from the plot of the \(R\) value versus \(\sin (\theta) / \lambda\) for the reflections treated as a test set during refinement.

Reference: Luzzati, V. (1952). Acta Cryst. 5, 802-810.
[refine_analyze]
_refine_analyze.Luzzati_coordinate_error_obs
(float)
The estimated coordinate error obtained from the plot of the \(R\) value versus \(\sin (\theta) / \lambda\) for reflections classified as observed.
Reference: Luzzati, V. (1952). Acta Cryst. 5, 802-810.
[refine_analyze]
_refine_analyze.Luzzati_d_res_low_free (float) \(\bar{T}\) The value of the low-resolution cutoff used in constructing the Luzzati plot for reflections treated as a test set during refinement.

Reference: Luzzati, V. (1952). Acta Cryst. 5, 802-810.
[refine_analyze]
_refine_analyze.Luzzati_d_res_low_obs (float) The value of the low-resolution cutoff used in constructing the Luzzati plot for reflections classified as observed.

Reference: Luzzati, V. (1952). Acta Cryst. 5, 802-810.

(text)
Details of the estimation of \(\sigma_{a}\) for the reflections treated as a test set during refinement.

Reference: Luzzati, V. (1952). Acta Cryst. 5, 802-810. [refine_analyze]

\section*{refine_analyze.Luzzati_sigma_a_obs (float)}

The value of \(\sigma_{a}\) used in constructing the Luzzati plot for reflections classified as observed. Details of the estimation of \(\sigma_{a}\) can be specified in_refine_analyze.Luzzati_sigma_a_obs_details.
Reference: Luzzati, V. (1952). Acta Cryst. 5, 802-810.
[refine_analyze]

\section*{_refine_analyze.Luzzati_sigma_a_obs_details (text)} Special aspects of the estimation of \(\sigma_{a}\) for the reflections classified as observed.

Reference: Luzzati, V. (1952). Acta Cryst. 5, 802-810.
[refine_analyze]
refine_analyze.number_disordered_residues (float) The number of discretely disordered residues in the refined model. [refine_analyze]
refine_analyze.occupancy_sum_hydrogen (float) The sum of the occupancies of the hydrogen atoms in the refined model.
[refine_analyze]
refine_analyze.occupancy_sum_non_hydrogen (float) The sum of the occupancies of the non-hydrogen atoms in the refined model.
[refine_analyze]
```

_refine_analyze.RG_d_res_high _refine_analyze.ebi_RG_d_res_high (ebi_extensions 1.0)

```
(float)

The value of the high-resolution cutoff in ångströms used in the calculation of the Hamilton generalized \(R\) factor \(\left(R_{G}\right)\) stored in _refine_analyze.RG_work and _refine_analyze.RG_free.

Reference: Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
The permitted range is \([0.0, \infty)\).
[refine_analyze]

\section*{_refine_analyze.RG_d_res_low \\ _refine_analyze.ebi_RG_d_res_low (ebi_extensions 1.0)}
(float)
The value of the low-resolution cutoff in ångströms used in the calculation of the Hamilton generalized R factor \(\left(R_{G}\right)\) stored in _refine_analyze.RG_work and _refine_analyze.RG_free.

Reference: Hamilton, W. C. (1965). Acta Cryst. 18, 502-510. The permitted range is \([0.0, \infty)\).
[refine_analyze]
_refine_analyze.RG_free
_refine_analyze.ebi_RG_free(ebi_extensions 1.0)
The Hamilton generalized \(R\) factor for all reflections that satisfy the resolution limits established by _refine_analyze.RG d_res_high and _refine_analyze.RG_d_res_low for the free \(\bar{R}\) set of reflections that were excluded from the refinement.
\[
R_{G}=\sqrt{\frac{\sum_{i} \sum_{j} w_{i, j}\left(\left|F_{\mathrm{obs}}\right|_{i}-G\left|F_{\mathrm{calc}}\right|_{i}\right)\left(\left|F_{\mathrm{obs}}\right|_{j}-G\left|F_{\mathrm{calc}}\right|_{j}\right)}{\sum_{i} \sum_{j} w_{i, j}\left|F_{\mathrm{obs}}\right|{ }_{i}\left|F_{\mathrm{obs}}\right|_{j}}}
\]
where \(\left|F_{\text {obs }}\right|=\) the observed structure-factor amplitudes, \(\left|F_{\text {calc }}\right|=\) the calculated structure-factor amplitudes, \(G=\) the scale factor which puts \(\left|F_{\text {calc }}\right|\) on the same scale as \(\left|F_{\text {obs }}\right|\) and \(w_{i, j}=\) the weight for the combination of the reflections \(i\) and \(j ; \sum_{i}\) and \(\sum_{j}\) are taken over the specified reflections.

When the covariance of the amplitudes of reflection \(i\) and reflection \(j\) is zero (i.e. the reflections are independent), \(w_{i, i}\) can be redefined as \(w_{i}\) and the nested sums collapsed into one sum:
\[
R_{G}=\sqrt{\frac{\sum_{i} w_{i}\left(\left|F_{\mathrm{obs}}\right|_{i}-G\left|F_{\mathrm{calc}}\right|_{i}\right)^{2}}{\sum_{i} w_{i}\left|F_{\mathrm{obs}}\right|_{i}^{2}}}
\]

Reference: Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
The permitted range is \([0.0, \infty)\).
[refine_analyze]
_refine_analyze.RG_free_work_ratio (float) _refine_analyze.ebi_RG_work_free_ratio(ebi_extensions 1.0)
_refine_analyze.ebi_RG_work_free_ratio(ebi_extensions l.0)

The observed ratio of \(R_{G \text { free }}\) to \(R_{G \text { work }}\). The expected \(R_{G}\) ratio is the value that should be achievable at the end of a structure refinement when only random uncorrelated errors exist in the data and the model provided that the observations are properly weighted. When compared with the observed \(R_{G}\) ratio, it may indicate that a structure has not reached convergence or a model has been overrefined with no corresponding improvement in the model.

In an unrestrained refinement, the ratio of \(R_{G f r e e}\) to \(R_{G \text { work }}\) with only random uncorrelated errors at convergence depends only on the number of reflections and the number of parameters according to
\[
\sqrt{(f+m) /(f-m)}
\]
where \(f=\) the number of included structure amplitudes and target distances and \(m=\) the number of parameters being refined.

In the restrained case, \(R_{G f r e e}\) is calculated from a random selection of residuals including both the structure amplitudes and the restraints. When restraints are included in the refinement, the \(R_{G}\) ratio requires a term for the contribution to the minimized residual at convergence, \(D_{\text {restr }}\), due to those restraints:
\[
D_{\mathrm{restr}}=r-\sum\left[w_{i} \cdot\left(a_{i}\right)^{t} \cdot(H)^{-1} a_{i}\right]
\]
where \(r\) is the number of geometrical, displacement-parameter and other restraints, \(H\) is the \((m, m)\) normal matrix given by \(A^{t} \cdot W \cdot A, W\) is the \((n, n)\) symmetric weight matrix of the included observations, \(A\) is the least-squares design matrix of derivatives of order \((n, m)\) and \(a_{i}\) is the \(i\) th row of \(A\). Then the expected \(R_{G}\) ratio becomes
\[
\sqrt{\left[f+\left(m-r+D_{\text {restr }}\right)\right] /\left[f-\left(m-r+D_{\text {restr }}\right)\right]}
\]

There is no data name for the expected value of \(R_{G f r e e} / R_{G \text { work }}\) yet.

Reference: Tickle, I. J., Laskowski, R. A. \& Moss, D. S. (1998). Acta Cryst. D54, 547-557.
The permitted range is \([0.0, \infty)\).
[refine_analyze]

\section*{_refine_analyze.RG_work}
(float) _refine_analyze.ebi_RG_work (ebi_extensions 1.0)
The Hamilton generalized \(R\) factor for all reflections that satisfy the resolution limits established by _refine_analyze.RG d_res_high and _refine_analyze.RG_d_res_low and for those reflections included in the working set when a free \(R\) set of reflections is omitted from the refinement.
\[
R_{G}=\sqrt{\left.\frac{\sum_{i} \sum_{j} w_{i, j}\left(\left|F_{\text {obs }}\right| i_{i}-G\left|F_{\text {calc }}\right| i\right)\left(\left|F_{\text {obs }}\right|_{j}-G\left|F_{\text {calc }}\right| j\right.}{} \sum_{i} \sum_{j} w_{i, j}\left|F_{\text {obs } s}\right| F_{\text {obs }}\right|_{j}},
\]
where \(\left|F_{\text {obs }}\right|=\) the observed structure-factor amplitudes, \(\left|F_{\text {calc }}\right|=\) the calculated structure-factor amplitudes, \(G=\) the scale factor which puts \(\left|F_{\text {calc }}\right|\) on the same scale as \(\left|F_{\text {obs }}\right|\) and \(w_{i, j}=\) the weight for the combination of the reflections \(i\) and \(j ; \sum_{i}\) and \(\sum_{j}\) are taken over the specified reflections.

When the covariance of the amplitudes of reflection \(i\) and reflection \(j\) is zero (i.e. the reflections are independent), \(w_{i, i}\) can be redefined as \(w_{i}\) and the nested sums collapsed into one sum:
\[
R_{G}=\sqrt{\frac{\sum_{i} w_{i}\left(\left|F_{\text {obs }}\right| i-G\left|F_{\text {calc }}\right| i\right)^{2}}{\sum_{i} w_{i}\left|F_{\text {obs }}\right|_{i}^{2}}} .
\]

Reference: Hamilton, W. C. (1965). Acta Cryst. 18, 502-510. The permitted range is \([0.0, \infty)\). [refine_analyze]

\section*{REFINE_B_ISO}

Data items in the REFINE_B_ISO category record details about the treatment of isotropic \(B\) factors (displacement parameters) during refinement.
Category group(s): inclusive_group
refine_group
Category key(s): _refine_B_iso.class
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to \(P D B\) entry \(5 H V P\).

\section*{loop_}
refine \(B\) iso.class
_refine_B_iso.treatment
'protein' isotropic
'solvent' isotropic
'inhibitor' isotropic
*_refine_B_iso.class
(text)
A class of atoms treated similarly for isotropic \(B\)-factor (displacement-parameter) refinement.
Examples: ‘all’, 'protein', ‘solvent', ‘sugar-phosphate backbone'.

\section*{refine B iso.details}
\(\overline{\mathrm{A}}\) description of special aspects of the isotropic \(B\)-factor (displacement-parameter) refinement for the class of atoms described in _refine_B_iso.class.

\section*{Example:}
; The temperature factors of atoms in the side chain of Arg 92 were held fixed due to unstable behavior in refinement.
[refine_B_iso]

\section*{refine_B_iso.treatment}

The treatment of isotropic \(B\)-factor (displacement-parameter) refinement for a class of atoms defined in _refine_B_iso.class. The data value must be one of the following:
fixed
isotropic
anisotropic
(float)
\(\bar{T}\) The value of the isotropic \(B\) factor (displacement parameter) assigned to a class of atoms defined in _refine_b_iso.class. Meaningful only for atoms with fixed isotropic \(B\) factors.
[refine_B_iso]

\section*{REFINE_FUNCT_MINIMIZED}

Data items in the REFINE_FUNCT_MINIMIZED category record details about the individual terms of the function minimized during refinement.
Category group(s): inclusive_group
refine_group
Category key(s):_refine_funct_minimized.type
Example 1 - based on RESTRAIN refinement for the CCP4 test data set toxd.
loop_
_refine_funct_minimized.type
_refine_funct_minimized.number_terms
refine_funct_minimized.residual
\(\bar{\prime} \operatorname{sum}\left(W * \overline{D e l t a}(\overline{m p l i t u d e})^{\wedge} 2^{\prime}\right.\)
'sum (W*Delta (Plane+Rigid) \({ }^{\wedge} 2^{\prime}\)
\begin{tabular}{rr}
3009 & 1621.3 \\
85 & 56.68 \\
1219 & 163.59 \\
1192 & 69.338
\end{tabular}

\section*{_refine_funct_minimized.number_terms \\ _ebi_refine_funct_minimized.NumTerms(ebi_extensions 1.0)}
(int)
The number of observations in this term. For example, if the term is a residual of the X -ray intensities, this item would contain the number of reflections used in the refinement.
The permitted range is \([0, \infty)\).
[refine_funct_minimized]
_refine_funct_minimized.residual
(float)
_ebi_refine_funct_minimized.Residual(ebi_extensions 1.0)
The residual for this term of the function that was minimized during the refinement.
The permitted range is \([0.0, \infty)\). [refine_funct_minimized]
```

*_refine_funct_minimized.type
_ebi_refine_funct_minimized.type(ebi_extensions 1.0)

```
(line)

The type of the function being minimized.
[refine_funct_minimized]
_refine_funct_minimized.weight
(float)
_ebi_refine_funct_minimized.weight(ebi_extensions 1.0)
The weight applied to this term of the function that was minimized during the refinement.
[refine_funct_minimized]

\section*{REFINE_HIST}

Data items in the REFINE_HIST category record details about the steps during the refinement of the structure. These data items are not meant to be as thorough a description of the refinement as is provided for the final model in other categories; rather, these data items provide a mechanism for sketching out the progress of the refinement, supported by a small set of representative statistics.
Category group(s): inclusive_group
refine_group
Category key(s): _refine_hist.cycle_id
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Example 1 - based on laboratory records for the collagen-like peptide \(\left[\left(P O G_{4}\right.\right.\) \(\left.E K G(P O G)_{5}\right]_{3}\).} \\
\hline refine_hist.cycle_id & C134 \\
\hline refine_hist.d_res_high & 1.85 \\
\hline refine_hist.d_res_low & 20.0 \\
\hline refine_hist.number_atoms_solven & 217 \\
\hline refine_hist.number_atoms_total & 808 \\
\hline refine_hist.number_refl & 6174 \\
\hline refine_hist.number_reflns_obs & 4886 \\
\hline refine_hist.number_reflns_R_f & 476 \\
\hline refine_hist.number_reflns_R & 4410 \\
\hline _refine_hist.R_factor_all & . 265 \\
\hline _refine_hist.R_factor_obs & . 195 \\
\hline _refine_hist.R_factor_R_free & . 274 \\
\hline refine_hist.R_factor_R_work & . 160 \\
\hline refine_hist.details & \\
\hline \multicolumn{2}{|l|}{; Add majority of solvent molecules. B factors refined by group. Continued to remove misplaced water molecules.} \\
\hline
\end{tabular}
*_refine_hist.cycle_id
(code)
The value of refine_hist.cycle_id must uniquely identify a record in the REFINE_HIST list. Note that this item need not be a number; it can be any unique identifier.
[refine_hist]
*_refine_hist.d_res_high
(float)
The lowest value for the interplanar spacings for the reflection data for this cycle of refinement. This is called the highest resolution. The permitted range is \([0.0, \infty)\).
[refine_hist]
*_refine_hist.d_res_low
(float)
The highest value for the interplanar spacings for the reflection data for this cycle of refinement. This is called the lowest resolution.
The permitted range is \([0.0, \infty)\).
[refine_hist]
_refine_hist.details (text)
\(\overline{\text { A }}\) description of special aspects of this cycle of the refinement process.

\section*{Example:}
; Residues 13-17 fit and added to model; substantial rebuilding of loop containing residues 43-48; addition of first atoms to solvent model; ten cycles of Prolsq refinement.
[refine_hist]

\section*{refine_hist.number_atoms_solvent}
(int)
The number of solvent atoms that were included in the model at this cycle of the refinement.
The permitted range is \([0, \infty)\).
[refine_hist]
_refine_hist.number_atoms_total
(int)
The total number of atoms that were included in the model at this cycle of the refinement.
The permitted range is \([0, \infty)\).
[refine_hist]
_refine_hist.number_reflns_all
(int)
The number of reflections that satisfy the resolution limits established by _refine_hist.d_res_high and _refine_hist.d_res_low.
\(\bar{T}\) The permitted range is \([0, \infty)\).
[refine_hist]
_refine_hist.number_reflns_obs
(int)
\(\bar{T}\) The number of reflections that satisfy the resolution limits established by _refine_hist.d_res_high and _refine_hist.d_res_low and the observation criterion established by _reflns.observed_criterion.
The permitted range is \([0, \infty)\).
[refine_hist]
refine_hist.number_reflns_R_free
(int)
\(\bar{T}\) The number of reflections that satisfy the resolution limits established by _refine_hist.d_res_high and _refine_ hist.d_res_low and the observation limit established by _reflns.observed_criterion, and that were used as the test reflections (i.e. were excluded from the refinement) when the refinement included the calculation of a 'free' \(R\) factor. Details of how reflections were assigned to the working and test sets are given in _reflns.R_free_details.
The permitted range is \([0, \infty)\). [refine_hist]
_refine_hist.number_reflns_R_work
(int)
The number of reflections that satisfy the resolution limits established by refine_hist.d_res_high and _refine hist.d_res_low and the observation limit established by _reflns.observed_criterion, and that were used as the working \(\bar{r}\) reflections (i.e. were included in the refinement) when the refinement included the calculation of a 'free' \(R\) factor. Details of how reflections were assigned to the working and test sets are given in _reflns.R_free_details.
The permitted range is \([0, \infty)\).
[refine_hist]
_refine_hist.R_factor_all
(float)
\(\bar{R}\) esidual factor \(R\) for reflections that satisfy the resolution limits established by _refine_hist.d_res_high and _refine_hist.d_ res_low.
\[
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|}
\]
where \(F_{\text {obs }}=\) the observed structure-factor amplitudes and \(F_{\text {calc }}=\) the calculated structure-factor amplitudes; the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
[refine_hist]
refine_hist.R_factor_obs
(float)
\(\bar{R}\) esidual \(\overline{\text { factor }} R\) for reflections that satisfy the resolution limits established by _refine_hist.d_res_high and _refine_ hist.d_res_low and the observation criterion established by _reflns.observed_criterion.
\[
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|},
\]
where \(F_{\text {obs }}=\) the observed structure-factor amplitudes and \(F_{\text {calc }}=\) the calculated structure-factor amplitudes; the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
[refine_hist]

\section*{refine_hist.R_factor_R_free}
(float)
\(\bar{R}\) esidual \(\overline{\text { factor }} R\) - for reflections that satisfy the resolution limits established by _refine_hist.d_res_high and _refine_ hist.d_res_low and \({ }^{-}\)the observation limit established by _reflns.observed_criterion, and that were used as the test reflections (i.e. were excluded from the refinement) when the refinement included the calculation of a 'free' \(R\) factor. Details of how reflections were assigned to the working and test sets are given in _reflns.R_free_details.
\[
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|}
\]
where \(F_{\text {obs }}=\) the observed structure-factor amplitudes and \(F_{\text {calc }}=\) the calculated structure-factor amplitudes; the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
[refine_hist]

\section*{_refine_hist.R_factor_R_work}

Residual factor \(R\) for reflections that satisfy the resolution limits established by _refine_hist.d_res_high and _refine_ hist.d_res_low and the observation limit established by reflns.observed criterion, and that were used as the working reflections (i.e. were included in the refinement) when the refinement included the calculation of a 'free' \(R\) factor. Details of how reflections were assigned to the working and test sets are given in _reflns.R_free_details.
\[
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|}
\]
where \(F_{\text {obs }}=\) the observed structure-factor amplitudes and \(F_{\text {calc }}=\) the calculated structure-factor amplitudes; the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
[refine_hist]

\section*{REFINE LS_CLASS}

Data items in the REFINE_LS_CLASS category record details about the reflections used for the structure refinement for each reflection class separately.
Category key(s): _refine_1s_class.code
Example 1 - data for a modulated structure from van Smaalen [J. Phys. Condens Matter (1991), 3, 1247-1263].

\section*{loop_}
_refine_ls_class.R_factor_gt
_refine_ls_class.code
0.057 'Main'
0.074 'Com'
0.064 'NbRefls'
0.046 'LaRefls'
0.112 'Sat1'
0.177 'Sat2'

\section*{* refine ls class.code}
(code)
_refine_ls_class_code(cif_core.dic 2.3)
The code identifying a certain reflection class. This code must match a_reflns_class.code.
Examples: ‘1', 'm1', 's2'.
[refine_ls_class]
```

refine_ls_class.d_res_high
_refine_ls_class_d_res_high (cif_core.dic 2.3)

```
(float)
For each reflection class, the lowest value in ångströms for the interplanar spacings for the reflections used in the refinement. This is called the highest resolution.
The permitted range is \([0.0, \infty)\). [refine_ls_class]
_refine_ls_class.d_res_low
(float)
_refine_ls_class_d_res_low (cif_core.dic 2.3)
For each reflection class, the highest value in ångströms for the interplanar spacings for the reflections used in the refinement. This is called the lowest resolution
The permitted range is \([0.0, \infty)\).
[refine_ls_class]

\section*{_refine_ls_class.R_factor_all}
(float)
_refine_ls_class_R_factor_all(cif_core.dic 2.3)
For each reflection class, the residual factor for all reflections satisfying the resolution limits established by _refine_ls_class.d_
res high and refine ls class.d res low. This is the conventional \(R\) factor. See also the definition of _refine_ls_class.wR factor_all.
\[
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|},
\]
where \(F_{\text {obs }}=\) the observed structure-factor amplitudes, \(F_{\text {calc }}=\) the calculated structure-factor amplitudes and the sum is taken over the reflections of this class.
The permitted range is \([0.0, \infty)\). [refine_ls_class]

\section*{refine_ls_class.R_factor_gt (float) _refine_1s_class_R_factor_gt (cif_core.dic 2.3)}

For each reflection class, the residual factor for significantly intense reflections (see _reflns.threshold_expression) included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_class.d_res_high and refine ls class.d res low. This is the conventional \(R\) factor. See also the definition of _refine_ls_class.wR_factor_all.
\[
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|},
\]
where \(F_{\text {obs }}=\) the observed structure-factor amplitudes, \(F_{\text {calc }}=\) the calculated structure-factor amplitudes and the sum is taken over the reflections of this class.
The permitted range is \([0.0, \infty)\). [refine_ls_class]

\section*{_refine_ls_class.R_Fsqd_factor \\ _refine_1s_class_R_Fsqd_factor(cif_core.dic 2.3)}
(float)
For each reflection class, the residual factor \(R\left(F^{2}\right)\) calculated on the squared amplitudes of the observed and calculated structure factors for the reflections judged significantly intense (i.e. satisfying the threshold specified by _reflns.threshold_expression) and included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_class.d_res_high and _refine_ls_class.d_res_low.
\[
R\left(F^{2}\right)=\frac{\sum\left|F_{\mathrm{obs}}^{2}-F_{\mathrm{calc}}^{2}\right|}{\sum\left|F_{\mathrm{obs}}^{2}\right|}
\]
where \(F_{\mathrm{obs}}^{2}=\) squares of the observed structure-factor amplitudes, \(F_{\text {calc }}^{2}=\) squares of the calculated structure-factor amplitudes and the sum is taken over the reflections of this class.
The permitted range is \([0.0, \infty)\).
```

[refine_ls_class]

```

\section*{refine_ls_class.R_I_factor}
(float)
refine_1s_class_R_I_factor (cif_core.dic 2.3)
For each reflection class, the residual factor \(R(I)\) for the reflections judged significantly intense (i.e. satisfying the threshold specified by reflns.threshold expression) and included in the refinement. This is most often calculated in Rietveld refinements against powder data, where it is referred to as \(R_{B}\) or \(R_{\text {Bragg }}\).
\[
R(I)=\frac{\sum\left|I_{\mathrm{obs}}-I_{\mathrm{calc}}\right|}{\sum\left|I_{\mathrm{obs}}\right|}
\]
where \(I_{\mathrm{obs}}=\) the net observed intensities, \(I_{\text {calc }}=\) the net calculated intensities and the sum is taken over the reflections of this class.
The permitted range is \([0.0, \infty)\).
[refine_ls_class]

\section*{_refine_ls_class.wR_factor_all}
(float)
For each reflection class, the weighted residual factor for all reflections included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_class.d_res_high and _refine_ls_class.d_res_low. See also the _refine_1s_ class.R_factor_definitions.
\[
w R=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{\sum\left|w Y_{\mathrm{obs}}^{2}\right|}\right)^{1 / 2},
\]
where \(Y_{\text {obs }}=\) the observed amplitudes specified by _refine.ls_ structure_factor_coef, \(Y_{\text {calc }}=\) the calculated amplitudes specified by _refine.ls_structure_factor_coef, \(w=\) the leastsquares weight and the sum is taken over the reflections of this class.
The permitted range is \([0.0, \infty)\).
[refine ls class]

\section*{REFINE LS RESTR}

Data items in the REFINE_LS_RESTR category record details about the restraints applied to various classes of parameters during the least-squares refinement.
Category group(s): inclusive_group
refine_group

Category key(s):_refine_ls_restr.type
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to \(P D B\) entry \(5 H V P\).
loop
_refine_ls_restr.type
refine ls restr.dev ideal target
refine_ls_restr.dev_ideal
refine_ls_restr.number
refine_ls_restr.criterion
refine_ls_restr.rejects
'p_bond_d' \(0.020 \quad 0.0181654\) '> \(2 \backslash s^{\prime} 22\)
'p_angle_d' 0.0300 .0382246 '> 2\s' 139
'p_planar_d' \(0.040 \quad 0.043 \quad 498 \quad\) '> \(2 \backslash\) s' 21
'p_planar' 0.020 0.015 270 '> \(2 \backslash s^{\prime} 1\)
'p_chiral' \(0.1500 .177 \quad 278 \quad\) '> \(2 \backslash s^{\prime} 2\)
'p_singtor_nbd' \(\quad 0.500 \quad 0.216 \quad 582 \quad\) '> \(2 \backslash s\) ' 0
'p_multtor_nbd' \(0.500 \quad 0.207419\) '> \(2 \backslash s^{\prime} \quad 0\)
\begin{tabular}{llllll}
\(\prime p\) & \(0.5 y h b o n d \_n b d '\) & 0.500 & 0.245 & 149 & \(\prime>\) \\
\hline
\end{tabular}
\(\begin{array}{lllllll}\text { 'p_planar_tor' } & 3.0 & 2.6 & 203 & \text { '> } 2 \backslash s ' & 9 \\ \text { 'p_staggered_tor' } & 15.0 & 17.4 & 298 & \text { '> } 2 \backslash s \text { s' } & 31\end{array}\)
'p orthonormal tor' \(20.0 \quad 18.1 \quad 12 \quad\) '> \(2 \backslash \mathrm{~s}\) ' 1
refine_ls_restr.criterion
(text)
A criterion used to define a parameter value that deviates significantly from its ideal value in the model obtained by restrained least-squares refinement.
Example: '> \(3 \backslash \mathrm{~s}\) '.
[refine_ls_restr]

\section*{_refine_ls_restr.dev_ideal}
(float)
For the given parameter type, the root-mean-square deviation between the ideal values used as restraints in the least-squares refinement and the values obtained by refinement. For instance, bond distances may deviate by \(0.018 \AA\) (r.m.s.) from ideal values in the current model.
The permitted range is \([0.0, \infty)\).
[refine_ls_restr]
refine ls restr.dev ideal target
(float)
\(\overline{\text { For }}\) the given \(\overline{\text { parameter type, }}\), the target root-mean-square deviation between the ideal values used as restraints in the least-squares refinement and the values obtained by refinement.
The permitted range is \([0.0, \infty)\).
[refine_ls_restr]
refine_ls_restr.number (int)
The number of parameters of this type subjected to restraint in least-squares refinement.
The permitted range is \([0, \infty)\).
refine ls restr
refine_ls_restr.rejects
The number of parameters of this type that deviate from ideal values by more than the amount defined in _refine_1s restr.criterion in the model obtained by restrained leastsquares refinement.
The permitted range is \([0, \infty)\).
[refine_ls_restr]
*_refine_ls_restr.type (line)
The type of the parameter being restrained. Explicit sets of data values are provided for the programs PROTIN/PROLSQ (beginning with \(p_{-}\)) and RESTRAIN (beginning with RESTRAIN_). As computer programs change, these data values are given as examples, not as an enumeration list. Computer programs that convert a data block to a refinement table will expect the exact form of the data values given here to be used.
The following item(s) have an equivalent role in their respective categories:

\section*{refine ls restr type.type}

Examples: 'p_bond_d' (bond distance), 'p_angle_d' (bond angle expressed as a distance), 'p_planar_d' (planar 1,4 distance), 'p_xhbond_d' ( \(X-H\) bond distance), 'p_xhangle_d' ( \(X — \mathrm{H}\) bond angle expressed as a distance), 'p_hydrog_d' (hydrogen distance), 'p_special_d' (special distance), 'p_planar' (planes), 'p_chiral’ (chiral centres), 'p_singtor_nbd' (single-torsion non-bonded contact), 'p_multtor_nbd' (multiple-torsion non-bonded contact), 'p_xyhbond_nbd' (possible \(X \cdots Y\) hydrogen bond) 'p_xhyhbond_nbd' (possible \(X-H \cdots Y\) hydrogen bond), 'p_special_tor' (special torsion angle), 'p_planar_tor' (planar torsion angle), 'p_staggered_tor' (staggered torsion angle), 'p_orthonormal_tor' (orthonormal torsion angle), 'p_mcbond_it' (main-chain bond isotropic displacement parameter), 'p_mcangle_it' (main-chain angle isotropic displacement parameter), 'p_scbond_it' (side-chain bond isotropic displacement parameter), 'p_scangle_it' (side-chain angle isotropic displacement parameter), 'p_xhbond_it' ( \(X — \mathrm{H}\) bond isotropic displacement parameter), 'p_xhangle_it' ( \(X-\mathrm{H}\) angle isotropic displacement parameter), 'p_special_it' (special isotropic displacement parameter), 'RESTRAIN_Distances < 2.12' (the root-mean-square deviation of the difference between the values calculated from the structures used to compile the restraints dictionary parameters and the dictionary values themselves in the distance range less than 2.12 \(\AA\) ), 'RESTRAIN_Distances \(2.12<D<2.625\) ' (the root-mean-square deviation of the difference between the values calculated from the structures used to compile the restraints dictionary parameters and the dictionary values themselves in the distance range 2.12-2.625 \(\AA\) ), 'RESTRAIN_Distances \(>2.625\) ' (the root-mean-square deviation of the difference between the values calculated from the structures used to compile the restraints dictionary parameters and the dictionary values themselves in the distance range greater than \(2.625 \AA\) ), RESTRAIN_Peptide Planes' (the root-mean-square deviation of the difference between the values calculated from the structures used to compile the restraints dictionary parameters and the dictionary values themselves for peptide planes),
'RESTRAIN_Ring and other planes' (the root-mean-square deviation of the difference between the values calculated from the structures used to compile the restraints dictionary parameters and the dictionary values themselves for rings and planes other than peptide planes), 'RESTRAIN_rms diffs for Uiso atoms at dist 1.2-1.4’,
RESTRAIN_rms diffs for Uiso atoms at dist 1.4-1.6',
'RESTRAIN_rms diffs for Uiso atoms at dist 1.8-2.0'
RESTRAIN_rms diffs for Uiso atoms at dist 2.0-2.2',
RESTRAIN_rms diffs for Uiso atoms at dist 2.2-2.4'
RESTRAIN_rms diffs for Uiso atoms at dist >2.4
[refine_ls_restr]
refine_ls_restr.weight
(float)
The weighting value applied to this type of restraint in the leastsquares refinement.

\section*{REFINE_LS_RESTR_NCS}

Data items in the REFINE_LS_RESTR_NCS category record details about the restraints applied to atom positions in domains related by noncrystallographic symmetry during least-squares refinement, and also about the deviation of the restrained atomic parameters at the end of the refinement. It is expected that these values will only be reported once for each set of restrained domains.
Category group(s): inclusive_group
refine_group
Category key(s): _refine_1s_restr_ncs.dom_id
Example 1 - based on laboratory records for the collagen-like peptide, HYP-.
_refine_ls_restr_ncs.dom_id
- 300.0
_refine_ls_restr_ncs.weight_B_iso 2.0
refine_ls_restr_ncs.rms_dev_position 0.09
refine_ls_restr_ncs.rms_dev_B_iso 0.16
_refine_ls_restr_ncs.ncs_model_details
;
NCS restraint for pseudo-twofold symmetry between domains d1 and d2. Position weight coefficient given in Kcal/(mol \(\left.\backslash \% A^{\wedge} 2^{\wedge}\right)\) and isotropic B weight coefficient given in \(\backslash \% A^{\wedge} 2^{\wedge}\).
;
*_refine_ls_restr_ncs.dom_id (code) This data item is a pointer to _struct_ncs_dom.id in the STRUCT NCS DOM category.
[refine_ls_restr_ncs]
_refine_ls_restr_ncs.ncs_model_details (text) \(\bar{S}\) pecial aspects of the manner in which noncrystallographic restraints were applied to atomic parameters in the domain specified by _refine_ls_restr_ncs.dom_id and equivalent atomic parameters in the \(\overline{\text { domains against which it was restrained. }}\)

> [refine_ls_restr_ncs]
_refine_ls_restr_ncs.rms_dev_B_iso (float)
The root-mean-square deviation in equivalent isotropic displacement parameters in the domain specified by _refine_1s_restr_ ncs.dom_id and in the domains against which it was restrained.
The permitted range is \([0.0, \infty)\).
[refine_ls_restr_ncs]

\section*{refine_ls_restr_ncs.rms_dev_position (float)}

The root-mean-square deviation in equivalent atom positions in the domain specified by refine_1s_restr_ncs.dom_id and in the domains against which it was restrained.
The permitted range is \([0.0, \infty)\).
[refine_ls_restr_ncs]

\section*{_refine_ls_restr_ncs.weight_B_iso \\ (float)}

The value of the weighting coefficient used in noncrystallographic symmetry restraint of isotropic displacement parameters in the domain specified by _refine_1s_restr_ncs.dom_id to equivalent isotropic displacement parameters in the domains against which it was restrained.
[refine_ls_restr_ncs]
_refine_ls_restr_ncs.weight_position (float)
The value of the weighting coefficient used in noncrystallographic symmetry restraint of atom positions in the domain specified by _refine_ls_restr_ncs.dom_id to equivalent atom positions in the domains against which it was restrained.

\section*{REFINE_LS_RESTR_TYPE}

Data items in the REFINE_LS_RESTR_TYPE category record details about the restraint types used in the least-squares refinement.
Category group(s): inclusive_group
refine_group

Category key(s): _refine_ls_restr_type.type
Example 1 - based on RESTRAIN refinement for the CCP4 test data set toxd.

\section*{loop_}
refine_ls_restr.type
refine_ls_restr.number
_refine_ls_restr.dev_ideal
_refine_ls_restr.dev_ideal_target
'RESTRAIN_Distances < 2.12' 50900.0050 .022
'RESTRAIN_Distances \(2.12<\mathrm{D}<2.625\) ' 6710.0160 .037
'RESTRAIN_Distances > 2.625' \(39 \quad 0.0340 .043\)
'RESTRAIN_Peptide Planes' \(\quad 59 \quad 0.0020 .010\)
'RESTRAIN_Ring and other planes' \(26 \quad 0.0140 .010\)
'RESTRAIN_rms diffs for Uiso atoms at dist 1.2-1.4' \(212-0.106\)
'RESTRAIN_rms diffs for Uiso atoms at dist 1.4-1.6' \(288 \quad 0.101\)
'RESTRAIN_rms diffs for Uiso atoms at dist 1.8-2.0' \(6 \quad 0.077\)
'RESTRAIN rms diffs for Uiso atoms at dist 2.0-2.2' \(10-0.114\)
'RESTRAIN_rms diffs for Uiso atoms at dist 2.2-2.4' \(215 \quad 0.119\)
'RESTRAIN_rms diffs for Uiso atoms at dist >2.4' 4610.106
loop_
_refine_ls_restr_type.type
_refine_ls_restr_type.distance_cutoff_low
-refine_ls_restr_type.distance_cutoff_high
'RESTRAIN_Distances < 2.12' . 2.12
'RESTRAIN_Distances \(2.12<\mathrm{D}<2.625^{\prime} \quad 2.12\) 2.625
'RESTRAIN_Distances > 2.625 ' 2.625 .
'RESTRAIN_Peptide Planes'
'RESTRAIN_Ring and other planes'
' RESTRAIN_rms diffs for Uiso atoms at dist 1.2-1.4' 1.21 .4
'RESTRAIN rms diffs for Uiso atoms at dist 1.4-1.6' \(1.4 \quad 1.6\)
'RESTRAIN_rms diffs for Uiso atoms at dist 1.8-2.0' 1.82 .0
'RESTRAIN_rms diffs for Uiso atoms at dist 2.0-2.2' \(2.0 \quad 2.2\)
'RESTRAIN_rms diffs for Uiso atoms at dist 2.2-2.4' 2.22 .4
'RESTRAIN_rms diffs for Uiso atoms at dist >2.4' 2.4
_refine_ls_restr_type.distance_cutoff_high (float) The upper limit in ångströms of the distance range applied to the current restraint type.
The permitted range is \([0.0, \infty)\).
[refine_ls_restr_type]
_refine_ls_restr_type.distance_cutoff_low (float) The lower limit in ångströms of the distance range applied to the current restraint type.
The permitted range is \([0.0, \infty)\).
[refine_ls_restr_type]
```

*_refine_ls_restr_type.type
(line)

```

This data item is a pointer to _refine_ls_restr.type in the REFINE_LS_RESTR category.

\section*{REFINE_LS_SHELL}

Data items in the REFINE_LS_SHELL category record details about the results of the least-squares refinement broken down into shells of resolution.
Category group(s): inclusive_group
refine_group
Category key(s): _refine_ls_shell.d_res_low refine_ls_shell.d_res_high

Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to \(P D B\) entry \(5 H V P\).

\section*{loop_}
_refine_ls_shell.d_res_low
_refine_ls_shell.d_res_high
_refine_ls_shell.number_reflns_obs
_refine_ls_shell.R_factor_obs
\(8.00-4.51 \quad 1226 \quad 0 . \overline{196}\)
\(4.51 \quad 3.48 \quad 1679 \quad 0.146\)
\(3.48 \quad 2.94 \quad 2014 \quad 0.160\)
\(2.94 \quad 2.59 \quad 2147 \quad 0.182\)
\(2.59 \quad 2.34 \quad 2127 \quad 0.193\)
\(2.34 \quad 2.15 \quad 2061 \quad 0.203\)
\begin{tabular}{llll}
2.15 & 2.00 & 1647 & 0.188
\end{tabular}
*_refine_ls_shell.d_res_high
(float)
The lowest value for the interplanar spacings for the reflection data in this shell. This is called the highest resolution.
The permitted range is \([0.0, \infty)\).
[refine_ls_shell]
*_refine_ls_shell.d_res_low (float)
The highest value for the interplanar spacings for the reflection data in this shell. This is called the lowest resolution.
The permitted range is \([0.0, \infty)\).
[refine_ls_shell]

\section*{_refine_ls_shell.number_reflns_all}
(int)
The number of reflections that satisfy the resolution limits established by _refine_1s_shell.d_res_high and _refine_ls_ shell.d_res_low.
The permitted range is \([0, \infty)\)
[refine_ls_shell]

\section*{refine_ls_shell.number_reflns_obs}
(int)
The number of reflections that satisfy the resolution limits established by _refine_1s_shell.d_res_high and _refine_1s shell.d_res_low and the observation criterion established by _reflns.observed_criterion.
The permitted range is \([0, \infty)\).
[refine_ls_shell]

\section*{refine ls shell.number reflns \(R\) free}

The number of reflections that satisfy the resolution limits established by _refine_ls_shell.d_res_high and _refine_1s_ shell.d_res_low and the observation limit established by reflns.observed_criterion, and that were used as the test reflections (i.e. were excluded from the refinement) when the refinement included the calculation of a 'free' \(R\) factor. Details of how reflections were assigned to the working and test sets are given in _reflns.R_free_details.
The permitted range is \([0, \infty)\).
[refine_ls_shell]

\section*{refine_ls_shell.number_reflns_R_work}
(int)
The number of reflections that satisfy the resolution limits established by _refine_ls_shell.d_res_high and _refine_ls_ shell.d_res_low and the observation limit established by _reflns.observed_criterion, and that were used as the working reflections (i.e. were included in the refinement) when the refinement included the calculation of a 'free' \(R\) factor. Details of how reflections were assigned to the working and test sets are given in reflns.R_free_details.
The permitted range is \([0, \infty)\). [refine ls shell]

\section*{_refine_ls_shell.percent_reflns_obs (foat)} The number of reflections that satisfy the resolution limits established by _refine_ls_shell.d_res_high and _refine_ls shell.d_res_low and the observation criterion established by reflns.observed_criterion, expressed as a percentage of the number of geometrically observable reflections that satisfy the resolution limits.
[refine_ls_shell]

\section*{refine_ls_shell.percent_reflns_R_free (float)} \(\bar{T}\) The number \(\overline{\text { of }}\) reflections that satisfy the resolution limits established by _refine_1s_shell.d_res_high and _refine_ls_ shell.d_res_low and the observation limit established by _reflns.observed_criterion, and that were used as the test reflections (i.e. were excluded from the refinement) when the refinement included the calculation of a 'free' \(R\) factor, expressed as a percentage of the number of geometrically observable reflections that satisfy the reflection limits.
[refine_ls_shell]
_refine_ls_shell.R_factor_all (float)
Residual factor \(R\) for reflections that satisfy the resolution limits established by _refine_ls_shell.d_res_high and _refine_ls_shell.d_res_low.
\[
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|}
\]
where \(F_{\text {obs }}=\) the observed structure-factor amplitudes, \(F_{\text {calc }}=\) the calculated structure-factor amplitudes and the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
Related item: _refine_ls_shell.wR_factor_all (alternate).
[refine_ls_shell]

\section*{refine_ls_shell.R_factor_obs \\ (float)}

Residual factor \(R\) for reflections that satisfy the resolution limits established by _refine_ls_shell.d_res_high and _refine_1s_shell.d_res_low and the observation criterion established by _reflns.observed_criterion.
\[
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|}
\]
where \(F_{\text {obs }}=\) the observed structure-factor amplitudes, \(F_{\text {calc }}=\) the calculated structure-factor amplitudes and the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
Related item: _refine_ls_shell.wR_factor_obs (alternate).
[refine_ls_shell]

\section*{_refine_ls_shell.R_factor_R_free}
(float) \(\bar{R}\) esidual \(\overline{\text { factor }} R\) for reflections that satisfy the resolution limits established by _refine_ls_shell.d_res_high and _refine_ls_shell.d_res_low and the observation limit established by _reflns.observed_criterion, and that were used as the test reflections (i.e. were excluded from the refinement) when the refinement included the calculation of a 'free' \(R\) factor. Details of how reflections were assigned to the working and test sets are given in _reflns.R_free_details.
\[
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|}
\]
where \(F_{\text {obs }}=\) the observed structure-factor amplitudes, \(F_{\text {calc }}=\) the calculated structure-factor amplitudes and the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
Related items: _refine_ls_shell.wR_factor_R_free (alternate),
_refine_ls_shell.R_factor_R_free_error(associated error).
[refine_ls_shell]
refine_ls_shell.R_factor_R_free_error (float) The estimated error in _refine_ls_shell.R_factor_R_free. The method used to estimate the error is described in the item _refine.ls_R_factor_R_free_error_details.
Related item: _refine_ls_shell.R_factor_R_free (associated value).
[refine_ls_shell]

\section*{_refine_ls_shell.R_factor_R_work}
(float)
Residual factor \(R\) for reflections that satisfy the resolution limits established by _refine_ls_shell.d_res_high and _refine_ls_shell.d_res_low and the observation limit established by _-reflns.observed_criterion, and that were used as the working reflections (i.e. were included in the refinement) when the refinement included the calculation of a 'free' \(R\) factor. Details of how reflections were assigned to the working and test sets are given in _reflns.R_free_details.
\[
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|}
\]
where \(F_{\text {obs }}=\) the observed structure-factor amplitudes, \(F_{\text {calc }}=\) the calculated structure-factor amplitudes and the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
Related item: _refine_ls_shell.wR_factor_R_work (alternate).
[refine_ls_shell]
_refine_ls_shell.redundancy_reflns_all (foat) \(\bar{T}\) The ratio of the total number of observations of the reflections that satisfy the resolution limits established by _refine_ls_shell.d_res_high and _refine_ls_shell.d_ res_low to the number of crystallographically unique reflections that satisfy the same limits.

> [refine_ls_shell]
refine_ls_shell.redundancy_reflns_obs (float) The ratio of the total number of observations of the reflections that satisfy the resolution limits established by _refine_ls_shell.d_res_high and _refine_ls_shell.d_ res_low and the observation criterion established by _reflns.observed_criterion to the number of crystallographi\(\bar{c}\) cally unique reflections that satisfy the same limits.
[refine_ls_shell]
_refine_ls_shell.wR_factor_all
(float)
 lution limits established by _refine_ls_shell.d_res_high and _refine_ls_shell.d_res_low.
\[
w R=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{\sum\left|w Y_{\mathrm{obs}}^{2}\right|}\right)^{1 / 2}
\]
where \(Y_{\text {obs }}=\) the observed amplitude specified by _refine.ls_ structure_factor_coef, \(Y_{\text {calc }}=\) the calculated amplitude specified by _refine.ls_structure_factor_coef and \(w=\) the leastsquares weight; the sum is taken over the specified reflections. The permitted range is \([0.0, \infty)\).
Related item:_refine_1s_shell.R_factor_all (alternate).
[refine_ls_shell]
_refine_ls_shell.wR_factor_obs (float)
\(\bar{W}\) Weighted residual factor \(\overline{-} w R\) for reflections that satisfy the resolution limits established by _refine_ls_shell.d_res_high and _refine_ls_shell.d_res_low and the observation criterion established by _-_reflns.observed_criterion.
\[
w R=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{\sum\left|w Y_{\mathrm{obs}}^{2}\right|}\right)^{1 / 2}
\]
where \(Y_{\text {obs }}=\) the observed amplitude specified by _refine.ls_ structure_factor_coef, \(Y_{\text {calc }}=\) the calculated amplitude specified by _refine.ls_structure_factor_coef and \(w=\) the leastsquares weight; the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
Related item: _refine_ls_shell.R_factor_obs (alternate).
[refine_ls_shell]
_refine_ls_shell.wR_factor_R_free (float) \(\bar{W}\) eighted \(\overline{\text { residual factor }} \overline{w R}\) for reflections that satisfy the resolution limits established by _refine_1s_shell.d_res_high and refine_ls_shell.d_res_low and the observation limit established by _reflns.observed_criterion, and that were used as the test reflections (i.e. were excluded from the refinement) when the refinement included the calculation of a 'free' \(R\) factor. Details of how reflections were assigned to the working and test sets are given in _reflns.R_free_details.
\[
w R=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{\sum\left|w Y_{\mathrm{obs}}^{2}\right|}\right)^{1 / 2}
\]
where \(Y_{\mathrm{obs}}=\) the observed amplitude specified by _refine.ls_ structure_factor_coef, \(Y_{\text {calc }}=\) the calculated amplitude specified by _refine.ls_structure_factor_coef and \(w=\) the leastsquares weight; the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
Related item: _refine_1s_shell.R_factor_R_free (alternate).
[refine_ls_shell]
_refine_ls_shell.wR_factor_R_work
(float)
Weighted residual factor \(w R\) for reflections that satisfy the resolution limits established by _refine_ls_shell.d_res_high and _refine_ls_shell.d_res_low and the observation limit established by _reflns.observed_criterion, and that were used as the working reflections (i.e. were included in the refinement) when the refinement included the calculation of a 'free' \(R\) factor. Details of how reflections were assigned to the working and test sets are given in _reflns.R_free_details.
\[
w R=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{\sum\left|w Y_{\mathrm{obs}}^{2}\right|}\right)^{1 / 2}
\]
where \(Y_{\text {obs }}=\) the observed amplitude specified by _refine.ls_ structure_factor_coef, \(Y_{\text {calc }}=\) the calculated amplitude specified by _refine.ls_structure_factor_coef and \(w=\) the leastsquares weight; the sum is taken over the specified reflections.
The permitted range is \([0.0, \infty)\).
Related item: _refine_ls_shell.R_factor_R_work (alternate).
[refine_ls_shell]

\section*{REFINE_OCCUPANCY}

Data items in the REFINE_OCCUPANCY category record details about the treatment of atom occupancies during refinement.
Category group(s): inclusive_group
refine_group

Category key(s): _refine_occupancy.class
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to \(P D B\) entry \(5 H V P\).
loop
_refine_occupancy.class
_refine_occupancy.treatment
_refine_occupancy.value
_refine_occupancy.details
'protein' fix 1.00 .
'solvent' fix 1.00 .
'inhibitor orientation 1' fix 0.65 .
'inhibitor orientation 2' fix 0.35
; The inhibitor binds to the enzyme in two alternative
conformations. The occupancy of each conformation was adjusted so as to result in approximately equal mean thermal factors for the atoms in each conformation.
;
refine_occupancy.value
(float)
\(\bar{T}\) The value of occupancy assigned to a class of atoms defined in _refine_occupancy.class. Meaningful only for atoms with fixed occupancy.
The permitted range is \([0.0,1.0]\).
Examples: ‘1.0’, ‘0.41'.
[refine_occupancy]

\section*{REFLN}

Data items in the REFLN category record details about the reflection data used to determine the ATOM_SITE data items. The REFLN data items refer to individual reflections and must be included in looped lists. The REFLNS data items specify the parameters that apply to all reflections. The REFLNS data items are not looped.
Category group(s): inclusive_group refln_group
Category key(s): _refln.index_h
_refln.index_k
_refln.index_l
Example 1 - based on data set fetod of Todres, Yanovsky, Ermekov \& Struchkov [Acta Cryst. (1993), C49, 1352-1354].

\section*{loop_}
refln.index \(h\)
_refln.index_k
_refln.index_l
_refln.F_squared_calc
_refln. F_squared_meas
_refln. F_squared_sigma
_refln.status
\begin{tabular}{rrrrrrl}
- & 0 & 85.57 & 58.90 & 1.45 & \(\circ\) \\
3 & 0 & 0 & 15718.18 & 15631.06 & 30.40 & 0 \\
4 & 0 & 0 & 55613.11 & 49840.09 & 61.86 & \(\circ\) \\
5 & 0 & 0 & 246.85 & 241.86 & 10.02 & 0 \\
6 & 0 & 0 & 82.16 & 69.97 & 1.93 & 0 \\
7 & 0 & 0 & 1133.62 & 947.79 & 11.78 & 0 \\
8 & 0 & 0 & 2558.04 & 2453.33 & 20.44 & 0 \\
9 & 0 & 0 & 283.88 & 393.66 & 7.79 & 0 \\
10 & 0 & 0 & 283.70 & 171.98 & 4.26 & 0 \\
\hline
\end{tabular}
_refln.A_calc
(float)
_refln_A_calc (cif_core.dic 2.0.1)
The calculated value of structure-factor component \(A\) in electrons.
\[
A=|F| \cos (\text { phase })
\]

Related item: _refln. A_calc_au (conversion arbitrary).
[refln]

\section*{refln.A_calc_au}
(float)
The calculated value of structure-factor component \(A\) in arbitrary units.
\[
A=|F| \cos (\text { phase })
\]

Related item: _refln.A_calc (conversion arbitrary).
[refln]
refln.A meas
(float)
_refln_A_meas (cif_core.dic 2.0.1)
The measured value of structure-factor component \(A\) in electrons.
\[
A=|F| \cos (\text { phase })
\]

Related item: _refln.A_meas_au (conversion arbitrary).
[refln]
refln.A_meas_au
(float)
\(\bar{T}\) The measured value of structure-factor component \(A\) in arbitrary units.
\[
A=|F| \cos (\text { phase })
\]
```

_refln.B_calc
_refln_B_calc (cif_core.dic 2.0.1)

```
(float)
The calculated value of structure-factor component \(B\) in electrons.
\[
B=|F| \sin (\text { phase })
\]

Related item: _refln. B_calc_au (conversion arbitrary).

\section*{_refln.B_calc_au}
(float)
The calculated value of structure-factor component \(B\) in arbitrary units.
\[
B=|F| \sin (\text { phase }) .
\]

Related item: _refln. B_calc (conversion arbitrary).
[refln]
```

_refln.B_meas
(float)
_refln_B_meas(cif_core.dic 2.0.1)

```

The measured value of structure-factor component \(B\) in electrons.
\[
B=|F| \sin (\text { phase })
\]

Related item: _refln.B_meas_au (conversion arbitrary).
[refln]
_refln.B_meas_au
(float)
The measured value of structure-factor component \(B\) in arbitrary units.
\[
B=|F| \sin (\text { phase })
\]

Related item: _refln. B_meas (conversion arbitrary).
[refln]
```

_refln.class_code
_refln_class_code(cif_core.dic 2.3)

```

The code identifying the class to which this reflection has been assigned. This code must match a value of _reflns_class.code. Reflections may be grouped into classes for a variety of purposes. For example, for modulated structures each reflection class may be defined by the number \(m=\sum\left|m_{i}\right|\), where the \(m_{i}\) are the integer coefficients that, in addition to \(h, k, l\), index the corresponding diffraction vector in the basis defined for the reciprocal lattice.
[refln]
```

*_refln.crystal_id
_refln_crystal_id(cif_core.dic 2.0.1)

```

This data item is a pointer to exptl_crystal.id in the EXPTL_CRYSTAL category.
```

_refln.d_spacing _refln_d_spacing (cif_core.dic 2.3)

```
(float)
The \(d\) spacing in ångströms for this reflection. This is related to the \((\sin \theta) / \lambda\) value by the expression _refln.d_spacing \(=\) 2/(_refln.sint/lambda).
The permitted range is \([0.0, \infty)\).
[refln]
_refln.F_calc (float)
_refln_F_calc (cif_core.dic 2.0.1)
The calculated value of the structure factor in electrons.
Related item: _refln.F_calc_au (conversion arbitrary). [refln]
refln.F_calc_au (float)
The calculated value of the structure factor in arbitrary units.
Related item: _refln.F_calc (conversion arbitrary).
[refln]
_refln.F_meas
(float, su)
_refln_F_meas (cif_core.dic 2.0.1)
The measured value of the structure factor in electrons.
Related items: _refln. F_meas_sigma (associated esd),
_refln. F_meas_au (conversion arbitrary). [refln]
_refln.F_meas_au
(float, su)
The measured value of the structure factor in arbitrary units.


The calculated value of the squared structure factor in electrons squared.
[refln]
refln.F_squared_meas
_refln_F_squared_meas(cif_core.dic 2.0 .1\()\)
(float)
The measured value of the squared structure factor in electrons squared.
[refln]
_refln.F_squared_sigma
(float)
_refln_F_squared_sigma(cif_core.dic 2.0.1)
The standard uncertainty (derived from measurement) of the squared structure factor in electrons squared.
refln.fom
(float)
The figure of merit \(m\) for this reflection.
\[
m=\frac{\int P_{\alpha} \exp (i \alpha) \mathrm{d} \alpha}{\int P_{\alpha} \mathrm{d} \alpha}
\]
where \(P_{\alpha}=\) the probability that the phase angle \(\alpha\) is correct; the integral is taken over the range \(\alpha=0\) to \(2 \pi\).
The permitted range is \([0.0, \infty)\). [refln]
refln.include_status
refln include status(cif_core.dic 2.3 )

Classification of a reflection so as to indicate its status with respect to inclusion in the refinement and the calculation of \(R\) factors.
Related item: _refln.status (alternate).
The data value must be one of the following:
○ (lower-case letter o for 'observed') satisfies _refine.ls_d_ res_high, satisfies refine.ls_d_res_low and exceeds _reflns.threshold_expression
satisfies _refine.ls_d_res_high, satisfies _refine.ls_d_res_ low and does not exceed _reflns.threshold_expression
systematically absent reflection
unreliable measurement - not used
does not satisfy _refine.1s_d_res_high
does not satisfy _refine.ls_d_res_low
[refln]
```

*_refln.index_h
refln index h(cif_core.dic 2.0.1)

```

Miller index \(h\) of the reflection. The values of the Miller indices in the REFLN category must correspond to the cell defined by cell lengths and cell angles in the ceLL category.
[refln]
```

*_refln.index_k
_refln_index_k(ci__core.dic 2.0.1)

```

Miller index \(k\) of the reflection. The values of the Miller indices in the REFLN category must correspond to the cell defined by cell lengths and cell angles in the CELL category.
[refln]
*_refln.index_1
_refln_index_l (cif_core.dic 2.0.1)
Miller index \(l\) of the reflection. The values of the Miller indices in the REFLN category must correspond to the cell defined by cell lengths and cell angles in the CELL category.
```

_refln.intensity_calc
(float)

```
refln_intensity_calc (cif_core.dic 2.0.1)
The calculated value of the intensity in the same units as _refln.intensity_meas.
[refln]
_refln.intensity_meas (float)
_refln_intensity_meas(cif_core.dic 2.0.1)
The measured value of the intensity.

\section*{_refln.intensity_sigma \\ _refln_intensity_sigma(cif_core.dic 2.0.1)}
(float)

The standard uncertainty (derived from measurement) of the intensity in the same units as _refln.intensity_meas.
[refln]

\section*{refln.mean_path_length_tbar}
(float)
_refln_mean_path_length_tbar (cif_core.dic 2.3)
Mean path length in millimetres through the crystal for this reflection.
The permitted range is \([0.0, \infty)\).
```

_refln.phase_calc
refln phase calc (cif_core.dic 2.0.1)

```
(float)
The calculated structure-factor phase in degrees.
(int) *_refln.scale_group_code
_refln_scale_group_code(cif_core.dic 2.0.1)
This data item is a pointer to _reflns_scale.group_code in the REFLNS_SCALE category.
_refln.sint_over_lambda (float)
refln sint/lambda(cif_core.dic 2.0.1)
The \((\sin \theta) / \lambda\) value in reciprocal ångströms for this reflection.
The permitted range is \([0.0, \infty)\).
[refln]
refln status
(ucode)
_refln_observed_status(cif_core.dic 2.0.1)
Classification of a reflection so as to indicate its status with respect to inclusion in the refinement and the calculation of \(R\) factors.
The data value must be one of the following:
○ satisfies _refine.1s_d_res_high, satisfies _refine.1s_d_res low, observed by _reflns.observed_criterion, not flagged as systematically absent, not flagged as unreliable
satisfies _refine.ls_d_res_high, satisfies _refine.ls_d_res low, unobserved by reflns.observed_criterion, not flagged as systematically absent, not flagged as unreliable
systematically absent reflection unreliable measurement - not used
does not satisfy _refine.ls_d_res_high does not satisfy _refine.ls_d_res_low
satisfies _refine.1s_d_res_high, satisfies _refine.1s_d_res_ low, observed by _reflns.observed_criterion, not flagged as systematically absent, not flagged as unreliable, excluded from refinement so as to be included in the calculation of a 'free' \(R\) factor
[refln]

\section*{refln.symmetry epsilon}
_refln_symmetry_epsilon(cif_core.dic 2.0.1)
The symmetry reinforcement factor corresponding to the number of times the reflection indices are generated identically from the space-group symmetry operations.
The permitted range is \([1,48]\). [refln]

\section*{refln.symmetry_multiplicity}
(int)
_refln_symmetry_multiplicity(cif_core.dic 2.0.1)
The number of symmetry-equivalent reflections. The equivalent reflections have the same structure-factor magnitudes because of the space-group symmetry and the Friedel relationship.
The permitted range is \([1,48]\).
[refln]
[refln]
(float)
_refln_phase_meas (cif_core.dic 2.0.1)
The measured structure-factor phase in degrees.
[refln]
(ucode)

\section*{refln.wavelength}
(float)
refln wavelength (cif_core.dic 2.0.1)
The mean wavelength in ångströms of radiation used to measure this reflection. This is an important parameter for data collected using energy-dispersive detectors or the Laue method
The permitted range is \([0.0, \infty)\).
[refln]
_refln_refinement_status (cif_core.dic 2.0.1)
Status of a reflection in the structure-refinement process.
The data value must be one of the following:
\begin{tabular}{ll} 
incl & included in least-squares process \\
excl & excluded from least-squares proces
\end{tabular}
extn excluded due to extinction
Where no value is given, the assumed value is 'incl'.
*_refln.wavelength_id
_refln_wavelength_id(cif_core.dic 2.0.1)
This data item is a pointer to diffrn radiation.wavelength id
in the DIFFRN_RADIATION category

\section*{REFLN_SYS_ABS}

Data items in the REFLN_SYS_ABS category record details about the reflection data that should be systematically absent, given the designated space group.
Category group(s): inclusive_group refln_group
Category key(s): _refln_sys_abs.index_h _refln_sys_abs.index_k _refln_sys_abs.index_1
```

Example 1- hypothetical example.
loop_
refln_sys_abs.index_h
_refln_sys_abs.index_k
_refln_sys_abs.index_l
refln sys abs.I
_refln_sys_abs.sigmaI
_refln_sys_abs.I_over_sigmaI

```

```

0
llllll

```
\(\begin{array}{llllll}0 & 9 & 0 & 32.99 & 24.51 & 1.35\end{array}\)
_refln_sys_abs.I
(float, su)
_ebi_ref1n_sys_abs.I (ebi_extensions 1.0)

The measured value of the intensity in arbitrary units.
Related item: _refln_sys_abs.sigmaI (associated esd). [refln_sys_abs]
_refln_sys_abs.I_over_sigmaI
(float)
_ebi_refln_sys_abs.I_over_sigma (ebi_extensions 1.0)
The ratio of _refln_sys_abs.I to _refln_sys_abs.sigmaI. Used to evaluate whether a reflection that should be systematically absent according to the designated space group is in fact absent.
[refln_sys_abs]
```

*_refln_sys_abs.index_h
_ebi_refln_sys_abs.h(ebi_extensions 1.0)

```

Miller index \(h\) of the reflection. The values of the Miller indices in the REFLN_SYS_ABS category must correspond to the cell defined by cell lengths and cell angles in the CELL category.
[refln_sys_abs]
```

*_refln_sys_abs.index_k
_ebi_refln_sys_abs.k(ebi_extensions 1.0)

```

Miller index \(k\) of the reflection. The values of the Miller indices in the REFLN_SYS_ABS category must correspond to the cell defined by cell lengths and cell angles in the CELL category.
[refln_sys_abs]
```

*_refln_sys_abs.index_l
_ebi_refln_sys_abs.1 (ebi_extensions 1.0)

```

Miller index \(l\) of the reflection. The values of the Miller indices in the REFLN_SYS_ABS category must correspond to the cell defined by cell lengths and cell angles in the cell category.
[refln_sys_abs]
```

refln_sys_abs.sigmaI
_ebi_refln_sys_abs.sigmaI (ebi_extensions 1.0)
The standard uncertainty (estimated standard deviation) of _refln_sys_abs.I in arbitrary units.
Related item: _refln_sys_abs.I (associated value)

REFLNS

Data items in the REFLNS category record details about the reflection data used to determine the ATOM_SITE data items. The REFLN data items refer to individual reflections and must be included in looped lists. The REFLNS data items specify the parameters that apply to all reflections. The REFLNS data items are not looped.
Category group(s): inclusive_group
refln_group

Category key(s): _reflns.entry_id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry $5 H V P$.

```
reflns.entry_id '5HVP'
```

_reflns.data_reduction_method
; Xengen prōr ram scale \bar{i}. Anomalous pairs were merged. Scaling
proceeded in several passes, beginning with 1-parameter
fit and ending with 3 -parameter fit.
;
reflns.data reduction details
; Merging and scaling based on only those reflections
with $I>\backslash s(I)$.
;

| _reflns.d_resolution_high | 2.00 |
| :--- | :--- |
| _reflns.d_resolution_low | 8.00 |
| _reflns.limit_h_max | 22 |
| _reflns.limit_h_min | 0 |
| _reflns.limit_k_max | 46 |
| _reflns.limit_k_min | 0 |
| _reflns.limit_l_max | 57 |
| _reflns.limit_l_min | 0 |
| _reflns.number_obs | 7228 |
| -reflns.observed_criterion | $\prime>1$ |
| _reflns.details | none |

Example 2 - based on data set TOZ of Willis, Beckwith \& Tozer [Acta Cryst. (1991), C47, 2276-2277].

| -reflns.limit_h_min | 0 |
| :--- | :--- |
| -reflns.limit_h_max | 6 |
| -reflns.limit_k_min | 0 |
| _reflns.limit_k_max | 17 |
| _reflns.limit_l_min | 0 |
| _reflns.limit_l_max | 22 |
| _reflns.number_all | 1592 |
| _reflns.number_obs | 1408 |
| -reflns.observed_criterion | F_>_6.0_\s(F) |
| _reflns.d_resolution_high | 0.8733 |
| _reflns.d_resolution_low | 11.9202 |

reflns.B iso Wilson estimate (float)
\bar{T} The value of the $\overline{\text { overall isotropic displacement parameter esti- }}$ mated from the slope of the Wilson plot.
[reflns]
_reflns.d_resolution_high
(float)
_reflns_d_resolution_high (cif_core.dic 2.0.1)
The smallest value for the interplanar spacings for the reflection data. This is called the highest resolution.
The permitted range is $[0.0, \infty)$.
[reflns]

reflns.d_resolution_low

(float)
_reflns_d_resolution_low (cif_core.dic 2.0.1)
The largest value for the interplanar spacings for the reflection data. This is called the lowest resolution.
The permitted range is $[0.0, \infty)$.
[reflns]
reflns.data_reduction_details (text)
A description of special aspects of the data-reduction procedures.
Example:
; Merging and scaling based on only those
reflections with I > sig(I).

_reflns.data_reduction_method
 (text)

The method used for data reduction. Note that this is not the computer program used, which is described in the SOFTWARE category, but the method itself. This data item should be used to describe significant methodological options used within the data-reduction programs.
Example:
; Profile fitting by method of Kabsch (1987). Scaling used spherical harmonic coefficients.
;
[reflns]
_reflns.details
(text)
_reflns_special_details(cif_core.dic 2.0.1)
A description of reflection data not covered by other data names. This should include details of the Friedel pairs.

> [reflns]
*_reflns.entry_id
This data item is a pointer to _entry.id in the ENTRY category.

$$
\begin{align*}
& \text { _reflns.Friedel_coverage } \tag{float}\\
& \text { _reflns_Friedel_coverage(cif_core.dic 2.3) }
\end{align*}
$$

The proportion of Friedel-related reflections present in the number of 'independent' reflections specified by the item _reflns.number_all. This proportion is calculated as the ratio

$$
\frac{[N(\text { crystal class })-N(\text { Laue symmetry })]}{N(\text { Laue symmetry })},
$$

where, working from the DIFFRN_REFLN list, N (Crystal class) is the number of reflections obtained on averaging under the symmetry of the crystal class and N (Laue symmetry) is the number of reflections obtained on averaging under the Laue symmetry.

Examples: (a) For centrosymmetric structures, the value of _reflns.Friedel_coverage is necessarily equal to 0.0 as the crystal class is identical to the Laue symmetry. (b) For whole-sphere data for a crystal in the space group $P 1$, _reflns.Friedel_coverage is equal to 1.0 , as no reflection $h k l$ $\overline{\text { is equivalent to }-\bar{h}-k-l \text { in the crystal class and all Friedel pairs }}$ $\{h k l ;-h-k-l\}$ have been measured. (c) For whole-sphere data in space group Pmm2, _reflns. Friedel_coverage will be <1.0 because although reflections $h k l$ and $-h-k-l$ are not equivalent when $h k l$ indices are nonzero, they are when $l=0$. (d) For a crystal in space group Pmm2, measurements of the two inequivalent octants $h \geq 0, k \geq 0, l$ lead to the same value as in (c), whereas measurements of the two equivalent octants $h \geq 0, k, l \geq 0$ will lead to a value of zero for _reflns. Friedel_coverage. The permitted range is $[0.0,1.0]$.
[reflns]

_reflns.limit_h_max

(int)
_reflns_limit_h_max (cié_core.dic 2.0.1)

Maximum value of the Miller index h for the reflection data. This need not have the same value as _diffrn_reflns.limit_h_max.
[reflns]

> _reflns.limit_h_min
> _reflns_limit_h_min $_{\text {(cif_core.dic } 2.0 .1)}$
(int)
Minimum value of the Miller index h for the reflection data. This need not have the same value as _diffrn_reflns.limit_h_min.
[reflns]

$$
\begin{align*}
& \text { _reflns.limit_k_max } \tag{int}\\
& \text { _reflns_limit_k_max (cif_core.dic 2.0.1) }
\end{align*}
$$

Maximum value of the Miller index k for the reflection data. This need not have the same value as _diffrn_reflns.limit_k_max.
_reflns.limit_k_min
(int)
_reflns_limit_k_min (cif_core.dic 2.0.1)
Minimum value of the Miller index k for the reflection data. This need not have the same value as _diffrn_reflns.limit_k_min.
[reflns]
_reflns.limit_l_max
(int)
_reflns_limit_1_max (cif_core.dic 2.0.1)
Maximum value of the Miller index l for the reflection data. This need not have the same value as _diffrn_reflns.limit_l_max.
[reflns]
_reflns.limit_l_min
(int)
_reflns_limit_1_min(cif_core.dic 2.0.1)
Minimum value of the Miller index l for the reflection data. This need not have the same value as _diffrn_reflns.limit_l_min.
[reflns]

reflns.number all

(int)
_reflns_number_total (cif_core.dic 2.0.1)
The total number of reflections in the REFLN list (not the DIFFRN_REFLN list). This number may contain Friedel-equivalent reflections according to the nature of the structure and the procedures used. The item _reflns.details describes the reflection data.
The permitted range is $[0, \infty)$ [reflns]
_reflns.number_gt
(int)
_reflns_number_gt (cif_core.dic 2.3)
The number of reflections in the REFLN list (not the DIFFRN_REFLN list) that are significantly intense, satisfying the criterion specified by _reflns.threshold_expression. This may include Friedelequivalent reflections (i.e. those which are symmetry-equivalent under the Laue symmetry but inequivalent under the crystal class) according to the nature of the structure and the procedures used. Any special characteristics of the reflections included in the REFLN list should be described using the item _reflns. details. The permitted range is $[0, \infty)$.
[reflns]

_reflns.number_obs

(int)
_reflns_number_obser̄ved (cif_core.dic 2.0.1)
The number of reflections in the REFLN list (not the DIFFRN_REFLN list) classified as observed (see _reflns.observed_criterion). This number may contain Friedel-equivalent reflections according to the nature of the structure and the procedures used.
The permitted range is $[0, \infty)$.
[reflns]
_reflns.observed_criterion
_reflns_observed_criterion(cif_core.dic 2.0.1)

The criterion used to classify a reflection as 'observed'. This criterion is usually expressed in terms of a $\sigma(I)$ or $\sigma(F)$ threshold.
Related items:_reflns.observed_criterion_sigma_F (alternate),
_reflns.observed_criterion_sigma_I (alternate),
_reflns.observed_criterion_I_min(alternate),
_reflns.observed_criterion_I_max (alternate),
_reflns.observed_criterion_F_min(alternate),
_reflns.observed_criterion_F_max (alternate).
Example: '>2sigma (I)'.
[reflns]
_reflns.observed_criterion_F_max (float)
\bar{T} The criterion used to classify a reflection as 'observed' expressed as an upper limit for the value of F.
Related items: _reflns.observed_criterion (alternate),
_reflns.observed_criterion_I_max (convention).
[reflns]
_reflns.observed_criterion_F_min
(float)
\bar{T} The criterion used to classify a reflection as 'observed' expressed as a lower limit for the value of F.
Related items: _reflns.observed_criterion (alternate),
_reflns.observed_criterion_I_min(convention).
[reflns]
_reflns.observed_criterion_I_max
(float)
The criterion used to classify a reflection as 'observed' expressed as an upper limit for the value of I.
$\begin{aligned} & \text { Related items:_reflns.observed_criterion(alternate), } \\ & \text { _reflns.observed_criterion_F_max(convention). } \\ & \text { [reflns] } \\ & \text { _reflns.observed_criterion_I_min }\end{aligned} \quad$ (float)
The criterion used to classify a reflection as 'observed' expressed as a lower limit for the value of I.
Related items: _reflns.observed_criterion (alternate),
_reflns.observed_criterion_F_min(convention).
[reflns]
_reflns.observed_criterion_sigma_F (float)
The criterion used to classify a reflection as 'observed' expressed as a multiple of the value of $\sigma(F)$.
Related items:_reflns.observed_criterion (alternate),
_reflns.observed_criterion_sigma_I(convention).
[reflns]
reflns.observed_criterion_sigma_I (float)
\bar{T} The criterion used to classify a reflection as 'observed' expressed as a multiple of the value of $\sigma(I)$.

```
Related items:_reflns.observed_criterion(alternate),
_reflns.observed_criterion_sigma_F(convention).
[reflns]
```


_reflns.percent_possible_obs

(float)
The percentage of geometrically possible reflections represented by reflections that satisfy the resolution limits established by _reflns.d_resolution_high and _reflns.d_resolution_low and the observation limit established by _reflns.observed_ criterion.
The permitted range is $[0.0, \infty)$. [reflns]

_reflns.R_free_details

$\overline{\mathrm{A}}$ description of the method by which a subset of reflections was selected for exclusion from refinement so as to be used in the calculation of a 'free' R factor.
Example:
; The data set was sorted with l varying most rapidly and h varying least rapidly. Every loth reflection in this sorted list was excluded from refinement and included in the calculation of a 'free' R factor.
_reflns.Rmerge_F_all
(float)
\bar{R} esidual factor $R_{\text {merge }}$ for all reflections that satisfy the resolution limits established by _reflns.d_resolution_high and _reflns.d_resolution_low.

$$
R_{\text {merge }}=\frac{\sum_{i}\left(\sum_{j}\left|F_{j}-\langle F\rangle\right|\right)}{\sum_{i}\left(\sum_{j}\langle F\rangle\right)}
$$

where $F_{j}=$ the amplitude of the j th observation of reflection $i,\langle F\rangle$ $=$ the mean of the amplitudes of all observations of reflection i, \sum_{i} is taken over all reflections and \sum_{j} is taken over all observations of each reflection.
The permitted range is $[0.0, \infty)$.
[reflns]
_reflns.Rmerge_F_obs
(float)
Residual factor $R_{\text {merge }}^{-}$for reflections that satisfy the resolution limits established by _reflns.d_resolution_high and _reflns.d_resolution_low and the observation limit established by _reflns.observed_criterion.

$$
R_{\text {merge }}=\frac{\sum_{i}\left(\sum_{j}\left|F_{j}-\langle F\rangle\right|\right)}{\sum_{i}\left(\sum_{j}\langle F\rangle\right)}
$$

where $F_{j}=$ the amplitude of the j th observation of reflection $i,\langle F\rangle$ $=$ the mean of the amplitudes of all observations of reflection i, \sum_{i} is taken over all reflections and \sum_{j} is taken over all observations of each reflection.
The permitted range is $[0.0, \infty)$. [reflns]

_reflns.threshold_expression
 (text)
 _reflns_threshold_expression (cif_core.dic 2.3)

The threshold, usually based on multiples of $u(I), u\left(F^{2}\right)$ or $u(F)$, that serves to identify significantly intense reflections, the number of which is given by _reflns.number_gt. These reflections are used in the calculation of _refine. ls_R_factor_gt.
Related item: _reflns.observed_criterion (alternate).
Example: ‘I>2u(I)'.
[reflns]

REFLNS_CLASS

Data items in the REFLNS_CLASS category record details of the reflections used to determine the structural parameters for each reflection class.
Category key(s): _reflns_class.code
Example 1 - example corresponding to the one-dimensional incommensurately modulated structure of $\mathrm{K}_{2} \mathrm{SeO}_{4}$.
loop_
reflns_class.number_gt
_reflns_class.code
584 'Main'
226 'Sat1'
50 'Sat2'

[^1](code)
The code identifying a certain reflection class.
Examples: ‘1', 'm1', ‘s2'. [reflns_class]
_reflns_class.d_res_high
_reflns_class_d_res_high (cif_core.dic 2.3) \quad (float)

For each reflection class, the smallest value in ångströms for the interplanar spacings for the reflections used in the refinement. This is called the highest resolution.
The permitted range is $[0.0, \infty)$.
[reflns_class]

$$
\begin{aligned}
& \text { reflns_class.d_res_low } \\
& \text { _reflns_class_d_res_low (cif_core.dic } 2.3)
\end{aligned}
$$

(float)
\bar{F} or each reflection $\overline{\text { class, }}$, the largest value in ångströms for the interplanar spacings for the reflections used in the refinement. This is called the lowest resolution.
The permitted range is $[0.0, \infty)$. [reflns_class]

> reflns_class.description
> _reflns_class_description(cif_core.dic 2.3)
(text)

Description of each reflection class.
Examples: 'm=1 first order satellites',
'HOLO common projection reflections'.

_reflns_class.number_gt
 _reflns_class_number_gt(cif_core.dic 2.3)

For each reflection class, the number of significantly intense reflections (see _reflns.threshold_expression) in the REFLN list (not the DIFFRN_REFLN list). This may include Friedel-equivalent reflections (i.e. those which are symmetry-equivalent under the Laue symmetry but inequivalent under the crystal class) according to the nature of the structure and the procedures used. Any special characteristics of the reflections included in the REFLN list should be described using the item _reflns.details.
The permitted range is $[0, \infty)$.
[reflns_class]

_reflns_class.number_total
 _reflns_class_number_total(cif_core.dic 2.3)

For each reflection class, the total number of reflections in the REFLN list (not the DIFFRN_REFLN list). This may include Friedelequivalent reflections (i.e. those which are symmetry-equivalent under the Laue symmetry but inequivalent under the crystal class) according to the nature of the structure and the procedures used. Any special characteristics of the reflections included in the REFLN list should be described using the item _reflns.details.
The permitted range is $[0, \infty)$.
[reflns_class]

_reflns_class.R_factor_all
 _reflns_class_R_factor_all(cif_core.dic 2.3)

(float)
For each reflection class, the residual factor for all reflections included in the refinement. The reflections also satisfy the resolution limits established by _reflns_class.d_res_high and _reflns_class.d_res_low. This is the conventional R factor. See also the definition of _reflns_class.wR_factor_all.

$$
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|}
$$

where $F_{\text {obs }}=$ the observed structure-factor amplitudes, $F_{\text {calc }}=$ the calculated structure-factor amplitudes and the sum is taken over the reflections of this class.
The permitted range is $[0.0, \infty)$. [reflns_class]

_reflns_class.R_factor_gt

(float)
_reflns_class_R_factor_gt (cif_core.dic 2.3)
For each reflection class, the residual factor for significantly intense reflections (see _reflns.threshold_expression) included in the refinement. The reflections also satisfy the resolution limits established by reflns_class.d_res_high and _reflns_class.d_res_low. This is the conventional R factor. See also the definition of _reflns_class.wR_factor_all.

$$
R=\frac{\sum\left|F_{\mathrm{obs}}-F_{\mathrm{calc}}\right|}{\sum\left|F_{\mathrm{obs}}\right|}
$$

where $F_{\text {obs }}=$ the observed structure-factor amplitudes, $F_{\text {calc }}=$ the calculated structure-factor amplitudes and the sum is taken over the reflections of this class.
The permitted range is $[0.0, \infty)$. [reflns_class]

reflns_class.R_Fsqd_factor

_reflns_class_R_Fsqd_factor(cif_coredic 2.3)
For each reflection class, the residual factor $R\left(F^{2}\right)$ calculated on the squared amplitudes of the observed and calculated structure factors for the reflections judged significantly intense (i.e. satisfying the threshold specified by reflns.threshold_expression) and included in the refinement. The reflections also satisfy the
resolution limits established by _reflns_class.d_res_high and _refins_class.d_res_low.

$$
R\left(F^{2}\right)=\frac{\sum\left|F_{\mathrm{obs}}^{2}-F_{\mathrm{calc}}^{2}\right|}{\sum\left|F_{\mathrm{obs}}^{2}\right|}
$$

where $F_{\text {obs }}^{2}=$ squares of the observed structure-factor amplitudes, $F_{\text {calc }}^{2}=$ squares of the calculated structure-factor amplitudes and the sum is taken over the reflections of this class.
The permitted range is $[0.0, \infty)$.
[reflns_class]

_reflns_class.R_I_factor

(float)
_reflns_class_R_I_factor (cif_core.dic 2.3)
For each reflection class, the residual factor $R(I)$ for the reflections judged significantly intense (i.e. satisfying the threshold specified by _reflns.threshold_expression) and included in the refinement. This is most often calculated in Rietveld refinements against powder data, where it is referred to as R_{B} or $\mathrm{R}_{\text {Bragg }}$.

$$
R(I)=\frac{\sum\left|I_{\mathrm{obs}}-I_{\mathrm{calc}}\right|}{\sum\left|I_{\mathrm{obs}}\right|}
$$

where $I_{\text {obs }}=$ the net observed intensities, $I_{\text {calc }}=$ the net calculated intensities and the sum is taken over the reflections of this class.
The permitted range is $[0.0, \infty)$.
[reflns_class]
_reflns_class.wR_factor_all
(float)
_reflns_class_wR_factor_all(cif_core.dic 2.3)
For each reflection class, the weighted residual factors for all reflections included in the refinement. The reflections also satisfy the resolution limits established by _reflns_class.d_ res_high and _reflns.class_d_res_low. See also _reflns_ class.R_factor_definitions.

$$
w R=\left(\frac{\sum|w| Y_{\mathrm{obs}}-\left.Y_{\mathrm{calc}}\right|^{2} \mid}{\sum\left|w Y_{\mathrm{obs}}^{2}\right|}\right)^{1 / 2},
$$

where $Y_{\text {obs }}=$ the observed amplitude specified by _refine.1s_ structure_factor_coef, $Y_{\text {calc }}=$ the calculated amplitude specified by _refine.ls_structure_factor_coef, $w=$ the leastsquares weight and the sum is taken over the reflections of this class.
The permitted range is $[0.0, \infty)$. [reflns_class]

REFLNS_SCALE

Data items in the REFLNS_SCALE category record details about the structure-factor scales. They are referenced from within the REFLN list through _refln.scale_group_code.
Category group(s): inclusive_group
refln_group
Category key(s): reflns_scale.group_code
Example 1 - based on laboratory records for the collagen-like peptide [(POG) $\left.E K G(P O G)_{5}\right]_{3}$.
_reflns_scale.group_code SG1
_reflns_scale.meas_F 4.0

[^2]```
_reflns_scale.meas_F
_reflns_scale_meas_F(cif_core.dic 2.0.1)
(float)
A scale associated with _reflns_scale.group_code.
The permitted range is \([0.0, \infty)\). [reflns_scale]
_reflns_scale.meas_F_squared
(float)
_reflns_scale_meas_F_squared (cif_core.dic 2.0.1)
A scale associated with _reflns_scale.group_code.
The permitted range is \([0.0, \infty)\).
[reflns_scale]
_reflns_scale.meas_intensity (float)
_reflns_scale_meas_intensity(cif_core.dic 2.0.1)
A scale associated with _reflns_scale.group_code.
The permitted range is \([0.0, \infty)\). [reflns_scale]
```


## REFLNS_SHELL

Data items in the REFLNS_SHELL category record details about the reflection data used to determine the ATOM_SITE data items broken down into shells of resolution.
Category group(s): inclusive_group refln_group
Category key(s): _reflns_shell.d_res_high reflns_shell.d_res_low

Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
loop_
_reflns_shell.d_res_high
reflns_shell.d_res_low
_reflns_shell.meanI_over_sigI_obs
_reflns_shell.number_measured_obs
_reflns_shell.number_unique_obs
_reflns_shell.percent_possible_obs
-reflns_shell.Rmerge_F_obs
$\begin{array}{lllllll}31.38 & 3.82 & 69.8 & 9024 & 2540 & 96.8 & 1.98\end{array}$

3.82	3.03	26.1	7413	2364	95.1	3.85


3.03	2.65	10.5	5640	2123	86.2	6.37


2.65	2.41	6.4	4322	1882	76.8	8.01

$\begin{array}{lllllll}2.41 & 2.23 & 4.3 & 3247 & 1714 & 70.4 & 9.86\end{array}$
$\begin{array}{lllllll}2.23 & 2.10 & 3.1 & 1140 & 812 & 33.3 & 13.99\end{array}$
*_reflns_shell.d_res_high
(float)
_reflns_shell_d_res_high (cif_core.dic 2.0.1)
The smallest value in ångströms for the interplanar spacings for the reflections in this shell. This is called the highest resolution.
The permitted range is $[0.0, \infty)$.
[reflns_shell]

```
*_reflns_shell.d_res_low
 _reflns_shell_d_res_low(cif_core.dic 2.0.1)
```

_reflns_shell.meanI_over_sigI_obs
The ratio of the mean of the intensities of the reflections classified as 'observed' (see _reflns.observed_criterion) in this shell to the mean of the standard uncertainties of the intensities of the 'observed' reflections in this shell.
[reflns_shell]

```
reflns shell.meanI over uI all
```

(float) _reflns_shell_meanI_over_uI_all (cif_core.dic 2.3)
The ratio of the mean of the intensities of all reflections in this shell to the mean of the standard uncertainties of the intensities of all reflections in this shell.
Related item: _reflns_shell.meanI_over_sigI_all (alternate).
[reflns_shell]

## _reflns_shell.meanI_over_uI_gt <br> _reflns_shell_meanI_over_uI_gt (cif_core.dic 2.3)

(float)
The ratio of the mean of the intensities of the significantly intense reflections (see _reflns.threshold_expression) in this shell to the mean of the standard uncertainties of the intensities of the significantly intense reflections in this shell.
Related items: _reflns_shell.meanI_over_sigI_gt (alternate),
_reflns_shell.meanI_over_sigI_obs(alternate). [reflns_shell]
_reflns_shell.number_measured_all
(int)
_reflns_shell_number_measured_all(cif_core.dic 2.0.1)
The total number of reflections measured for this shell.
[reflns_shell]
_reflns_shell.number_measured_gt
(int)
_reflns_shell_number_measured_gt (cif_core.dic 2.3)
The number of significantly intense reflections (see _reflns. threshold_expression) measured for this shell.
The permitted range is $[0, \infty)$.
Related item: _reflns_shell.number_measured_obs (alternate).
[reflns_shell]
_reflns_shell.number_measured_obs
(int)
_reflns_shell_number_measured_obs(cif_core.dic 2.0.1)
The number of reflections classified as 'observed' (see reflns. observed_criterion) for this shell.
[reflns_shell]
_reflns_shell.number_possible
_reflns_shell_number_possible(cif_core.dic 2.0.1)
The number of unique reflections it is possible to measure in this shell.
The permitted range is $[0, \infty)$.
[reflns_shell]
_reflns_shell.number_unique_all
_reflns_shell_number_unique_all(cif_core.dic 2.0.1)
The total number of measured reflections which are symmetryunique after merging for this shell.
_reflns_shell.number_unique_gt
(int)
_reflns_shell_number_unique_gt(cif_core.dic 2.3)
The total number of significantly intense reflections (see _reflns.threshold_expression) resulting from merging measured symmetry-equivalent reflections for this resolution shell.
The permitted range is $[0, \infty)$.
Related item: _reflns_shell.number_unique_obs (alternate). [reflns_shell]

```
_reflns_shell.number_unique_obs
reflns_shell_number_unique_obs(cif_core.dic 2.0.1)
```

The total number of measured reflections classified as 'observed' (see _reflns.observed_criterion) which are symmetry-unique after merging for this shell.
[reflns_shell]

```
reflns_shell.percent_possible_all
_reflns_shell_percent_possible_all (cif_core.dic 2.0.1)
```

The percentage of geometrically possible reflections represented by all reflections measured for this shell.
The permitted range is $[0.0, \infty)$.
[reflns_shell]
_reflns_shell.percent_possible_gt
_reflns_shell_percent_possible_gt(cif_core.dic 2.3)
The percentage of geometrically possible reflections represented by significantly intense reflections (see _reflns.threshold_ expression) measured for this shell.
The permitted range is $[0.0,100.0]$.
Related item: _reflns_shell.percent_possible_obs (alternate).
[reflns_shell]
_reflns_shell.percent_possible_obs (float) _reflns_shell_percent_possible_obs(cif_core.dic 2.0.1)
The percentage of geometrically possible reflections represented by reflections classified as 'observed' (see _reflns.observed criterion) for this shell
The permitted range is $[0.0, \infty)$. [reflns_shell]

## _reflns_shell.Rmerge_F_all <br> _reflns_shell_Rmerge_F_all(cif_core.dic 2.0.1)

(float)

Residual factor $R_{\text {merge }}$ for all reflections that satisfy the resolution limits established by _reflns_shell.d_res_high and _reflns_shell.d_res_low.

$$
R_{\text {merge }}=\frac{\sum_{i}\left(\sum_{j}\left|F_{j}-\langle F\rangle\right|\right)}{\sum_{i}\left(\sum_{j}\langle F\rangle\right)},
$$

where $F_{j}=$ the amplitude of the $j$ th observation of reflection $i,\langle F\rangle$ $=$ the mean of the amplitudes of all observations of reflection $i, \sum_{i}$ is taken over all reflections and $\sum_{j}$ is taken over all observations of each reflection.
The permitted range is $[0.0, \infty)$.
[reflns_shell]

## reflns_shell.Rmerge_F_gt

(float)
_reflns_shell_Rmerge_F_gt (cif_core.dic 2.3)
The value of $R_{\text {merge }}(F)$ for significantly intense reflections (see _reflns.threshold_expression) in a given shell.

$$
R_{\text {merge }}=\frac{\sum_{i}\left(\sum_{j}\left|F_{j}-\langle F\rangle\right|\right)}{\sum_{i}\left(\sum_{j}\langle F\rangle\right)}
$$

where $F_{j}=$ the amplitude of the $j$ th observation of reflection $i,\langle F\rangle$ $=$ the mean of the amplitudes of all observations of reflection $i, \sum_{i}$ is taken over all reflections and $\sum_{j}$ is taken over all observations of each reflection.
The permitted range is $[0.0, \infty)$.
Related item:_reflns_shell.Rmerge_F_obs (alternate).

## _reflns_shell.Rmerge_F_obs <br> _reflns_shell_Rmerge_F_obs(cif_core.dic 2.0.1)

(float)
Residual factor $R_{\text {merge }}$ for reflections that satisfy the resolution limits established by _reflns_shell.d_res_high and reflns_shell.d_res_low and the observation criterion established by _reflns.observed_criterion.

$$
R_{\mathrm{merge}}=\frac{\sum_{i}\left(\sum_{j}\left|F_{j}-\langle F\rangle\right|\right)}{\sum_{i}\left(\sum_{j}\langle F\rangle\right)}
$$

where $F_{j}=$ the amplitude of the $j$ th observation of reflection $i,\langle F\rangle$ $=$ the mean of the amplitudes of all observations of reflection $i, \sum_{i}$ is taken over all reflections and $\sum_{j}$ is taken over all observations of each reflection.
The permitted range is $[0.0, \infty)$. [reflns_shell]
_reflns_shell.Rmerge_I_all (float)
_reflns_shell_Rmerge_I_all(cif_core.dic 2.0.1)
The value of $R_{\text {merge }}(I)$ for all reflections in a given shell.

$$
R_{\text {merge }}(I)=\frac{\sum_{i}\left(\sum_{j}\left|I_{j}-\langle I\rangle\right|\right)}{\sum_{i}\left(\sum_{j}\langle I\rangle\right)},
$$

where $I_{j}=$ the intensity of the $j$ th observation of reflection $i,\langle I\rangle=$ the mean of the intensities of all observations of reflection $i, \sum_{i}$ is taken over all reflections and $\sum_{j}$ is taken over all observations of each reflection.
The permitted range is $[0.0, \infty)$.
[reflns_shell]
_reflns_shell.Rmerge_I_gt
(float)
_reflns_shell_Rmerge_I_gt (cif_core.dic 2.3)
The value of $R_{\text {merge }}(I)$ for significantly intense reflections (see _reflns.threshold_expression) in a given shell.

$$
R_{\text {merge }}(I)=\frac{\sum_{i}\left(\sum_{j}\left|I_{j}-\langle I\rangle\right|\right)}{\sum_{i}\left(\sum_{j}\langle I\rangle\right)}
$$

where $I_{j}=$ the intensity of the $j$ th observation of reflection $i,\langle I\rangle=$ the mean of the intensities of all observations of reflection $i, \sum_{i}$ is taken over all reflections and $\sum_{j}$ is taken over all observations of each reflection.
The permitted range is $[0.0, \infty)$.
Related item: _reflns_shell.Rmerge_I_obs (alternate). [reflns_shell]

## _reflns_shell.Rmerge_I_obs

(float)
_reflns_shell_Rmerge_I_obs(cif_core.dic 2.0.1)
The value of $R_{\text {merge }}(I)$ for reflections classified as 'observed' (see _reflns.observed_criterion) in a given shell.

$$
R_{\text {merge }}(I)=\frac{\sum_{i}\left(\sum_{j}\left|I_{j}-\langle I\rangle\right|\right)}{\sum_{i}\left(\sum_{j}\langle I\rangle\right)},
$$

where $I_{j}=$ the intensity of the $j$ th observation of reflection $i,\langle I\rangle=$ the mean of the intensities of all observations of reflection $i, \sum_{i}$ is taken over all reflections and $\sum_{j}$ is taken over all observations of each reflection.
The permitted range is $[0.0, \infty)$.
[reflns_shell]

## SOFTWARE

Data items in the SOFTWARE category record details about the software used in the structure analysis, which implies any software used in the generation of any data items associated with the structure determination and structure representation. These data items allow computer programs to be referenced in more detail than data items in the COMPUTING category do.
Category group(s): inclusive_group
computing_group
Category key(s): _software.name
software.version
Example 1 - based on PDB entry $5 H V P$ and laboratory records for the structure corresponding to $P D B$ entry $5 H V P$.

## loop_

_software.name
_software.version
_software.date
software.type
-_software.contact_author
_software.contact_author_email
_software.location
_software.classification
_software.citation_id
_software.language
_-software.compiler_name
_software.compiler_version
_software.hardware
_software.os
_software.os_version
_software.dependencies
_software.mods
_software.description
Prolsq unknown . program 'Wayne A. Hendrickson' ?
'ftp://rosebud.sdsc.edu/pub/sdsc/xtal/CCP4/ccp4/'
refinement ref5 Fortran
'Convex Fortran' v8.0 'Convex C220' ConvexOS v10.1
'Requires that Protin be run first' optimized 'restrained least-squares refinement'
software.citation_id
$\overline{\text { Th}}$ his data item is a pointer to _citation.id in the CITATION category.
software.classification
(uline)
$\bar{T}$ The classification of the program according to its major function.
Examples: 'data collection', 'data reduction', 'phasing',
'model building', 'refinement', 'validation', 'other'.
[software]
_software.compiler_name
(line)
The compiler used to compile the software.
Examples: 'Convex Fortran', 'gcc', 'DEC C'.
[software]

## software.compiler_version

$\overline{\text { The }}$ version of the compiler used to compile the software.
Examples: '3.1', '2.1 alpha'.
[software]

## software.contact_author

(line)
The recognized contact author of the software. This could be the original author, someone who has modified the code or someone who maintains the code. It should be the person most commonly associated with the code.
Examples: 'T. Alwyn Jones', 'Axel Brunger'. [software]
_software.contact_author_email
(line)
$\bar{T}$ The e-mail address of the person specified in _software. contact_author.
Example: ‘bourne@sdsc.edu'.
[software]
software.date
(line)
The date the software was released
Examples: '1991-10-01', '1990-04-30'.
[software]
_software.dependencies
(line)
Any prerequisite software required to run _software.name.
Example: ‘PDBlib class library'.
[software]
software.description
(line)
Description of the software.
Example: 'Uses method of restrained least squares'. [software]
_software.hardware
(line)
$\bar{T}$ The hardware upon which the software was run.
Examples: ‘Sun Sparc 10 model 41', 'Dec Alpha 3000 model 500S',
'Silicon Graphics Elan', 'Compaq PC 486/66'.
[software]

## software.language

(uline)
The major computing language in which the software is coded.
The data value must be one of the following:
Ada
assembler
Awk
Basic
C++
C/C++
C
csh
Fortran
Fortran_77
'Fortran 77'
'Fortran 90'
Java
ksh
Pascal
Perl
Python
sh
Tcl
Other
[software]
software.location
(line)
$\bar{T}$ The URL for an Internet address at which details of the software can be found.
Examples:
'http://rosebud.sdsc.edu/projects/pb/IUCr/software.html',
'ftp://ftp.sdsc.edu/pub/sdsc/biology/'.
[software]

## _software.mods

(line)
Any noteworthy modifications to the base software, if applicable.
Example: 'Added support for space group F432'. [software]
*_software.name
(text)
The name of the software.
Examples: 'Merlot', 'o’, 'Xengen', 'x-plor'.
[software]
_software.os
(text)
The name of the operating system under which the software runs.
Examples: ‘Ultrix', 'OpenVMS', ‘DOS', ‘Windows 95', 'Windows NT', 'Irix',
'HPUX', 'DEC Unix'.
[software]
_software.os_version
(text)
$\overline{\text { The version of the operating system under which the software runs. }}$
Examples: ‘3.1', '4.2.1’.
[software]

## software.type

(uline)
The classification of the software according to the most common types.
The data value must be one of the following:

program	individual program with limited functionality
library	used by a program at load time
package	collections of programs with multiple functionality
filter	filters input and output streams
jiffy	short, simple program
other	all other kinds of software

[software]

*_software.version

(line)

The version of the software.
Examples: ‘v1.0', 'beta', '3.1-2', ‘unknown'
[software]

## SPACE_GROUP

Contains all the data items that refer to the space group as a whole, such as its name or crystal system. They may be looped, for example, in a list of space groups and their properties. Only a subset of the SPACE_GROUP category items appear in this dictionary. The remainder are found in the symmetry CIF dictionary. Space-group types are identified by their number as given in International Tables for Crystallography Vol. A. Specific settings of the space groups can be identified either by their Hall symbol or by specifying their symmetry operations. The commonly used Hermann-Mauguin symbol determines the spacegroup type uniquely but several different Hermann-Mauguin symbols may refer to the same space-group type. A HermannMauguin symbol contains information on the choice of the basis, but not on the choice of origin. Different formats for the Hermann-Mauguin symbol are found in the symmetry CIF dictionary.
Category key(s): _space_group.id
Example 1 - the monoclinic space group No. 15 with unique axis $b$.

```
space_group.id 1
space_group.name_H-M_alt 'C 2/c'
space_group.IT_number
space group name Hall
space_group.crystal_system monoclinic
```


## _space_group.crystal_system

_space_group_crystal_system(cif_core.dic 2.3)
The name of the system of geometric crystal classes of space groups (crystal system) to which the space group belongs. Note that rhombohedral space groups belong to the trigonal system.

```
Related item: _symmetry.cell_setting (alternate).
The data value must be one of the following:
 triclinic
 monoclinic
 orthorhombic
 tetragonal
 trigonal
 hexagonal
 cubic
```

    [space_group]
    *_space_group.id
(code)
space group id(cif_core.dic 2.3)
This is the unique identifier for the SPACE_GROUP category.

This is the unique identifier for the SPACE GROUP category.
_space_group.IT_number
(int)
_space_group_IT_number (cif_core.dic 2.3)
The number as assigned in International Tables for Crystallography Vol. A, specifying the proper affine class (i.e. the orientationpreserving affine class) of space groups (crystallographic spacegroup type) to which the space group belongs. This number defines the space-group type but not the coordinate system in which it is expressed.
The permitted range is [1,230].
Related item: _symmetry.Int_Tables_number (alternate). [space_group]
[space_group]


## (line)

_space_group.name_H-M_alt _space_group_name_H-M_alt (cif_core.dic 2.3)
_space_group.name_H-M_alt allows any Hermann-Mauguin symbol to be given. The way in which this item is used is determined by the user and in general is not intended to be interpreted by computer. It may, for example, be used to give one of the extended Hermann-Mauguin symbols given in Table 4.3.2.1 of International Tables for Crystallography Vol. A (2002) or a Hermann-Mauguin symbol for a conventional or unconventional setting. Each component of the space-group name is separated by a space or an underscore. The use of a space is strongly recommended. The underscore is only retained because it was used in old CIFs. It should not be used in new CIFs. Subscripts should appear without special symbols. Bars should be given as negative signs before the numbers to which they apply. The commonly used Hermann-Mauguin symbol determines the space-group type uniquely but a given space-group type may be described by more than one Hermann-Mauguin symbol. The space-group type is best described using _space_group. It_number. The HermannMauguin symbol may contain information on the choice of basis, but not on the choice of origin. To define the setting uniquely, use _space_group.name_Hall or list the symmetry operations.
Related item: _symmetry.space_group_name_H-M (alternate).
Example:
; loop.
_space_group. name_H-M_alt
'C m c m'
${ }^{\prime} \mathrm{C} 2 / \mathrm{c} 2 / \mathrm{m} \mathrm{21/m'}$
'A mam'
; (three examples for space group No. 63)
[space_group]
_space_group.name_Hall
(line)
_space_group_name_Hall (cif_core.dic 2.3)
Space-group symbol defined by Hall. Each component of the space-group name is separated by a space or an underscore. The use of a space is strongly recommended. The underscore is only retained because it was used in old CIFs. It should not be used in new CIFs. _space_group.name_Hall uniquely defines the space group and its reference to a particular coordinate system.

Reference: Hall, S. R. (1981). Acta Cryst. A37, 517-525; erratum (1981), A37, 921. [See also International Tables for Crystallography Vol. B (2001), Chapter 1.4, Appendix 1.4.2.]
Related item: _symmetry.space_group_name_Hall (alternate).
Examples: ‘P 2c -2ac’ (equivalent to $P c a 2_{1}$ ), '- I 4bd 2 ab 3 ’ (equivalent to $I a 3 d$ ).

## SPACE_GROUP_SYMOP

Contains information about the symmetry operations of the space group.

```
Category key(s):_space_group_symop.id
```

Example 1 - The symmetry operations for the space group $P 2_{1} / c$.
loop_
_space_group_symop.id
_space_group_symop.operation_xyz
$x, y, z$
$-x,-y,-z$
$-x, 1 / 2+y, 1 / 2-z$
$x, 1 / 2-y, 1 / 2+z$
*_space_group_symop.id
_space_group_symop_id(cif_core.dic 2.3)
An arbitrary identifier that uniquely labels each symmetry operation in the list.
Related item: _symmetry_equiv.id (alternate). [space_group_symop]

## _space_group_symop.operation_xyz

_space_group_symop_operation_xyz (cif_core.dic 2.3)
A parsable string giving one of the symmetry operations of the space group in algebraic form. If $W$ is a matrix representation of the rotational part of the symmetry operation defined by the positions and signs of $x, y$ and $z$, and $\mathbf{w}$ is a column of translations defined by fractions, an equivalent position $\boldsymbol{x}^{\prime}$ is generated from a given position $x$ by

$$
\boldsymbol{x}^{\prime}=W \boldsymbol{x}+\mathbf{w}
$$

When a list of symmetry operations is given, it must contain a complete set of coordinate representatives which generates all the operations of the space group by the addition of all primitive translations of the space group. Such representatives are to be found as the coordinates of the general-equivalent position in International Tables for Crystallography Vol. A (2002), to which it is necessary to add any centring translations shown above the generalequivalent position. That is to say, it is necessary to list explicitly all the symmetry operations required to generate all the atoms in the unit cell defined by the setting used.
Related item: _symmetry_equiv.pos_as_xyz (alternate).
Example: ' $\mathrm{x}, 1 / 2-\mathrm{y}, 1 / 2+\mathrm{z}$ ' (glide reflection through the plane ( $x, 1 / 4, z$ ), with glide vector (1/2)c). [space_group_symop]

## _space_group_symop.sg_id

(code)
_space_group_symop_sg_id(cif_core.dic 2.3)
This must match a particular value of _space_group.id, allowing the symmetry operation to be identified with a particular space group.
[space_group_symop]

## STRUCT

Data items in the STRUCT category record details about the description of the crystallographic structure.
Category group(s): inclusive_group
struct_group
Category key(s): _struct.entry_id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to $P D B$ entry $5 H V P$.

```
_struct.entry_id
 '5HVP'
struct.title
; HIV-1 protease complex with acetyl-pepstatin
```

*_struct.entry_id
This data item is a pointer to _entry.id in the ENTRY category.
_struct.title
(text)
A title for the data block. The author should attempt to convey the essence of the structure archived in the CIF in the title, and to distinguish this structural result from others.
Examples: ‘5'-D (* (I) CP*CP*GP*G) - 3', 'T4 lysozyme mutant - S32A',
'hen egg white lysozyme at -30 degrees C',
'quail egg white lysozyme at 2 atmospheres'.
[struct]

## STRUCT_ASYM

Data items in the STRUCT_ASYM category record details about the structural elements in the asymmetric unit.
Category group(s): inclusive_group
struct_group
Category key(s): _struct_asym.id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
loop_
struct_asym.id
_struct_asym.entity_id
_struct_asym.details
A 1 'one monomer of the dimeric enzyme'
B 1 'one monomer of the dimeric enzyme'
C 2 'one partially occupied position for the inhibitor'
D 2 'one partially occupied position for the inhibitor'

## _struct_asym.details

(text)
$\overline{\mathrm{A}}$ description of special aspects of this portion of the contents of the asymmetric unit.
Example:
; The drug binds to this enzyme in two roughly twofold
symmetric modes. Hence this biological unit (3) is roughly
twofold symmetric to biological unit (2). Disorder in the protein chain indicated with alternative ID 2 should be used with this biological unit.
[struct_asym]
*_struct_asym.entity_id
$\overline{\text { This }}$ data $\overline{\text { item }}$ is a pointer to _entity.id in the ENTITY category.
*_struct_asym.id
(code)
The value of _struct_asym.id must uniquely identify a record in the STRUCT_ASYM list. Note that this item need not be a number; it can be any unique identifier.
The following item(s) have an equivalent role in their respective categories:
_atom_site.label_asym_id,
_struct_biol_gen.asym_id,
_geom_angle.atom_site_label_asym_id_1,
_geom_angle.atom_site_label_asym_id_2,
_geom_angle.atom_site_label_asym_id_3,
_geom_bond.atom_site_label_asym_id_1,
_geom_bond.atom_site_label_asym_id_2,
_geom_contact.atom_site_label_asym_id_1,
_geom_contact.atom_site_label_asym_id_2,
_geom_hbond.atom_site_label_asym_id_A,
_geom_hbond.atom_site_label_asym_id_D,
_geom_hbond.atom_site_label_asym_id_H,
_geom_torsion.atom_site_label_asym_id_1,
_geom_torsion.atom_site_label_asym_id_2,
_geom_torsion.atom_site_label_asym_id_3,
_geom_torsion.atom_site_label_asym_id_4,
_struct_conf.beg_label_asym_id,
_struct_conf.end_label_asym_id,
_struct_conn.ptnrl_label_asym_id,

```
struct_conn.ptnr2_label_asym_id,
_struct_mon_nucl.label_asym_id,
_struct_mon_prot.label_asym_id,
_struct_mon_prot_cis.label_asym_id,
_struct_ncs_dom_lim.beg_label_asym_id,
_struct_ncs_dom_lim.end_label_asym_id,
_struct_sheet_range.beg_label_asym_id,
_struct_sheet_range.end_label_asym_id,
struct_site_gen.label_asym_id.
Examples: '1', 'A', '2B3'.
```

[struct_asym]

## STRUCT_BIOL

Data items in the STRUCT_BIOL category record details about the structural elements that form each structure of biological significance. A given crystal structure may contain many different biological structures. A given structural component in the asymmetric unit may be part of more than one biological unit. A given biological structure may involve crystallographic symmetry. For instance, in a structure of a lysozyme-FAB structure, the lightand heavy-chain components of the FAB could be one biological unit, while the two chains of the FAB and the lysozyme could constitute a second biological unit.
Category group(s): inclusive_group

> struct_group

Category key(s): _struct_biol.id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to $P D B$ entry $5 H V P$.
loop_
_struct_biol.id
_struct_biol.details
$-1$
; significant deviations from twofold symmetry exist in this dimeric enzyme
; 2
The drug binds to this enzyme in two roughly twofold symmetric modes. Hence this biological unit (2) is roughly twofold symmetric to biological unit (3). Disorder in the protein chain indicated with alternative ID 1 should be used with this biological unit.
; 3
3
The drug binds to this enzyme in two roughly twofold symmetric modes. Hence this biological unit (3) is roughly twofold symmetric to biological unit (2). Disorder in the protein chain indicated with alternative ID 2 should be used with this biological unit
;

## _struct_biol.details

$\overline{\text { A }}$ description of special aspects of the biological unit. Example:
; The drug binds to this enzyme in two roughly twofold symmetric modes. Hence this biological unit (3) is roughly twofold symmetric to biological unit (2). Disorder in the protein chain indicated with alternative ID 2 should be used with this biological unit.
[struct_biol]
*_struct_biol.id (line)
The value of _struct_biol.id must uniquely identify a record in the STRUCT_BIOL list. Note that this item need not be a number; it can be any unique identifier.
The following item(s) have an equivalent role in their respective categories:
_struct_biol_gen.biol_id,
_struct_biol_keywords.biol_id,
_struct_biol_view.biol_id,
_struct_ref.biol_id.
**_struct_biol_gen.symmetry(symop)
Describes the symmetry operation that should be applied to the atom set specified by _struct_biol_gen.asym_id to generate a portion of the biological structure.
Examples: '.' (no symmetry or translation to site), ‘4’ (4th symmetry operation applied),
'7-645' (7th symmetry position: $+a$ on $x,-b$ on $y$ ).
[struct_biol_gen]
A struct_biol_gen.details (text) portion of the biological structure.
Example:
; The zinc atom lies on a special position; application of symmetry elements to generate the insulin hexamer will generate excess zinc atoms, which must be removed by hand.
; [struct_biol_gen]
*_struct_biol_gen.asym_id
This data item is a pointer to _struct_asym.id in the STRUCT_ASYM category.
*_struct_biol_gen.biol_id
This data item is a pointer to _struct_biol.id in the STRUCT_BIOL category.

## STRUCT_BIOL_KEYWORDS

Data items in the STRUCT_BIOL_KEYWORDS category record keywords that describe each biological unit.
Category group(s): inclusive_group struct_group
Category key(s): _struct_biol_keywords.biol_id struct_biol_keywords.text

```
Example 1-based on PDB entry 5HVP and laboratory records for the structure
corresponding to PDB entry 5HVP.
loop
_struct_biol_keywords.biol_id
struct biol keywords.text
 'aspartyl-protease'
 'aspartic-protease'
 'acid-protease'
 'aspartyl-proteinase
 'aspartic-proteinase'
 'acid-proteinase'
 'enzyme'
 'protease'
 'proteinase'
 'dimer'
 'drug-enzyme complex'
 'inhibitor-enzyme complex
 'drug-protease complex'
 'inhibitor-protease complex
 'drug-enzyme complex'
 'inhibitor-enzyme complex
 'drug-protease complex'
 'inhibitor-protease complex'
```

*_struct_biol_keywords.biol_id
This data item is a pointer to _struct_biol.id in the
STRUCT_BIOL category.
*_struct_biol_keywords.text

Keywords describing this biological entity.
Examples: ‘antibody', ‘antigen', 'enzyme', 'cytokine', 'tRNA'
[struct_biol_keywords]

## STRUCT_BIOL_VIEW

Data items in the STRUCT_BIOL_VIEW category record details about how to draw and annotate an informative view of the biological structure.
Category group(s): inclusive_group
struct_group

Category key(s): _struct_biol_view.biol_id
struct_biol_view.id

Example 1 - based on NDB structure GDL001 by Coll, Aymami, Van Der Marel, Van Boom, Rich \& Wang [Biochemistry, (1989), 28, 310-320].

```
_struct_biol_view.biol_id
 struct biol view.id
 struct_biol_view.rot_matrix[1] [1]
 struct_biol_view.rot_matrix[1] [2]
 struct biol view.rot matrix[1] [3]
 struct_biol_view.rot_matrix[2][1]
 _struct_biol_view.rot_matrix[2][2]
 struct biol view.rot matrix[2] [3]
 struct_biol_view.rot_matrix[3] [1]
 struct_biol_view.rot_matrix [3] [2]
 struct biol view.rot matrix[3][3]
 struct_biol_view.details
; This view highlights the ATAT-Netropsin interaction in the
 DNA-drug complex.
```

;
*_struct_biol_view.biol_id
This data item is a pointer to _struct_biol.id in the
STRUCT_BIOL category.
_struct_biol_view.details

A description of special aspects of this view of the biological structure. This data item can be used as a figure legend. Example
; The enzyme has been oriented with the molecular twofold axis aligned with the horizontal axis of the figure.
[struct_biol_view]
*_struct_biol_view.id
(line)
The value of _struct_biol_view.id must uniquely identify a record in the STRUCT_BIOL_VIEW list. Note that this item need not be a number; it can be any unique identifier.
Examples: 'Figure 1', 'unliganded enzyme',
'view down enzyme active site'.
[struct_biol_view]

## _struct_biol_view.rot_matrix[1] [1] (float)

 The [1][1] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_BIOL_GEN category to give a view useful for describing the structure. The conventions used in the rotation are described in _struct_biol_view.details.$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {reoriented Cartesian }}=\left(\begin{array}{ccc}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }} .
$$

[struct biol view]
_struct_biol_view.rot_matrix[1][2] (float) The [1][2] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_BIOL_GEN category to give a view useful for describing the structure. The conventions used in the rotation are described in _struct_biol_view.details.

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {reoriented Cartesian }}=\left(\begin{array}{ccc}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }} .
$$

[struct_biol_view]
struct_biol_view.rot_matrix[1] [3]
(float)
The [1][3] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_BIOL_GEN category to give a view useful for describing the structure. The conventions used in the rotation are described in _struct_biol_view.details.

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {reoriented Cartesian }}=\left(\begin{array}{ccc}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}
$$

[struct_biol_view]
struct_biol_view.rot_matrix[2][1] (float) The [2][1] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_BIOL_GEN category to give a view useful for describing the structure. The conventions used in the rotation are described in _struct_biol_view.details.

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {reoriented Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}
$$

_struct_biol_view.rot_matrix[2] [2] (float)
The [2][2] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_BIOL_GEN category to give a view useful for describing the structure. The conventions used in the rotation are described in _struct_biol_view.details.

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {reoriented Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}
$$

[struct_biol_view]

## _struct_biol_view.rot_matrix[2] [3]

(float)
The [2][3] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_BIOL_GEN category to give a view useful for describing the structure. The conventions used in the rotation are described in _struct_biol_view.details.

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {reoriented Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}
$$

[struct_biol_view]

## _struct_biol_view.rot_matrix[3] [1]

(float)
The [3][1] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_BIOL_GEN category to give a view useful for describing the structure. The conventions used in the rotation are described in _struct_biol_view. details.

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {reoriented Cartesian }}=\left(\begin{array}{ccc}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}
$$

[struct_biol_view]

## _struct_biol_view.rot_matrix[3] [2]

(float)
The [3][2] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_BIOL_GEN category to give a view useful for describing the structure. The conventions used in the rotation are described in _struct_biol_view.details.

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {reoriented Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}
$$

[struct_biol_view]
_struct_biol_view.rot_matrix[3] [3]
(float)
The [3][3] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_BIOL_GEN category to give a view useful for describing the structure. The conventions used in the rotation are described in _struct_biol_view.details.

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {reoriented Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}
$$

## STRUCT_CONF

Data items in the STRUCT_CONF category record details about the backbone conformation of a segment of polymer. Data items in the STRUCT_CONF_TYPE category define the criteria used to identify the backbone conformations.
Category group(s): inclusive_group
struct_group
Category key(s): _struct_conf.id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry $5 H V P$.
loop_
_struct_conf.id
_struct_conf.conf_type_id
_struct_conf.beg_label_comp_id
_struct_conf.beg_label_asym_id
_struct_conf.beg_label_seq id
_struct_conf.end_label_comp_id
_struct_conf.end_label_asym_id
_struct_conf.end_label_seq_id
_struct_conf.details
HELX1 HELX_RH_AL_P ARG A 87 GLN A 92 -
HELX2 HELX_RH_AL_P ARG B 287 GLN B 292 .
STRN1 STRN PRO A 1 LEU A 5 .
STRN2 STRN CYS B 295 PHE B 299 .
STRN3 STRN CYS A 95 PHE A 299 .
STRN4 STRN PRO B 201 LEU B 205 .
\# - - - - data truncated for brevity - - -
TURN1 TURN_TY1P_P ILE A 15 GLN A 18 .
TURN2 TURN_TY2_P GLY A 49 GLY A 52 .
$\begin{array}{lllllllll}\text { TURN3 } & \text { TURN_TY1P_P } & \text { ILE } & \text { A } & 55 & \text { HIS } & \text { A } & 69 & . \\ \text { TURN4 } & \text { TURN TY1 P } & \text { THR } & \text { A } & 91 & \text { GLY } & \text { A } & 94 & \text {. }\end{array}$
\# - - - - datā trūncated for brevity - - -

## _struct_conf.beg_auth_asym_id

$\overline{\mathrm{A}}$ component of the identifier for the residue at which the conformation segment begins. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.
_struct_conf.beg_auth_comp_id
A component of the identifier for the residue at which the conformation segment begins. This data item is a pointer to _atom_site.auth_comp_id in the ATOM_SITE category.

## _struct_conf.beg_auth_seq_id

A component of the identifier for the residue at which the conformation segment begins. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.
*_struct_conf.beg_label_asym_id
$\overline{\mathrm{A}}$ component of the identifier for the residue at which the conformation segment begins. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.
*_struct_conf.beg_label_comp_id
$\overline{\mathrm{A}}$ component of the identifier for the residue at which the conformation segment begins. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.
*_struct_conf.beg_label_seq_id
$\overline{\mathrm{A}}$ component of the identifier for the residue at which the conformation segment begins. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.
*_struct_conf.conf_type_id
This data item is a pointer to _struct_conf_type.id in the STRUCT_CONF_TYPE category.
_struct_conf.details
$\overline{\mathrm{A}}$ description of special aspects of the conformation assignment.

## _struct_conf.end_auth_asym_id

$\overline{\mathrm{A}}$ component of the identifier for the residue at which the conformation segment ends. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.
_struct_conf.end_auth_comp_id
$\overline{\mathrm{A}}$ component of the $\overline{\text { identifier for }} \overline{-}$ the residue at which the conformation segment ends. This data item is a pointer to _atom_site.auth_comp_id in the ATOM_SITE category

## struct conf.end auth seq id

A component of the identifier for the residue at which the conformation segment ends. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.
*_struct_conf.end_label_asym_id
A component of the identifier for the residue at which the conformation segment ends. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.
*_struct_conf.end_label_comp_id
A component of the identifier for the residue at which the conformation segment ends. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.

## *_struct_conf.end_label_seq_id

$\overline{\mathrm{A}}$ component of the identifier for the residue at which the conformation segment ends. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.
*_struct_conf.id
(code)
$\bar{T}$ The value of _struct_conf.id must uniquely identify a record in the STRUCT_CONF list. Note that this item need not be a number; it can be any ūnique identifier.
[struct_conf]

## STRUCT_CONF_TYPE

Data items in the STRUCT CONF TYPE category record details about the criteria used to identify backbone conformations of a segment of polymer.
Category group(s): inclusive_group

```
 struct_group
```

Category key(s): _struct_conf_type.id
Example 1-based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

## loop

struct conf type.id
struct_conf_type.criteria
struct conf type.reference
HELX RH AL P 'author judgement' STRN - - 'author judgement' TURN TY1 P 'author judgement' TURN_TY1P_P 'author judgement' TURN_TY2_P 'author judgement' TURN_TY2P_P 'author judgement' .
*_struct_conf_type.id
(ucode)
The descriptor that categorizes the type of the conformation of the backbone of the polymer (whether protein or nucleic acid). Explicit values for the torsion angles that define each conformation are not given here, but it is expected that the author would provide such information in either the _struct_conf_type.criteria or _struct_conf_type.reference data items, or both.
The following item(s) have an equivalent role in their respective categories:
_struct_conf.conf_type_id
The data value must be one of the following:
HELX_P
helix with handedness and type not specified (protein)
HELX_OT_P

HELX_RH_P HELX_RH_OT_P

HELX_RH_AL_P
HELX_RH_GA_P
HELX_RH_OM_P
HELX_RH_PI_P
HELX_RH_27_P
HELX_RH_3T_P HELX_RH_PP_P HELX_LH_P HELX_LH_OT_P

HELX_LH_AL_P HELX_LH_GA_P HELX_LH_OM_P HELX_LH_PI_P HELX_LH_27_P HELX_LH_3T_P HELX_LH_PP_P HELX N

HELX_OT_N

HELX_RH_N

HELX_RH_OT_N
HELX_RH_A_N
HELX_RH_B_N
HELX_RH_Z_N
HELX_LH_N
HELX_LH_OT_N

HELX_LH_A_N
HELX_LH_B_N HELX_LH_Z_N
TURN_P
TURN_OT_P

TURN_TY1_P
TURN_TY1P_P TURN_TY2_P TURN_TY2P_P TURN_TY3_P TURN_TY3P_P STRN
helix with handedness and type that do not conform to an accepted category (protein)
right-handed helix with type not specified (protein)
right-handed helix with type that does not conform to an accepted category (protein)
right-handed $\alpha$ helix (protein)
right-handed $\gamma$ helix (protein) right-handed $\omega$ helix (protein) right-handed $\pi$ helix (protein) right-handed 2-7 helix (protein) right-handed 3-10 helix (protein) right-handed polyproline helix (protein) left-handed helix with type not specified (protein) left-handed helix with type that does not conform to an accepted category (protein)
left-handed $\alpha$ helix (protein)
left-handed $\gamma$ helix (protein)
left-handed $\omega$ helix (protein)
left-handed $\pi$ helix (protein)
left-handed 2-7 helix (protein)
left-handed 3-10 helix (protein) left-handed polyproline helix (protein)
helix with handedness and type not specified (nucleic acid)
helix with handedness and type that do not conform to an accepted category (nucleic acid)
right-handed helix with type not specified (nucleic acid)
right-handed helix with type that does not conform to an accepted category (nucleic acid)
right-handed A helix (nucleic acid) right-handed B helix (nucleic acid) right-handed Z helix (nucleic acid) left-handed helix with type not specified (nucleic acid) left-handed helix with type that does not conform to an accepted category (nucleic acid)
left-handed A helix (nucleic acid) left-handed B helix (nucleic acid) left-handed $Z$ helix (nucleic acid) turn with type not specified (protein)
turn with type that does not conform to an accepted category (protein)
type I turn (protein)
type I' turn (protein) type II turn (protein)
type II' turn (protein) type III turn (protein) type III' turn (protein) $\beta$ strand (protein)

## struct_conf_type.criteria

(text)
The criteria used to assign this conformation type.
Examples: ‘author judgement', 'phi=54-74, psi=30-50'.
struct_conf_type.reference (text)
$\overline{\mathrm{A}}$ literature reference that defines the criteria used to assign this conformation type and subtype.

## STRUCT_CONN

Data items in the STRUCT_CONN category record details about the connections between portions of the structure. These can be hydrogen bonds, salt bridges, disulfide bridges and so on. The STRUCT_CONN_TYPE records define the criteria used to identify these connections.
Category group(s): inclusive_group struct_group
Category key(s): _struct_conn.id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to $P D B$ entry $5 H V P$.

## loop_

_struct_conn.id
struct_conn.conn_type_id
_struct_conn.ptnrl_label_comp_id
struct_conn.ptnr1_label_asym_id
struct_conn.ptnr1_label_seq_id
_struct_conn.ptnr1_label_atom_id
_struct_conn.ptnr1_role
struct_conn.ptnrl_symmetry
_struct_conn.ptnr2_label_comp_id
struct_conn.ptnr2_label_asym_id
struct_conn.ptnr2_label_seq_id
_struct_conn.ptnr2_label_atom_id
_struct_conn.ptnr2_role
struct_conn.ptnr2_symmetry
_struct_conn.details
C1 saltbr ARG A 87 NZ1 positive 1_555 GLU A 92 OE1
negative 1_555 .
C2 hydrog ARG B 287 N donor 1_555 GLY B 292 O acceptor 1_555 .
\# - - - - data truncated for brevity - - -

```
* struct_conn.conn_type_id
This data item is a pointer to _struct_conn_type.id in the
STRUCT_CONN_TYPE category.
```

_struct_conn.details
$\overline{\mathrm{A}}$ description of special aspects of the connection.
Example: ‘disulfide bridge C-S-S-C is highly distorted’.
[struct conn]
*_struct_conn.id
(code)
The value of _struct_conn.id must uniquely identify a record in the STRUCT_CONN list. Note that this item need not be a number; it can be any unique identifier.

> [struct_conn]

## _struct_conn.ptnr1_auth_asym_id

A component of the identifier for partner 1 of the structure connection. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.

```
_struct_conn.ptnr1_auth_atom_id
```

A component of the identifier for partner 1 of the structure connection. This data item is a pointer to _atom_site.auth_atom_id in the ATOM_SITE category.

```
_struct_conn.ptnrl_auth_comp_id
```

A component of the identifier for partner 1 of the structure connection. This data item is a pointer to _atom_site.auth_comp_id in the ATOM_SITE category.

```
_struct_conn.ptnr1_auth_seq_id
```

A component of the identifier for partner 1 of the structure connection. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.

## _struct_conn.ptnr1_label_alt_id

$\overline{\mathrm{A}}$ component of the identifier for partner 1 of the structure connection. This data item is a pointer to _atom_sites_alt.id in the ATOM_SITES_ALT category.
*_struct_conn.ptnr1_label_asym_id
$\overline{\mathrm{A}}$ component of the identifier for partner 1 of the structure connection. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.
*_struct_conn.ptnrl_label_atom_id
$\overline{\mathrm{A}}$ component of the identifier for partner $\overline{-} 1$ of the structure connection. This data item is a pointer to _chem_comp_atom.atom_id in the CHEM_COMP_ATOM category.
*_struct_conn.ptnrl_label_comp_id
$\overline{\text { A component of the identifier for partner } \overline{1} \text { of the structure connec- }}$ tion. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.

## *_struct_conn.ptnr1_label_seq_id

A component of the identifier for partner 1 of the structure connection. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.

## struct_conn.ptnr1_role

(uline)
The chemical or structural role of the first partner in the structure connection.
Examples: ‘donor', 'acceptor', 'negative', 'positive', 'metal',
'metal coordination'.
[struct conn]
_struct_conn.ptnr1_symmetry (symop)
$\overline{\text { Describes }}$ the symmetry $\overline{\text { operation that should be applied to the }}$ atom set specified by _struct_conn.ptnr1_label* to generate the first partner in the structure connection.
Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied),
'7_645' (7th symmetry position: $+a$ on $x,-b$ on $y$ ).
[struct_conn]

## _struct_conn.ptnr2_auth_asym_id

$\overline{\mathrm{A}}$ component of the identifier for partner 2 of the structure connection. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.

## struct_conn.ptnr2_auth_atom_id

$\overline{\mathrm{A}}$ component of the identifier for partner 2 of the structure connection. This data item is a pointer to _atom_site.auth_atom_id in the ATOM_SITE category.
_struct_conn.ptnr2_auth_comp_id
$\overline{\mathrm{A}}$ component of the identifier for partner 2 of the structure connection. This data item is a pointer to _atom_site.auth_comp_id in the ATOM_SITE category.

```
_struct_conn.ptnr2_auth_seq_id
```

A component of the identifier for partner 2 of the structure connection. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.
_struct_conn.ptnr2_label_alt_id
 nection. This data item is a pointer to _atom_sites_alt.id in the ATOM_SITES_ALT category.

## *_struct_conn.ptnr2_label_asym_id

A component of the identifier for partner 2 of the structure connection. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.
*_struct_conn.ptnr2_label_atom_id
A component of the identifier for partner 2 of the structure connection. This data item is a pointer to _chem_comp_atom.atom_id in the CHEM_COMP_ATOM category.
*_struct_conn.ptnr2_label_comp_id
A component of the identifier for partner 2 of the structure connection. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.
*_struct_conn.ptnr2_label_seq_id
 nection. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.

## struct_conn.ptnr2_role

(uline)
The chemical or structural role of the second partner in the structure connection.

Examples: 'donor', 'acceptor', 'negative', 'positive', 'metal'
'metal coordination'.
[struct_conn]

## _struct_conn.ptnr2_symmetry

$\bar{D}$ escribes $\overline{\text { the }}$ symmetry $\overline{\text { operation the }}$ that should be applied to the atom set specified by _struct_conn.ptnr2_label* to generate the second partner in the structure connection.
Examples: ‘.' (no symmetry or translation to site), ‘4’ (4th symmetry operation applied),
'7_645' (7th symmetry position: $+a$ on $x,-b$ on $y$ ). [struct_conn]

## STRUCT_CONN_TYPE

Data items in the STRUCT_CONN_TYPE category record details about the criteria used to identify interactions between portions of the structure.

$$
\begin{aligned}
& \text { Category group(s): inclusive_group } \\
& \text { struct_group } \\
& \text { Category key(s): _struct_conn_type.id }
\end{aligned}
$$

Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
loop_
_struct_conn_type.id
struct_conn_type.criteria
struct_conn_type.reference
saltbr
'negative to positive distance > $2.5 \backslash \% \mathrm{~A},<3.2 \backslash \% \mathrm{~A}$ '
hydrog
'NO distance > $2.5 \backslash \% \mathrm{~A},<3.5 \backslash \% \mathrm{~A}, \mathrm{NOC}$ angle $<120$ degrees' .

## struct_conn_type.criteria

(text)
The criteria used to define the interaction.
Examples: ' 0 to N distance $>2.5 \backslash \frac{\mathrm{~A}}{}$, < 3.2 ไ\%A',
'authors judgement'.
[struct_conn_type]
*_struct_conn_type.id
(ucode)
The chemical or structural type of the interaction.
The following item(s) have an equivalent role in their respective categories:
struct_conn.conn_type_id
The data value must be one of the following:
covale covalent bond
disulf disulfide bridge
hydrog hydrogen bond
metalc metal coordination
mismat mismatched base pairs
saltbr ionic interaction
modres covalent residue modification
covale_base covalent modification of a nucleotide base
covale_sugar covalent modification of a nucleotide sugar
covale_phosphate covalent modification of a nucleotide phosphate
_struct_conn_type.reference (text)
A reference that specifies the criteria used to define the interaction.
[struct_conn_type]

## STRUCT_KEYWORDS

Data items in the STRUCT_KEYWORDS category specify keywords that describe the chemical structure in this entry.
Category group(s): inclusive_group
struct_group
Category key(s): _struct_keywords.entry_id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
loop_
struct keywords.entry id
_struct_keywords.text
'5HVP' 'enzyme-inhibitor complex'
'5HVP' 'aspartyl protease
'5HVP' 'structure-based drug design'
'5HVP' 'static disorder'

```
*_struct_keywords.entry_id
```

This data item is a pointer to _entry.id in the ENTRY category.

## _struct_keywords.text

(text)
Keywords describing this structure.
Examples: ‘serine protease’, 'inhibited complex’,
'high-resolution refinement'
[struct_keywords]

## STRUCT_MON_DETAILS

Data items in the STRUCT_MON_DETAILS category record details about specifics of calculations summarized in data items in the STRUCT_MON_PROT and STRUCT_MON_NUCL categories. These can include the coefficients used in map calculations, the radii
used for including points in a calculation and so on.
Category group(s): inclusive_group
struct_group

Category key(s): _struct_mon_details.entry_id
*_struct_mon_details.entry_id
This data item is a pointer to _entry.id in the ENTRY category.

## struct_mon_details.prot_cis

(float)
An ideal cis peptide bond would have an $\omega$ torsion angle of zero. This data item gives the value in degrees by which the observed torsion angle can differ from 0.0 and still be considered cis.
Example: '30.0'.
[struct_mon_details]

## _struct_mon_details.RSCC

(text)
This data item describes the specifics of the calculations that generated the values given in _struct_mon_prot.RSCC_all, _struct_mon_prot.RSCC_main and _struct_mon_prot.RSCC_ side. The coefficients used to calculate the $p(\bar{o})$ and $p(c)$ maps should be given as well as the criterion for the inclusion of map grid points in the calculation.

```
Examples:
 ; The map p(o) was calculated with coefficients
 2F(o) - F(c) and with phase alpha(c). F(o)
 are the observed structure-factor amplitudes,
 F(c) are the amplitudes calculated from the
 current model and alpha(c) are the phases
 calculated from the current model.
 The map p(c) was calculated in program o using
 a Gaussian distribution function around the
 atoms in the current model.
 Map grid points within 1.5 A of the
 designated atoms were included in the
 calculation.
;
; The map p(o) was calculated with coefficients
 F(o) and with phase alpha(c). F(o) are the
 observed structure-factor amplitudes, and
 alpha(c) are the phases calculated from the
 current model.
 The map p(c) was calculated with coefficients
 F(c) and with phases alpha(c). F(c) and
 alpha(c) are the structure-factor amplitudes
 and phases, respectively, calculated from the
 current model.
 Map grid points within a van der Waals radius
 of the designated atoms were included in the
 calculation.
```

.

## struct_mon_details.RSR

(text)
This data item describes the specifics of the calculations that generated the values given in _struct_mon_prot.RSR_all, _struct_mon_prot.RSR_main and _struct_mon_prot.RSR_side. The coefficients used to calculate the $p(o)$ and $\bar{p}(c)$ maps should be given as well as the criterion for the inclusion of map grid points in the calculation.

## Examples:

; The map $p(o)$ was calculated with coefficients $2 F(0)-F(c)$ and with phase alpha(c). F(o) are the observed structure-factor amplitudes, $F(c)$ are the amplitudes calculated from the current model and alpha(c) are the phases calculated from the current model.
The map $p(c)$ was calculated in program o using a Gaussian distribution function around the atoms in the current model.
Map grid points within 1.5 A of the designated atoms were included in the calculation
; The map $p(o)$ was calculated with coefficients
F(o) and with phase alpha(c). F(0) are the observed structure-factor amplitudes, and alpha(c) are the phases calculated from the current model.
The map $p(c)$ was calculated with coefficients F(c) and with phases alpha(c). F(c) and alpha(c) are the structure-factor amplitudes and phases, respectively, calculated from the current model.
Map grid points within a van der Waals radius of the designated atoms were included in the calculation.

## STRUCT_MON_NUCL

Data items in the STRUCT_MON_NUCL category record details about structural properties of a nucleic acid when analyzed at the monomer level. Analogous data items for proteins are given in the STRUCT_MON_PROT category. For items where the value of the property depends on the method employed to calculate it, details of the method of calculation are given using data items in the STRUCT_MON_DETAILS category.
Category group(s): inclusive_group

## struct_group

Category key(s): _struct_mon_nucl.label_alt_id
_struct_mon_nucl.label_asym_id
_struct_mon_nucl.label_comp_id
_struct_mon_nucl.label_seq_id
Example 1 - based on NDB structure BDL028.
loop_
_struct_mon_nucl.label_comp_id
_struct_mon_nucl.label_seq_id
_struct_mon_nucl.label_asym_id
_struct_mon_nucl.label_alt_id
_struct_mon_nucl.alpha
_struct_mon_nucl.beta
_struct_mon_nucl.gamma
_struct_mon_nucl.delta
struct_mon_nucl.epsilon
_struct_mon_nucl.zeta
$\overline{\mathrm{C}} 1 \mathrm{~A} . \quad$. $\quad 29.9 \quad 131.9 \quad 222.1 \quad 174.2$
G 2 A. $\quad 334.0 \quad 130.6 \quad 33.1 \quad 125.6 \quad 167.6 \quad 270.9$
T 3 A. $258.2 \quad 178.7 \quad 101.0 \quad 114.6 \quad 216.6 \quad 259.3$
\# ---- abbreviated list ----
struct_mon_nucl.alpha
The value in degrees of the backbone torsion angle $\alpha\left(\mathrm{O} 3^{\prime}-\mathrm{P}-\right.$
$\left.\mathrm{O}^{\prime}-\mathrm{C} 5^{\prime}\right)$.
[struct_mon_nucl]
_struct_mon_nucl.auth_asym_id
$\overline{\mathrm{A}}$ component of the identifier for participants in the site. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.
_struct_mon_nucl.auth_comp_id
A component of the identifier for participants in the site. This data item is a pointer to _atom_site.auth_comp_id in the ATOM_SITE category.
_struct_mon_nucl.auth_seq_id
A component of the identifier for participants in the site. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.

## struct mon nucl.beta

(float)
The value in degrees of the backbone torsion angle $\beta$ ( $\mathrm{P}-\mathrm{O}^{\prime}-$ C5'-C4').
[struct_mon_nucl]
_struct_mon_nucl.chi1 (float)
$\bar{T}$ The value ${ }^{-}$in degrees of the sugar-base torsion angle $\chi_{1}\left(\mathrm{O}^{\prime}\right.$ $\mathrm{C} 1^{\prime}-\mathrm{N} 1-\mathrm{C} 2$ ).
[struct_mon_nucl]
_struct_mon_nucl.chi2 (float)
$\overline{\text { The value in degrees of the sugar-base torsion angle } \chi_{2}\left(\mathrm{O}^{\prime}-\right.}$ C 1 - $-\mathrm{N} 9-\mathrm{C} 4$ ).
struct_mon_nucl. delta
The value in degrees of the backbone torsion angle $\delta\left(\mathrm{C}^{\prime}-\mathrm{C} 4^{\prime}-\right.$
$\left.\mathrm{C} 3^{\prime}-\mathrm{O} 3^{\prime}\right)$.
[struct_mon_nucl]
struct_mon_nucl.details

A description of special aspects of the residue, its conformation, behaviour in refinement, or any other aspect that requires annotation.

```
Example:
; Part of the phosphodiester backbone not in density.
```

; [struct_mon_nucl]
struct_mon_nucl.epsilon
The value in degrees of the backbone torsion angle $\varepsilon\left(\mathrm{C}^{\prime}-\mathrm{C} 3^{\prime}-\right.$
$\left.\mathrm{O} 3^{\prime}-\mathrm{P}\right)$.
[struct_mon_nucl]

$$
\begin{aligned}
& \text { struct_mon_nucl. gamma } \\
& \text { The value in degrees of the backbone torsion angle } \gamma\left(\mathrm{O} 5^{\prime}-\mathrm{C}^{\prime}-\right. \\
& \left.\mathrm{C} 4^{\prime}-\mathrm{C} 3^{\prime}\right) \text {. }
\end{aligned}
$$

[struct_mon_nucl]

## *_struct_mon_nucl.label_alt_id

A component of the identifier for participants in the site. This data item is a pointer to _atom_sites_alt.id in the ATOM_SITES_ALT category.
*_struct_mon_nucl.label_asym_id
A component of the identifier for participants in the site. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.
*_struct_mon_nucl.label_comp_id
A component of the identifier for participants in the site. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.
*_struct_mon_nucl.label_seq_id
A component of the identifier for participants in the site. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.
_struct_mon_nucl.mean_B_all
(float)
The mean value of the isotropic displacement parameter for all atoms in the monomer.
[struct_mon_nucl]
_struct_mon_nucl.mean_B_base
(float)
$\bar{T}$ The mean value of the isotropic $\overline{\bar{c}} \overline{\text { displacement parameter for atoms }}$ in the base moiety of the nucleic acid monomer.
[struct_mon_nucl]

## _struct_mon_nucl.mean_B_phos

(float)
$\bar{T}$ The mean value of the isotropic displacement parameter for atoms in the phosphate moiety of the nucleic acid monomer.
[struct_mon_nucl]
_struct_mon_nucl.mean_B_sugar
(float)
$\overline{\text { The mean value of the isotropic }} \overline{\text { ic }} \overline{\text { displacement parameter for atoms }}$ in the sugar moiety of the nucleic acid monomer.
_struct_mon_nucl.nu0 (float) $\bar{T}$ The value $\overline{\text { in }}$ degrees of the sugar torsion angle $\nu_{0}$ ( $\mathrm{C} 4^{\prime}-\mathrm{O} 4^{\prime}-$ $\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}$ ).
[struct_mon_nucl]
struct_mon_nucl.nul
(float)

The value in degrees of the sugar torsion angle $\nu_{1}\left(\mathrm{O}^{\prime}-\mathrm{Cl}^{\prime}-\right.$ $\left.\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}\right)$.
[struct_mon_nucl]
_struct_mon_nucl.nu2 (float)
$\bar{T}$ The value $\overline{\text { in }}$ degrees of the sugar torsion angle $\nu_{2}\left(\mathrm{C}^{\prime}-\mathrm{C} 2^{\prime}-\right.$ $\left.\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}\right)$.
[struct_mon_nucl]
struct_mon_nucl.nu3
The value in degrees of the sugar torsion angle $\nu_{3}\left(\mathrm{C}^{\prime}-\mathrm{C}^{\prime}-\right.$
$\left.\mathrm{C} 4^{\prime}-\mathrm{O}^{\prime}\right)$.
[struct_mon_nucl]
[struct_mon_nucl]

## _struct_mon_nucl.P

(float)
$\bar{P}$ is the phase angle of pseudorotation for five-membered rings. For ribose and deoxyribose sugars in nucleic acids

$$
P=\arctan \left(\frac{\left(\tau_{4}+\tau_{1}\right)-\left(\tau_{3}+\tau_{0}\right)}{2 \tau_{2}(\sin 36+\sin 72)}\right)
$$

If $\tau_{2}$ is $<0$, then $P=P+180^{\circ}$ (Altona \& Sundaralingam, 1972). Reference: Altona, C. \& Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205-8212.
[struct_mon_nucl]
_struct_mon_nucl.RSCC_all
(float)
The real-space (linear) correlation coefficient RSCC, as described by Jones et al. (1991), evaluated over all atoms in the nucleic acid monomer.

$$
\mathrm{RSCC}=\frac{\sum\left|p_{\mathrm{obs}}-\left\langle p_{\text {obs }}\right\rangle\right| \sum\left|p_{\text {calc }}-\left\langle p_{\text {calc }}\right\rangle\right|}{\left(\sum\left|p_{\mathrm{obs}}-\left\langle p_{\text {obs }}\right\rangle\right|^{2} \sum\left|p_{\text {calc }}-\left\langle p_{\text {calc }}\right\rangle\right|^{2}\right)^{1 / 2}}
$$

where $p_{\text {obs }}=$ the density in an 'experimental' map, $p_{\text {calc }}=$ the density in a 'calculated' map and the sum is taken over the specified grid points. Details of how these maps were calculated should be given in _struct_mon_details.RSCC. $\rangle$ indicates an average and the sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in _struct_mon_details. RSCC.

Reference: Jones, T. A., Zou, J.-Y., Cowan, S. W. \& Kjeldgaard, M. (1991). Acta Cryst. A47, 110-119.
struct_mon_nucl.RSCC_base
(float)
$\bar{T}$ The real-space (linear) correlation coefficient RSCC, as described by Jones et al. (1991), evaluated over all atoms in the base moiety of the nucleic acid monomer.

$$
\mathrm{RSCC}=\frac{\sum\left|p_{\mathrm{obs}}-\left\langle p_{\mathrm{obs}}\right\rangle\right| \sum\left|p_{\mathrm{calc}}-\left\langle p_{\mathrm{calc}}\right\rangle\right|}{\left(\sum\left|p_{\mathrm{obs}}-\left\langle p_{\mathrm{obs}}\right\rangle\right|^{2} \sum\left|p_{\mathrm{calc}}-\left\langle p_{\mathrm{calc}}\right\rangle\right|^{2}\right)^{1 / 2}},
$$

where $p_{\text {obs }}=$ the density in an 'experimental' map, $p_{\text {calc }}=$ the density in a 'calculated' map and the sum is taken over the specified grid points. Details of how these maps were calculated should be given in _struct_mon_details. RSCC. $\rangle$ indicates an average and the sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in _struct_mon_details.RSCC.

Reference: Jones, T. A., Zou, J.-Y., Cowan, S. W. \& Kjeldgaard, M. (1991). Acta Cryst. A47, 110-119.
[struct_mon_nucl]

## _struct_mon_nucl.RSCC_phos

(float)
The real-space (linear) correlation coefficient RSCC, as described by Jones et al. (1991), evaluated over all atoms in the phosphate moiety of the nucleic acid monomer.

$$
\mathrm{RSCC}=\frac{\sum\left|p_{\mathrm{obs}}-\left\langle p_{\mathrm{obs}}\right\rangle\right| \sum\left|p_{\mathrm{calc}}-\left\langle p_{\mathrm{calc}}\right\rangle\right|}{\left(\sum\left|p_{\mathrm{obs}}-\left\langle p_{\mathrm{obs}}\right\rangle\right|^{2} \sum\left|p_{\mathrm{calc}}-\left\langle p_{\text {calc }}\right\rangle\right|^{2}\right)^{1 / 2}}
$$

where $p_{\text {obs }}=$ the density in an 'experimental' map, $p_{\text {calc }}=$ the density in a 'calculated' map and the sum is taken over the specified grid points. Details of how these maps were calculated should be given in _struct_mon_details. RSCC. $\rangle$ indicates an average and the sums $\overline{-}$ are take $\bar{n}$ over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in _struct_mon_details. RSCC.

Reference: Jones, T. A., Zou, J.-Y., Cowan, S. W. \& Kjeldgaard, M. (1991). Acta Cryst. A47, 110-119.
[struct_mon_nucl]

## _struct_mon_nucl.RSCC_sugar

(float)
$\bar{T}$ The real-space (linear) correlation coefficient RSCC, as described by Jones et al. (1991), evaluated over all atoms in the sugar moiety of the nucleic acid monomer.

$$
\mathrm{RSCC}=\frac{\sum\left|p_{\mathrm{obs}}-\left\langle p_{\mathrm{obs}}\right\rangle\right| \sum\left|p_{\mathrm{calc}}-\left\langle p_{\mathrm{calc}}\right\rangle\right|}{\left(\sum\left|p_{\mathrm{obs}}-\left\langle p_{\mathrm{obs}}\right\rangle\right|^{2} \sum\left|p_{\mathrm{calc}}-\left\langle p_{\mathrm{calc}}\right\rangle\right|^{2}\right)^{1 / 2}}
$$

where $p_{\text {obs }}=$ the density in an 'experimental' map, $p_{\text {calc }}=$ the density in a 'calculated' map and the sum is taken over the specified grid points. Details of how these maps were calculated should be given in _struct_mon_details. RSCC. $\rangle$ indicates an average and the sums $\overline{-}$ are take $\bar{n}$ over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in _struct_mon_details.RSCC.

Reference: Jones, T. A., Zou, J.-Y., Cowan, S. W. \& Kjeldgaard, M. (1991). Acta Cryst. A47, 110-119.
[struct_mon_nucl]
_struct_mon_nucl.RSR_all
(float)
$\bar{T}$ The real-space residual RSR, as described by Brändén \& Jones (1990), evaluated over all atoms in the nucleic acid monomer.

$$
\mathrm{RSR}=\frac{\sum\left|p_{\mathrm{obs}}-p_{\mathrm{calc}}\right|}{\sum\left|p_{\mathrm{obs}}+p_{\mathrm{calc}}\right|}
$$

where $p_{\text {obs }}=$ the density in an 'experimental' map, $p_{\text {calc }}=$ the density in a 'calculated' map and the sum is taken over the specified grid points. Details of how these maps were calculated
should be given in _struct_mon_details.RSR. The sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in _struct_mon_details.RSR.

Reference: Brändén, C.-I. \& Jones, T. A. (1990). Nature (London), 343, 687-689.
[struct_mon_nucl]
struct mon nucl. RSR base
(float)
$\bar{T}$ The real-space $\overline{\text { residual } R S R} \bar{R}$, as described by Brändén \& Jones (1990), evaluated over all atoms in the base moiety of the nucleic acid monomer.

$$
\mathrm{RSR}=\frac{\sum\left|p_{\mathrm{obs}}-p_{\mathrm{calc}}\right|}{\sum\left|p_{\mathrm{obs}}+p_{\mathrm{calc}}\right|}
$$

where $p_{\text {obs }}=$ the density in an 'experimental' map, $p_{\text {calc }}=$ the density in a 'calculated' map and the sum is taken over the specified grid points. Details of how these maps were calculated should be given in _struct_mon_details.RSR. The sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in _struct_mon_details.RSR.

Reference: Brändén, C.-I. \& Jones, T. A. (1990). Nature (London), 343, 687-689.
[struct_mon_nucl]
_struct_mon_nucl.RSR_phos
$\bar{T}$ The real-space $\overline{\text { residual }} \mathrm{RSR}$, as described by Brändén \& Jones (1990), evaluated over all atoms in the phosphate moiety of the nucleic acid monomer.

$$
\mathrm{RSR}=\frac{\sum\left|p_{\mathrm{obs}}-p_{\mathrm{calc}}\right|}{\sum\left|p_{\mathrm{obs}}+p_{\mathrm{calc}}\right|}
$$

where $p_{\text {obs }}=$ the density in an 'experimental' map, $p_{\text {calc }}=$ the density in a 'calculated' map and the sum is taken over the specified grid points. Details of how these maps were calculated should be given in _struct_mon_details.RSR. The sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in _struct_mon_details.RSR.

Reference: Brändén, C.-I. \& Jones, T. A. (1990). Nature (London), 343, 687-689.
[struct_mon_nucl]
_struct_mon_nucl.RSR_sugar (float)
The real-space residual RSR, as described by Brändén \& Jones (1990), evaluated over all atoms in the sugar moiety of the nucleic acid monomer.

$$
\mathrm{RSR}=\frac{\sum\left|p_{\mathrm{obs}}-p_{\mathrm{calc}}\right|}{\sum\left|p_{\mathrm{obs}}+p_{\mathrm{calc}}\right|}
$$

where $p_{\text {obs }}=$ the density in an 'experimental' map, $p_{\text {calc }}=$ the density in a 'calculated' map and the sum is taken over the specified grid points. Details of how these maps were calculated should be given in _struct_mon_details.RSR. The sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in _struct_mon_details.RSR.

Reference: Brändén, C.-I. \& Jones, T. A. (1990). Nature (London), 343, 687-689.
[struct_mon_nucl]
_struct_mon_nucl.tau0
The value in degrees of the sugar torsion angle $\tau_{0}\left(\mathrm{C}^{\prime}-\mathrm{O} 4^{\prime}-\right.$ $\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}$ ).
[struct_mon_nucl]
struct_mon_nucl.tau1
The value in degrees of the sugar torsion angle $\tau_{1}\left(\mathrm{O}^{\prime}-\mathrm{Cl}^{\prime}-\right.$
$\left.\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}\right)$.
[struct_mon_nucl]
_struct_mon_nucl.tau2 (float)
The value in degrees of the sugar torsion angle $\tau_{2}\left(\mathrm{C}^{\prime}-\mathrm{C} 2^{\prime}-\right.$ $\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}$ ).
[struct_mon_nucl]

[struct_mon_nucl]

## struct_mon_nucl.tau4

The value in degrees of the sugar torsion angle $\tau_{4}\left(\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}-\right.$ $\mathrm{O} 4^{\prime}-\mathrm{C}^{\prime}$ ).
[struct mon nucl]

## struct_mon_nucl.taum

(float)
The maximum amplitude of puckering. This is derived from the pseudorotation value $P$ and the torsion angles in the ribose ring.

$$
\begin{aligned}
& \tau_{2}=\tau_{m} \cos P, \\
& \tau_{3}=\tau_{m} \cos (P+144), \\
& \tau_{4}=\tau_{m} \cos (P+288), \\
& \tau_{0}=\tau_{m} \cos (P+72), \\
& \tau_{1}=\tau_{m} \cos (P+216) .
\end{aligned}
$$

[struct_mon_nucl]

## struct mon nucl.zeta

The value in degrees of the backbone torsion angle $\zeta\left(\mathrm{C}^{\prime}{ }^{\prime}-\mathrm{O}^{\prime}-\right.$ $\mathrm{P}-\mathrm{O}^{\prime}$ ).

## STRUCT_MON_PROT

Data items in the STRUCT_MON_PROT category record details about structural properties of a protein when analyzed at the monomer level. Analogous data items for nucleic acids are given in the STRUCT_MON_NUCL category. For items where the value of the property depends on the method employed to calculate it, details of the method of calculation are given using data items in the STRUCT_MON_DETAILS category.
Category group(s): inclusive_group
struct_group
Category key(s): _struct_mon_prot.label_alt_id _struct_mon_prot.label_asym_id _struct_mon_prot.label_comp_id struct_mon_prot.label_seq_id

Example 1 - based on laboratory records for protein NS1. This example provides details for residue ARG 35.

_struct_mon_prot.label_comp_id	ARg
_struct_mon_prot.label_seq_id	35
_struct_mon_prot.label_asym_id	A
_struct_mon_prot.label_alt_id	.
_struct_mon_prot.chil	-67.9
struct_mon_prot.chi2	-174.7
_struct_mon_prot.chi3	-67.7
_struct_mon_prot.chi4	-86.3
_struct_mon_prot.chi5	4.2
_struct_mon_prot. RSCC_all $^{\text {ald }}$	0.90
_struct_mon_prot.RSR_all	0.18
_struct_mon_prot.mean_B_all	30.0
_struct_mon_prot.mean_B_main	25.0
_struct_mon_prot.mean_B_side	35.1
_struct_mon_prot.omega	180.1
_struct_mon_prot.phi	-60.3
_struct_mon_prot.psi	-46.0

_struct_mon_prot.auth_asym_id
$\overline{\mathrm{A}}$ component of the identifier for the monomer. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.

## _struct_mon_prot.auth_comp_id

$\overline{\text { A component of the identifier for the monomer. This data item is a }}$ pointer to _atom_site.auth_comp_id in the ATOM_SITE category.

## struct mon prot.auth seq id

A component of the identifier for the monomer. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.

## struct_mon_prot.chil

(float)
$\bar{T}$ The value $\overline{\text { in }}$ degrees of the side-chain torsion angle $\chi_{1}$, for those residues containing such an angle.
[struct_mon_prot]
_struct_mon_prot.chi2
(float)
$\bar{T}$ The value in degrees of the side-chain torsion angle $\chi_{2}$, for those residues containing such an angle.
[struct_mon_prot]
_struct_mon_prot.chi3
(float)
The value in degrees of the side-chain torsion angle $\chi_{3}$, for those residues containing such an angle.
[struct_mon_prot]
_struct_mon_prot.chi4
(foat)
The value in degrees of the side-chain torsion angle $\chi_{4}$, for those residues containing such an angle.
[struct_mon_prot]

## struct_mon_prot.chi5

(foat)
$\bar{T}$ The value $\overline{\text { in }}$ degrees of the side-chain torsion angle $\chi_{5}$, for those residues containing such an angle.

## _struct_mon_prot.details

(float)
$\overline{\mathrm{A}}$ description of special aspects of the residue, its conformation, behaviour in refinement, or any other aspect that requires annotation.
Examples: ‘very poor density’,
; The side chain of this density may occupy alternative
conformations, but alternative conformations were not fit
in this model.
; This residue has a close contact with the bound inhibitor, which may account for the nonstandard conformation of the side chain.
;
[struct_mon_prot]

## * struct_mon_prot.label_alt_id

A component of the identifier for the monomer. This data item is a pointer to _atom_sites_alt.id in the ATOM_SITES_ALT category.

## *_struct_mon_prot.label_asym_id

A component of the identifier for the monomer. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.
*_struct_mon_prot.label_comp_id
A component of the identifier for the monomer. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.
*_struct_mon_prot.label_seq_id
A component of the identifier for the monomer. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.

## _struct_mon_prot.mean_B_all

(float)
The mean value of the isotropic displacement parameter for all atoms in the monomer.
[struct_mon_prot]

## _struct_mon_prot.mean_B_main

(float)
The mean value of the isotropic displacement parameter for atoms in the main chain of the monomer.
[struct_mon_prot]
_struct_mon_prot.mean_B_side
(float)
$\bar{T}$ The mean value of the isotropic displacement parameter for atoms in the side chain of the monomer.
[struct_mon_prot]

> struct_mon_prot. omega The value in degrees of the main-chain torsion angle $\omega$.
[struct_mon_prot]

## struct_mon_prot.phi

(float)
$\bar{T}$ The value $\overline{\text { in }}$ degrees of the main-chain torsion angle $\varphi$.
[struct_mon_prot]

## _struct_mon_prot.psi

(float)
$\bar{T}$ The value in degrees of the main-chain torsion angle $\psi$.
[struct_mon_prot]
struct_mon_prot.RSCC_all
(float)
$\bar{T}$ The real-space (linear) correlation coefficient RSCC, as described by Jones et al. (1991), evaluated over all atoms in the monomer.

$$
\mathrm{RSCC}=\frac{\sum\left|p_{\mathrm{obs}}-\left\langle p_{\mathrm{obs}}\right\rangle\right| \sum\left|p_{\mathrm{calc}}-\left\langle p_{\mathrm{calc}}\right\rangle\right|}{\left(\sum\left|p_{\mathrm{obs}}-\left\langle p_{\mathrm{obs}}\right\rangle\right|^{2} \sum\left|p_{\text {calc }}-\left\langle p_{\text {calc }}\right\rangle\right|^{2}\right)^{1 / 2}}
$$

where $p_{\text {obs }}=$ the density in an 'experimental' map, $p_{\text {calc }}=$ the den sity in a 'calculated' map and the sum is taken over the specified grid points. Details of how these maps were calculated should be given in _struct_mon_details. RSCC. $\rangle$ indicates an average and the sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in _struct_mon_details.RSCC.

Reference: Jones, T. A., Zou, J.-Y., Cowan, S. W. \& Kjeldgaard, M. (1991). Acta Cryst. A47, 110-119.
[struct_mon_prot]

## struct_mon_prot. RSCC main

(float)
The real-space (linear) correlation coefficient RSCC, as described by Jones et al. (1991), evaluated over all atoms in the main chain of the monomer.

$$
\mathrm{RSCC}=\frac{\sum\left|p_{\mathrm{obs}}-\left\langle p_{\mathrm{obs}}\right\rangle\right| \sum\left|p_{\mathrm{calc}}-\left\langle p_{\mathrm{calc}}\right\rangle\right|}{\left[\sum\left|p_{\mathrm{obs}}-\left\langle p_{\mathrm{obs}}\right\rangle\right|^{2} \sum\left|p_{\text {calc }}-\left\langle p_{\mathrm{calc}}\right\rangle\right|^{2}\right]^{1 / 2}}
$$

where $p_{\text {obs }}=$ the density in an 'experimental' map, $p_{\text {calc }}=$ the density in a 'calculated' map and the sum is taken over the specified grid points. Details of how these maps were calculated should be given in _struct_mon_details.RSCC. $\rangle$ indicates an average and the sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in _struct_mon_details. RSCC.

Reference: Jones, T. A., Zou, J.-Y., Cowan, S. W. \& Kjeldgaard, M. (1991). Acta Cryst. A47, 110-119.
[struct_mon_prot]
_struct_mon_prot.RSCC_side
(float)
The real-space (linear) correlation coefficient RSCC, as described by Jones et al. (1991), evaluated over all atoms in the side chain of the monomer.

$$
\mathrm{RSCC}=\frac{\sum\left|p_{\mathrm{obs}}-\left\langle p_{\mathrm{obs}}\right\rangle\right| \sum\left|p_{\mathrm{calc}}-\left\langle p_{\mathrm{calc}}\right\rangle\right|}{\left[\sum\left|p_{\mathrm{obs}}-\left\langle p_{\mathrm{obs}}\right\rangle\right|^{2} \sum\left|p_{\mathrm{calc}}-\left\langle p_{\mathrm{calc}}\right\rangle\right|^{2}\right]^{1 / 2}}
$$

where $p_{\text {obs }}=$ the density in an 'experimental' map, $p_{\text {calc }}=$ the density in a 'calculated' map and the sum is taken over the specified grid points. Details of how these maps were calculated should be given in _struct_mon_details.Rscc. $\rangle$ indicates an average and the sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in _struct_mon_details. RSCC.

Reference: Jones, T. A., Zou, J.-Y., Cowan, S. W. \& Kjeldgaard, M. (1991). Acta Cryst. A47, 110-119.
[struct_mon_prot]
_struct_mon_prot.RSR_all
(float)
$\bar{T}$ The real-space $\overline{r e s i d u a l ~ R S R} \bar{R}$, as described by Brändén \& Jones (1990), evaluated over all atoms in the monomer.

$$
\mathrm{RSR}=\frac{\sum\left|p_{\mathrm{obs}}-p_{\mathrm{calc}}\right|}{\sum\left|p_{\mathrm{obs}}+p_{\mathrm{calc}}\right|}
$$

where $p_{\text {obs }}=$ the density in an 'experimental' map, $p_{\text {calc }}=$ the density in a 'calculated' map and the sum is taken over the specified grid points. Details of how these maps were calculated should be given in _struct_mon_details.RSR. The sums are taken
over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in _struct_mon_details.RSR.
Reference: Brändén, C.-I. \& Jones, T. A. (1990). Nature (London), 343, 687-689.
[struct_mon_prot]
_struct_mon_prot.RSR_main (float)
The real-space residual RSR, as described by Brändén \& Jones (1990), evaluated over all atoms in the main chain of the monomer.

$$
\mathrm{RSR}=\frac{\sum\left|p_{\mathrm{obs}}-p_{\mathrm{calc}}\right|}{\sum\left|p_{\mathrm{obs}}+p_{\mathrm{calc}}\right|}
$$

where $p_{\text {obs }}=$ the density in an 'experimental' map, $p_{\text {calc }}=$ the density in a 'calculated' map and the sum is taken over the specified grid points. Details of how these maps were calculated should be given in _struct_mon_details.rsR. The sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in _struct_mon_details.RSR.

Reference: Brändén, C.-I. \& Jones, T. A. (1990). Nature (London), 343, 687-689.
[struct_mon_prot]

## struct_mon_prot.RSR_side

(float)
The real-space residual RSR, as described by Brändén \& Jones (1990), evaluated over all atoms in the side chain of the monomer.

$$
\mathrm{RSR}=\frac{\sum\left|p_{\mathrm{obs}}-p_{\text {calc }}\right|}{\sum\left|p_{\mathrm{obs}}+p_{\text {calc }}\right|}
$$

where $p_{\text {obs }}=$ the density in an 'experimental' map, $p_{\text {calc }}=$ the density in a 'calculated' map and the sum is taken over the specified grid points. Details of how these maps were calculated should be given in _struct_mon_details.RSR. The sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in _struct_mon_details.RSR.
Reference: Brändén, C.-I. \& Jones, T. A. (1990). Nature (London), 343, 687-689.
[struct_mon_prot]

## STRUCT_MON_PROT_CIS

Data items in the STRUCT_MON_PROT_CIS category identify monomers that have been found to have the peptide bond in the cis conformation. The criterion used to select residues to be designated as containing cis peptide bonds is given in _struct_mon_details.prot_cis.
Category group(s): inclusive_group struct_group
Category key(s): _struct_mon_prot_cis.label_alt_id struct_mon_prot_cis.label_asym_id struct_mon_prot_cis.label_comp_id struct_mon_prot_cis.label_seq_id
Example 1 - based on PDB structure 1ACY of Ghiara, Stura, Stanfield, Profy \& Wilson [Science (1994), 264, 82-85].
loop_
_struct_mon_prot_cis.label_comp_id
_struct_mon_prot_cis.label_seq_id
_struct_mon_prot_cis.label_asym_id
_struct_mon_prot_cis.label_alt_id
PRO 8 L .
PRO 77 L .
PRO 95 L .
PRO 141 L.
\# ----- abbreviated -----
_struct_mon_prot_cis.auth_asym_id
$\overline{\mathrm{A}}$ component of the identifier for the monomer. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.

## _struct_mon_prot_cis.auth_comp_id

A component of the identifier for the monomer. This data item is a pointer to _atom_site.auth_comp_id in the ATOM_SITE category.

## _struct_mon_prot_cis.auth_seq_id

A component of the identifier for the monomer.This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.

## *_struct_mon_prot_cis.label_alt_id <br> $\overline{\mathrm{A}}$ component of the identifier for the monomer. This data item is a

 pointer to _atom_sites_alt.id in the ATOM_SITES_ALT category.
## *_struct_mon_prot_cis.label_asym_id

$\overline{\mathrm{A}}$ component of the identifier for the monomer. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.
*_struct_mon_prot_cis.label_comp_id
A component of the identifier for the monomer. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.
*_struct_mon_prot_cis.label_seq_id
A component of the identifier for the monomer. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.

## STRUCT_NCS_DOM

Data items in the STRUCT_NCS_DOM category record information about the domains in an ensemble of domains related by one or more noncrystallographic symmetry operators. A domain need not correspond to a complete polypeptide chain; it can be composed of one or more segments in a single chain, or by segments from more than one chain.
Category group(s): inclusive_group
struct_group

Category key(s): _struct_ncs_dom.id
Example 1 - based on laboratory records for the collagen-like peptide, HYP-.
loop_
_struct_ncs_dom.id
_struct_ncs_dom.details
d1 'Chains A, B, and C'
d2 'Chains D, E, and $F^{\prime}$
_struct_ncs_dom.details
(text)
$\overline{\mathrm{A}}$ description of special aspects of the structural elements that comprise a domain in an ensemble of domains related by noncrystallographic symmetry.

## Example:

; The loop between residues 18 and 23 in this domain interacts
with a symmetry-related molecule, and thus deviates
significantly from the noncrystallographic threefold.
[struct_ncs_dom]

## *_struct_ncs_dom.id

The value of struct ncs dom.id must uniquely identify a recor in the STRUCT NCS DOM list. Note that this item need not be a number; it can be any unique identifier.
The following item(s) have an equivalent role in their respective categories:

```
_struct_ncs_dom_lim.dom_id,
```

_struct_ncs_ens_gen.dom_id_1,
_struct_ncs_ens_gen.dom_id_2.
[struct_ncs_dom]

## STRUCT_NCS_DOM_LIM

Data items in the STRUCT_NCS_DOM_LIM category identify the start and end points of polypeptide chain segments that form all or part of a domain in an ensemble of domains related by noncrystallographic symmetry.
Category group(s): inclusive_group

## struct_group

Category $\mathrm{key}(\mathrm{s}):$ _struct_ncs_dom_lim.dom_id
_struct_ncs_dom_lim.beg_label_alt_id
_struct_ncs_dom_lim.beg_label_asym_id _struct_ncs_dom_lim.beg_label_comp_id _struct_ncs_dom_lim.beg_label_seq_id _struct_ncs_dom_lim.end_label_alt_id struct_ncs_dom_lim.end_label_asym_id _struct_ncs_dom_lim.end_label_comp_id struct_ncs_dom_lim.end_label_seq_id
Example 1 - based on laboratory records for the collagen-like peptide, HYP-

## loop_

struct_ncs_dom_lim.dom_id
struct_ncs_dom_lim.beg_label_alt_id
struct_ncs_dom_lim.beg_label_asym_id
_struct_ncs_dom_lim.beg_label_comp_id
struct_ncs_dom_lim.beg_label_seq_id
struct_ncs_dom_lim.end_label_alt_id
struct_ncs_dom_lim.end_label_asym_id
struct_ncs_dom_lim.end_label_comp_id
struct_ncs_dom_lim.end_label_seq_id
d1 . A PRO 1 . A GLY 29
d1 . B PRO 31 . B GLY 59
d1 . C PRO 61 . B GLY 89
d2 . D PRO 91 . D GLY 119
d2 . E PRO 121 . E GLY 149
d2 . F PRO 151 . F GLY 179

## _struct_ncs_dom_lim.beg_auth_asym_id

A component of the identifier for the monomer at which this segment of the domain begins. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.

## _struct_ncs_dom_lim.beg_auth_comp_id

A component of the identifier for the monomer at which this segment of the domain begins. This data item is a pointer to _atom_site.auth_comp_id in the ATOM_SITE category.

## struct_ncs_dom_lim.beg_auth_seq_id

A component of the identifier for the monomer at which this segment of the domain begins. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.
*_struct_ncs_dom_lim.beg_label_alt_id
A component of the identifier for the monomer at which this segment of the domain begins. This data item is a pointer to _atom_sites_alt.id in the ATOM_SITES_ALT category.
*_struct_ncs_dom_lim.beg_label_asym_id
A component of the identifier for the monomer at which this segment of the domain begins. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.
*_struct_ncs_dom_lim.beg_label_comp_id
A component of the identifier for the monomer at which this segment of the domain begins. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.
*_struct_ncs_dom_lim.beg_label_seq_id
A component of the identifier for the monomer at which this segment of the domain begins. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.
*_struct_ncs_dom_lim.dom_id
This data item is a pointer to _struct_ncs_dom.id in the STRUCT_NCS_DOM category.
_struct_ncs_dom_lim.end_auth_asym_id
$\overline{\mathrm{A}}$ component of the identifier for the monomer at which this segment of the domain ends. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.
_struct_ncs_dom_lim.end_auth_comp_id
$\overline{\mathrm{A}}$ component of the identifier $\overline{\text { for }}$ the monomer at which this segment of the domain ends. This data item is a pointer to _atom_site.auth_comp_id in the ATOM_SITE category.
struct_ncs_dom_lim.end_auth_seq_id
A component of the identifier for the monomer at which this segment of the domain ends. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.
*_struct_ncs_dom_lim.end_label_alt_id
A component of the identifier for the monomer at which this segment of the domain ends. This data item is a pointer to _atom_sites_alt.id in the ATOM_SITES_ALT category.
*_struct_ncs_dom_lim.end_label_asym_id
$\overline{\mathrm{A}}$ component of the identifier for the monomer at which this segment of the domain ends. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.
*_struct_ncs_dom_lim.end_label_comp_id
A component of the identifier for the monomer at which this segment of the domain ends. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.
*_struct_ncs_dom_lim.end_label_seq_id
A component of the identifier for the monomer at which this segment of the domain ends. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.

## STRUCT_NCS_ENS

Data items in the STRUCT_NCS_ENS category record information about ensembles of domains related by noncrystallographic symmetry. The point group of the ensemble when taken as a whole may be specified, as well as any special aspects of the ensemble that require description.
Category group(s): inclusive_group
struct_group

Category key(s): _struct_ncs_ens.id
Example 1 - based on laboratory records for the collagen-like peptide, HYP-.

```
struct_ncs_ens.id
en1
```

struct_ncs_ens.details
; The ensemble represents the pseudo-twofold symmetry between domains d1 and d2.

## _struct_ncs_ens.details

$\overline{\mathrm{A}}$ description of special aspects of the ensemble.
Example:
; The ensemble has a slight translation between domains 1 and 4, but overall it can accurately be described as point group 222

;<br>[struct_ncs_ens]

*_struct_ncs_ens.id
(code)
The value of _struct_ncs_ens.id must uniquely identify a record in the STRUCT_NCS_ENS list. Note that this item need not be a number; it can be any unique identifier.
The following item(s) have an equivalent role in their respective categories:
_struct_ncs_ens_gen.ens_id. [struct_ncs_ens]
_struct_ncs_ens.point_group
The point group of the ensemble of structural elements related by one or more noncrystallographic symmetry operations. The relationships need not be precise; this data item is intended to give a rough description of the noncrystallographic symmetry relationships.

```
Examples: '3', '422', 'non-proper'.
[struct_ncs_ens]
```


## STRUCT_NCS_ENS_GEN

Data items in the STRUCT_NCS_ENS_GEN category list domains related by a noncrystallographic symmetry operation and identify the operator.
Category group(s): inclusive_group

> struct_group

Category key(s): _struct_ncs_ens_gen.ens_id
struct_ncs_ens_gen.dom_id_1
_struct_ncs_ens_gen.dom_id_2
_struct_ncs_ens_gen.oper_id
Example 1 - based on laboratory records for the collagen-like peptide, HYP-.
_struct_ncs_ens_gen.dom_id_1 d1
-struct_ncs_ens_gen.dom_id_2 d2
_struct_ncs_ens_gen.ens_id en1
struct_ncs_ens_gen.oper_id ncsop1
*_struct_ncs_ens_gen.dom_id_1
The identifier for the domain that will remain unchanged by the transformation operator. This data item is a pointer to _struct_ncs_dom.id in the STRUCT_NCS_DOM category.

## *_struct_ncs_ens_gen.dom_id_2

$\overline{\text { The identifier for the domain that will be transformed by applica- }}$ tion of the transformation operator. This data item is a pointer to _struct_ncs_dom.id in the STRUCT_NCS_DOM category.

```
*_struct_ncs_ens_gen.ens_id
 This data item is a pointer to _struct_ncs_ens.id in the
 STRUCT_NCS_ENS category.
```

*_struct_ncs_ens_gen.oper_id

This data item is a pointer to _struct_ncs_oper.id in the STRUCT_NCS_OPER category.

## STRUCT_NCS_OPER

Data items in the STRUCT_NCS_OPER category describe the noncrystallographic symmetry operations. Each operator is specified as a matrix and a subsequent translation vector. Operators need not represent proper rotations.
Category group(s): inclusive_group
struct_group
Category key(s): _struct_ncs_oper.id
Example 1 - based on laboratory records for the protein NS1.

struct_ncs_oper.id	ncsop1
struct_ncs_oper.code	given
struct_ncs_oper.matrix[1] [1]	0.247
struct_ncs_oper.matrix[1] [2]	0.935
struct_ncs_oper.matrix[1] [3]	0.256
struct_ncs_oper.matrix[2] [1]	0.929
struct_ncs_oper.matrix[2] [2]	0.153
struct_ncs_oper.matrix [2] [3]	0.337
struct_ncs_oper.matrix[3] [1]	0.276
struct_ncs_oper.matrix[3] [2]	0.321
struct_ncs_oper.matrix[3] [3]	-0.906
_struct_ncs_oper.vector [1]	-8.253
_struct_ncs_oper.vector[2]	-11.743
_struct_ncs_oper.vector[3]	-1.782
_struct_ncs_oper.details	
; Matrix and translation vector for ps	

_struct_ncs_oper.code
(code)
$\bar{A}$ code to indicate whether this operator describes a relationship between coordinates all of which are given in the data block (in which case the value of code is 'given'), or whether the operator is used to generate new coordinates from those that are given in the data block (in which case the value of code is 'generate').
The data value must be one of the following:

$$
\begin{array}{ll}
\text { given } & \begin{array}{l}
\text { operator relates coordinates given in the data block } \\
\text { operator generates new coordinates from those given } \\
\text { in the data block }
\end{array}
\end{array}
$$

[struct_ncs_oper]
_struct_ncs_oper.details

## (text)

$\overline{\text { A description of special aspects of the noncrystallographic sym- }}$ metry operator.
Example:
; The operation is given as a precise threefold rotation,
despite the fact the best rms fit between domain 1 and domain
2 yields a rotation of 119.7 degrees and a translation of 0.13 angstroms.
[struct_ncs_oper]
*_struct_ncs_oper.id
(code)
The value of _struct_ncs_oper.id must uniquely identify a record in the STRUCT_NCS_OPER list. Note that this item need not be a number; it can be any unique identifier.
The following item(s) have an equivalent role in their respective categories:
_struct_ncs_ens_gen.oper_id. [struct_ncs_oper]
_struct_ncs_oper.matrix[1] [1]
(float)
The [1][1] element of the $3 \times 3$ matrix component of a noncrystallographic symmetry operation.
[struct_ncs_oper]
_struct_ncs_oper.matrix[1] [2] (float)
The [1][2] element of the $3 \times 3$ matrix component of a noncrystallographic symmetry operation.

> [struct_ncs_oper]
_struct_ncs_oper.matrix[1] [3]
(float)
$\overline{\text { The [1][3] element of the }} 3 \times 3$ matrix component of a noncrystallographic symmetry operation.
[struct_ncs_oper]

## struct_ncs_oper.matrix[2] [1] (float)

The [2][1] element of the $3 \times 3$ matrix component of a noncrystallographic symmetry operation.
[struct_ncs_oper]
struct_ncs_oper.matrix[2] [2]
The [2][2] element of the $3 \times 3$ matrix component of a noncrys-
tallographic symmetry operation.
[struct_ncs_oper]
struct_ncs_oper.matrix [2] [3]
The [2][3] element of the $3 \times 3$ matrix component of a noncrys-
tallographic symmetry operation.

## struct_ncs_oper.matrix[3] [1]

(float)
The [3][1] element of the $3 \times 3$ matrix component of a noncrystallographic symmetry operation.
_struct_ncs_oper.matrix[3] [2] (float)
$\bar{T}$ The [3][2] element of the $3 \times 3$ matrix component of a noncrystallographic symmetry operation.
[struct_ncs_oper]
_struct_ncs_oper.matrix[3] [3]
(float)
The [3][3] element of the $3 \times 3$ matrix component of a noncrystallographic symmetry operation.

> [struct_ncs_oper]
_struct_ncs_oper.vector [1]
(float)
$\bar{T}$ The [1] element of the three-element vector component of a noncrystallographic symmetry operation.

> [struct_ncs_oper]
_struct_ncs_oper.vector[2]
(float)
$\bar{T}$ The [2] element of the three-element vector component of a noncrystallographic symmetry operation.
[struct_ncs_oper]
_struct_ncs_oper.vector [3]
(float)
$\bar{T}$ The [3] element of the three-element vector component of a noncrystallographic symmetry operation.
[struct_ncs_oper]

## STRUCT_REF

Data items in the STRUCT_REF category allow the author of a data block to relate the entities or biological units described in the data block to information archived in external databases. For references to the sequence of a polymer, the value of the data item _struct_ref.seq_align is used to indicate whether the correspondence between the sequence of the entity or biological unit in the data block and the sequence in the referenced database entry is 'complete' or 'partial'. If this value is 'partial', the region (or regions) of the alignment may be delimited using data items in the STRUCT_REF_SEQ category. Similarly, the value of struct_ref.seq_dif is used to indicate whether the two sequences contain point differences. If the value is 'yes', the differences may be identified and annotated using data items in the STRUCT_REF_SEQ_DIF category.
Category group(s): inclusive_group
struct_group
Category key(s): _struct_ref.id

Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
loop_
_struct_ref.id
_struct_ref.entity_id
_struct_ref.biol_id
_struct_ref.db_name
struct_ref.db_code
_struct_ref.seq_align
_struct_ref.seq_dif
_struct_ref.details
seq_pdb 1 PDB 5HVP
; The structure of the closely related compound,
isobutyryl-pepstatin (pepstatin A) in complex with rhizopuspepsin
;
seq_genbank 1 . GenBank AAG30358 complete yes .
_struct_ref.biol_id
This data item is a pointer to struct_biol.id in the STRUCT_BIOL category.
*_struct_ref.db_code
(line)
The code for this entity or biological unit or for a closely related entity or biological unit in the named database.
Examples: '1ABC', 'ABCDEF'.
[struct_ref]
*_struct_ref.db_name
(line)
$\bar{T}$ The name of the database containing reference information about this entity or biological unit.
Examples: ‘PDB', ‘CSD', ‘Genbank'. [struct_ref]
_struct_ref.details
(text)
$\overline{\text { A }}$ description of special aspects of the relationship between the entity or biological unit described in the data block and that in the referenced database entry.
[struct_ref]

```
*_struct_ref.entity_id
This data item is a pointer to _entity.id in the ENTITY category.
```

*_struct_ref.id
The value of _struct_ref.id must uniquely identify a record in the STRUCT_REF list. Note that this item need not be a number; it can be any unique identifier.
The following item(s) have an equivalent role in their respective categories:
_struct_ref_seq.ref_id.
[struct_ref]
_struct_ref.seq_align (ucode)
A flag to indicate the scope of the alignment between the sequence of the entity or biological unit described in the data block and that in the referenced database entry. 'complete' indicates that alignment spans the entire length of both sequences (although point differences may occur and can be annotated using the data items in the STRUCT_REF_SEQ_DIF category). 'partial' indicates a partial alignment. The region (or regions) of the alignment may be delimited using data items in the STRUCT_REF_SEQ category. This data item may also take the value ' $\because$ ', indicating that the reference is not to a sequence.
The data value must be one of the following:
complete alignment is complete
partial alignment is partial
reference is not to a sequence
_struct_ref.seq_dif (ucode)
A flag to indicate the presence ('yes') or absence ('no') of point differences between the sequence of the entity or biological unit described in the data block and that in the referenced database entry. This data item may also take the value '. , indicating that the reference is not to a sequence.
The data value must be one of the following:

no	there are no point differences
n	abbreviation for 'no'
yes	there are point difference
y	abbreviation for 'yes'

## STRUCT_REF_SEQ

Data items in the STRUCT_REF_SEQ category provide a mechanism for indicating and annotating a region (or regions) of alignment between the sequence of an entity or biological unit described in the data block and the sequence in the referenced database entry.

$$
\begin{aligned}
& \text { Category group(s): inclusive_group } \\
& \text { struct_group }
\end{aligned}
$$

Example 1 - based on the sequence alignment of CHER from M. xantus (36 to 288) and CHER from S. typhimurium (18 to 276)
_struct_ref_seq.align_id alg1
_struct_ref_seq.ref_id seqdb1
_struct_ref_seq.seq_align_beg 36
struct_ref_seq.seq_align_end 288
_struct_ref_seq.db_align_beg 18
struct_ref_seq.db_align_end 276
_struct_ref_seq.details
; The alignment contains 3 gaps larger than 2 residues
;
*_struct_ref_seq.align_id
(code)
The value of _struct_ref_seq.align_id must uniquely identify a record in the STRUCT REF SEQ list. Note that this item need not be a number; it can be any unique identifier.
The following item(s) have an equivalent role in their respective categories:
_struct_ref_seq_dif.align_id.
[struct_ref_seq]

```
*_struct_ref_seq.db_align_beg
```

$\bar{T}$ The sequence position in the referenced database entry at which the alignment begins.
*_struct_ref_seq.db_align_end
The sequence position in the referenced database entry at which the alignment ends.

## _struct_ref_seq.details

(text)
$\overline{\mathrm{A}}$ description of $\overline{\text { special }}$ aspects of the sequence alignment.
[struct_ref_seq]
*_struct_ref_seq.seq_align_beg
The sequence position in the entity or biological unit described in the data block at which the alignment begins. This data item is a pointer to _entity_poly_seq.num in the ENTITY_POLY_SEQ category.
*_struct_ref_seq.seq_align_end
The sequence position in the entity or biological unit described in the data block at which the alignment ends. This data item is a pointer to _entity_poly_seq.num in the ENTITY_POLY_SEQ category.

## STRUCT_REF_SEQ_DIF

Data items in the STRUCT_REF_SEQ_DIF category provide a mechanism for indicating and annotating point differences between the sequence of the entity or biological unit described in the data block and the sequence of the referenced database entry.
Category group(s): inclusive_group struct_group
Category key(s): _struct_ref_seq_dif.align_id struct_ref_seq_dif.seq_num

Example 1 - based on laboratory records for CAP-DNA complex.
struct_ref_seq_dif.align_id algn2
_struct_ref_seq_dif.seq_num 181
_struct_ref_seq_dif.db_mon_id GLU
_struct_ref_seq_dif.mon_id PHE
_struct_ref_seq_dif.details
; A point mutation was introduced in the CAP at position 181 substituting PHE for GLU.
;
*_struct_ref_seq_dif.align_id
This data item is a pointer to _struct_ref_seq.align_id in the STRUCT_REF_SEQ category.
*_struct_ref_seq_dif.db_mon_id
The monomer type found at this position in the referenced database entry. This data item is a pointer to _chem_comp.id in the CHEM_COMP category.
_struct_ref_seq_dif.details
(text)
$\overline{\text { A description of }} \overline{\text { dpecial aspects of the point differences between }}$ the sequence of the entity or biological unit described in the data block and that in the referenced database entry.
[struct_ref_seq_dif]
*_struct_ref_seq_dif.mon_id
The monomer type found at this position in the sequence of the entity or biological unit described in this data block. This data item is a pointer to _chem_comp.id in the CHEM_COMP category.

[^3]
## STRUCT_SHEET

Data items in the STRUCT_SHEET category record details about the $\beta$-sheets.
Category group(s): inclusive_group
Category key(s): _struct_sheet.id
Example 1 - simple beta-barrel.

```
N O N N O N N O N N O N
 10--11--12--13--14--15--16--17--18--19--20 strand_a
 N O
 O \
 30--31--32--33--34--35--36--37--38--39--40 strand_b
 N O
 O / \
 50--51--52--53--54--55--56--57--58--59--60 strand_c
 N O
 / \ / \ / \ / \ l / \
N O N O N O N N O N N O N O
70--71--72--73--74--75--76--77--78--79--80 strand_d
 N O
 O / \ N O | \ \ N O / \
 90--91--92--93--94--95--96--97--98--99-100 strand_e
 N O
 N O
110-111-112-113-114-115-116-117-118-119-120 strand_f
 N O
N O N O O
130-131-132-133-134-135-136-137-138-139-140 strand_g
```



```
150-151-152-153-154-155-156-157-158-159-160 strand_h
 / \ O / N \ O / N O / N N N N N N
```

_struct_sheet.id
struct sheet.number strands
_struct_sheet.details

Example 2-five stranded mixed-sense sheet with one two-piece strand.


```
_struct_sheet.details
\(\overline{\mathrm{A}}\) description of special aspects of the \(\beta\)-sheet.
```

[struct_sheet]

## *_struct_sheet.id

(code)
The value of _struct_sheet.id must uniquely identify a record in the STRUCT_- $\overline{\text { SheET }}$ list. Note that this item need not be a number; it can be any unique identifier.

```
The following item(s) have an equivalent role in their respective categories:
_struct_sheet_hbond.sheet_id,
_struct_sheet_order.sheet_id,
_struct_sheet_range.sheet_id,
 _struct_sheet_topology.sheet_id.
[struct_sheet]
```


## _struct_sheet.number_strands

$\bar{T} h e ~ n u m b e r ~ o f ~ s t r a n d s ~ i n ~ t h e ~ s h e e t . ~ I f ~ a ~ g i v e n ~ r a n g e ~ o f ~ r e s i d u e s ~$ bulges out from the strands, it is still counted as one strand. If a strand is composed of two different regions of polypeptide, it is still counted as one strand, as long as the proper hydrogen-bonding connections are made to adjacent strands.
[struct_sheet]
_struct_sheet.type
(text)
$\overline{\text { A }}$ simple $\bar{d}$ descriptor for the type of the sheet.
Examples: ‘jelly-roll', 'Rossmann fold', 'beta barrel'.
[struct_sheet]

## STRUCT_SHEET_HBOND

Data items in the STRUCT_SHEET_HBOND category record details about the hydrogen bonding between residue ranges in a $\beta$-sheet. It is necessary to treat hydrogen bonding independently of the designation of ranges, because the hydrogen bonding may begin in different places for the interactions of a given strand with the one preceding it and the one following it in the sheet.
Category group(s): inclusive_group
struct_group
Category key(s): _struct_sheet_hbond.sheet_id
_struct_sheet_hbond.range_id_1
_struct_sheet_hbond.range_id_2


Example 2 - five stranded mixed-sense sheet with one two-piece strand.										
loop										
_struct_sheet_hbond.sheet_id										
_struct_sheet_hbond.range_id_1										
_struct_sheet_hbond.range_id_2										
_struct_sheet_hbond.range_1_beg_label_seq_id										
_struct_sheet_hbond.range_1_beg_label_atom_id										
_struct_sheet_hbond.range_2_beg_label_seq_id										
_struct_sheet_hbond.range_2_beg_label_atom_id										
_struct_sheet_hbond.range_1_end_label_seq_id										
_struct_sheet_hbond.range_1_end_label_atom_id										
_struct_sheet_hbond.range_2_end_label_seq_id										
struct	heet_hbond	nge_2_en	1 ab							
sheet_2	strand_a	strand_b	20	N	119	0	18	0	111	N
sheet_2	strand_b	strand_c	110	N	33	0	118	N	41	0
sheet_2	strand_c	strand_d1	38	N	52	0	40	0	50	N
sheet_2	strand_c	strand_d2	30	N	96	0	36	0	90	N
sheet_2	strand_d1	strand_e	51	N	80	0	51	0	80	N
sheet_2	strand_d2	strand_e	91	N	76	0	97	0	70	N

_struct_sheet_hbond.range_1_beg_auth_atom_id
A component of the identifier for the residue for the first partner of the first hydrogen bond between two residue ranges in a sheet. This data item is a pointer to _atom_site.auth_atom_id in the ATOM_SITE category.

## _struct_sheet_hbond.range_1_beg_auth_seq_id

$\overline{\mathrm{A}}$ component of the identifier for $\overline{-} \overline{-}$ residue for $\overline{\text { the }}$ first partner of the first hydrogen bond between two residue ranges in a sheet. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.
*_struct_sheet_hbond.range_1_beg_label_atom_id
$\overline{\mathrm{A}}$ component of the identifier for the residue for the first partner of the first hydrogen bond between two residue ranges in a sheet. This data item is a pointer to _atom_site.label_atom_id in the ATOM_SITE category.

## *_struct_sheet_hbond.range_1_beg_label_seq_id

$\overline{\mathrm{A}}$ component of the identifier for the residue for the first partner of the first hydrogen bond between two residue ranges in a sheet. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.
_struct_sheet_hbond.range_1_end_auth_atom_id A component of the identifier for the residue for the first partner of the last hydrogen bond between two residue ranges in a sheet. This data item is a pointer to _atom_site.auth_atom_id in the ATOM_SITE category.
_struct_sheet_hbond.range_1_end_auth_seq_id
$\overline{\mathrm{A}}$ component of the identifier for $\overline{\text { the }}$ - residue for the first partner of the last hydrogen bond between two residue ranges in a sheet. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.
*_struct_sheet_hbond.range_1_end_label_atom_id
$\overline{\mathrm{A}}$ component of the identifier for the residue for the first partner of the last hydrogen bond between two residue ranges in a sheet. This data item is a pointer to _atom_site.label_atom_id in the ATOM_SITE category.
*_struct_sheet_hbond.range_1_end_label_seq_id
A component of the identifier for the residue for the first partner of the last hydrogen bond between two residue ranges in a sheet. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.
struct_sheet_hbond.range_2_beg_auth_atom_id A component of the identifier for the residue for the second partner of the first hydrogen bond between two residue ranges in a sheet. This data item is a pointer to _atom_site.auth_atom_id in the ATOM_SITE category.
_struct_sheet_hbond.range_2_beg_auth_seq_id $\overline{\text { A component of the identifier for the residue for the second part- }}$ ner of the first hydrogen bond between two residue ranges in a sheet. This data item is a pointer to _atom_site.auth_seq_id in the ATOM SITE category.
*_struct_sheet_hbond.range_2_beg_label_atom_id
A component of the identifier for the residue for the second partner of the first hydrogen bond between two residue ranges in a sheet. This data item is a pointer to _atom_site.label_atom_id in the ATOM_SITE category.
*_struct_sheet_hbond.range_2_beg_label_seq_id
$\overline{\text { A component of the identifier for the residue for the second partner }}$ of the first hydrogen bond between two residue ranges in a sheet. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.
_struct_sheet_hbond.range_2_end_auth_atom_id $\bar{A}$ component of the identifier for the residue for the second partner of the last hydrogen bond between two residue ranges in a sheet. This data item is a pointer to _atom_site.auth_atom_id in the ATOM_SITE category.
_struct_sheet_hbond.range_2_end_auth_seq_id
A component of the identifier for the residue for the second partner of the last hydrogen bond between two residue ranges in a sheet. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.
*_struct_sheet_hbond.range_2_end_label_atom_id
$\overline{\text { A component of the identifier for the residue for the second partner }}$ of the last hydrogen bond between two residue ranges in a sheet. This data item is a pointer to _atom_site.label_atom_id in the ATOM_SITE category.
*_struct_sheet_hbond.range_2_end_label_seq_id
A component of the identifier for the residue for the second partner of the last hydrogen bond between two residue ranges in a sheet. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.
*_struct_sheet_hbond.range_id_1
This data item is a pointer to _struct_sheet_range.id in the STRUCT_SHEET_RANGE category.
*_struct_sheet_hbond.range_id_2
This data item is a pointer to _struct_sheet_range.id in the STRUCT_SHEET_RANGE category.

## STRUCT SHEET_ORDER

Data items in the STRUCT_SHEET_ORDER category record details about the order of the residue ranges that form a $\beta$-sheet. All order links are pairwise and the specified pairs are assumed to be adjacent to one another in the sheet. These data items are an alternative to the STRUCT_SHEET_TOPOLOGY data items and they allow all manner of sheets to be described.
Category group(s): inclusive_group
struct_group

Category key(s): _struct_sheet_order.sheet_id
_struct_sheet_order.range_id_1
struct sheet order.range id 2
Example 1 - simple beta-barrel.
loop_
_struct_sheet_order.sheet_id
_struct_sheet_order.range_id_1
_struct_sheet_order.range_id_2
_struct_sheet_order.offset
struct sheet order.sense
sheet_ $\overline{1}$ strand_a strand_b +1 parallel
sheet_1 strand_b strand_c +1 parallel
sheet_1 strand_c strand_d +1 parallel
sheet_1 strand_d strand_e +1 parallel
sheet_1 strand_e strand_f +1 parallel
sheet_1 strand_f strand_g +1 parallel
sheet_1 strand_g strand_h +1 parallel
sheet_1 strand_h strand_a +1 parallel
Example 2 - five stranded mixed-sense sheet with one two-piece strand.
loop
_struct_sheet_order.sheet_id
_struct_sheet_order.range_id_1
struct_sheet_order.range_id_2
struct_sheet_order.offset
struct_sheet_order.sense
sheet_2 strand_a strand_b +1 anti-parallel
sheet_2 strand_b strand_c +1 parallel
sheet_2 strand_c strand_d1 +1 anti-parallel
sheet_2 strand_c strand_d2 +1 anti-parallel
sheet_2 strand_d1 strand_e +1 anti-parallel
sheet_2 strand_d2 strand_e +1 anti-parallel
struct_sheet_order.offset
(int)
Designates the relative position in the sheet, plus or minus, of the second residue range to the first.
[struct_sheet_order]
*_struct_sheet_order.range_id_1
$\bar{T} h i s$ data $\bar{i} t e m$ is $\overline{\text { a }}$ pointer to struct_sheet_range.id in the STRUCT_SHEET_RANGE category.
*_struct_sheet_order.range_id_2
This data item is a pointer to _struct_sheet_range.id in the STRUCT_SHEET_RANGE category.
_struct_sheet_order.sense
(ucode)
$\overline{\mathrm{A}}$ flag to indicate whether the two designated residue ranges are parallel or antiparallel to one another.
The data value must be one of the following:
parallel
anti-parallel [struct_sheet_order]

[^4]*_struct_sheet_hbond.sheet_id
This data item is a pointer to _struct_sheet.id in the STRUCT_SHEET category.

## STRUCT_SHEET_RANGE

Data items in the STRUCT_SHEET_RANGE category record details about the residue ranges that form a $\beta$-sheet. Residues are included in a range if they made $\beta$-sheet-type hydrogen-bonding interactions with at least one adjacent strand and if there are at least two residues in the range.
Category group(s): inclusive_group
struct_group
Category key(s): _struct_sheet_range.sheet_id
struct_sheet_range.id
Example 1 - simple beta-barrel.
loop_
_struct_sheet_range.sheet_id
_struct_sheet_range.id
_struct_sheet_range.beg_label_comp_id
struct_sheet_range.beg_label_asym_id
struct_sheet_range.beg_label_seq_id
_struct_sheet_range.end_label_comp_id
struct_sheet_range.end_label_asym_id
struct_sheet_range.end_label_seq_id
struct_sheet_range.symmetry
sheet_1 strand_a ala A 20 ala A 30 1_555
sheet_1 strand_b ala A 40 ala A 50 1_555
sheet_1 strand_c ala A 60 ala A 70 1_555
sheet_1 strand_d ala A 80 ala A 90 1_555
sheet_1 strand_e ala A 100 ala A 110 1_555
sheet_1 strand_f ala A 120 ala A 130 1_555
sheet_1 strand_g ala A 140 ala A 150 1_555
sheet_1 strand_h ala A 160 ala A 170 1_555
Example 2 -five stranded mixed-sense sheet with one two-piece strand.
loop_
_struct_sheet_range.sheet_id
struct sheet range.id
_struct_sheet_range.beg_label_comp_id
struct_sheet_range.beg_label_asym_id
struct_sheet_range.beg_label_seq_id
struct_sheet_range.end_label_comp_id
struct_sheet_range.end_label_asym_id
struct_sheet_range.end_label_seq_id
_struct_sheet_range.symmetry
sheet_2 strand_a ala A 10 ala A 181555
sheet 2 strand b ala A 110 ala A 119 1 555
sheet_2 strand_c ala A 30 ala A 41 1_555
sheet_2 strand_d1 ala A 50 ala A 52 1_555
sheet 2 strand d2 ala A 90 ala A 97 1 555
sheet_2 strand_e ala A 70 ala A 80 1_555

## _struct_sheet_range.beg_auth_asym_id

$\overline{\mathrm{A}}$ component of the identifier for the residue at which the $\beta$-sheet range begins. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.

```
struct_sheet_range.beg_auth_comp_id
```

A component of the identifier for the residue at which the $\beta$-sheet range begins. This data item is a pointer to _atom_site.auth_comp_id in the ATOM_SITE category.
_struct_sheet_range.beg_auth_seq_id
$\overline{\mathrm{A}}$ component of the identifier for the residue at which the $\beta$-sheet range begins. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.

## *_struct_sheet_range.beg_label_asym_id

$\overline{\text { A component of the identifier for the residue at which the } \beta \text {-sheet }}$ range begins. This data item is a pointer to _struct_asym.id in the STRUCT_ASYM category.
*_struct_sheet_range.beg_label_comp_id
A component of the identifier for the residue at which the $\beta$-sheet range begins. This data item is a pointer to _chem_comp.id in the CHEM_COMP category.
*_struct_sheet_range.beg_label_seq_id
A component of the identifier for the residue at which the $\beta$-sheet range begins. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.
_struct_sheet_range.end_auth_asym_id
A component of the identifier for the residue at which the $\beta$-sheet range ends. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.
struct_sheet_range.end_auth_comp_id
A component of the identifier for the residue at which the $\beta$-sheet range ends. This data item is a pointer to _atom_site.auth_comp_id in the ATOM_SITE category.
_struct_sheet_range.end_auth_seq_id
$\overline{\mathrm{A}}$ component of the identifier for the residue at which the $\beta$-sheet range ends. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.

```
*_struct_sheet_range.end_label_asym_id
```

A component of the identifier for the residue at which the $\beta$-sheet range ends. This data item is a pointer to _struct_asym.id in the STRUCT_ASYM category.
*_struct_sheet_range.end_label_comp_id
$\overline{\mathrm{A}}$ component of the identifier for the residue at which the $\beta$-sheet range ends. This data item is a pointer to _chem_comp.id in the CHEM_COMP category.
*_struct_sheet_range.end_label_seq_id
A component of the identifier for the residue at which the $\beta$-sheet range ends. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.
*_struct_sheet_range.id (code)
The value of _struct_sheet_range.id must uniquely identify a range in a given sheet in the STRUCT_SHEET_RANGE list. Note that this item need not be a number; it can be any unique identifier.
The following item(s) have an equivalent role in their respective categories:
_struct_sheet_hbond.range_id_1,
_struct_sheet_hbond.range_id_2,
_struct_sheet_order.range_id_1,
_struct_sheet_order.range_id_2,
_struct_sheet_topology.range_id_1,
_struct_sheet_topology.range_id_2. [struct_sheet_range]
*_struct_sheet_range.sheet_id
$\bar{T}$ This data item $\overline{\text { is }}$ a pointer to _struct_sheet.id in the STRUCT_SHEET category.
struct_sheet_range.symmetry
(symop)
Describes the symmetry operation that should be applied to the residues delimited by the start and end designators in order to generate the appropriate strand in this sheet.
[struct_sheet_range]

## STRUCT_SHEET_TOPOLOGY

Data items in the STRUCT_SHEET_TOPOLOGY category record details about the topology of the residue ranges that form a $\beta$-sheet. All topology links are pairwise and the specified pairs are assumed to be successive in the amino-acid sequence. These data items are useful in describing various simple and complex folds, but they become inadequate when the strands in the sheet come from more than one chain. The STRUCT_SHEET_ORDER data items can be used to describe single- and multiple-chaincontaining sheets.
Category group(s): inclusive_group

> struct_group

Category key(s): _struct_sheet_topology.sheet_id
_struct_sheet_topology.range_id_1
_struct_sheet_topology.range_id_2
Example 1 - simple beta-barrel.
loop_
_struct_sheet_topology.sheet_id
_struct_sheet_topology.range_id_1
struct_sheet_topology.range_id_2
struct_sheet_topology.offset
struct_sheet_topology.sense
sheet_1 strand_a strand_b +1 parallel
sheet_1 strand_b strand_c +1 parallel
sheet_1 strand_c strand_d +1 parallel
sheet_1 strand_d strand_e +1 parallel
sheet_1 strand_e strand_f +1 parallel
sheet_1 strand_f strand_g +1 parallel
sheet_1 strand_g strand_h +1 parallel
sheet_1 strand_h strand_a +1 parallel
Example 2 -five stranded mixed-sense sheet with one two-piece strand.
loop_
struct_sheet_topology.sheet_id
struct_sheet_topology.range_id_1
struct_sheet_topology.range_id_2
struct_sheet_topology.offset
struct_sheet_topology.sense
sheet_2 strand_a strand_c +2 anti-parallel
sheet_2 strand_c strand_d1 +1 anti-parallel
sheet_2 strand_d1 strand_e +1 anti-parallel
sheet_2 strand_e strand_d2 -1 anti-parallel
sheet_2 strand_d2 strand_b -2 anti-parallel
_struct_sheet_topology.offset
(int)
Designates the relative position in the sheet, plus or minus, of the second residue range to the first.
[struct_sheet_topology]
*_struct_sheet_topology.range_id_1
This data item is a pointer to _struct_sheet_range.id in the STRUCT_SHEET_RANGE category.

```
*_struct_sheet_topology.range_id_2
```

This data item is a pointer to _struct_sheet_range.id in the STRUCT_SHEET_RANGE category.
_struct_sheet_topology.sense
(ucode)
$\overline{\mathrm{A}}$ flag to indicate $\overline{\text { w }}$ whether the two designated residue ranges are parallel or antiparallel to one another.
The data value must be one of the following:
parallel
anti-parallel
[struct_sheet_topology]
*_struct_sheet_topology.sheet_id
This data item is a pointer to _struct_sheet.id in the STRUCT_SHEET category.

## STRUCT_SITE

Data items in the STRUCT_SITE category record details about portions of the structure that contribute to structurally relevant sites (e.g. active sites, substrate-binding subsites, metal-coordination sites)
Category group(s): inclusive_group
struct_group
Category key(s): _struct_site.id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.
loop_
struct_site.id
_struct_site.details
'P2 site C'
; residues with a contact < $3.7 \backslash \% \mathrm{~A}$ to an atom in the P 2
moiety of the inhibitor in the conformation with _struct_asym.id = C
;
'P2 site D
; residues with a contact < $3.7 \backslash \% \mathrm{~A}$ to an atom in the P1 moiety of the inhibitor in the conformation with
_struct_asym.id = D)

## struct site.details

A description of special aspects of the site.
*_struct_site.id
(line)
The value of _struct_site.id must uniquely identify a record in the STRUCT_SITE list. Note that this item need not be a number; it can be any unique identifier.
The following item(s) have an equivalent role in their respective categories: _struct_site_gen.site_id,
_struct_site_keywords.site_id,
struct site view.site id.
[struct site]

## STRUCT_SITE_GEN

Data items in the STRUCT_SITE_GEN category record details about the generation of portions of the structure that contribute to structurally relevant sites.
Category group(s): inclusive_group
struct_group
Category key(s): _struct_site_gen.id
struct_site_gen.site id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

## loop_

struct_site_gen.id
_struct_site_gen.site_id
_struct_site_gen.label_comp_id
_struct_site_gen.label_asym_id
_struct_site_gen.label_seq_id
_struct_site_gen.symmetry
_struct_site_gen.details

1	1	VAL	A	32	$1 \_555$	.
2	1	ILE	A	47	$1 \_555$	.
3	1	VAL	A	82	$1 \_555$	.
4	1	ILE	A	84	$1 \_555$	.
5	2	VAL	B	232	$1-555$	.
6	2	ILE	B	247	$1 \_555$	.
7	2	VAL	B	282	$1 \_555$	.
8	2	ILE	B	284	$1 \_555$	.

## _struct_site_gen.auth_asym_id

A component of the identifier for participants in the site. This data item is a pointer to _atom_site.auth_asym_id in the ATOM_SITE category.
struct_site_gen.auth_atom_id
$\bar{A}$ component of the identifier for participants in the site. This data item is a pointer to _atom_site.auth_atom_id in the ATOM_SITE category.
_struct_site_gen.auth_comp_id
$\bar{A}$ component of the identifier for participants in the site. This data item is a pointer to _atom_site.auth_comp_id in the ATOM_SITE category.
_struct_site_gen.auth_seq_id
A component of the identifier for participants in the site. This data item is a pointer to _atom_site.auth_seq_id in the ATOM_SITE category.
_struct_site_gen.details (text)
A description of special aspects of the symmetry generation of this portion of the structural site.
Example:
; The zinc atom lies on a special position; application of symmetry elements to generate the insulin hexamer will generate excess zinc atoms, which must be removed by hand.
[struct_site_gen]
*_struct_site_gen.id
(line)
The value of _struct_site_gen.id must uniquely identify a record in the STRUCT_SITE_GEN list. Note that this item need not be a number; it can be any unique identifier.
[struct_site_gen]

## *_struct_site_gen.label_alt_id

A component of the identifier for participants in the site. This data item is a pointer to _atom_sites_alt.id in the ATOM_SITES_ALT category.

## *_struct_site_gen.label_asym_id

$\overline{\mathrm{A}}$ component of the identifier for participants in the site. This data item is a pointer to _atom_site.label_asym_id in the ATOM_SITE category.

## * struct site gen.label atom id

A component of the identifier for participants in the site. This data item is a pointer to _chem_comp_atom.atom_id in the CHEM_COMP_ATOM category.

```
*_struct_site_gen.label_comp_id
```

A component of the identifier for participants in the site. This data item is a pointer to _atom_site.label_comp_id in the ATOM_SITE category.
*_struct_site_gen.label_seq_id
A component of the identifier for participants in the site. This data item is a pointer to _atom_site.label_seq_id in the ATOM_SITE category.
*_struct_site_gen.site_id
This data item is a pointer to _struct_site.id in the STRUCT_SITE category.

## struct_site_gen.symmetry (symop)

Describes the symmetry operation that should be applied to the atom set specified by _struct_site_gen.label* to generate a portion of the site.
Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied),
'7_645' (7th symmetry position: $+a$ on $x,-b$ on $y$ ). [struct_site_gen]

## STRUCT_SITE_KEYWORDS

Data items in the STRUCT_SITE_KEYWORDS category record keywords describing the site.
Category group(s): inclusive_group
struct_group
Category key(s): struct site keywords.site id
struct_site_keywords.text
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP.

## loop_

_struct_site_keywords.site_id
_struct_site_keywords.text
'P2 site C' 'binding site'
'P2 site C' 'binding pocket'
'P2 site C' 'P2 site'
'P2 site C' 'P2 pocket'
'P2 site $D^{\prime}$ 'binding site'
'P2 site D' 'binding pocket'
'P2 site D' 'P2 site'
'P2 site D' 'P2 pocket'
*_struct_site_keywords.site_id
This data item is a pointer to _struct_site.id in the STRUCT_SITE category.

## * struct site keywords.text

Keywords describing this site.
Examples: ‘active site', 'binding pocket', 'Ca coordination'.

## STRUCT_SITE_VIEW

Data items in the STRUCT_SITE_VIEW category record details about how to draw and annotate an informative view of the site.
Category group(s): inclusive_group

## struct_group

Category key(s): _struct_site_view.id
Example 1 - based on NDB structure GDL001 by Coll, Aymami, Van Der Marel, Van Boom, Rich \& Wang [Biochemistry (1989), 28, 310-320].
_struct_site_view.id 1
struct site_view.rot matrix[1] [1] 0.132
struct_site_view.rot_matrix[1][2] 0.922
_struct_site_view.rot_matrix[1] [3]
struct_site_view.rot_matrix[2][1] 0.131
struct_site_view.rot_matrix[2][2] -0.380
_struct_site_view.rot_matrix[2][3]
struct site view.rot matrix[3] [1] -0.982
_struct_site_view.rot_matrix[3][2] 0.073
_struct_site_view.rot_matrix[3] [3] -0.172
struct site view. details
; This view highlights the site of ATAT-Netropsin interaction.
_struct_site_view.details
(text)
$\overline{\text { A description of special aspects of this view of the site. This data }}$ item can be used as a figure legend.
Example:
; The active site has been oriented with the specificity pocket on the right and the active site machinery on the left. [struct_site_view]

## *_struct_site_view.id

The value of _struct_site_view.id must uniquely identify a record in the STRUCT_SITE_VIEW list. Note that this item need not be a number, it can be any unique identifier.
Examples: ‘Figure 1’, ‘unliganded enzyme',
'view down enzyme active site'.
[struct_site_view]

(float) The [1][1] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_SITE_GEN category to an orientation useful for visualizing the site. The conventions used in the rotation are described in _struct_site_view.details.

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {reoriented Cartesian }}=\left(\begin{array}{ccc}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}
$$

[struct_site_view]

## _struct_site_view.rot_matrix[1] [2]

(float)
The [1][2] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_SITE_GEN category to an orientation useful for visualizing the site. The conventions used in the rotation are described in _struct_site_view.details.

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {reoriented Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}
$$

[struct_site_view]

## _struct_site_view.rot_matrix[1] [3]

(float)
The [1][3] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_SITE_GEN category to an orientation useful for visualizing the site. The conventions used in the rotation are described in _struct_site_view.details.

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {reoriented Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}
$$

[struct_site_view]

## struct_site_view.rot_matrix [2] [1]

(float)
The [2][1] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_SITE_GEN category to an orientation useful for visualizing the site. The conventions used in the rotation are described in _struct_site_view.details.

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {reoriented Cartesian }}=\left(\begin{array}{ccc}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}
$$

[struct_site_view]

The [2][2] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_SITE_GEN category to an orientation useful for visualizing the site. The conventions used in the rotation are described in _struct_site_view.details.

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {reoriented Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}
$$

_struct_site_view.rot_matrix[2] [3] (float) The [2][3] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_SITE_GEN category to an orientation useful for visualizing the site. The conventions used in the rotation are described in _struct_site_view.details.

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {reoriented Cartesian }}=\left(\begin{array}{ccc}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }} .
$$

[struct_site_view]

## _struct_site_view.rot_matrix[3][1] (float)

The [3][1] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_SITE_GEN category to an orientation useful for visualizing the site. The conventions used in the rotation are described in _struct_site_view.details.

$$
\begin{aligned}
& \left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {reoriented Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }} \cdot \\
& \text { [struct_site_view] } \\
& \text { struct_site_view.rot_matrix[3][2] }
\end{aligned}
$$

The [3][2] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_SITE_GEN category to an orientation useful for visualizing the site. The conventions used in the rotation are described in _struct_site_view.details.

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {reoriented Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }} .
$$

[struct_site_view]
_struct_site_view.rot_matrix[3][3] (float)
The [3][3] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_SITE_GEN category to an orientation useful for visualizing the site. The conventions used in the rotation are described in _struct_site_view.details.

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)_{\text {reoriented Cartesian }}=\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{\text {Cartesian }}
$$

[struct_site_view]

[^5]
## SYMMETRY

Data items in the SYMMETRY category record details about the space-group symmetry.
Category group(s): inclusive_group
symmetry_group
Category key(s): _symmetry.entry_id
Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry $5 H V P$.

## symmetry.entry id <br> -_symmetry.cell_setting <br> _symmetry.Int_Tables_number

symmetry.space group name $H-M$

## '5HVP'

```
 '5HVP'
 orthorhombic
 18
```

                                    'P 2121 2'
    
## symmetry.cell_setting

_symmetry_cell_setting (cif_core.dic 2.0.1)
The cell settings for this space-group symmetry.
The data value must be one of the following:
triclinic
monoclinic
orthorhombic
tetragonal
rhombohedral
trigonal
hexagonal
cubic
[symmetry]
*_symmetry.entry_id
This data item is a pointer to _entry.id in the ENTRY category.
4. DATA DICTIONARIES
(ucode) *_symmetry_equiv.id
(code)
_symmetry_equiv_pos_site_id(cif_core.dic 2.0.1)
The value of _symmetry_equiv.id must uniquely identify a record in the SYMMETRY_EQUIV category. Note that this item need not be a number; it can be any unique identifier.
[symmetry_equiv.

## symmetry_equiv.pos_as_xyz

(line)
_symmetry_equiv_pos_as_xyz (cif_core.dic 2.0.1)
Symmetry-equivalent position in the ' $x y z$ ' representation. Except for the space group $P 1$, these data will be repeated in a loop. The format of the data item is as per International Tables for Crystallography Vol. A (2002). All equivalent positions should be entered, including those for lattice centring and a centre of symmetry, if present.
Example: ' $-\mathrm{y}+\mathrm{x},-\mathrm{y}, 1 / 3+\mathrm{z}$. $\quad$ [symmetry_equiv]

## VALENCE_PARAM

Data items in the VALENCE_PARAM category define the parameters used for calculating bond valences from bond lengths. In addition to the parameters, a pointer is given to the reference (in VALENCE_REF) from which the bond-valence parameters were taken
Category key(s): _valence_param.atom_1
_valence_param.atom_1_valence
_valence_param.atom_2
valence_param.atom_2_valence
Example 1 - a bond-valence parameter list with accompanying references.
loop_
_valence_param.atom_1
valence param.atom 1 valence
_valence_param.atom_2
_valence_param.atom_2_valence
valence param.Ro
valence_param.B
_valence_param.ref_id
valence param.details
$\mathrm{Cu} 20-21.6790 .37 \mathrm{a}$.
$\mathrm{Cu} 2 \mathrm{O}-21.6490 .37 \mathrm{j}$.
$\mathrm{Cu} 2 \mathrm{~N}-31.64 \quad 0.37 \mathrm{~m} \quad 2$-coordinate N
Cu $2 \mathrm{~N}-31.76 \quad 0.37 \mathrm{~m} \quad 3$-coordinate $\mathrm{N}^{\prime}$
loop_
valence ref.id
_-valence_ref.reference
a 'Brown \& Altermatt (1985), Acta Cryst. B41, 244-247'
$j$ 'Liu \& Thorp (1993), Inorg. Chem. 32, 4102-4205'
m 'See, Krause \& Strub (1998), Inorg. Chem. 37, 5369-5375'
*_valence_param.atom_1
(code)
_valence_param_atom_1 (cif_core.dic 2.3)
The element symbol of the first atom forming the bond whose bond-valence parameters are given in this category
[valence_param]
*_valence_param.atom_1_valence
(int)
_valence_param_atom_1_valence(cif_core.dic 2.3)
The valence (formal charge) of the first atom whose bond-valence parameters are given in this category.
[valence_param]

## * valence_param.atom_2 <br> _valence_param_atom_2 (cif_core.dic 2.3)

(code)
The element symbol of the second atom forming the bond whose bond-valence parameters are given in this category.
*_valence_param.atom_2_valence _valence_param_atom_2_valenceé(cif_core.dic 2.3)
The valence (formal charge) of the second atom whose bondvalence parameters are given in this category.

> [valence_param]

## _valence_param.B

(float)
_valence_param_B(cif_core.dic 2.3)
The bond-valence parameter $B$ used in the expression

$$
s=\exp \left[\left(R_{o}-R\right) / B\right]
$$

where $s$ is the valence of a bond of length $R$.

> [valence_param]

## _valence_param.details

(text)
_valence_param_details(cif_core.dic 2.3)
Details of or comments on the bond-valence parameters.

> [valence_param]
_valence_param.id (code) _valence_param_id (cif_core.dic 2.3)
An identifier for the valence parameters of a bond between the given atoms.
[valence_param]
_valence_param.ref_id
(code) _valence_param_ref_id(cif_core.dic 2.3)
An identifier which links to the reference to the source from which the bond-valence parameters are taken. A child of _valence_ref.id which it must match.
_valence_param.Ro
(float)
_valence_param_Ro (cif_core.dic 2.3)
The bond-valence parameter $R_{o}$ used in the expression

$$
s=\exp \left[\left(R_{o}-R\right) / B\right]
$$

where $s$ is the valence of a bond of length $R$.

> [valence_param]

## VALENCE_REF

Data items in the VALENCE_REF category list the references from which the bond-valence parameters have been taken.
Category key(s): _valence_ref.id
*_valence_ref.id
_valence_ref_id(cif_core.dic 2.3)
An identifier for items in this category. Parent of _valence_ param.ref_id, which must have the same value.

Literature reference from which the valence parameters identified by _valence_param.id were taken.


[^0]:    Affiliations: Paula M. D. Fitzgerald, Merck Research Laboratories, Rahway, New Jersey, USA; John D. Westbrook, Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers, The State University of New Jersey, Department of Chemistry and Chemical Biology, 610 Taylor Road, Piscataway, NJ, USA; Phillip E. Bourne, Research Collaboratory for Structural Bioinformatics, San Diego Supercomputer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0537, USA; Brian McMahon, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England; Keith D. Watenpaugh, retired; formerly Structural, Analytical and Medicinal Chemistry, Pharmacia Corporation, Kalamazoo, Michigan, USA; Helen M. Berman, Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers, The State University of New Jersey, Department of Chemistry and Chemical Biology, 610 Taylor Road, Piscataway, NJ, USA.

[^1]:    *_reflns_class.code
    _reflns_class_code (cif_core.dic 2.3)

[^2]:    * reflns_scale.group code
    (line)
    _reflns_scale_group_code(cif_core.dic 2.0.1)
    The code identifying a scale _reflns_scale.meas_f, reflns_ scale.meas_F_squared or _reflns_scale.meas_intensity. These are linked to the REFLN list by the refln.scale_ group_code. These codes need not correspond to those in the DIFFRN_SCALE list.
    The following item(s) have an equivalent role in their respective categories:
    _refln.scale_group_code.
    Examples: '1', '2', ‘c1', ‘c2'.
    [reflns_scale]

[^3]:    *_struct_ref_seq_dif.seq_num
    This data item is a pointer to _entity_poly_seq.num in the ENTITY_POLY_SEQ category.

[^4]:    *_struct_sheet_order.sheet_id
    This data item is a pointer to _struct_sheet.id in the STRUCT_SHEET category.

[^5]:    *_struct_site_view.site_id
    This data - item is a pointer to _struct_site.id in the STRUCT_SITE category.

