

OpenMMS: An Ontology Driven Architecture
for Macromolecular Structure

Douglas S. Greer
University of California, San Diego

John D. Westbrook
Rutgers University

Philip E. Bourne
University of California, San Diego

An object metamodel based on a standard scientific ontology has been developed and used to
generate a CORBA interface, an SQL schema and an XML representation for macromolecular
structure (MMS) data. In addition to the interface and schema definitions, the metamodel was
also used to generate the core elements of a CORBA reference server and a JDBC database
loader. The Java source code which implements this metamodel, the CORBA server, database
loader and XML converter are part of the soon to be released OpenMMS toolkit.

The CORBA, SQL and XML expressions of the MMS data were designed to address the needs
of a wide range of applications and to provide efficient, high performance access for several
common use cases. These cases include many types of services and applications that require
fast and flexible access to molecular structure information provided by the Protein Data Bank
(PDB) [1]. Many types of inquires involve calculations based on the spatial position of atoms or
residues while others involve extensive string searches through complex data types. Although
these inquiries cannot be anticipated in advance, a major goal of this work is to provide an
easy-to-use, interfaces that can provide for specialized computations with near-optimal
performance.

A major milestone in this work was passed in February 2001 when the Board of Directors of
the Object Management Group (OMG) voted to adopt the CORBA IDL Macromolecular
Structure specification derived from this metamodel. This specification [2] provides an open,
standardized object-oriented application-programming interface (API) that allows direct access
by remote programs to the binary data structures of the PDB.

The overall view of the OpenMMS toolkit is shown in Figure 1. In the upper portion of this
figure, the flow of information that describes the structure of the MMS data is shown using
thin black arrows. In the lower portion, the flow of actual MMS data is shown using thick gray
arrows.

The mmCIF ontology metamodel is derived from the scientific ontology [3] developed by the
International Union of Crystallography (IUCr) and based on the macromolecular
Crystallographic Information File (mmCIF) standard, which encompasses both the mmCIF
dictionary and the mmCIF data files [4]. The mmCIF dictionary, which provides a technical
definition of the data fields along with their representations and relationships, supplies most
of the information used by the metamodel framework. The solid scientific basis provided by
the dictionary helps promote program interoperability and insure correct numerical results.
Although the mmCIF dictionary was written in STAR format [5], the MMS ontology metamodel
extracts the needed information from the dictionary such that the ontology and its derivations
are independent of STAR or any other particular file format.

The metamodel itself is structured as a directed acyclic graph, which is created from a
hierarchy with some well-defined interconnections between the nodes. The nodes are
instances of metamodel classes such as interfaces, structs, lists, constants and fields. A
framework that determines which mmCIF categories and items are to be used and how they
are partitioned into modules defines the overall structure of the metamodel. The XML, SQL
and CORBA expressions of the mmCIF ontology and several of the key Java source code files

Figure 1. The OpenMMS Metamodel and Dataflow

mmCIF Dictionary

Metamodel Framework

CORBA IDL, SQL Schema,
XML DTD, Java Loaders

mmCIF Ontology
Metamodel

A
p
p
l
i
c
a
t
i
o
n
s

mmCIF
Data Files

(Reference Standard)

CORBA
Server

Relational
Database

mmCIF
Parsers

XML Files

are generated from the metamodel using the “Visitor” design pattern [6]. The Visitor base class
defines the process of traversing the metamodel hierarchy and various Visitor subclasses
generate specific files such as the CORBA IDL definition, the SQL schema and Java source
code for the JDBC loader. Using the Visitor design pattern allows the code that generates each
of these to be cleanly divided into a separate class. Furthermore the subclasses only need to
override methods in the base class that correspond to metamodel elements they are interested
in.

The “glue” that ties together the CORBA, XML and SQL representations of the MMS data is
the mmCIF data files. Any errors or discrepancies in these expressed forms are resolved by
referring back to this standard reference. The Entry object, which models a single structure, is
a central object defined in the metamodel. In the XML, mmCIF, and PDB representations an
Entry usually corresponds to a single flat file. With any of these flat files representations users
are required to retrieve and parse the complete file in order to use even a small portion of it.
However implementations of the CORBA and SQL interfaces allow applications to retrieve a
single MMS data element from a remote server and import it for local use. Moreover the data
is already in binary form, so the time consuming parsing and ASCII to binary conversions that
are performed repeatedly by each application, are not necessary.

Among the four methods for obtaining MMS data that are shown in Figure 1, the mmCIF
parsers are the most general purpose and also provide the most detailed access to the
underlying data. Parsers and access libraries in several programming languages have been
developed to support mmCIF [7]. In addition, the OpenMMS toolkit contains a Java parser
that is used to generate the XML, SQL and CORBA data representations, but can also be used
directly by application software to load specific application defined data structures. Rather
than force an application to use a data structure defined by the parser, the Java parser uses
the “Builder” design pattern [6] to pass data directly into an application. Using this approach,
the application creates a subclass of the parser’s Builder class and overrides a few methods
with code that examines the parameterized data types, and stores the data values of interest
into a data structure that it defines.

A relational database that supports an SQL-92 compatible interface provides an appropriate
API for many applications, particularly ones that require extensive string searches. The
mmCIF ontology maps onto a relational database schema in natural way in that categories in
mmCIF correspond to entities or tables and items in mmCIF correspond to attributes or
columns.

XML is a simple, powerful and widely used standard for interchanging data. However the use
of opening and closing tags around each data value results in a file size approximately ten
times larger that the corresponding mmCIF data file which uses a single white space
separator between data values in a loop structure. Due to the large number of atoms in a
typical structure, these large files quickly overwhelm most general-purpose XML software.
CML [6] and other XML formats have proposed grouping the data items in rows or columns
surrounded by single tags, but such schemes lose some of the advantages gained by using
XML. However in either case XML files can still serve as the lingua franca between
applications provided they are able to efficiently handle the large amount of data involved.

In situations where the XML will ultimately be displayed by a users web browser, a system
design that generates a potentially much smaller XML document based on a query to a
relational database may be more appropriate. This data path is shown in Figure 1. Software
for generating XML documents based on SQL or XML queries is not provided by the OpenMMS
toolkit, but is available from many relational database companies and third-party software
vendors.

The CORBA server potentially provides the highest performance access to MMS data. The
object-oriented interface is used to define structures independent of platform and
programming language, and yet may be optimized to copy binary data quickly and efficiently
across the network. Thus by the appropriate caching of the binary MMS data, a CORBA server
can provide ideal support for extensive scientific calculations performed in a large
multiprocessor environment.

Applications are always limited by the computational power and I/O bandwidth of the
available hardware and the time available for software development and optimization. The
appropriate use of metamodels can present the scientific data in a number of ways that
reduce the burden on software developers while at the same time increasing the effective
functionality and performance.

The PDB is managed by the Research Collaboratory for Structural Bioinformatics (RCSB), a
nonprofit consortium comprised of Rutgers University, the San Diego Supercomputer Center
and the National Institute of Standards and Technology.

References

1. H.M. Berman, J.D. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N.
Shindyalov, and P.E. Bourne, (2000) The Protein Data Bank. Nucleic Acid Research
28(1), 235-242.

2. ftp://ftp.omg.org/pub/docs/lifesci/00-11-01.pdf
3. J.D. Westbrook and P.E. Bourne, (2000) STAR/mmCIF: An Extensive Ontology for

Macromolecular Structure and Beyond. Bioinformatics 16(2) 159-168
4. P.E. Bourne, H.M. Berman, B. McMahon, K. Watenpaugh, J. Westbrook., and P.M.D.

Fitzgerald, (1997) The Macromolecular CIF Dictionary. Methods in Enzymology. 1997
227, 571-590.

5. S.R. Hall, (1991) The STAR file: A new format for electronic data transfer and
archiving. J. Chem Inf. Comput. Sci., 31, 326-333

6. E. Gamma, R. Helm, R. Johnson, J. Vlissides. (1994) Design Patterns, Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading MA.

7. http://www.rcsb.org/pdb, http://pdb.sdsc.edu, http://pdb.rutgers.edu/mmcif,
http://www.iucr.ac.uk/iucr-top/cif/index.html

Authors Contact Address
 Douglas S. Greer
 San Diego Supercomputer Center
 University of California, San Diego
 9500 Gilman Drive
 La Jolla, CA, 92093-0527, USA
 Email: dsg@sdsc.edu

