
Programming with PyCIFRW and PySTARRW

July 24, 2006

PyCIFRW provides facilities for reading, manipulating and writing CIF and
STAR �les. In addition, CIF �les and dictionaries may be validated against
DDL1/2 dictionaries.

1 Installing and Initialising PyCIFRW

Assuming python is installed, you can unpack the distribution into a tempo-
rary directory, and then type �python setup.py install� from within this
temporary directory. Upon completion of this command, four �les will have
been placed into the python packages directory: CifFile.py, StarFile.py,
yapps_compiled_rt.py and YappsStarParser.py. It is then su�cient to im-
port CifFile.py into your python session or script to access all CIF features:

> > > import CifFile

2 Working with CIF �les

2.1 Creating a CifFile object

CIF �les are represented in PyCIFRW as CifFile objects. These objects behave
identically to Python dictionaries, with some additional methods. CIF �les can
be created by calling the ReadCif function on a �lename or URL:

> > > cf = CifFile.ReadCif(�mycif.cif�)

> > > df = CifFile.ReadCif(�ftp://ftp.iucr.org/pub/cifdics/cifdic.register�)

Errors are raised if CIF syntax/grammar violations are encountered in the input
�le or line length limits are exceeded.

An experimental compiled extension (StarScan.so) is available on Linux
which increases parsing speed by a factor of three or more. To use this facil-
ity, include the keyword argument �scantype='flex'� in ReadCif/ReadStar
commands:

cf = CifFile.ReadCif(�mycif.cif�,scantype=�flex�)

1



2.1.1 Creating a new CifFile

A new CifFile object is usually created empty:

cf = CifFile.CifFile()

You will need to create at least one CifBlock object to hold your data:

myblock = CifFile.CifBlock()

cf['a_block'] = myblock

A CifBlock object may be initialised with another CifBlock, in which case a
copy operation is performed, or with a tuple or list of tuples containing key,
value pairs. These are inserted into the new CifBlock using AddCifItem (see
below).

2.2 Manipulating values in a CIF �le

2.2.1 Accessing data

The simplest form of access is using standard Python square bracket notation.
Data blocks and data names within each data block are referenced identically
to normal Python dictionaries:

my_data = cf['a_data_block']['_a_data_name']

All values are strings with CIF syntactical elements stripped, that is, no en-
closing quotation marks or semicolons are included in the values. The value
associated with a CifFile dictionary key is always a CifBlock object. All
standard Python dictionary methods (e.g. get, update, items, keys) are
available for both CifFile and CifBlock objects.

If a data name occurs in a loop, a list of string values is returned for the
value of that dataname. However, in practice, looped data is usually only use-
ful in combination with other values from the same loop. CifBlock method
GetLoop(dataname) will return all data in the loop containing dataname as a
CifLoopBlock object, which provides the same methods as a CifBlock. For
example, keys() returns a list of datanames in the loop. Additionally, loop
packets can be accessed by accessing the nth value in the CifLoopBlock object:

> > > lb = cb.GetLoop(�_item_5�)

> > > lb[0]

['1', 'a', '5']

The corresponding datanames are accessible through method GetItemOrder:

> > > lb.GetItemOrder()

['_item_5', '_item_7', '_item_6']

2



An alternative way of accessing loop data is through the built in CifLoopBlock

iterator, which on each call to the iterator object returns a CifLoopBlock with
single-valued datanames (for most purposes identical to a Python dictionary):

> > > for a in lb: print `a["_item_7"]`

'a' 'b' 'c' 'd'

2.2.2 Changing or adding data values

If many operations are going to be performed on a single data block, it is
convenient to assign that block to a new variable:

cb = cf['my_block']

A new data name and value may be added, or the value of an existing name
changed, by straight assignment:

cb['_new_data_name'] = 4.5

cb['_old_data_name'] = 'cucumber'

Old values are overwritten silently. Note that values may be strings or numbers.
If a list is given as the value instead of a single string or number, a new loop

is created containing this one data name, looped. If this data name already
appeared in a loop, any looped data values which may have co-occurred in the
loop are deleted. As this is not necessarily the desired behaviour, you may wish
to access the loop block using the GetLoop method described above.

Alternatively, the AddCifItem method can be used to add multiple looped
and unlooped data items in a single command. AddCifItem is called with a
2-element tuple argument. The �rst element of the tuple is either a single
dataname, or a list or tuple of datanames. The second element is either a single
value (in the case of a single name in the �rst element) or a list, each element
of which is a list of values taken by the corresponding dataname in the �rst
element. A nested tuple of datanames in the �rst element together with the
corresponding nested tuple of lists in the second element will become a loop
block in the Cif �le. In general, however, it will be less confusing to create a
CifLoopBlock object, populate it with data items, and then insert it into a
CifBlock object (see below).

Another method, AddToLoop(dataname,newdata), adds newdata to the
pre-existing loop containing dataname, silently overwriting duplicate data. Newdata
should be a Python dictionary of dataname - datavalue pairs, with datavalue

a list of new/replacement values.
Note that lists (and objects) returned by PyCIFRW actually represent the

list currently inside the CifBlock, and therefore any modi�cation to them will
modify the stored list. While this is often the desired behaviour, if you intend
to alter any such lists in other parts of your program while maintaining CIF
integrity, you should �rst copy them to avoid destroying the loop structure:

3



mysym = cb['_symmetry_ops'][:]

mysym.append('x-1/2,y+1/2,z')

Changing item order The ChangeItemOrder method allows the order in
which data items appear in the printed �le to be changed:

mycif['testblock'].ChangeItemOrder('_item_5',0)

will move _item_5 to the beginning of the datablock. When changing the order
inside a loop block, the loop block's method must be called i.e.:

aloop = mycif['testblock'].GetLoop('_loop_item_1')

aloop.ChangeItemOrder('_loop_item_1',4)

Note also that the position of a loop within the �le can be changed in this way
as well, simply by passing the CifLoopBlock object as the �rst argument:

mycif['testblock'].ChangeItemOrder(aloop,0)

will move the loop block to the beginning of the printed datablock.

Examples using loops

Adding/replacing a single item with looped values:

cb['_symmetry'] = ['x,y,z','-x,-y,-z','x+1/2,y,z']

results in an output fragment

loop_

_symmetry

x,y,z

-x,-y,-z

x+1/2,y,z

Adding a complete loop:

cb.AddCifItem(([['_example','_example_detail']],

[[['123.4','4567.8'],

['small cell','large cell']]]))

results in an output fragment:

loop_

_example

_example_detail

123.4 'small cell'

4567.8 'large cell'

4



Appending a new dataname to a pre-existing loop:

cb.AddToLoop(

'_example',{'_comment':[�not that small�,�Big and beautiful�]}

)

changes the previous output to be

loop_

_example

_example_detail

_comment

123.4 'small cell' 'not that small'

4567.8 'large cell' 'Big and beautiful'

Changing pre-existing data in a loop:

cb.AddToLoop('_comment',{'_example':['12.2','12004']})

changes the previous example to

loop_

_example

_example_detail

_comment

12.2 'small cell' 'not that small'

12004 'large cell' 'Big and beautiful'

Adding a new loop packet. PyCifRW does not (yet) directly support
this: the following code shows one way to accomplish this indirectly for the
above example.

newdata= {'_example':['101.1','255'],

'_example_detail':['medium cell','also medium'],

'_comment':['manageable','still manageable']

}

olddata = cb.GetLoop('_example') #(key,value) list

map(lambda a:newdata[a[0]].extend(a[1]),loopdata)

cb.AddCifItem((newdata.keys(),newdata.values()))

Note that, as the lists returned by PyCIFRW are direct pointers to the original
lists, it is possible to extend them directly (e.g. cb['_example'].append('101.1')),
however, this bypasses all data value syntax checks and loop length checks and
is not recommended.

5



2.3 Writing Cif Files

The CifFile method WriteOut returns a string which may be passed to an
open �le descriptor:

> > >outfile = open(�mycif.cif�)

> > >outfile.write(cf.WriteOut())

An alternative method uses the built-in Python str() function:

> > >outfile.write(str(cf))

WriteOut takes an optional argument, comment, which should be a string con-
taining a comment which will be placed at the top of the output �le. This
comment string must already contain # characters at the beginning of lines:

> > >outfile.write(cf.WriteOut(�#This is a test file�))

Two additional keyword arguments control line length in the output �le: wraplength
and maxoutlength. Lines in the output �le are guaranteed to be shorter than
maxoutlength characters, and PyCIFRW will additionally insert a line break if
putting two data values or a dataname/datavalue pair together on the same line
would exceed wraplength. In other words, unless data values are longer than
maxoutlength characters long, no line breaks will be inserted in the output �le.
By default, wraplength = 80 and maxoutlength = 2048.

These values may be set on a per block/loop basis by calling the SetOutputLength
method of the loop or block.

The order of output of items within a CifFile or CifBlock is speci�ed using
the ChangeItemOrder method (see above). The default order is the order that
items were inserted or read in to the CifFile/CifBlock.

3 Dictionaries and Validation

3.1 Dictionaries

DDL dictionaries may also be read into CifFile objects. For this purpose,
CifBlock objects automatically support save frames (used in DDL2 dictionar-
ies), which are accessed using the �saves� key. The value of this key is a
collection of CifBlock objects indexed by save frame name, and available op-
erations are similar to those available for a CifFile, which is also a collection
of CifBlocks.

A CifDic object hides the di�erence between DDL1 dictionaries, where all
de�nitions are separate data blocks, and DDL2 dictionaries, where all de�nitions
are in save frames of a single data block. A CifDic is initialised with a single
�le name or CifFile object:

cd = CifFile.CifDic(�cif_core.dic�)

6



De�nitions are accessed using the usual notation, e.g. cd['_atom_site_aniso_label'].
Return values are always CifBlock objects. Additionally, the CifDic object
contains a number of instance variables derived from dictionary global data:

dicname The dictionary name + version as given in the dictionary

diclang 'DDL1' or 'DDL2'

typedic Python dictionary matching typecode with compiled regular expres-
sion

CifDic objects provide a large number of validation functions, which all return a
Python dictionary which contains at least the key �result�. �result� takes the
values True, False or None depending on the success, failure or non-applicability
of each test. In case of failure, additional keys are returned depending on the
nature of the error.

3.2 Validation

A top level function is provided for convenient validation of CIF �les:

CifFile.validate(�mycif.cif�,dic = �cif_core.dic�)

This returns a tuple (valid_result, no_matches). valid_result and no_matches
are Python dictionaries indexed by block name. For valid_result, the value
for each block is itself a dictionary indexed by item_name. The value attached
to each item name is a list of (check_function, check_result) tuples, with
check_result a small dictionary containing at least the key �result�. All tests
which passed or were not applicable are removed from this dictionary, so result
is always False. Additional keys contain auxiliary information depending on
the test. Each of the items in no_matches is a simple list of item names which
were not found in the dictionary.

If a simple validation report is required, the function validate_report can
be called on the output of the above function, printing a simple ASCII report.
This function can be studied as an example of how to process the structure
returned by the 'validate' function.

3.2.1 Limitations on validation

1. (DDL2 only) When validating data dictionaries themselves, no checks are
made on group and subgroup consistency (e.g. that a speci�ed subgroup
is actually de�ned).

2. (DDL1 only) Some _type_construct attributes in the DDL1 spec �le are
not machine-readable, so values cannot be checked for consistency

7



3.3 ValidCifFile objects

A ValidCifFile object behaves identically to a CifFile object with the ad-
ditional characteristic that it is valid against the given dictionary object. Any
attempt to set a data value, or add or remove a data name, that would invalidate
the object raises a ValidCifFile error.

Additional keywords for initialisation are:

dic A CifDic object to use in validation

diclist A list of CifFile objects or �lenames to be merged into a CifDic object
(see below)

mergemode Choose merging method (one of 'strict','overlay', 'replace')

3.4 Merging dictionaries

PyCIFRW provides a top-level function to merge DDL1/2 dictionary �les. It
takes a list of CIF �lenames or CifFile objects, and a mergemode keyword
argument. CIF �les are merged from left to right, that is, the second �le in the
list is merged into the �rst �le in the list and so on.

For completeness we list the arguments of the CifFile merge method:

new_block_set (�rst argument, no keyword) The new dictionary to be merged
into the current dictionary

mode merging mode to use ('strict', 'overlay' or 'replace')

single_block a two element list [oldblockname, newblockname], where oldblockname
in the current �le is merged with newblockname in the new �le. This is
useful when blocknames don't match

idblock This block is ignored when merging - useful when merging DDL1 dic-
tionaries in strict mode, in which case the on_this_dictionary block
would cause an error.

3.4.1 Limitations on merging

In overlay mode, the COMCIFS recommendations require that, when both def-
initions contain identical attributes which can be looped, the merging process
should construct those loops and include both sets of data in the new loop.

This is not yet implemented in PyCIFRW, as it involves checking the DDL1/DDL2
spec to determine which attributes may be looped together.

4 Working with STAR �les

4.1 Creating STAR �les

Star �les are created entirely analogously to CIF �les, using the StarFile object
or ReadStar function.

8



4.2 Manipulating values

The usual square bracket notation applies, as for CifFile and CifBlock ob-
jects. StarFiles are built out of StarBlock objects in exactly the same way
as CifFile objects are built out of CifBlock objects. StarBlock objects
can contain any number of LoopBlock objects, which represent STAR loop
blocks. Crucially, these LoopBlock objects may contain nested loops, which are
also LoopBlock objects. Loops are inserted into a LoopBlock by calling the
insert_loop method, and may be nested to an arbitrary level.

4.2.1 Iterators

Any LoopBlock object has two iterator methods: recursive_iter and flat_iterator.
On each call of the iterator created by a recursive_iter call, a Python dictio-
nary is returned with single-valued keys corresponding to a single set of values.
If there are multiple trees of nested loops in a LoopBlock, each tree is iterated
over separately, as there is no reason that looped values inside a second loop
block would have any relationship with values inside a �rst loop block. This
iterator will thus return all possible sets of values for the LoopBlock.

The flat_iterator method does not dig down into nested loops. Instead,
iterators created from it return a new LoopBlock with key-value pairs corre-
sponding to a single top-level packet; nested loops are included, but they also
have only data corresponding to the selected top-level packet available. This
iterator thus iterates through the top-level packets, collapsing the nesting level
by one.

The default iterator for CifBlocks (as opposed to StarBlocks) is recursive_iter.

5 Example programs

A program which uses PyCIFRW for validation, validate_cif.py, is included
in the distribution in the Programs subdirectory. It will validate a CIF �le
(including dictionaries) against one or more dictionaries which may be speci�ed
by name and version or as a �lename on the local disk. If name and version
are speci�ed, the IUCr canonical registry or a local registry is used to �nd the
dictionary and download it if necessary.

5.1 Usage

python validate_cif.py [options] ciffile

5.2 Options

�version show version number and exit

-h,�help print short help message

-d dirname directory to �nd/store dictionary �les

9



-f dictname �lename of locally-stored dictionary

-u version dictionary version to resolve using registry

-n name dictionary name to resolve using registry

-s store downloaded dictionary locally (default True)

-c fetch and use canonical registry from IUCr

-r registry location of registry as �lename or URL

-t The �le to be checked is itself a DDL2 dictionary

6 Further information

The source �les are in a literate programming format (noweb) with �le extension
.nw. HTML documentation generated from these �les and containing both
code and copious comments is included in the downloaded package. Details of
interpretation of the current standards as relates to validation can be found in
these �les.

10


