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    Abstract 

   Modern high-throughput structural biology laboratories produce vast amounts of raw experimental data. 
The traditional method of data reduction is very simple—results are summarized in peer-reviewed publica-
tions, which are hopefully published in high-impact journals. By their nature, publications include only the 
most important results derived from experiments that may have been performed over the course of many 
years. The main content of the published paper is a concise compilation of these data, an interpretation of 
the experimental results, and a comparison of these results with those obtained by other scientists. 

 Due to an avalanche of structural biology manuscripts submitted to scientifi c journals, in many recent 
cases descriptions of experimental methodology (and sometimes even experimental results) are pushed to 
supplementary materials that are only published online and sometimes may not be reviewed as thoroughly 
as the main body of a manuscript. Trouble may arise when experimental results are contradicting the 
results obtained by other scientists, which requires (in the best case) the reexamination of the original raw 
data or independent repetition of the experiment according to the published description of the experi-
ment. There are reports that a signifi cant fraction of experiments obtained in academic laboratories cannot 
be repeated in an industrial environment    (Begley CG & Ellis LM, Nature 483(7391):531–3, 2012). This 
is not an indication of scientifi c fraud but rather refl ects the inadequate description of experiments per-
formed on different equipment and on biological samples that were produced with disparate methods. For 
that reason the goal of a modern data management system is not only the simple replacement of the labo-
ratory notebook by an electronic one but also the creation of a sophisticated, internally consistent, scalable 
data management system that will combine data obtained by a variety of experiments performed by various 
individuals on diverse equipment. All data should be stored in a core database that can be used by custom 
applications to prepare internal reports, statistics, and perform other functions that are specifi c to the 
research that is pursued in a particular laboratory. 

 This chapter presents a general overview of the methods of data management and analysis used by 
structural genomics (SG) programs. In addition to a review of the existing literature on the subject, also 
presented is experience in the development of two SG data management systems, UniTrack and LabDB. 
The description is targeted to a general audience, as some technical details have been (or will be) published 
elsewhere. The focus is on “data management,” meaning the process of gathering, organizing, and storing 
data, but also briefl y discussed is “data mining,” the process of analysis ideally leading to an understanding 
of the data. In other words, data mining is the conversion of data into information. Clearly, effective 
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data management is a precondition for any useful data mining. If done properly, gathering details on 
millions of experiments on thousands of proteins and making them publicly available for analysis—even 
after the projects themselves have ended—may turn out to be one of the most important benefi ts of 
SG programs.  

  Key words     Databases  ,   Data management  ,   Structural biology  ,   LIMS  ,   PSI  ,   CSGID    

1      Introduction 

  Both structural genomics consortia and individual structural biology 
laboratories produce tremendous amounts of data, and having 
accurate, complete and consistent data is critical for reproducibility  
of biomedical research [ 1 ]. A single trip to a synchrotron for data 
collection by a productive crystallographic lab can generate hun-
dreds of datasets totaling around 2 TB of raw data [ 2 ]. Modern 
data processing software can reduce, on the fl y, a raw set of diffrac-
tion images into a single fi le that contains a description of every 
diffraction peak: Miller indices, intensity, and experimental uncer-
tainty (sigma). These data are further reduced into one relatively 
small file that contains scaled and merged diffraction intensities. 
However, each fi le has to be associated with a particular sample 
(protein crystal) and the description of the experiment, which is 
usually written in the header of the diffraction image. These data 
are further used for structure determination and/or for function–
structure relation studies. 

 To perform these studies the experimenter needs information 
about the protein (at a minimum, the protein sequence), crystalli-
zation conditions, and, for functional studies, protein production 
details. If this information is available, the process described above 
is simple to implement. Data harvesting from structure determina-
tion is relatively straightforward. The whole process following the 
placement of a crystal in the X-ray beam can be entirely controlled 
and captured by computer. 

 However, while this is very simple in theory, this simplicity has 
not yet been translated into practice. Analysis of the Protein Data 
Bank (PDB) [ 3 ,  4 ] shows that the number of data collection 
parameters marked as “NULL” in the header information (i.e., the 
detailed description of the experiment) is still signifi cant [ 5 ,  6 ]. 
Moreover, data in the header are sometimes self-contradictory, 
contradictory to the experimental description in the paper citing 
the structure, or both [ 7 ,  8 ]. In that case, contacting the authors 
of the deposit and paper may be the only way to resolve the arising 
problems. Taking into account that only a small fraction, about 
13 % [ 9 ], of structures determined by high-throughput consortia 
are converted (reduced) to peer-reviewed papers, the correctness 
of data uploaded to various databases like TargetTrack [ 10 ], 
TargetDB [ 11 ], and data banks like PDB is absolutely critical 
( see  below).  

1.1  Data in 
Structural Biology
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  Since their inception, many structural genomics efforts have 
adopted policies that experimental data produced by member 
consortia should be made available to the community from the 
moment of target selection. This has been particularly true for the 
two large initiatives from the National Institutes of Health (NIH): 
the Protein Structure Initiative (PSI) established in 2000 by the 
National Institute of General Medical Sciences (NIGMS) and 
the SG centers focusing on infectious diseases established in 2007 
by the National Institute of Allergy and Infectious Diseases 
(NIAID). Even some partially privately funded SG efforts like the 
Structural Genomics Consortium (SGC) have established policies 
to release some experimental data to the general public [ 12 ] (typi-
cally only after the structure is determined and deposited). In the 
specifi c case of the centers funded by NIGMS and NIAID, the 
NIH established the target registration database, TargetDB [ 11 ], 
and required that all member consortia deposit data on the prog-
ress of their targets. Subsequently many other SG centers world-
wide have deposited some of their experimental data as well. 

 Initially, the main purpose of TargetDB was the prevention of 
duplication of effort between different SG centers and maximiza-
tion of the structural coverage of the protein fold space. The scope 
of the data was very modest. It included protein identifi cation 
information (sequence, organism) and the timeline of changes in 
experimental status for each target. Status events included target 
selection, cloning, expression, purifi cation, as well as crystallization, 
diffraction, determination of crystal structure, and PDB deposition 
(for targets studied by X-ray crystallography) or obtaining the 
HSQC spectra, determination of NMR structure, and BMRB/PDB 
deposition (for targets studied by NMR). 

 However, even the modest amount of data available in 
TargetDB permitted interesting analyses of the overall SG struc-
ture determination pipeline [ 13 ,  14 ]. In particular, the overall effi -
ciency of the pipeline—the ratio of solved structures to clones—was 
found to be below 10 % even in the most productive centers. 
The two steps that contributed most to the failure of a target in the 
pipeline were production of soluble protein and diffraction-quality 
crystals. Not surprisingly, the success ratio depended very strongly 
on the type of protein as well as the methodology used by par-
ticular centers. There was not a single overall bottleneck factor. 
In 2004, TargetDB was extended to the Protein Expression, 
Purifi cation, and Crystallization Database (PepcDB) [ 15 ] which 
in addition to simple status history included multiple trials, track-
ing of failed as well as successful experiments, and more detailed 
descriptions of protocols. 

 In 2010, PepcDB and TargetDB were merged into a single 
new database, TargetTrack, part of the new PSI-Structural Biology 
Knowledge Base (PSI-SBKB) [ 10 ,  16 ]. The new repository 
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extended the defi nition of a target to include protein–protein 
complexes and incorporated tracking of biological assays needed in 
the PSI:Biology phase. As of January 2013, TargetTrack contained 
data on over 300,000 targets and over 1,000 protocols.  

  Development of effective data management systems was a necessity 
for the large-scale SG centers, not only in order to provide the data 
to the scientifi c community but also particularly to effectively han-
dle the huge amounts of experimental data, plan experiments, 
adjust experimental approaches (e.g., choice of cloning vectors, 
sequence truncation, crystallization conditions, structure deter-
mination procedures), and prioritize targets. These needs required 
gathering far more data than what was being required by 
TargetTrack. 

 In general, two levels of data management are needed in high- 
throughput, high-output structural biology programs: the  target 
tracking  level and the  experiment tracking  level. The target track-
ing level comprises target selection, overall experimental status of 
each target, center-wide effi ciency statistics, and generation of 
reports to the public and to other databases such as TargetTrack. 
Almost all SG centers have a separate target-tracking database, 
though some functionality (e.g., target selection) can be “offl oaded” 
to other specialized databases. The primary audience for the target- 
tracking level is everyone interested in a “high-level” view of the 
data produced by the center: the center’s scientists and adminis-
trators as well as members of the scientifi c community with inter-
est in the targeted proteins. This level is typically not designed for 
uploading new data or providing all details of individual experi-
ments; these tasks are better handled at the experimental tracking 
level. 

 The experimental tracking level comprises the tools used to 
collect the results of experiments performed in the laboratory. This 
type of tool is generally known as a “laboratory information 
management system” or LIMS. LIMSs are typically used day to 
day by the researchers conducting the experimental work of a labo-
ratory and may be highly customized to the protocols and work 
fl ow of a particular laboratory. LIMSs may also provide tools to 
help design experiments, operate laboratory equipment, semiauto-
matically harvest data, track the use of resources, etc. As a result, 
the primary audience for the LIMS is composed of those interested 
in a “low-level” view of the data, the center researchers themselves. 
As compared to the target-tracking level, it is not uncommon to 
use more than one LIMS in a single SG center, as different systems 
may be used in different laboratories. 

 It should be noted that splitting the data management system 
of a typical SG center into two distinct levels, “high-level” target 
tracking and “low-level” experiment tracking, is somewhat 
 arbitrary. Some data are natural candidates to be kept at the LIMS 

1.3  Diverse 
Approaches to Data 
Management in SG 
Centers
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level only, for example, the location in the freezer where a particular 
clone is stored or the particular lot of a reagent or a crystallization 
buffer. Conversely, some data may only apply at the target-tracking 
level, for example, the number of publications referencing a given 
protein. In principle, it is possible for a single database and/or data 
management system to fully implement both levels. However, in 
practice, it seems that solutions where the two levels are imple-
mented as separate systems/databases appear to be more common, 
especially for the larger scale projects. 

 There have been several “top-down” attempts to design a gen-
eral framework for SG data management systems in the form of 
data dictionaries [ 17 ] or a protein production UML data model 
[ 18 ]. The latter has been implemented by several systems, such as 
HalX [ 19 ] or the Protein Information Management System (PiMS) 
[ 20 ] used by a number of European SG labs. However, most of the 
SG centers set up data management systems in a more ad hoc, 
“bottom- up” manner. Initially, some centers attempted to use 
commercial LIMS, but often these solutions were not fl exible 
enough or even robust enough, and most SG centers developed 
their own solutions “in-house.” There are exceptions to this rule. 
For example, the Structural Genomics Consortium uses two com-
mercially available software systems: the Beehive LIMS (Molsoft 
LLC;   http://www.molsoft.com/beehive.html    ) and Electronic 
Laboratory Notebook (now iLabber; Contur Software;   http://
www.contur.com/home/    ). It should be noted however that unlike 
many SG consortia, SGC does not deposit the results of its experi-
ments to PepcDB or TargetTrack. Several of the SG-developed 
data management systems have been described in the literature 
[ 21 – 23 ], but to our knowledge, none of these systems have been 
fully commercialized. 

 One comprehensive data SG management system that has 
gained wider use is Sesame, developed by Zsolt Zolnai at Center 
for Eukaryotic Structural Genomics (CESG) [ 22 ]. It has been 
adopted by a number of labs and specialized centers. 

 The data management system for the Joint Center for Structural 
Genomics (JCSG) was developed by the center’s programming 
team in parallel with the construction of the physical pipeline. 
The LIMS part of the system functions as a hub of information, 
recording all pipeline steps from target selection to deposition. 
The tracking database uses Oracle as its engine and tracks 424 
experimental parameters, organized into 130 tables [ 24 ]. The 
tools and interfaces to the database contain approximately 360,000 
lines of code, which illustrates the level of complexity of this and 
similar systems. 

 The Northeast Structural Genomics (NESG) consortium’s 
data management system is organized as a “federated database 
framework,” comprising a set of distributed, interconnecting 
 databases [ 21 ]. The main target-tracking database, SPINE, serves 
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as an analysis system, utilizing data mining and machine learning 
tools. In particular, decision trees are used for predicting chances 
for protein solubility, successful purifi cation, and crystallization. 
These predictions are used in directing targets to X-ray crystallog-
raphy or NMR studies [ 14 ]. 

 The other two large-scale PSI:Biology centers—the Midwest 
Center for Structural Genomics (MCSG) and the New York 
Structural Genomics Research Consortium (NYSGRC)—use the 
data management system developed in the Minor Lab at the 
University of Virginia. In both cases, the system is based on a col-
lection of customized LIMS in each site laboratory and a central 
database (UniTrack, described below) that curates and unifi es data 
obtained by various laboratories. In the case of MCSG, several dif-
ferent LIMSs are used in different laboratories, including LabDB, 
Mnemosyne, and ANL-DB. In NYSGRC, two different instances 
of LabDB are used. Similar systems are also deployed in the Center 
for Structural Genomics of Infectious Diseases (CSGID) and the 
Enzyme Function Initiative (EFI).   

2     A Centralized Target Management System: UniTrack 

 The central, public system comprising the target-tracking level of 
the SG management system developed by the Minor Lab at the 
University of Virginia is named UniTrack. As mentioned above, 
the MCSG, NYSGRC, CSGID, and EFI consortia are all driven by 
variants of the UniTrack system. The system comprises a core 
abstraction based on 10 years of experience in SG data manage-
ment, with a common database architecture and set of tools for 
managing target and experimental data. Each site is based on the 
UniTrack core but is then highly customized for the needs of the 
particular center or consortium of research laboratories. In each 
case, the UniTrack-derived system comprises the central tracking 
database and a set of auxiliary databases and applications, which 
collect and integrate experimental data and are provided by distrib-
uted LIMSs deployed in participating laboratories (Fig.  1 ). 
Experimental data from different LIMSs are combined and incor-
porated into UniTrack via a standard protocol. In the most basic 
case, each LIMS generates XML fi les in a predefi ned format, which 
are parsed by UniTrack tools. An alternative (and more effi cient) 
method, where a LIMS directly communicates with the tracking 
database, has also been developed. The LIMSs can be very diverse; 
however, they all must be able to provide the minimum set of 
required data for cloning, expression, purifi cation, and crystalliza-
tion experiments.

   The experimental pipeline starts with target selection and 
validation, which is specifi c for a particular center. The validation 
 process is performed automatically and typically involves checking 
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the accuracy of the amino acid and the nucleotide sequences as 
well as checking if the selected protein is homologous to proteins 
with structures in the PDB or to targets selected by other SG centers. 
Validated targets are inserted into the tracking database. Protein 
annotations and related data are automatically imported from 
external databases such as NCBI GenBank [ 25 ], Uniprot [ 26 ], 
PDB, and the PSI-SBKB. Depending on the needs of a particular 
center, between 30 and 80 attributes of any given protein target 
are stored in UniTrack. 

 UniTrack keeps a history and the results of the experiments for 
each target (Fig.  2 ). About 400 distinct data attributes are used to 
describe an experimental trial, from the cloning of a target through 
the determination of its structure. Almost all protein production 
and crystallization data can be automatically imported from the 
local LIMS or equipment database. However, smaller labs that do 
not have a LIMS deployed can still contribute data to UniTrack by 
entering it manually using the customized interface. Diffraction 

  Fig. 1    The architecture of the UniTrack data management system. The central 
database interacts with LIMSs distributed in member labs. A number of auxiliary 
databases are used to store data from the PDB, data from other SG centers, and 
SG publications. The central database is responsible for producing reports for 
external data repositories such as PSI-SBKB. UniTrack databases are synchro-
nized with external data sources such as NCBI GenBank, UniProt, and PubMed 
via custom scripts. Users interact with the system via a web interface       
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and structure determination data is currently imported automati-
cally only from the LabDB instances that have the  hkldb  module 
enabled [ 27 ]. Researchers in other labs upload scaling logs and 
refi nement fi les manually via the interface.

   The tracking database also generates real-time internal reports 
and statistics as well as the XML fi les that are being submitted to 
the TargetTrack repository. In addition, the periodic reports 
required by various bodies are generated in real time from the 
database and accessible to the general public. In some sense, all of 
the portions of UniTrack that generate publicly accessible web 
pages serve as reports. 

 The customized instances of UniTrack for each center drive 
dynamic parts of the centers’ corresponding web portals. The web 
interfaces are implemented using the Model–View–Controller 
(MVC) architecture, with separate layers for data retrieval (model), 
“business logic” (controller), and web page rendering (view). 

  Fig. 2    Fragment of an experiment tree displayed in the UniTrack-based CSGID interface.  Boxes  represent 
particular experiments: purifi cation (P), crystallization drop (XD), crystal harvest (X), data collection (beamline 
name), structure solution (Sol), refi nement (R factor), and PDB deposit (PDB id).  Paths  in the tree represent 
trials for a particular sample. The  white box  that appears when the cursor hovers over an item displays addi-
tional details about a particular step. In addition, clicking on any of the boxes display all the data known about 
this step stored in the database       
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Even with the use of the CakePHP MVC framework (  http://
cakephp.org    ) the customized web interfaces for the centers are 
quite complicated; as an example, the implementation of the 
CSGID web interface contains over 50,000 lines of source code. 

  LabDB is a modular “super-LIMS,” originally developed to track 
the structure determination pipeline from cloning to structure 
determination (Fig.  3 ). The central component of the system is a 
PostgreSQL database server coupled with a web-based framework, 
along with two specialized tools:  Xtaldb , for designing and tracking 
crystallization experiments, and  hkldb , a module of the HKL- 
2000/3000 system [ 27 ] for incorporating information from crys-
tallographic data collection and structure determination.  hkldb  and 
Xtaldb can also be used with stand-alone databases.

   One of the fundamental design goals of LabDB is to harvest data 
automatically or semiautomatically from laboratory equipment 
whenever possible. To that end, the system has modules to import 
data from a variety of different types of laboratory equipment, 
including chromatography systems (GE Healthcare AKTA sys-
tems), electrophoresis documentation and separation systems 

2.1  The LabDB 
“Super-LIMS”

  Fig. 3    A typical target overview page in the LabDB LIMS       
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(Bio-Rad GelDoc, Caliper LabChip GX), crystallization  observation 
robots (Rigaku Minstrel, Formulatrix Rock Imager), and others. 
The system provides tools to import data from groups of many 
similar experiments at once, for example from spreadsheet fi les, 
and to track shipments of purifi ed protein and other samples from 
one laboratory to another. 

 A good example of how the LabDB system incorporates labo-
ratory hardware to capture data automatically is the reagent track-
ing module. The system provides a tool to label bottles of chemical 
reagents with unique barcodes, which are tied to more detailed 
information about the chemicals in the database. When a researcher 
prepares a stock solution of a given reagent, he or she fi rst scans the 
barcode of the reagent bottle before weighing out the chemical. 
LabDB uses this to track the particular lots and suppliers of chemi-
cals and link them with the details of the stock solutions created 
(which are then also labeled with unique barcodes). These bar-
codes allow data to be carried along the pipeline, providing much 
more detailed information about the origin and history of given 
stock solutions than would be possible with hand-written labels. 
Furthermore, as this data is linked to later steps, it is possible to 
determine which reagent lots were used in successful vs. unsuccess-
ful experiments, especially if complications arise in the replication 
of experimental results. 

 Two issues are critical for a LIMS to be widely adopted: the 
LIMS should facilitate experimental procedure whenever possible, 
and the system should harvest data accurately and effi ciently 
(i.e., both quickly and easily). Automatic retrieval of data directly 
from lab equipment such as balances or solution formulation 
robots, along with effi cient collection of experimental design 
parameters, minimizes manual data entry and facilitates a more 
complete and more accurate description of the experiment. Using 
barcode scanners and tablet computers, LabDB performs calculations 
on the fl y based upon the information retrieved via the barcodes, 
such as calculating the amount of chemical needed to create a 
particular concentration given various volumes. 

 The most recent advances in LabDB are in the area of tracking 
other kinds of biomedical experiments beyond the traditional SG 
pipeline of clone to structure. These include spectrophotometric 
kinetic assays, fl uorescence-based thermal shift assays, and isothermal 
titration calorimetry.  

  The infectious disease centers funded by the NIAID were among 
the fi rst to expand the traditional SG pipeline into biological and 
biomedical research. The CSGID and the Seattle Structural 
Genomics Center for Infectious Disease (SSGCID) are tasked to 
specifi cally characterize the structures of proteins with important 
biological roles in human pathogens, especially those on the 
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of SG into Biomedical 
Research

Matthew D. Zimmerman et al.



11

NIAID Category A–C priority lists. A particular focus of these 
centers is screening purifi ed proteins for binding to inhibitors, 
 cofactors, substrates, and analogs. This screening is done both in 
silico and in vitro via a variety of techniques, including fl uorescence- 
based thermal shift binding, spectrophotometry, isothermal titra-
tion calorimetry, and crystallography-based screening. Sometimes 
the results of computational experiments like model prediction or 
ligand binding are also included. 

 At its outset in 2000, the PSI was predominantly focused on 
developing new technologies and protocols for structure determi-
nation and, in its second phase, solving signifi cant numbers of 
structures in part as an attempt to increase the structural coverage 
of the “fold space” of proteins [ 28 ,  29 ]. In its third phase, 
PSI:Biology, the initiative has expanded into large-scale biological 
and biomedical research. By focusing on targets of biological and 
medical signifi cance, whether selected by PSI centers or nominated 
directly by the biological community, PSI:Biology centers can 
expand their impact by providing not only 3-D protein structures 
but also techniques for effi cient protein production and purifi ca-
tion and materials such as cloned expression vectors (made avail-
able through material repositories). In some cases, purifi ed protein 
samples are even supplied directly to other laboratories. The deter-
mination of 3-D protein structures, in concert with advanced 
biomedical research, allows for more complete characterization of 
many signifi cant proteins and presents the biochemical and bio-
physical data in the context of structural information. The ultimate 
goal is the creation of a powerful scientifi c and intellectual network 
to study even the most challenging biomedical problems. 

 The EFI, a U54 “Glue Grant” funded by NIGMS, is another 
example of the use of SG methods applied to a large-scale bio-
logical project. In this program, the traditional SG pipeline of 
clone to structure is only the fi rst step in a broader program to 
develop a large-scale, multidisciplinary strategy to assign function 
to unknown enzymes identifi ed by genome sequencing. Biological 
experiments performed by the EFI include enzymatic assays, 
binding assays, mass spectroscopy, metabolomics, and in silico 
binding studies.  

  One cannot overestimate the importance of target selection by the 
scientifi c community for such collaborative networks. For 
PSI:Biology the mechanism is twofold: (a) community members 
can submit targets through the community nomination target pro-
gram and (b) the “high-throughput-enabled biology partnerships” 
supported by PSI:Biology can directly nominate targets relevant to 
their areas of functional study. These biological partnerships, where 
consortia of biological researchers from a variety of areas are paired 
with high-throughput structure determination consortia, focus on 

2.3  Data 
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particular cellular organelles or protein complexes (such as mito-
chondrial proteins, nuclear receptors, tight junction membrane 
proteins) or particular systems (immune function complexes, natu-
ral product biosynthesis, cell–cell adhesion, etc.). As of February 
2013, PSI programs had about 3,000 community requests and 
6,500 targets selected by the high-throughput- enabled biological 
partnerships. 

 Collaborative networks provide special challenges in experi-
mental data management, as biological research uses a very broad 
array of methods, including microscopy, enzymology, biophysical 
techniques, and whole-cell experiments to address projects of 
interest. The power of such a network can be dramatically enhanced 
when large centers provide not only structural information but also 
pure protein samples to the whole network. The protein samples can 
then be used for many different in vitro experiments. The impor-
tance of the ability to perform a large array of experiments using 
the same protein sample cannot be overemphasized, as inconsis-
tent experimental results may be caused by the use of different 
protein samples, e.g., differences in affi nity tags, cloning boundar-
ies, and chemical incorporations [ 30 – 32 ]. 

 Similarly, the NIAID centers also accept target nominations 
from the community. Targets directly requested by community 
and other “community-interest” targets constitute about a third of 
all targets for both the CSGID and SSGCID. As of February 2013, 
CSGID has accepted about 2,000 community targets from over 
100 requesters—mostly academic researchers but also pharmaceu-
tical companies such as Novartis and Merck. Close to one-half 
of all structures solved by the CSGID and about 40 % by SSGCID 
are community-nominated or community-interest proteins. 
Community collaborations impose specifi c demands on SG data 
management systems. They require establishing effective commu-
nication between the community researchers and the center, espe-
cially at the stages of selection, cloning, ligand binding, and 
functional studies. UniTrack contains tools that allow community 
requesters to monitor the progress of their targets. 

 In addition, the data management system for SG centers 
must interact with another component of the collaborative net-
work—the material repositories. The two existing repositories, 
the PSI:Biology Materials Repository (  http://psimr.asu.edu/    ) 
[ 33 ,  34 ] and BEI Resources (  http://www.beiresources.org    ) 
[ 35 ], used by the infectious disease SG centers store tens of 
thousands of protein clones that are available to researchers 
worldwide. LabDB contains modules assisting the center 
researchers in tracking shipments of clones to the repositories, 
while the UniTrack interfaces allow checking the availability of 
particular constructs.   
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3     Tracking Biomedical Experiments with SG Data Management Systems 

 For the traditional structural biology pipeline, the experimental 
steps required to produce, for example, a structure by X-ray 
 crystallography are well prescribed. A gene of interest is cloned and 
expressed, protein is purifi ed and set up for crystallization, crystals 
are harvested, crystallographic data are collected, and the structure 
is determined (a similar pipeline can be described for structure 
solution by NMR). Despite differences in protocol, the basic data 
parameters of each type of experiment are well known. Data param-
eters comprise both the details of an experimental design and the 
measurable outcomes of the experiment. For example, design 
parameters for an expression experiment might include the strain 
of organism expressed, media used, temperature of expression, 
etc., and outcome parameters might include the rate and optical 
density of growth, estimates of expression yield, etc. 

 Furthermore, the “traditional” process is essentially linear; for 
each given step in the process, the prior step is a prerequisite. Thus, 
(1) the types of experiment steps needed (cloning, expression, 
etc.), (2) the data parameters to be collected at each step, and (3) 
the order in which steps are performed can all be defi ned a priori. 
This has made the design of the data management systems used to 
track high-throughput structural biology experiments somewhat 
straightforward. However, the process of target salvage or rescue, 
which involves returning to prior experimental steps once a target 
has “stalled” or otherwise failed in the pipeline, does add some 
complications. 

 Today, SG centers (and other programs that include high- 
throughput structural biology as a component) increasingly incor-
porate into their work fl ows other types of biomedical experiments 
spanning many other disciplines: biochemistry, biophysics, micro-
biology, cell biology, etc. This has raised signifi cant challenges in 
data management, whether these biomedical experiments are per-
formed in-house or by research partnerships. Unlike the traditional 
SG data pipeline, the number of different types of experiments that 
may be performed has expanded dramatically. Each of these experi-
mental procedures differs signifi cantly both in methodology and in 
parameters that are collected and thus require different types of 
tools to effi ciently capture their data. 

 Additionally, the ways in which experiments are interrelated 
are more complex. Biomedical studies are generally not linear 
(i.e., they cannot be organized into a simple, step-by-step “pipe-
line”), and many experimental steps can be done in any order. For 
example, a ligand binding experiment can either be done before or 
after structure determination; one is not a prerequisite for the 
other. However, the two experiments can infl uence one another; 
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the results of a ligand-binding screen can suggest potential soaking 
experiments, or conversely, unidentifi ed density in a structure can 
suggest potential binding partners. Given the more complex inter-
relationships between experiments, the data structure required to 
track them is much more complicated. 

 In an ideal world, individual components of a LIMS would be 
developed to track details of each kind of biological or functional 
experiment and track the appropriate data. The sheer diversity of 
techniques used makes this development slow and resource inten-
sive. To some degree, such tools are in development. For example, 
the LabDB LIMS includes modules for tracking the results of spec-
trophotometric kinetic assays, fl uorescence-based thermal shift 
assays, and protein and DNA electrophoresis. The Sesame LIMS 
includes modules for NMR and cryo-EM experiments as well as 
metabolomics. A key challenge for such LIMSs is that they should 
be able to automatically import detailed experimental information 
from laboratory equipment. For example, LabDB automatically 
parses data fi les from two different RT-PCR systems used for 
fl uorescence- based thermal shift assays and converts the data into a 
common format for data comparison and analysis (Fig.  4 ).

   A somewhat complementary approach is to develop a more 
“generic” LIMS design, which allows the researcher to create a 
“protocol” describing a type of experiment and then provide data 
each time the protocol is used. Typically, the data provided for 
each experiment type is more general—for example, a textual 
description of the experiment or perhaps the names and values of 
parameters relevant to the experiment described. The TargetTrack 
specifi cation allows experimenters to provide data in this format 
for “biological experiments” or “biophysical assays.” Another 
example of a LIMS that follows this model is PiMS, where most 
data input to the system is described in terms of protocols and 
samples. The advantage of such an approach is in its fl exibility. 
New components of the LIMS are not needed to adapt to the new 
experimental types. This is at the expense of greater diffi culty in 
data mining due to the relatively unstructured format of data 
imported into the system. 

 In order for a LIMS to be successful, the system must also 
provide tools that drive the design of new experiments. This is 
useful in multiple contexts, whether one is identifying targets for 
salvage/rescue or providing more immediate feedback while an 
experiment is still in progress. The tools for this purpose should 
make use of well-designed data mining mechanisms. For example, 
the new very-fast-pixel array detectors allow for data collection 
with narrow oscillation ranges, even below 0.01°. Tests of these 
detectors with high-quality crystals may show the advantages of 
using very narrow oscillations. In practice however, the mosaicity 
of typical macromolecular crystals used today for structure solu-
tion (for an example, see the distribution in Fig.  5 ) limits the 
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advantages of narrow oscillations. For high-mosaicity crystals, 
experimenters should use larger oscillation ranges such as 0.5° 
rather than 0.05°. Unfortunately, there are no publicly available 
databases of experimental conditions used during diffraction 
experiments, and data collection protocols are based more on 
anecdotal evidence than on data mining. The large difference in 
productivity of similar synchrotron beamlines can be associated 
with differences in experimental protocols that synchrotron users 
are advised to adopt [ 36 ].

    The types of data mining that can be done with the data collected 
by SG centers can be divided into two broad categories. The fi rst is 
real-time (or near-real-time) analyses, which provide not only 

3.1   Data Mining

  Fig. 4    The fl uorescence-based thermal shift assay module of the LabDB LIMS, showing the graphical 
representation of the imported experimental data. Data were imported from an Applied Biosystems 7900-HT 
RT-PCR system       
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overall summaries of the status of an experimental pipeline but also 
additional experimental guidance. The second is more detailed 
statistical analyses, which require more in-depth transformation 
and processing of the results. 

 Typically, real-time analyses can be done through the use of 
“dashboards” or “scoreboards,” which present a current (or nearly 
current) view of a particular type of data in a running database. 
These analyses can include such trivial measures as the overall 
success rate of a center, the success rate of individual experimental 
steps for particular labs or for particular organisms, and the mean 
time between target selection and deposition for various classes 
of proteins. It can also include some less trivial analyses that can 
be computed in real time, such as determination of phasing 
method—single-wavelength anomalous diffraction (SAD), 
multiple- wavelength anomalous diffraction (MAD), or molecular 
replacement (MR)—that would maximize the probability of 
success in the diffraction experiment. For structure validation the 

  Fig. 5    Histogram showing the distribution of maximum mosaicity value (as fi t during integration) of diffraction 
datasets collected on MCSG targets processed at the University of Virginia, as tracked by the  hkldb  module of 
HKL-3000. Only datasets that resulted in both a scaled dataset and an initial model are counted in the 
distribution       
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analysis of various parameters describing structure quality in the 
context of best similar structures is very important. There are a 
number of examples of such dashboards in the interfaces of the 
“unifi ed” data management systems (Figs.  6  and  7 ).
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  Fig. 6    Example of a data dashboard: a plot of the cumulative progress for the MCSG center       

  Fig. 7    Example of a data mining “dashboard”: a plot of  R  free  vs. resolution for structures determined by the 
CSGID       
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    In particular, internal reports tracking the productivity of 
member labs (which tabulate the number of experimental steps 
performed at each lab overall as well as within the last 2 weeks or 
2 months) have been very useful. These internal reports can aid in 
the early identifi cation of bottlenecks arising in the experimental 
pipeline. Of course, this is only possible if the data in the database 
are current and not “censored” by experimenters. Censorship is 
defi ned in this case as an omission of unsuccessful experiments, 
mainly because the researcher did not see the value of a negative 
result. Other types of dashboards often used are the scatterplots 
representing the quality measures for deposited structures (such as 
 R ,  R  free , or the Molprobity clashscore vs. resolution; see Fig.  7 ). 
These plots can be fi ltered by various criteria, such as the project, 
organism, source of crystals, or name of the crystallographer. These 
reports make apparent which deposits are outliers with respect to 
the structure quality guidelines established by the NIH. The 
authors of such deposits are often subsequently asked to re-refi ne 
and redeposit them. 

 By contrast, more detailed analyses often require signifi cant 
processing of the data, determination of data accuracy and com-
pleteness, calculation of statistical measures, etc. and thus require a 
more detailed (and off-line) processing of experimental data. These 
types of data mining studies have included in-depth measurements 
of the properties of peptides most likely to produce crystal struc-
tures [ 14 ,  37 ,  38 ] and the design of new formulations of crystalli-
zation screens [ 39 ,  40 ]. Ideally, such data mining studies should 
produce tools to help researchers design, validate, and optimize 
their experiments. For example, the Check My Metal server enables 
improved refi nement of metal sites in protein structures [ 41 ].  

  A key goal of many SG programs is to make their results available 
and useful to the scientifi c community in forms other than publica-
tions or PDB deposits. This objective is addressed in part by the 
PSI Knowledgebase [ 10 ,  16 ], which provides a centralized web 
resource for searching SG structures, biological annotations, 
homology models, and experimental data and protocols. The ulti-
mate purpose of the Knowledgebase is to convert SG data into 
useful information to be used by the biological community. Some 
individual centers also developed tools for dissemination of SG 
results. For example, JCSG developed Topsan [ 42 ], which is a 
wiki-type web resource that creates individual “pages” describing 
each PDB deposit to which the community can collaboratively add 
new information. This approach is also used by Proteopedia [ 43 ]. 
The SGC developed iSee interactive 3D presentations of structures 
solved by the consortium. These are generated using the ICM 
software developed by Molsoft LLC [ 44 ]. The UniTrack-based 
web portals have the ability to automatically generate a set of 

3.2  Making Data and 
Information Available 
to the Public
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interactive 3D presentations for new protein structures using the 
ICM technology. Interactive content is embedded directly on the 
pages describing each structure and can be accessed using the freely 
available ActiveICM plug-in. Each structure presentation is accom-
panied by a short annotation written by the researcher who solved 
the structure. This includes a structure description and any poten-
tial functional information. Each automatically created  presentation 
can be further expanded and/or highly customized by the annota-
tor. An example of an extended and highly customized presenta-
tion can be seen using an ICM-enabled web browser on the 
CSGID website (  http://csgid.org/csgid/deposits/view/3E4F    ). 
Within the presentation, users can rotate and manipulate struc-
tures to view structural units, ligands, oligomerization states, and 
B-factor distributions. Additionally, presentations can be down-
loaded and edited using ICM Browser, Browser Pro, or ICM Pro. 
ActiveICM is being used for scientifi c publishing [ 45 ] by journals 
such as PLoS ONE and Nature.  

  A data management system is truly successful when the paradigm 
“data in, information out” is fully satisfi ed. Despite enormous 
progress, the major unmet challenge of high-throughput programs 
including structural genomics is an adequate rate of conversion of 
data into biomedically useful information, ideally as peer-reviewed 
papers. This is a general diffi culty of modern science; one is 
swamped in experimental data, and extraction of useful informa-
tion is quite often a Sisyphean task. Addressing this task effectively 
requires either very substantial manual labor or implementation of 
“knowledge-based systems,” with comprehensive tools for effi -
ciently summarizing and mining experimental data, and in some 
cases implementation of machine learning methods. Ultimately, the 
only way to check the consistency and accuracy of a database is to 
examine reports generated by the database for internal and external 
users. The usefulness for external users, i.e., the scientifi c commu-
nity, is the justifi cation for the high costs related to the development 
and maintenance of databases. The scientifi c community is not lim-
ited to academic users but may also include commercial companies 
working on new drugs. Reliable information about the relationships 
between functional and structural data could potentially save 
millions of dollars in the drug discovery process [ 1 ]. 

 Why is the development of data management systems so diffi -
cult? There may be no single, defi nitive answer to that question, 
but the problem is clearly widespread. The personal experience of 
one author shows that even a relatively simple database to track an 
airline’s checked baggage may fail when the baggage is lost and 
cannot be recovered for a number of days due to inadequate tools 
for checking data consistency. Similarly, the authors have received 
e-mails from an airline at (for example) 8:30 p.m. with a new late 

3.3  Unmet 
Challenges
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night departure time but also stating that they should still “be at 
the gate prior to 4:30 p.m.,” making one wonder if airline database 
programmers have mastered time travel. Unfortunately for database 
operators/developers, but fortunately for science, cutting- edge 
databases used in biomedical sciences appear to operate with fewer 
failures despite their tremendous complications. Keeping track of 
very diverse biological experiments performed in multiple labs, as 
well as tracking the shipments of constructs, proteins, crystals, and 
data between labs, is a problem of great complexity. In our opinion 
the main issue faced by data management systems in biological 
consortia is “creeping entropy,” the accumulation of inconsistent 
or plainly wrong data, causing users to lose confi dence in the 
usefulness of the system. “Virtually all software systems today suffer 
to an unnecessary degree from the force of entropy” [ 46 ]. 
Correction of these issues requires data curation, which is very 
expensive in terms of time and resources. In fact, data curation 
should be considered a necessary part of the routine maintenance 
of any database to oppose its natural tendency toward disorder and 
inconsistency. This process cannot be (fully) automated; while 
tools can be developed to assist in the curation process, ultimately 
a human being must review the data to ensure its validity. In recent 
years, the needs of biology-related databases led to the formation 
of a new and growing profession, biocurator [ 47 ]. To illustrate the 
scope of this new fi eld, scientists from over 250 different institu-
tions worldwide are represented in the International Society for 
Biocuration [ 48 ]. 

 A particular problem in designing and maintaining effective 
data management systems for large-scale biological programs is the 
interaction of two very different “cultures” involved with the sys-
tem: the data management system developers and the biological 
researchers. People with training and experience in both software 
development and biological research are still relatively rare. Despite 
earnest efforts, the two groups often do not understand each other 
well. For example, addressing a request by a biologist, a system 
developer may propose a solution that is elegant, general, and yet 
fails completely to address the needs identifi ed by the biologist. 
In turn, biologists are often bewildered when they are told by system 
developers that a supposedly minor modifi cation of their experi-
mental procedure would require an extensive redesign of the data-
base schema taking several months of work. It is very important 
that project leaders try to bridge this cultural gap. This is especially 
crucial when designing new parts of the data management system. 
Development of an appropriate database abstraction is the single 
most important part of the design, requiring close collaboration of 
the two groups. At the testing and maintenance stage, it is crucial 
that real experiments leading to new structures and publications 
are performed by these two groups together. This approach is used 
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in the development of LabDB and UniTrack, where both the 
people responsible for particular biomedical projects and the people 
who are writing the code are considered “developers” of the data 
management systems. 

 As mentioned above, one of the particular challenges of track-
ing biological data is the sheer diversity of potential experiments. 
When a chain of experiments is planned, one successful experiment 
in the chain can make others unnecessary. When data management 
systems were focused on tracking the “standard” structure deter-
mination pipeline, there was an implicit understanding of the scope 
of the methods that would be used, and thus most of the parame-
ters that would need to be harvested could be determined or pre-
dicted a priori. The level of diversity increases even more when 
data from different consortia are brought together into a single 
database like TargetTrack. 

 Another particular challenge is in the sheer amount of experi-
mental data to be collected. As the centers continue to become 
more effi cient at producing greater numbers of experimental samples 
more quickly, the process of actually entering the results into the 
databases becomes a rate-limiting step, even when data are har-
vested semiautomatically. In particular, the process of protein crys-
tallization, where each protein sample can potentially be used to 
produce thousands of individual crystallization trials, represents a 
virtual avalanche of data to be imported into the database. Further, 
given the comparatively large number of crystallization experi-
ments typically required to yield useful results [ 49 ], the temptation 
to only include positive outcomes is strong, even though both 
positive and negative results are crucial for usefully data mining 
crystallization results. Some LIMSs, like LabDB, have partially 
addressed this issue by importing experimental data from the labo-
ratory automatically or semiautomatically, but many systems still 
have challenges in ensuring that data entry and import are as sim-
ple as possible. Similarly, systems for importing data like the XML 
fi les used by TargetTrack will not be able to scale to the millions of 
data produced by the high-throughput centers. 

 Outside SG and other large projects, in many small-scale bio-
logical research laboratories, data are still primarily managed 
through written notebooks and spreadsheets. Such tools are not 
adequate to handle more complicated data. None of the available 
general-purpose commercial or open-source LIMSs have gained 
wide acceptance among small-scale laboratories. Some LIMS-like 
systems are in use; many pieces of scientifi c equipment come with 
specialized databases for automatically gathering and analyzing the 
data collected with that equipment. However, there is little incen-
tive for equipment vendors to provide tools to integrate data from 
these databases with data from other databases, let alone data col-
lected manually. Such tools are being created by the SG centers, 
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and hopefully when they encompass a suffi ciently broad range of 
experimental methods, they might be a decisive factor in encourag-
ing adoption of modern data management systems in small-scale 
laboratories.   

4     Conclusions 

 Data management in a large modern laboratory has become para-
mount for coordinating and tracking the vast amount of data gen-
erated across multiple experiments, time frames, and centers, not 
to mention the potential for data mining to extract even more use-
ful and interesting information. Successful data management 
requires a system with a well-planned, cohesive, and fl exible frame-
work. How to best achieve this coordination and level of detail is 
currently being addressed in different ways, but the measure of 
success comes back to “data in, information out.” A coherent 
organizational structure using a “bottom-up” approach, along 
with mechanisms to connect these results into a unifi ed system, has 
been working well for the SG centers, giving them the ability to 
adapt to new nonlinear and distributed experimental pipelines. In 
particular, the development of “super-LIMS” such as LabDB gives 
much needed fl exibility as the frontier of the SG landscape contin-
ues to advance across organizations. The overall success of SG data 
management efforts should be measured not only in classical terms, 
i.e., the number of papers and/or number of citations, but most of 
all by the impact on the scientifi c community. There is no simple 
measure of that impact, but the number of papers published by an 
SG center jointly with other institutions is an indication of this 
impact. The map of collaborations for one SG center (Fig.  8 ) illus-
trates that the “big data” produced by the large-scale SG centers is 
also relevant to the biological research performed in small- scale 
laboratories around the world.
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